Organizing Numerical Theories
using Axiomatic Type Classes

Lawrence C Paulson
Computer Laboratory

BE UNIVERSITY OF

“*‘ﬁ lllll

¥ CAMBRIDGE

Many Kinds of Numbers

Hypercomplex
Complex—"

erreal
Real////// /P

Hypernatural

Integer Non-standard analysis: infinitely

large and small numbers

Natural

Many Arithmetic Laws

® commutative and associative
® distributive and cancellation

® monotonicity and sign-related

® for + — X [abs and exponentiation

There are 100s of laws, and special-purpose code.
Must it be replicated?

Subtyping: The Usual Fix

® |nheritance hierarchy based on inclusions
such as nat € int € rat € real & complex

® |nverts the natural order of construction: the
complex numbers actually derive their
properties from the reals!

® The complexes are unordered, so laws about
< must be inherited from the reals

® New theories (such as polynomials) don’t
benefit, since they aren’t subtypes of anything

Axiomatic Type Classes

® Controlled overloading based on axioms
® Can define concept hierarchies abstractly

® Prove theorems about a concept from its
axioms

® Prove that a type belongs to a class, making
those theorems available

® Due to Nipkow (1991) and Wenzel (1997)

Defining Semirings

axclass semiring C zero, one, plus, times
add-assoc: (a + b) + ¢ = a + (b + ¢)
add-commute: a + b = b + a
add-0 | 04+ a=a
add-left-imp-eq: a + b = a + ¢ ==> b=c
mult-assoc: (a % b) x ¢ = a * (b * ¢)
mult-commute: a x b = b *x a
mult-1 | |11 xa=a
left-distrib: (a + b) x c = a * ¢ + b *
zero-neq-one | |: 0 # 1

Ordered Semirings

Existing class of linear orders

axclass ordered-semiring C semiring, linorder
zero-less-one |simpl: 0 < 1
add-left-mono: a < b==>c+a < c+ b
® Addition is cancellative and monotonic

® Multiplication distributes over addition

® Example: the natural numbers

The Full Rierarchy

real
ordered fields

other Co/mplex int
ring-based

fields ordered rings

rings

nat
ordered semirings

/

semirings

The Natural Numbers
form a Semiring

instance nat :: semiring
proof
fix 15k :: nat
show (i +7) + k=1 + (j + k) by (rule nat-add-assoc)
show i + 7 = j + i by (rule nat-add-commute)
show 0 + i = 7 by simp
show (i x j) *x k = 1 x (j * k) by (rule nat-mult-assoc)
show i x 7 = j *x i by (rule nat-mult-commute)
show 1 x 1 = i by simp
show (i + j) x k=1 x k + 7 x k by (stmp add: add-mult-distrib)
show 0 # (1::nat) by simp
assume k+1 = k+j thus i=j5 by simp
qed

And They Form An
Ordered Semiring

instance nat :: ordered-semiring
proof

fix 17k :: nat
show 0 < (1::nat) by simp
show 1 < 73 ==>k + 1 < k + 5 by simp
show 1 < j ==> 0 < k==>kx1 <k xj by..
qed

As the type already belongs to class
semiring, only the additional axioms must
be proved.

A Type Class for
Powers

axclass ringpower C semiring, power
power-0 |simpl: a "0 = 1
power-Suc: a ~ (Sucn) = a x (a " n)
® The usual laws follow from these axioms

® Prove them once; use them for each type

® Other common operators can be dealt with
in the same way

Setting up Powers for
the Naturals

primrec (power)
p 0 =1
p " (Sucn) = (p:nat) * (p "~ n)

instance nat :: ringpower
proof

fix z :: nat

fix n :: nat

show 270 = 1 by simp

show 2" (Suc n) = z x (z™n) by simp
qed

Numeric Literals

Coded as 2’s-complement binary numbers
Valuation defined by primitive recursion

Correspondence between binary arithmetic
and numerical arithmetic proved for rings

Can be instantiated for all numeric types
save the naturals

Uniform Simplification

® Axioms/theorems declared with [simp] are
used to simplify terms of any suitable type

® Thus simplification is uniform for all the
numeric types

® Simplification procedures (HOL conversions)
also behave uniformly

Summary/Conclusions

® Type classes cope with many numeric types.
® Properties are proved abstractly

® |00s of lemmas become available to a new
numeric type

® No need to repeat proofs or code or to
Invent systematic naming conventions

® Related work: PVS theories?

