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Outline of Talk

1. Review of equivalence relations and quotients

2. General lemmas for defining quotients formally

3. Detailed development of the integers

4. Brief treatment of a quotiented datatype 
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Quotient Constructions

Identify values according to an equivalence relation

• terms that differ only by bound variable names
• numbers that leave the same residue modulo p

numerous applications in algebra, topology, etc.

• quotient constructions of the integers, rationals 
and non-standard reals; quotient groups and rings

Where are the applications in automated proof?
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Definitions

• An equivalence relation ∼ on a set A is any relation 
that is reflexive (on A), symmetric and transitive.

• An equivalence class [x]∼ contains all y where y ∼ x 
(for x ∈ A)

• If ∼ is an equivalence relation on A, then the 
quotient space A/∼ is the set of all equivalence classes 

• The equivalence classes form a partition of A



5

Examples
• The integers: equivalence classes on ℕ×ℕ

• The rationals: equivalence classes on ℤ×ℤ≠0

• λ-terms: equivalence classes on α-equivalence

• The hyperreals: infinite sequences of reals 
(quotiented with respect to an ultrafilter)

The integers can be defined as equivalence classes on pairs of natural numbers related by

(x, y) ∼ (u, v) ⇐⇒ x + v = u + y

The rational numbers can be defined as equivalence classes on pairs of integers related by

(x, y) ∼ (u, v) ⇐⇒ xv = uy (y, v $= 0)

The integers can be defined using a signed magnitude representation. The rational numbers can be defined as fractions in reduced form.

[x]∼ is the equivalence class {y | y ∼ x}
The equivalence relation partitions the set A. The quotient set A/∼ is defined to be the set of generated by ∼.
Let us examine the construction of the integers.

[(x, y)] represents the integer x − y

2
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Constructing the Integers

The integer operations on equivalence classes:

The integers can be defined as equivalence classes on pairs of natural numbers related by

(x, y) ∼ (u, v) ⇐⇒ x + v = u + y

The rational numbers can be defined as equivalence classes on pairs of integers related by

(x, y) ∼ (u, v) ⇐⇒ xv = uy (y, v $= 0)

The integers can be defined using a signed magnitude representation. The rational numbers can be defined as fractions in reduced form.

[x]∼ is the equivalence class {y | y ∼ x}
The equivalence relation partitions the set A. The quotient set A/∼ is defined to be the set of generated by ∼.
Let us examine the construction of the integers.

[(x, y)] represents the integer x − y

2

0 = [(0, 0)]
− [(x, y)] = [(y, x)]

[(x, y)] + [(u, v)] = [(x + u, y + v)]
[(x, y)] × [(u, v)] = [(xu + yv, xv + vu)]

Such definitions are only legitimate if they are independent of the particular elements chosen from the equivalence classes.

To prove

−(−z) = z
write the integer z as [(x, y)].

−(−[(x, y)]) = −[(y, x)] = [(x, y)]

The proof that addition is associative appeals to the corresponding property for the natural numbers:(
[(x1, y1)] + [(x2, y2)]

) + [(x3, y3)] = [(x1 + x2 + x3, y1 + y2 + y3])
= [(x1, y1)] + (

[(x2, y2)] + [(x3, y3)]
)

3

Function definitions must preserve the 
equivalence relation. Then the choice 
of representative does not matter.
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Sample Proof:

• Replace z by an arbitrary equivalence class

• Rewrite using

• Proof is trivial:

0 = [(0, 0)]
− [(x, y)] = [(y, x)]

[(x, y)] + [(u, v)] = [(x + u, y + v)]
[(x, y)] × [(u, v)] = [(xu + yv, xv + vu)]

Such definitions are only legitimate if they are independent of the particular elements chosen from the equivalence classes.

To prove

−(−z) = z
write the integer z as [(x, y)].

−(−[(x, y)]) = −[(y, x)] = [(x, y)]

The proof that addition is associative appeals to the corresponding property for the natural numbers:(
[(x1, y1)] + [(x2, y2)]

) + [(x3, y3)] = [(x1 + x2 + x3, y1 + y2 + y3])
= [(x1, y1)] + (

[(x2, y2)] + [(x3, y3)]
)
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Proof that + is Associative

Prove by associativity of + on the naturals

0 = [(0, 0)]
− [(x, y)] = [(y, x)]

[(x, y)] + [(u, v)] = [(x + u, y + v)]
[(x, y)] × [(u, v)] = [(xu + yv, xv + vu)]

Such definitions are only legitimate if they are independent of the particular elements chosen from the equivalence classes.

