
Defining Functions on Equivalence Classes

LAWRENCE C. PAULSON

University of Cambridge

A quotient construction defines an abstract type from a concrete type, using an equivalence
relation to identify elements of the concrete type that are to be regarded as indistinguishable.
The elements of a quotient type are equivalence classes: sets of equivalent concrete values. Simple
techniques are presented for defining and reasoning about quotient constructions, based on a
general lemma library concerning functions that operate on equivalence classes. The techniques
are applied to a definition of the integers from the natural numbers, and then to the definition of
a recursive datatype satisfying equational constraints.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic]: Mechanical theorem proving;
G2.0 [Discrete Mathematics]: General

General Terms: Theory; Verification

Additional Key Words and Phrases: equivalence classes, quotients, theorem proving

1. INTRODUCTION

Equivalence classes and quotient constructions are familiar to every student of
discrete mathematics. They are frequently used for defining abstract objects. A
typical example from the λ-calculus is α-equivalence, which identifies terms that
differ only by the names of bound variables. Strictly speaking, we represent a term
by the set of all terms that can be obtained from it by renaming variables. In order
to define a function on terms, we must show that the result is independent of the
choice of variable names. Here we see the drawbacks of using equivalence classes:
individuals are represented by sets and function definitions carry a proof obligation.

Users of theorem proving tools are naturally inclined to prefer concrete methods
whenever possible. With their backgrounds in computer science, they will see func-
tions as algorithms and seek to find canonical representations of elements. We can
replace α-equivalence by de Bruijn variables [de Bruijn 1972]. Other common ap-
plications of equivalence classes can similarly be replaced by clever data structures.
However, such methods can make proofs unnecessarily difficult.

The automated reasoning community already uses equivalence classes. I con-
ducted an informal e-mail survey and learned of applications using ACL2, Coq,
HOL, Mizar and PVS. There must be other applications. However, ACL2 [Kauf-
mann and Moore 2002] does not use equivalence classes; it obtains a similar effect

Author’s address: Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, England.
E-mail : lcp@cl.cam.ac.uk

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–18.

2 · Lawrence C. Paulson

through its ability to rewrite a term with respect to any equivalence relation.1 The
work in Coq is specific to constructive type theory and uses the concept of se-
toid [Geuvers et al. 2002]. The work using HOL requires the use of special purpose
code [Harrison 1994; Homeier 2001]. If we consider the huge amount of mathematics
that has been formalised, it seems that uses of equivalence classes are rare.

The object of this paper is to show that with the right definitions, working with
equivalence classes is easy. The approach will work in any theorem prover that
admits the formalisation of basic set theory. Function definitions are made in a
stylised but readable form. Once a function is shown to respect the equivalence
relation, further proofs can be undertaken as they would be in a mathematics text-
book: by assuming as given an arbitrary representative of the equivalence class.
Higher-order logic is sufficient, by the obvious representation of typed sets by pred-
icates; untyped axiomatic set theory is also sufficient. The axiom of choice is not
required. The tool does not need to be programmable. The examples in this paper
have been done using Isabelle/HOL [Nipkow et al. 2002].

The paper provides a brief review of equivalence classes (§2). It then outlines
a formal lemma library for equivalence classes (§3), which it demonstrates using a
construction of the integers (§4). It then demonstrates how equational constraints
can be imposed on a recursive datatype (§5). Finally, the paper presents brief
conclusions (§6).

2. EQUIVALENCE CLASSES AND QUOTIENT SETS

This section is a brief review of the mathematics required for this paper. Thorough
descriptions of the concepts appear in standard textbooks [Kolman et al. 2000,
p. 128].

An equivalence relation over a set is any relation that is reflexive, symmetric and
transitive. Each of the following examples is easily shown to be an equivalence
relation.

—α-equivalence has already been mentioned in the introduction.
—The integers can be defined as equivalence classes on pairs of natural numbers

related by (x, y) ∼ (u, v) if and only if x + v = u + y.
—The rational numbers can be defined as equivalence classes on pairs of integers

related by (x, y) ∼ (u, v) if and only if xv = uy, where y, v 6= 0. Since y and v
must be non-zero, it is an equivalence relation on the set Z× (Z \ {0}).
We can often do without equivalence classes. The integers can be defined using a

signed magnitude representation. The rational numbers can be defined as fractions
in reduced form. The drawbacks of both representations become clear when we try
to prove that addition is associative. A signed magnitude representation requires
case analysis on the sign and the consideration of eight cases; proving the associative
law for reduced fractions will require a body of theory about greatest common
divisors [Harrison 1994, §3].

