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Outline of Talk

1. Review of equivalence relations and quotients
2. General lemmas for defining quotients formally
3. Detailed development of the integers

4. Brief treatment of a quotiented datatype



(Quotient Constructions

Identify values according to an equivalence relation

* terms that differ only by bound variable names

* numbers that leave the same residue modulo p
numerous applications in algebra, topology; ezc.

* quotient constructions of the integers, rationals
and non-standard reals; quotient groups and rings

Where are the applications in automated proof?



Definitions

An equivalence relation ~ on a set A is any relation
that is reflexive (on A), symmetric and transitive.

An equivalence class [X] _ contains all y where y ~ X
(for x € A)

If ~ is an equivalence relation on A, then the
quotient space A/~ 1sthe set of all equivalence classes

The equivalence classes form a partition of A



Examples

The integers: equivalence classes on NxN
X, y) ~ (U, v) <= X+tv=UuU+Yy
The rationals: equivalence classes on Zx7*°
(X,Y¥) ~ (U, v) < Xv =uy
A-terms: equivalence classes on a-equivalence

The hyperreals: infinite sequences of reals
(quotiented with respect to an ultrafilter)



Constructing the Integers

[(X, ¥)]

representstheinteger x —y

The integer operations on equivalence classes:

[(X, y)] +
[(X, Y)] x

0=

(X, Y).
(U, v)]

(U, V)]

(0, 0)]

(Y, X)]
(X4 U, Y+ v)]

(XU + Yv, Xv + vu)]

Function definitions must preserve the
equivalence relation. Then the choice
of representative does not matter.



Sample Proof: —(—2) =z

* Replace zby an arbitrary equivalence class
* Rewrite using — [(X, ¥)] = [(Y, X)]

¢ Proof is trivial:

— (=[x, YD = —=[(y, x)] =[(X, y)]



Proof that + is Associative

Replace each integer by a pair of natural numbers.

Prove by associativity of + on the naturals

([(x1, YOI + [(X2, ¥2)]) + [(Xa, ¥3)] = [(X1 + X2 + X3, Y1 + Y2 + Y3])
= [(x1, YOI + ([(X2, ¥2)] + [(Xs, ¥3)])



Alternatives to Quotients

A-terms? Use de Bruijn’s treatment of variables v

Integers as signed natural numbers? Ugly, with
massive case analyses X

Rationals as reduced fractions? Requires serious
reasoning about greatest common divisors X

Hyperreals? Quotient groups? XXX



Formalizing Quotients

Set comprehensions as nested unions of singletons

[F(XL .. %) | X1 € AL ...y Xn € Ayl = U U{f(xl,...,xn)}

Example: this definition of a quotient space

"Allr =[x € A {r*“{x}}"

The equivalence class [X]

I0



Typical theorem: [X] = [V]
if and only if X~y

theorem eqg_equi v.class.iff:
"fequiv Ar; x € A, y € A]

/:> (r'"{x} = r“{T) = ((x,y) er)”

I is an equivalence The equivalence classes
relation on A [X] and [V]

II



Defining Functions on
Equivalence Classes

* Form a set by applying the concrete function to
all representatives

* If the function preserves the equivalence relation,
this set will be a singleton. Then get its element:

contents {X} = X

(Comprehensions are unions, so
we collapse constant unions)
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A Key Definition & Lemma

Congruence-preserving function, f:

congruent r f vy z. (y,z) er — f y =1 2z

Collapsing unions over equivalence classes,
where f is a set-valued function

lemma UN_equi v _cl ass:
"equiv A r; congruent

r f:
— (Ux er*“{a}. f x) =

a € Al
f a"

If f respects a equivalence relation, then the
union over [a] is simply f ().
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Constructing the Integers

The equivalence relation:

intrel = {((x,y),(u,v)) | Xy uv. x+tv = u+y}'

The type definition (quotienting the universal set):

typedef (I nteg) Iint = "UNIV//intrel™
by (auto sinp add: quotient def)

The constants zero and one:

Abs I nteg(intrel ** {(0,0)})
Abs Integ(intrel ** {(1,0)})
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Defining Unary Minus

All representatives of the integer z

N\

-z = contents (|J(x,y)eRep.Integ z.
{ Absinteg(intrel “{(y,x)}) })

e

The equivalence class [(Y, X)]