To prove

−(−z) = z
write the integer z as [(x, y)].

−(−[(x, y)]) = −[(y, x)] = [(x, y)]

The proof that addition is associative appeals to the corresponding property for the natural numbers:(
[(x1, y1)] + [(x2, y2)]

) + [(x3, y3)] = [(x1 + x2 + x3, y1 + y2 + y3])
= [(x1, y1)] + (

[(x2, y2)] + [(x3, y3)]
)

3

Replace each integer by a pair of natural numbers.
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Alternatives to Quotients

• λ-terms? Use de Bruijn’s treatment of variables ✓
• Integers as signed natural numbers? Ugly, with 

massive case analyses ✗

• Rationals as reduced fractions? Requires serious 
reasoning about greatest common divisors ✗

• Hyperreals? Quotient groups? ✗✗✗
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The equivalence class [x]

Formalizing Quotients

A Formalization of Equivalence Classes

R“{x} denotes {y | (x, y) ∈ R}: the equivalence class [x]R

theorem eq equiv class iff:
"[[equiv A r; x ∈ A; y ∈ A]]
"⇒ (r‘‘{x} = r‘‘{y}) = ((x,y) ∈ r)"

The quotient set is defined to be the set of equivalence classes.

"A//r ≡ ⋃
x ∈ A. {r‘‘{x}}"

set comprehensions as unions and singleton sets

{ f (x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An} = ⋃
x1∈A1

. . .
⋃

xn∈An

{ f (x1, . . . , xn)}

Congruence-preserving property:

congruent r f ≡ ∀ y z. (y,z) ∈ r −→ f y = f z

4

Example: this definition of a quotient space

A Formalization of Equivalence Classes

R“{x} denotes {y | (x, y) ∈ R}: the equivalence class [x]R

theorem eq equiv class iff:
"[[equiv A r; x ∈ A; y ∈ A]]
"⇒ (r‘‘{x} = r‘‘{y}) = ((x,y) ∈ r)"

The quotient set is defined to be the set of equivalence classes.

"A//r ≡ ⋃
x ∈ A. {r‘‘{x}}"

set comprehensions as unions and singleton sets

{ f (x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An} = ⋃
x1∈A1

. . .
⋃

xn∈An

{ f (x1, . . . , xn)}

Congruence-preserving property:

congruent r f ≡ ∀ y z. (y,z) ∈ r −→ f y = f z

4

Set comprehensions as nested unions of singletons



11

Typical theorem: [x] = [y] 
if and only if x ∼ yA Formalization of Equivalence Classes

R“{x} denotes {y | (x, y) ∈ R}: the equivalence class [x]R

theorem eq equiv class iff:
"[[equiv A r; x ∈ A; y ∈ A]]
"⇒ (r‘‘{x} = r‘‘{y}) = ((x,y) ∈ r)"

The quotient set is defined to be the set of equivalence classes.

"A//r ≡ ⋃
x ∈ A. {r‘‘{x}}"

set comprehensions as unions and singleton sets

{ f (x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An} = ⋃
x1∈A1

. . .
⋃

xn∈An

{ f (x1, . . . , xn)}

Congruence-preserving property:

congruent r f ≡ ∀ y z. (y,z) ∈ r −→ f y = f z

4

r is an equivalence 
relation on A

The equivalence classes 
[x] and [y]
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Defining Functions on 
Equivalence Classes

lemma eliminates a union over the elements of an equivalence class provided the function is Congruence-preserving.

lemma UN equiv class:
"[[equiv A r; congruent r f; a ∈ A]]
"⇒ (

⋃
x ∈ r‘‘{a}. f x) = f a"

other stuff for two-argument functions

contents {x} = x

Example: Defining the Integers Formally
We begin by defining the equivalence relation.

"intrel ≡ {((x,y),(u,v)) | x y u v. x+v = u+y}"
Next, we introduce the type int.

typedef (Integ) int = "UNIV//intrel"
by (auto simp add: quotient def)

Now we can define the integer constants 0 and 1.