If ∼ is an equivalence relation over a set A, and x ∈ A, then [x]∼ denotes
{y | y ∼ x} and is called an equivalence class. The notation simplifies to [x] when

1Documentation is on the Internet at http://www.cs.utexas.edu/users/moore/acl2/v2-7/

EQUIVALENCE.html

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 3

∼ is fixed in advance. Because ∼ is reflexive, an equivalence class is always non-
empty. Because ∼ is symmetric and transitive, equivalence classes are disjoint:
if two equivalence classes have an element in common, then they are equal. The
equivalence relation therefore partitions the set A. The quotient set A/∼ is defined
to be the set of equivalence classes generated by ∼.

Let us examine the construction of the integers. Here A is the set of pairs of
natural numbers. As mentioned above, the equivalence relation is (x, y) ∼ (u, v) if
and only if x + v = u + y. The integer 0 and functions for negation, addition and
multiplication are defined in terms of equivalence classes.

0 = [(0, 0)]
− [(x, y)] = [(y, x)]

[(x, y)] + [(u, v)] = [(x + u, y + v)]
[(x, y)]× [(u, v)] = [(xu + yv, xv + vu)]

The intuition is that [(x, y)] represents the integer x− y, so clearly the negation of
[(x, y)] must be [(y, x)]. The definition of multiplication is obtained by evaluating
the product (x− y)(u− v).

Such definitions are only legitimate if they are independent of the particular el-
ements chosen from the equivalence classes. For example, negation is well-defined
because [(x, y)] = [(x′, y′)] implies −[(x, y)] = −[(x′, y′)]. The statement that a
function respects an equivalence relation is called a congruence property. For nega-
tion, it is easily verified: if (x, y) ∼ (x′, y′), then x+y′ = x′+y, so y+x′ = y′+x and
thus (y, x) ∼ (y′, x′). The congruence property for addition is harder to verify and
that for multiplication is harder still. These proof obligations are the chief draw-
back of using equivalence classes. Once we have verified the congruence properties,
developing the theory of the integers is easy.

To prove −(−z) = z, write the integer z as [(x, y)]. (We have just proved that
the choice of x and y is irrelevant.) Now trivially

−(−[(x, y)]) = −[(y, x)] = [(x, y)].

The proof that addition is associative appeals to the corresponding property for
the natural numbers:(

[(x1, y1)] + [(x2, y2)]
)

+ [(x3, y3)] = [(x1 + x2 + x3, y1 + y2 + y3])

= [(x1, y1)] +
(
[(x2, y2)] + [(x3, y3)]

)
.

All of these proofs work in the same way. We write the given integers as pairs of
natural numbers. We simplify the expression using function definitions that have
already been shown to be legitimate. We are left with elementary reasoning about
the natural numbers. If we formalise equivalence relations appropriately, the formal
proofs will be as natural as those shown above.

3. A FORMALIZATION OF EQUIVALENCE CLASSES

The key to effective use of equivalence classes is to give definitions in a particular
form and to simplify them using particular lemmas. The formalization is designed
to make the machine proofs as simple as possible, for any verifier. Unions capture

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 · Lawrence C. Paulson

the possible ambiguity in a function defined on equivalence classes. For a well-
defined function, there will be no ambiguity.

This section presents the most important components of the formalisation, omit-
ting obvious definitions and routine proofs. The approach should work with tools
such as HOL [Gordon and Melham 1993] and PVS [Crow et al. 1995]. Isabelle out-
put is shown, using mathematical symbols that are largely self-explanatory. Note
that the Isabelle statement [[P1; . . . ;Pn]] ⇒ Q is equivalent to P1 ⇒ . . . ⇒ Pn ⇒ Q
and denotes the inference rule P1 ... Pn

Q.
Another notation in need of explanation is the image operator. A relation in

Isabelle/HOL is a set of ordered pairs. The notation R“A denotes the image of
the set A under the relation R, namely {y | ∃x ∈ A (x, y) ∈ R}. In particular,
R“{x} denotes {y | (x, y) ∈ R}, which is the equivalence class [x]R when R is an
equivalence relation. (HOL users traditionally represent the relation R as a function
of type α → α → bool. They can express the equivalence class [x]R by currying:
R x. Either approach is acceptable.)

