Defining Functions on
Equivalence Classes

Lawrence C. Paulson, Computer Laboratory,
University of Cambridge

Outline of Talk

1. Review of equivalence relations and quotients
2. General lemmas for defining quotients formally
3. Detailed development of the integers

4. Brief treatment of a quotiented datatype

(Quotient Constructions

Identify values according to an equivalence relation

* terms that differ only by bound variable names

* numbers that leave the same residue modulo p
numerous applications in algebra, topology; ezc.

* quotient constructions of the integers, rationals
and non-standard reals; quotient groups and rings

Where are the applications in automated proof?

Definitions

An equivalence relation ~ on a set A is any relation
that is reflexive (on A), symmetric and transitive.

An equivalence class [X] _ contains all y where y ~ X
(for x € A)

If ~ is an equivalence relation on A, then the
quotient space A/~ 1sthe set of all equivalence classes

The equivalence classes form a partition of A

Examples

The integers: equivalence classes on NxN
X, y) ~ (U, v) <= X+tv=UuU+Yy
The rationals: equivalence classes on Zx7*°
(X,Y¥) ~ (U, v) < Xv =uy
A-terms: equivalence classes on a-equivalence

The hyperreals: infinite sequences of reals
(quotiented with respect to an ultrafilter)

Constructing the Integers

[(X, ¥)]

representstheinteger x —y

The integer operations on equivalence classes:

[(X, y)] +
[(X, Y)] x

0=

(X, Y).
(U, v)]

(U, V)]

(0, 0)]

(Y, X)]
(X4 U, Y+ v)]

(XU + Yv, Xv + vu)]

Function definitions must preserve the
equivalence relation. Then the choice
of representative does not matter.

Sample Proof: —(—2) =z

* Replace zby an arbitrary equivalence class
* Rewrite using — [(X, ¥)] = [(Y, X)]

¢ Proof is trivial:

— (=[x, YD = —=[(y, x)] =[(X, y)]

Proof that + is Associative

Replace each integer by a pair of natural numbers.

Prove by associativity of + on the naturals

([(x1, YOI + [(X2, ¥2)]) + [(Xa, ¥3)] = [(X1 + X2 + X3, Y1 + Y2 + Y3])
= [(x1, YOI + ([(X2, ¥2)] + [(Xs, ¥3)])

Alternatives to Quotients

A-terms? Use de Bruijn’s treatment of variables v

Integers as signed natural numbers? Ugly, with
massive case analyses X

Rationals as reduced fractions? Requires serious
reasoning about greatest common divisors X

Hyperreals? Quotient groups? XXX

Formalizing Quotients

Set comprehensions as nested unions of singletons

[F(XL .. %) | X1 € AL ...y Xn € Ayl = U U{f(xl,...,xn)}

Example: this definition of a quotient space

"Allr =[x € A {r*“{x}}"

The equivalence class [X]

I0

Typical theorem: [X] = [V]
if and only if X~y

theorem eqg_equi v.class.iff:
"fequiv Ar; x € A, y € A]

/:> (r'"{x} = r“{T) = ((x,y) er)”

I is an equivalence The equivalence classes
relation on A [X] and [V]

II

Defining Functions on
Equivalence Classes

* Form a set by applying the concrete function to
all representatives

* If the function preserves the equivalence relation,
this set will be a singleton. Then get its element:

contents {X} = X

(Comprehensions are unions, so
we collapse constant unions)

12

A Key Definition & Lemma

Congruence-preserving function, f:

congruent r f vy z. (y,z) er — f y =1 2z

Collapsing unions over equivalence classes,
where f is a set-valued function

lemma UN_equi v _cl ass:
"equiv A r; congruent

r f:
— (Ux er*“{a}. f x) =

a € Al
f a"

If f respects a equivalence relation, then the
union over [a] is simply f ().