"0 ≡ Abs Integ(intrel ‘‘ {(0,0)})"
"1 ≡ Abs Integ(intrel ‘‘ {(1,0)})"

5

(Comprehensions are unions, so 
we collapse constant unions)

• Form a set by applying the concrete function to 
all representatives

• If the function preserves the equivalence relation, 
this set will be a singleton. Then get its element:
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A Key Definition & Lemma

A Formalization of Equivalence Classes

R“{x} denotes {y | (x, y) ∈ R}: the equivalence class [x]R

theorem eq equiv class iff:
"[[equiv A r; x ∈ A; y ∈ A]]
"⇒ (r‘‘{x} = r‘‘{y}) = ((x,y) ∈ r)"

The quotient set is defined to be the set of equivalence classes.
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x ∈ A. {r‘‘{x}}"

set comprehensions as unions and singleton sets

{ f (x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An} = ⋃
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. . .
⋃

xn∈An

{ f (x1, . . . , xn)}

Congruence-preserving property:

congruent r f ≡ ∀ y z. (y,z) ∈ r −→ f y = f z

4

lemma eliminates a union over the elements of an equivalence class provided the function is Congruence-preserving.

lemma UN equiv class:
"[[equiv A r; congruent r f; a ∈ A]]
"⇒ (

⋃
x ∈ r‘‘{a}. f x) = f a"

other stuff for two-argument functions

contents {x} = x

Example: Defining the Integers Formally
We begin by defining the equivalence relation.

"intrel ≡ {((x,y),(u,v)) | x y u v. x+v = u+y}"
Next, we introduce the type int.

typedef (Integ) int = "UNIV//intrel"
by (auto simp add: quotient def)

Now we can define the integer constants 0 and 1.

"0 ≡ Abs Integ(intrel ‘‘ {(0,0)})"
"1 ≡ Abs Integ(intrel ‘‘ {(1,0)})"

5

Congruence-preserving function, f:

Collapsing unions over equivalence classes, 
where f is a set-valued function

If f respects a equivalence relation, then the 
union over [a] is simply f (a).
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Constructing the Integers
The equivalence relation:

lemma eliminates a union over the elements of an equivalence class provided the function is Congruence-preserving.

lemma UN equiv class:
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"⇒ (

⋃
x ∈ r‘‘{a}. f x) = f a"
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5

lemma eliminates a union over the elements of an equivalence class provided the function is Congruence-preserving.

lemma UN equiv class:
"[[equiv A r; congruent r f; a ∈ A]]
"⇒ (

⋃
x ∈ r‘‘{a}. f x) = f a"
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contents {x} = x

Example: Defining the Integers Formally
We begin by defining the equivalence relation.

"intrel ≡ {((x,y),(u,v)) | x y u v. x+v = u+y}"
Next, we introduce the type int.

typedef (Integ) int = "UNIV//intrel"
by (auto simp add: quotient def)

Now we can define the integer constants 0 and 1.

"0 ≡ Abs Integ(intrel ‘‘ {(0,0)})"
"1 ≡ Abs Integ(intrel ‘‘ {(1,0)})"

5

The type definition (quotienting the universal set):

lemma eliminates a union over the elements of an equivalence class provided the function is Congruence-preserving.

lemma UN equiv class:
"[[equiv A r; congruent r f; a ∈ A]]
"⇒ (

⋃
x ∈ r‘‘{a}. f x) = f a"

other stuff for two-argument functions

contents {x} = x

Example: Defining the Integers Formally
We begin by defining the equivalence relation.

"intrel ≡ {((x,y),(u,v)) | x y u v. x+v = u+y}"
Next, we introduce the type int.

typedef (Integ) int = "UNIV//intrel"
by (auto simp add: quotient def)

Now we can define the integer constants 0 and 1.

"0 ≡ Abs Integ(intrel ‘‘ {(0,0)})"
"1 ≡ Abs Integ(intrel ‘‘ {(1,0)})"

5

The constants zero and one:
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Defining Unary Minus

Proving that intrel is an equivalence relation requires a one-line simplifier call.
every integer is represented by a pair of natural numbers.