The predicate equiv A r denotes that r is an equivalence relation on the set A .
This concept is easily defined and its basic properties proved. Let us therefore focus
on the theorems that are directly relevant to working with quotient types. This
theorem, concerning equality between equivalence classes, is useful in congruence
proofs.

theorem eq equiv class iff:

" [[equiv A r; x ∈ A; y ∈ A]]
=⇒ (r‘‘{x} = r‘‘{y}) = ((x,y) ∈ r)"

The quotient set A//r is defined to be the set of equivalence classes.

"A//r ≡
S
x ∈ A. {r‘‘{x}}"

The combination of unions and singleton sets in this definition captures the concept
of a set comprehension. I have formalized {f(x) | x ∈ A} by

⋃
x∈A{f(x)}. This

technique generalizes nicely:

{f(x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An} =
⋃

x1∈A1

. . .
⋃

xn∈An

{f(x1, . . . , xn)}.

I use the same technique below when defining functions over equivalence classes.
Nested unions of singleton sets work well. If an alternative formalization is chosen,
then the lemmas proved below about unions must be reformulated accordingly.

Crucial to the method is the treatment of congruence properties. The formula f

respects r expresses2 that the function f respects the relation r. That is, f returns
equal results for arguments that are related by r.

f respects r ≡ ∀ y z. (y,z) ∈ r −→ f y = f z

This definition does not constrain the domain and range of f, but in the lemmas
involving unions, this function must range over sets. In practice, these sets will
either be singletons or equivalence classes. In untyped set theory, where everything
is a set, they could be anything.

2Suggested by Rob Arthan. Previously, I used a less intuitive notation, congruent r f.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 5

The next lemma expresses the central idea of the approach, although users do
not invoke it directly. It eliminates unions over constant functions. For all values
in its domain (namely A), the function f returns the set c.

lemma " [[a ∈ A; ∀ y ∈ A. f y = c]] =⇒ (
S
y ∈ A. f y) = c"

The following lemma is again crucial. It eliminates a union over the elements of
an equivalence class provided the function respects the equivalence relation. Such
unions will appear in the definitions of functions over quotient types. The removal
of the union is precisely the simplification we need to obtain natural reasoning.

lemma UN equiv class:

" [[equiv A r; f respects r; a ∈ A]]
=⇒ (

S
x ∈ r‘‘{a}. f x) = f a"

For two-argument functions, we have the predicate congruent2, where congruent2

r1 r2 f means the function f respects the relations r1 and r2.

∀ x y u v. (x,y) ∈ r1 −→ (u,v) ∈ r2 −→ f x u = f y v

The intuitive syntax f respects2 r abbreviates the common situation when the
two relations are identical, congruent2 r r f.

The congruence property for a two-argument function can be shown directly from
the definition. Occasionally, it is easier to show congruent2 r1 r2 f by showing that
f respects each relation separately. It also suffices to show that f is commutative
and respects a relation in one argument. These straightforward lemmas, based on
Harrison’s HOL formalization, are omitted.

Here is a lemma to eliminate unions over the elements of equivalence classes, this
time for two arguments.

lemma UN equiv class2:

" [[equiv A r1; equiv A r2; congruent2 r1 r2 f; a1 ∈ A; a2 ∈ A]]
=⇒ (

S
x1 ∈ r1‘‘{a1}.

S
x2 ∈ r2‘‘{a2}. f x1 x2) = f a1 a2"

It follows from the one argument case. The proof uses two lemmas concerning
functions that satisfy congruent2 r1 r2 f. The first lemma asserts that the one-
argument function f a obtained by currying, where a ∈ A, respects r2. The second
lemma asserts that

S
x2 ∈ r2‘‘{a2}. f x1 x2 respects r1 when viewed as a func-

tion of x1.
One further lemma is helpful. Isabelle [Nipkow et al. 2002, §8.2.1] and HOL both

allow a tuple of bound variables to appear wherever a bound variable is expected.
They are translated into a primitive un-curry operator. For example,

⋃
(x,y)∈A Bxy

abbreviates
⋃

z∈A (λ(x, y). Bxy)z, where λ(x, y). Bxy satisfies the equation

(λ(x, y). Bxy)(X, Y) = BXY.