The desired characteristic equation: — [(X, ¥)] = [(Y, X)]
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Proving the
Characteristic Equation

The definition respects the
equivalence relation.

lemma m nus:
“- AbsInteg(intrel®‘{(x,y)}) = Integ(intrel “° {(y,x)})"
proof -

have "congruent intrel (A(X,y).
by (sinp add: congruent _def)
thus ?t hesi s
by (sinp add: mnus.nt _def UNequiv.class [OF equivintrel])

qed \
Result follows by definition,
simplifying with a general lemma.
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Reasoning About Minus

The characteristic equation lets other proofs
resemble textbook ones.

Step 1: uses cases to replace each integer by an
arbitrary pair of natural numbers.

Step 2: simplity using the equation and laws about
the natural numbers.

lemma "- (- z) = z"
by (cases z, sinp add: m nus)
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A’'Two-Argument Function

All representatives of the integers Z and W

contents (| J(x,y)eReplinteg z. [J(u,Vv)eReplInteg w.
{ AbsIinteg(intrel®*{(x+u, y+v)}) })"

The desired characteristic equation:

(X, W]+ U, v)] =[(X+Uu,y+v)]

The obvious generalization of
the one-argument case
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Proofs About Addition

The characteristic equation:

lemma add:
"Abs_Integ (intrel®*{(x,y)}) + Abs_Integ (intrel®‘{(u,v)}) =
Abs_Integ (intrel’‘{(x+u, y+v)})"

A typical theorem:
lemma "-(z + W) = (-2) + (-w)"

by (cases z, cases w), sinp add: m nus add)

Proof, as usual, by cases and simplification
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Defining The Ordering

= dX Yy U V. X+v < u+y &
(X,yY) € Repldnteg z & (u,v) € Replnteg w

The desired characteristic equation:
[(X, Y] =[U,v)] <= X+v=u+y

Its proof:

lemma | e:
"(Abs_Integ(intrel**{(x,y)}) < Abs.Integ(intrel®*{(u,v)}))
= (x+v < u+y)"

by (force sinp add: |e.nt_def)

We are not forced to treat relations as functions.
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How to Define a Quotiented
Recursive Datatype

1. Define an ordinary datatype: a free algebra.

2. Define an equivalence relation expressing the
desired equations.

3. Define the new type to be a quotient.

4. Define its abstract constructors and other
operations as functions on equivalence classes.
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A Message Datatype

datatype

freensg NONCE nat

| MPAIR freensg freensg
| CRYPT nat freensg
| DECRYPT nat freensg

Can encryption and decryption to be inverses?
Dk (Ek (X)) = X and Ex (Dk (X)) = X
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The Equivalence Relation

The desired equations

inductive "nsgrel "

intros
CD: "CRYPT K (DECRYPT K X) ~ X"
DC: "DECRYPT K (CRYPT K X) ~ X"

NONCE: "NONCE N ~ NONCE N
MPAIR "[X ~X; Y~Y] = MAIRXY ~ MARX Y"
CRYPT: "X ~ X = CRYPT K X ~ CRYPT K X "

DECRYPT: "X ~ X = DECRYPT K X ~ DECRYPT K X' "

SYM "X ~Y=— Y~ X

TRANS: "[X ~Y; Y~ 2] — X ~ 2"

e

Symmetry and For the abstract
transitivity constructors
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Defining Functions on the
Quotiented Datatype

* Destructors: define first on the free datatype,
respecting ~, then transfer.

e Constructors: define like other functions on
equivalence relations. They respect ~ by its
definition.

"Crypt K X == Abs Msg ((JUeRep Msg X. nsgrel*‘{CRYPT K U})"

24



Related Work

* HOL-4 packages by Harrison and Homeier
* lift concrete functions to abstract ones

* Isabelle/HOL theories
* Slotosch: partial equivalence relations
* Wenzel: axiomatic type classes

* All using Axiom of Choice (Hilbert’s €-operator)
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Conclusions

* Working with functions defined on quotient
spaces is easy, using set comprehension.

* Any tool for set theory or HOL is suitable.
(Arthan uses similar ideas with ProofPower.)

* The axiom of choice is not required.

* With correct lemmas, simplification is automatic.
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