∀z ∃xy z = [(x, y)]

lemma eq Abs Integ [cases type: int]:
"(

∧
x y. z = Abs Integ(intrel‘‘{(x,y)}) #⇒ P) #⇒ P"

Unary minus, A One-Argument Function
We cannot pick an arbitrary element of an equivalence class, but if the function is congruent, the choice of element does not matter.
Therefore, we form a set consisting of all values generated by all elements of the equivalence class. This set will simplify to a singleton,
whose value will be returned via the equation contents {x} = x.

"-z ≡ contents (
⋃

(x,y)∈Rep Integ z.
{ Abs Integ(intrel‘‘{(y,x)}) })"

Here intrel ‘‘ {(y,x)} denotes the equivalence class

[(y, x)]
The argument of contents is the collection of all integers [(y, x)] such that (x, y) belongs to the equivalence class for z. This collection
will turn out to be a singleton.
prove its characteristic equation

− [(x, y)] = [(y, x)]

6

All representatives of the integer z

Proving that intrel is an equivalence relation requires a one-line simplifier call.
every integer is represented by a pair of natural numbers.

∀z ∃xy z = [(x, y)]

lemma eq Abs Integ [cases type: int]:
"(

∧
x y. z = Abs Integ(intrel‘‘{(x,y)}) #⇒ P) #⇒ P"

Unary minus, A One-Argument Function
We cannot pick an arbitrary element of an equivalence class, but if the function is congruent, the choice of element does not matter.
Therefore, we form a set consisting of all values generated by all elements of the equivalence class. This set will simplify to a singleton,
whose value will be returned via the equation contents {x} = x.

"-z ≡ contents (
⋃

(x,y)∈Rep Integ z.
{ Abs Integ(intrel‘‘{(y,x)}) })"

Here intrel ‘‘ {(y,x)} denotes the equivalence class

[(y, x)]
The argument of contents is the collection of all integers [(y, x)] such that (x, y) belongs to the equivalence class for z. This collection
will turn out to be a singleton.
prove its characteristic equation

− [(x, y)] = [(y, x)]

6

The equivalence class

The desired characteristic equation: 

Proving that intrel is an equivalence relation requires a one-line simplifier call.
every integer is represented by a pair of natural numbers.

∀z ∃xy z = [(x, y)]

lemma eq Abs Integ [cases type: int]:
"(

∧
x y. z = Abs Integ(intrel‘‘{(x,y)}) #⇒ P) #⇒ P"

Unary minus, A One-Argument Function
We cannot pick an arbitrary element of an equivalence class, but if the function is congruent, the choice of element does not matter.
Therefore, we form a set consisting of all values generated by all elements of the equivalence class. This set will simplify to a singleton,
whose value will be returned via the equation contents {x} = x.

"-z ≡ contents (
⋃

(x,y)∈Rep Integ z.
{ Abs Integ(intrel‘‘{(y,x)}) })"

Here intrel ‘‘ {(y,x)} denotes the equivalence class

[(y, x)]
The argument of contents is the collection of all integers [(y, x)] such that (x, y) belongs to the equivalence class for z. This collection
will turn out to be a singleton.
prove its characteristic equation

− [(x, y)] = [(y, x)]

6
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Proving the 
Characteristic Equation

lemma minus:
"- Abs Integ(intrel‘‘{(x,y)}) = Abs Integ(intrel ‘‘ {(y,x)})"

proof -
have "congruent intrel (λ(x,y). {Abs Integ (intrel‘‘{(y,x)})})"

by (simp add: congruent def)
thus ?thesis

by (simp add: minus int def UN equiv class [OF equiv intrel])
qed

The first part of the proof concerns congruence. The second part of the proof establishes the desired equation using the definition of
negation (minus int def) and our theorem about unions over equivalence classes.
Given the characteristic equation, proving properties of unary negation is trivial.
Consider the proof that negation is self-cancelling.

lemma "- (- z) = z"
by (cases z, simp add: minus)

Two-Argument Functions on Equivalence Classes
Addition: There are simply two unions instead of one.

"z + w ≡
contents (

⋃
(x,y)∈Rep Integ z.

⋃
(u,v)∈Rep Integ w.

{ Abs Integ(intrel‘‘{(x+u, y+v)}) })"

7

The definition respects the 
equivalence relation.