The lemma rewrites the left-hand side (which users may employ in definitions) into
nested unions, a form that allows the application of the union lemma.

lemma UN UN split split eq:

"(
S
(x1,x2) ∈ X.

S
(y1,y2) ∈ Y. A x1 x2 y1 y2) =

(
S
x∈X.

S
y∈Y. (λ(x1,x2). (λ(y1,y2). A x1 x2 y1 y2) y) x)"

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 · Lawrence C. Paulson

The lemma is unnecessary for people who are willing to use the projection functions
fst and snd (PROJ.1 and PROJ.2 in PVS). It is specific to the common case where
the representing set A consists of ordered pairs.

4. EXAMPLE: DEFINING THE INTEGERS FORMALLY

This section applies the lemma library to a formal development of the integers. The
technique is independent of particular theorem provers. Isabelle’s approach to type
definition (which resembles HOL’s) clutters some of the formulae with abstraction
and representation functions. These will be absent in PVS or in any untyped
formalism.

We also need a function contents that returns the sole element of a singleton
set. It must satisfy the equation contents {x} = x. In higher-order logic, defining
such a function requires a definite description (the ι-operator). It does not require
an indefinite description (Hilbert’s ε-operator) because we are only interested in
singleton sets.3

Standard set theories—untyped and without atoms—satisfy
⋃

({x}) = x. We
could therefore use

⋃
for contents, but we can do better still. Both contents and

singletons (the inner {· · · }) can be eliminated from function definitions by virtue
of the equation ⋃(⋃

x∈A

{f(x)}

)
=
⋃

x∈A

f(x).

Even in higher-order logic, this simplification can be used to define some functions
whose result involves a set construction. Indeed, contents and singletons can be
removed from most of the definitions below. This section uses the general form
in order to demonstrate the general technique; the next section will use simplified
definitions.

4.1 Defining the Integers in Isabelle/HOL

We begin by defining the equivalence relation.

"intrel ≡ {((x,y),(u,v)) | x y u v. x+v = u+y}"

Next, we introduce the type int.

typedef (Integ) int = "UNIV//intrel"

by (auto simp add: quotient def)

An Isabelle type definition equates a new type to a set. The command by (auto

...) proves the set to be non-empty by appealing to the definition of quotients. The
set is given the name Integ and is defined to be the set of pairs of natural numbers
quotiented by intrel. The polymorphic constant UNIV denotes the universal set,
here of type nat*nat. The representation function maps elements of type int to
elements of type nat*nat belonging to the set Integ ; the abstraction function maps
in the opposite direction.

Now we can define the integer constants 0 and 1.

3The Isabelle tutorial discusses description operators [Nipkow et al. 2002, §5.10].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 7

"0 ≡ Abs Integ(intrel ‘‘ {(0,0)})"

"1 ≡ Abs Integ(intrel ‘‘ {(1,0)})"

Here intrel ‘‘ {(0,0)} denotes the equivalence class [(0, 0)], which Abs Integ co-
erces to the new type int.

Now, we can do some preliminary proofs. A trivial equivalence is proved and
given to the simplifier (through the [simp] annotation). It unfolds membership
assertions concerning the equivalence relation without unfolding the definition in
other contexts.

lemma intrel iff[simp]: "(((x,y),(u,v)) ∈ intrel) = (x+v = u+y)"

by (simp add: intrel def)

Proving that intrel is an equivalence relation requires a one-line simplifier call.
(UNIV again denotes the universal set of type nat*nat.)

lemma equiv intrel: "equiv UNIV intrel"

by (simp add: intrel def equiv def refl def sym def trans def)

A few other routine declarations (omitted) complete the setup of type int.
Reasoning about the integers requires a theorem stating that every integer is

represented by a pair of natural numbers. This theorem is trivially expressed in
first-order logic by ∀z ∃xy z = [(x, y)]. In proofs, this theorem replaces given integer
variables by equivalence classes involving arbitrary natural numbers. Isabelle’s
natural deduction framework can express this reasoning step directly as an inference
rule.

lemma eq Abs Integ [cases type: int]:

"(
V
x y. z = Abs Integ(intrel‘‘{(x,y)}) =⇒ P) =⇒ P"

The annotation cases type: int informs Isabelle that case analysis on an integer
variable—through the cases command—refers to this rule implicitly. This Isabelle-
specific feature should not be difficult to imitate using other tools. In HOL, it is
easy to write a tactic that takes an integer variable, creates a suitable instance of
the theorem, and eliminates the existential quantifiers.