I3

Constructing the Integers

The equivalence relation:

intrel = {((x,y),(u,v)) | Xy uv. x+tv = u+y}'

The type definition (quotienting the universal set):

typedef (I nteg) Iint = "UNIV//intrel™
by (auto sinp add: quotient def)

The constants zero and one:

Abs I nteg(intrel ** {(0,0)})
Abs Integ(intrel ** {(1,0)})

14

Defining Unary Minus

All representatives of the integer z

N\

-z = contents (|J(x,y)eRep.Integ z.
{ Absinteg(intrel “{(y,x)}) })

e

The equivalence class [(Y, X)]

The desired characteristic equation: — [(X, ¥)] = [(Y, X)]

15

Proving the
Characteristic Equation

The definition respects the
equivalence relation.

lemma m nus:
“- AbsInteg(intrel®‘{(x,y)}) = Integ(intrel “° {(y,x)})"
proof -

have "congruent intrel (A(X,y).
by (sinp add: congruent _def)
thus ?t hesi s
by (sinp add: mnus.nt _def UNequiv.class [OF equivintrel])

qed \
Result follows by definition,
simplifying with a general lemma.

16

Reasoning About Minus

The characteristic equation lets other proofs
resemble textbook ones.

Step 1: uses cases to replace each integer by an
arbitrary pair of natural numbers.

Step 2: simplity using the equation and laws about
the natural numbers.

lemma "- (- z) = z"
by (cases z, sinp add: m nus)

7

A’'Two-Argument Function

All representatives of the integers Z and W

contents (| J(x,y)eReplinteg z. [J(u,Vv)eReplInteg w.
{ AbsIinteg(intrel®*{(x+u, y+v)}) })"

The desired characteristic equation:

(X, W]+ U, v)] =[(X+Uu,y+v)]

The obvious generalization of
the one-argument case

18

Proofs About Addition

The characteristic equation:

lemma add:
"Abs_Integ (intrel®*{(x,y)}) + Abs_Integ (intrel®‘{(u,v)}) =
Abs_Integ (intrel’‘{(x+u, y+v)})"

A typical theorem:
lemma "-(z + W) = (-2) + (-w)"

by (cases z, cases w), sinp add: m nus add)

Proof, as usual, by cases and simplification

19

Defining The Ordering

= dX Yy U V. X+v < u+y &
(X,yY) € Repldnteg z & (u,v) € Replnteg w

The desired characteristic equation:
[(X, Y] =[U,v)] <= X+v=u+y

Its proof:

lemma | e:
"(Abs_Integ(intrel**{(x,y)}) < Abs.Integ(intrel®*{(u,v)}))
= (x+v < u+y)"

by (force sinp add: |e.nt_def)

We are not forced to treat relations as functions.

20

How to Define a Quotiented
Recursive Datatype

1. Define an ordinary datatype: a free algebra.

2. Define an equivalence relation expressing the
desired equations.

3. Define the new type to be a quotient.

4. Define its abstract constructors and other
operations as functions on equivalence classes.

21

A Message Datatype

datatype

freensg NONCE nat

| MPAIR freensg freensg
| CRYPT nat freensg
| DECRYPT nat freensg

Can encryption and decryption to be inverses?
Dk (Ek (X)) = X and Ex (Dk (X)) = X

22

The Equivalence Relation

The desired equations

inductive "nsgrel "

intros
CD: "CRYPT K (DECRYPT K X) ~ X"
DC: "DECRYPT K (CRYPT K X) ~ X"

NONCE: "NONCE N ~ NONCE N
MPAIR "[X ~X; Y~Y] = MAIRXY ~ MARX Y"
CRYPT: "X ~ X = CRYPT K X ~ CRYPT K X "

DECRYPT: "X ~ X = DECRYPT K X ~ DECRYPT K X' "

SYM "X ~Y=— Y~ X

TRANS: "[X ~Y; Y~ 2] — X ~ 2"

e

Symmetry and For the abstract
transitivity constructors

23

Defining Functions on the
Quotiented Datatype

* Destructors: define first on the free datatype,
respecting ~, then transfer.

e Constructors: define like other functions on
equivalence relations. They respect ~ by its
definition.

"Crypt K X == Abs Msg ((JUeRep Msg X. nsgrel*‘{CRYPT K U})"

24

Related Work

* HOL-4 packages by Harrison and Homeier
* lift concrete functions to abstract ones

* Isabelle/HOL theories
* Slotosch: partial equivalence relations
* Wenzel: axiomatic type classes

* All using Axiom of Choice (Hilbert’s €-operator)

25

Conclusions

* Working with functions defined on quotient
spaces is easy, using set comprehension.

* Any tool for set theory or HOL is suitable.
(Arthan uses similar ideas with ProofPower.)

* The axiom of choice is not required.

* With correct lemmas, simplification is automatic.

26