Result follows by definition, 
simplifying with a general lemma.
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Reasoning About Minus

lemma minus:
"- Abs Integ(intrel‘‘{(x,y)}) = Abs Integ(intrel ‘‘ {(y,x)})"

proof -
have "congruent intrel (λ(x,y). {Abs Integ (intrel‘‘{(y,x)})})"

by (simp add: congruent def)
thus ?thesis

by (simp add: minus int def UN equiv class [OF equiv intrel])
qed

The first part of the proof concerns congruence. The second part of the proof establishes the desired equation using the definition of
negation (minus int def) and our theorem about unions over equivalence classes.
Given the characteristic equation, proving properties of unary negation is trivial.
Consider the proof that negation is self-cancelling.

lemma "- (- z) = z"
by (cases z, simp add: minus)

Two-Argument Functions on Equivalence Classes
Addition: There are simply two unions instead of one.

"z + w ≡
contents (

⋃
(x,y)∈Rep Integ z.

⋃
(u,v)∈Rep Integ w.

{ Abs Integ(intrel‘‘{(x+u, y+v)}) })"

7

The characteristic equation lets other proofs 
resemble textbook ones. 

Step 1: uses cases to replace each integer by an 
arbitrary pair of natural numbers.

Step 2: simplify using the equation and laws about 
the natural numbers.
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All representatives of the integers z and w

A Two-Argument Function

lemma minus:
"- Abs Integ(intrel‘‘{(x,y)}) = Abs Integ(intrel ‘‘ {(y,x)})"

proof -
have "congruent intrel (λ(x,y). {Abs Integ (intrel‘‘{(y,x)})})"

by (simp add: congruent def)
thus ?thesis

by (simp add: minus int def UN equiv class [OF equiv intrel])
qed

The first part of the proof concerns congruence. The second part of the proof establishes the desired equation using the definition of
negation (minus int def) and our theorem about unions over equivalence classes.
Given the characteristic equation, proving properties of unary negation is trivial.
Consider the proof that negation is self-cancelling.

lemma "- (- z) = z"
by (cases z, simp add: minus)

Two-Argument Functions on Equivalence Classes
Addition: There are simply two unions instead of one.

"z + w ≡
contents (

⋃
(x,y)∈Rep Integ z.

⋃
(u,v)∈Rep Integ w.

{ Abs Integ(intrel‘‘{(x+u, y+v)}) })"

7

The desired characteristic equation: 
The characteristic equation for addition [(x, y)] + [(u, v)] = [(x + u, y + v)]
lemma add:

"Abs Integ (intrel‘‘{(x,y)}) + Abs Integ (intrel‘‘{(u,v)}) =
Abs Integ (intrel‘‘{(x+u, y+v)})"

unary minus distributes over addition.

lemma "-(z + w) = (-z) + (-w)"
by (cases z, cases w), simp add: minus add)

the ordering (≤)

"z ≤ (w::int)
≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"
the characteristic equation directly

[(x, y)] ≤ [u, v] ⇐⇒ x + v ≤ u + y
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))
= (x+v ≤ u+y)"

by (force simp add: le int def)

8

The obvious generalization of 
the one-argument case 
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Proofs About Addition
The characteristic equation:

The characteristic equation for addition [(x, y)] + [(u, v)] = [(x + u, y + v)]
lemma add:

"Abs Integ (intrel‘‘{(x,y)}) + Abs Integ (intrel‘‘{(u,v)}) =
Abs Integ (intrel‘‘{(x+u, y+v)})"

unary minus distributes over addition.

lemma "-(z + w) = (-z) + (-w)"
by (cases z, cases w), simp add: minus add)

the ordering (≤)

"z ≤ (w::int)
≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"
the characteristic equation directly

[(x, y)] ≤ [u, v] ⇐⇒ x + v ≤ u + y
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))
= (x+v ≤ u+y)"

by (force simp add: le int def)

8

A typical theorem:

The characteristic equation for addition [(x, y)] + [(u, v)] = [(x + u, y + v)]
lemma add:

"Abs Integ (intrel‘‘{(x,y)}) + Abs Integ (intrel‘‘{(u,v)}) =
Abs Integ (intrel‘‘{(x+u, y+v)})"

unary minus distributes over addition.