4.2 A One-Argument Function on Equivalence Classes

Unary minus illustrates the definition of functions on quotient types. The idea
is simple. We cannot pick an arbitrary element of an equivalence class, but if
the function respects the equivalence relation, then the choice of element does not
matter. Therefore, we form a set consisting of all values generated by all elements
of the equivalence class. This set will simplify to a singleton, whose value will be
returned via the equation contents {x} = x.

"-z ≡ contents

(
S
(x,y)∈Rep Integ z. { Abs Integ(intrel‘‘{(y,x)}) })"

Here intrel ‘‘ {(y,x)} denotes the equivalence class [(y, x)]. The argument of
contents is the collection of all integers [(y, x)] such that (x, y) belongs to the
equivalence class for z. This collection will turn out to be a singleton.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 · Lawrence C. Paulson

4.2.1 Proving the Characteristic Equation. Let us apply these ideas to integer
negation. We can prove its characteristic equation − [(x, y)] = [(y, x)], describing
its behaviour on equivalence classes.

lemma minus:

"- Abs Integ(intrel‘‘{(x,y)}) = Abs Integ(intrel ‘‘ {(y,x)})"

proof -

have "(λ(x,y). {Abs Integ (intrel‘‘{(y,x)})}) respects intrel"

by (simp add: congruent def)

thus ?thesis

by (simp add: minus int def UN equiv class [OF equiv intrel])

qed

The first part of the proof concerns congruence: that of the body of the union
in the definition of negation. The simplifier, given the definition of congruence
(congruent def), immediately establishes that claim. In general, congruence prop-
erties can be difficult to prove.

The second part of the proof establishes the desired equation using the definition
of negation (minus int def) and our theorem about unions over equivalence classes.
This part of the proof is always easy. Above, UN equiv class [OF equiv intrel]

denotes the instance of UN equiv class for the relation intrel ; since we have just
proved the necessary congruence property, it is in effect the following rewrite rule:

"(
S
x ∈ intrel‘‘{a}. f x) = f a"

Using this rule, the left-hand side of the desired equation simplifies immediately to

"contents ({ Abs Integ(intrel‘‘{(y,x)}) })"

Then, because contents is applied to a singleton, this simplifies in one step to the
desired right-hand side. Even the most basic rewriting engine can perform the
reasoning outlined above.

4.2.2 An Alternative: the Axiom of Choice. The obvious way to formalize equiv-
alence classes, used by virtually all other researchers, employs Hilbert’s ε-operator
to choose a representative of each equivalence class. In that approach, negation
might be defined as follows:

"-z ≡ (let (x,y) = choose (Rep Integ z) in Abs Integ(intrel‘‘{(y,x)}))"

Here, choose is a function that returns an arbitrary element of a given set. This
reliance on the axiom of choice does not lessen the proof obligation: we must
still show that the function respects the equivalence relation. Reasoning about the
axiom of choice will be difficult unless we can find lemmas resembling UN equiv class

to eliminate the operator choose. Even if we can, the formalization involving unions
is preferable because it avoids a needless dependence on the axiom of choice.

4.2.3 Reasoning about the Newly Defined Function. Given the characteristic
equation, proving properties of unary negation is trivial. The approach is always
the same. First, let the cases command replace integer variables by equivalence
classes. Then, call the simplifier to replace integer constants (such as 0) by their
definitions and to apply the characteristic equation and other simplification rules.
At this point, the formal proof steps duplicate those of textbook proofs.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 9

Consider the proof that negation is self-cancelling.

lemma zminus zminus: "- (- z) = (z::int)"

apply (cases z)

apply (simp add: minus)

done

The cases command leaves the following proof state:

1.
V
x y. z = Abs Integ (intrel ‘‘ {(x, y)}) =⇒ - (- z) = z

The simplifier uses the characteristic equation (minus) twice, each time exchanging
the two variables. The machine proof follows the informal one presented in §2
above.