lemma "-(z + w) = (-z) + (-w)"
by (cases z, cases w), simp add: minus add)

the ordering (≤)

"z ≤ (w::int)
≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"
the characteristic equation directly

[(x, y)] ≤ [u, v] ⇐⇒ x + v ≤ u + y
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))
= (x+v ≤ u+y)"

by (force simp add: le int def)

8

Proof, as usual, by cases and simplification
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Defining The Ordering

The characteristic equation for addition [(x, y)] + [(u, v)] = [(x + u, y + v)]
lemma add:

"Abs Integ (intrel‘‘{(x,y)}) + Abs Integ (intrel‘‘{(u,v)}) =
Abs Integ (intrel‘‘{(x+u, y+v)})"

unary minus distributes over addition.

lemma "-(z + w) = (-z) + (-w)"
by (cases z, cases w), simp add: minus add)

the ordering (≤)

"z ≤ (w::int)
≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"
the characteristic equation directly

[(x, y)] ≤ [u, v] ⇐⇒ x + v ≤ u + y
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))
= (x+v ≤ u+y)"

by (force simp add: le int def)

8Its proof:

The characteristic equation for addition [(x, y)] + [(u, v)] = [(x + u, y + v)]
lemma add:

"Abs Integ (intrel‘‘{(x,y)}) + Abs Integ (intrel‘‘{(u,v)}) =
Abs Integ (intrel‘‘{(x+u, y+v)})"

unary minus distributes over addition.

lemma "-(z + w) = (-z) + (-w)"
by (cases z, cases w), simp add: minus add)

the ordering (≤)

"z ≤ (w::int)
≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"
the characteristic equation directly

[(x, y)] ≤ [u, v] ⇐⇒ x + v ≤ u + y
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))
= (x+v ≤ u+y)"

by (force simp add: le int def)

8

We are not forced to treat relations as functions.

The desired characteristic equation: 

The characteristic equation for addition [(x, y)] + [(u, v)] = [(x + u, y + v)]
lemma add:
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unary minus distributes over addition.

lemma "-(z + w) = (-z) + (-w)"
by (cases z, cases w), simp add: minus add)

the ordering (≤)

"z ≤ (w::int)
≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"
the characteristic equation directly

[(x, y)] ≤ [(u, v)] ⇐⇒ x + v ≤ u + y
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))
= (x+v ≤ u+y)"

by (force simp add: le int def)

8
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How to Define a Quotiented 
Recursive Datatype

1. Define an ordinary datatype: a free algebra.

2. Define an equivalence relation expressing the 
desired equations.

3. Define the new type to be a quotient.

4. Define its abstract constructors and other 
operations as functions on equivalence classes.
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A Message DatatypeQuotienting a Recursive Data type
To define a datatype with equational constraints, first define an ordinary datatype (which will be a free algebra).
Then, define an equivalence relation expressing the desired equations. Finally, quotient the datatype.
The free datatype constructors are lifted to the new recursive datatype, using the techniques of function definition described above.
To define other functions on the new datatype, first define a concrete version on the free datatype and then lift it.

datatype

freemsg = NONCE nat
| MPAIR freemsg freemsg
| CRYPT nat freemsg
| DECRYPT nat freemsg

inductive "msgrel"
intros

CD: "CRYPT K (DECRYPT K X) ∼ X"
DC: "DECRYPT K (CRYPT K X) ∼ X"
NONCE: "NONCE N ∼ NONCE N"
MPAIR: "[[X ∼ X’; Y ∼ Y’]] "⇒ MPAIR X Y ∼ MPAIR X’ Y’"
CRYPT: "X ∼ X’ "⇒ CRYPT K X ∼ CRYPT K X’"
DECRYPT: "X ∼ X’ "⇒ DECRYPT K X ∼ DECRYPT K X’"
SYM: "X ∼ Y "⇒ Y ∼ X"
TRANS: "[[X ∼ Y; Y ∼ Z]] "⇒ X ∼ Z"

9

Can encryption and decryption to be inverses?

Quotienting a Recursive Data type
To define a datatype with equational constraints, first define an ordinary datatype (which will be a free algebra).
Then, define an equivalence relation expressing the desired equations. Finally, quotient the datatype.
The free datatype constructors are lifted to the new recursive datatype, using the techniques of function definition described above.
To define other functions on the new datatype, first define a concrete version on the free datatype and then lift it.

datatype

freemsg = NONCE nat
| MPAIR freemsg freemsg
| CRYPT nat freemsg
| DECRYPT nat freemsg

DK (EK (X)) = X and EK (DK (X)) = X

9
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Symmetry and 
transitivity

For the abstract 
constructors

The desired equations

The Equivalence Relation

inductive "msgrel"
intros

CD: "CRYPT K (DECRYPT K X) ∼ X"
DC: "DECRYPT K (CRYPT K X) ∼ X"
NONCE: "NONCE N ∼ NONCE N"
MPAIR: "[[X ∼ X’; Y ∼ Y’]] "⇒ MPAIR X Y ∼ MPAIR X’ Y’"
CRYPT: "X ∼ X’ "⇒ CRYPT K X ∼ CRYPT K X’"
DECRYPT: "X ∼ X’ "⇒ DECRYPT K X ∼ DECRYPT K X’"
SYM: "X ∼ Y "⇒ Y ∼ X"
TRANS: "[[X ∼ Y; Y ∼ Z]] "⇒ X ∼ Z"

"Nonce N == Abs Msg(msgrel‘‘{NONCE N})"

"MPair X Y ==
Abs Msg (

⋃
U∈Rep Msg X.

⋃
V∈Rep Msg Y. msgrel‘‘{MPAIR U V})"

"Crypt K X == Abs Msg (
⋃

U∈Rep Msg X. msgrel‘‘{CRYPT K U})"

"Decrypt K X == Abs Msg (
⋃

U∈Rep Msg X. msgrel‘‘{DECRYPT K U})"

Related work
John Harrison package for HOL declares the type and operations and returns theorems about those operations. However, such a package
is not essential. The necessary definitions are straightforward and the reasoning about equivalence classes poses no difficulties.
Homeier: special support for quotient constructions on recursive data types.

10
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Defining Functions on the 
Quotiented Datatype

• Destructors: define first on the free datatype, 
respecting ∼, then transfer.

• Constructors: define like other functions on 
equivalence relations. They respect ∼ by its 
definition.

inductive "msgrel"
intros

CD: "CRYPT K (DECRYPT K X) ∼ X"
DC: "DECRYPT K (CRYPT K X) ∼ X"
NONCE: "NONCE N ∼ NONCE N"
MPAIR: "[[X ∼ X’; Y ∼ Y’]] "⇒ MPAIR X Y ∼ MPAIR X’ Y’"
CRYPT: "X ∼ X’ "⇒ CRYPT K X ∼ CRYPT K X’"
DECRYPT: "X ∼ X’ "⇒ DECRYPT K X ∼ DECRYPT K X’"
SYM: "X ∼ Y "⇒ Y ∼ X"
TRANS: "[[X ∼ Y; Y ∼ Z]] "⇒ X ∼ Z"

"Nonce N == Abs Msg(msgrel‘‘{NONCE N})"

"MPair X Y ==
Abs Msg (

⋃
U∈Rep Msg X.

⋃
V∈Rep Msg Y. msgrel‘‘{MPAIR U V})"

"Crypt K X == Abs Msg (
⋃

U∈Rep Msg X. msgrel‘‘{CRYPT K U})"

"Decrypt K X == Abs Msg (
⋃

U∈Rep Msg X. msgrel‘‘{DECRYPT K U})"

Related work
John Harrison package for HOL declares the type and operations and returns theorems about those operations. However, such a package
is not essential. The necessary definitions are straightforward and the reasoning about equivalence classes poses no difficulties.
Homeier: special support for quotient constructions on recursive data types.

10
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Related Work

• HOL-4 packages by Harrison and Homeier 

• lift concrete functions to abstract ones

• Isabelle/HOL theories

• Slotosch: partial equivalence relations

• Wenzel: axiomatic type classes

• All using Axiom of Choice (Hilbert’s ε-operator) 
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Conclusions

• Working with functions defined on quotient 
spaces is easy, using set comprehension.

• Any tool for set theory or HOL is suitable. 
(Arthan uses similar ideas with ProofPower.)

• The axiom of choice is not required.

• With correct lemmas, simplification is automatic.