- (- (Abs Integ (intrel ‘‘ {(x, y)})))

= - (Abs Integ (intrel ‘‘ {(y, x)}))

= Abs Integ (intrel ‘‘ {(x, y)})

4.3 Two-Argument Functions on Equivalence Classes

Addition and multiplication illustrate the treatment of two-argument functions.
There are simply two unions instead of one.

"z + w ≡
contents (

S
(x,y)∈Rep Integ z.

S
(u,v)∈Rep Integ w.

{ Abs Integ(intrel‘‘{(x+u, y+v)}) })"

"z * w ≡
contents (

S
(x,y)∈Rep Integ z.

S
(u,v)∈Rep Integ w.

{ Abs Integ(intrel‘‘{(x*u + y*v, x*v + y*u)}) })"

The characteristic equation for addition describes its effect on equivalence classes:
[(x, y)]+[(u, v)] = [(x+u, y+v)]. The proof again begins by establishing congruence.
Then the main theorem is established using the definition of addition and our union
theorems for two-argument functions. As with unary negation above, the proof is
a short and simple equational argument.

lemma add:

"Abs Integ (intrel‘‘{(x,y)}) + Abs Integ (intrel‘‘{(u,v)}) =

Abs Integ (intrel‘‘{(x+u, y+v)})"

proof -

have "(λz w. (λ(x,y). (λ(u,v).
{Abs Integ (intrel ‘‘ {(x+u, y+v)})}) w) z)

respects2 intrel"

by (simp add: congruent2 def)

thus ?thesis

by (simp add: add int def UN UN split split eq

UN equiv class2 [OF equiv intrel])

qed

The congruence property, ... respects2 intrel, looks formidable. However, man-
ually applying the theorem UN equiv class2 displays the required claim, which we
can then paste into the proof script. The arithmetic decision procedure for the
natural numbers makes the proof trivial.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 · Lawrence C. Paulson

Consider the proof that unary minus distributes over addition.

lemma zminus zadd distrib: "- (z + w) = (- z) + (- w::int)"

apply (cases z, cases w)

apply (simp add: minus add)

done

Here is the proof state after both applications of the cases method.

1.
V
x y xa ya.

[[z = Abs Integ (intrel ‘‘ {(x, y)});

w = Abs Integ (intrel ‘‘ {(xa, ya)})]]
=⇒ - (z + w) = - z + - w

This subgoal is proved by rewriting using the characteristic equations for negation
and addition. The formal reasoning is essentially the same as the textbook proof.

The treatment of multiplication is similar. The proof of congruence (omitted)
requires some work because it lies outside the scope of linear arithmetic. Given
that lemma, simple equational reasoning (as always) establishes the characteristic
equation:

lemma mult:

"Abs Integ((intrel‘‘{(x,y)})) * Abs Integ((intrel‘‘{(u,v)})) =

Abs Integ(intrel ‘‘ {(x*u + y*v, x*v + y*u)})"

by (simp add: mult int def UN UN split split eq mult congruent2

UN equiv class2 [OF equiv intrel equiv intrel])

We can now prove the standard theorems relating negation, addition and multi-
plication. Each proof consists of cases followed by simplification with characteristic
equations and the corresponding properties of the natural numbers. Other proofs,
not shown, are equally trivial.

lemma zmult zminus: "(- z) * w = - (z * (w::int))"

by (cases z, cases w, simp add: minus mult add ac)

lemma zmult assoc: "((z1::int) * z2) * z3 = z1 * (z2 * z3)"

by (cases z1, cases z2, cases z3,

simp add: mult add mult distrib2 mult ac)

lemma zmult commute: "(z::int) * w = w * z"

by (cases z, cases w, simp add: mult add ac mult ac)

lemma zadd zmult distrib: "((z1::int)+z2) * w = (z1*w) + (z2*w)"

by (cases z1, cases z2, cases w,

simp add: add mult add mult distrib2 mult ac)

4.4 Further Operations on the Integers

The treatment of the ordering (≤) illustrates an advantage of this approach. A
relation in higher-order logic is a Boolean-valued function, so we could have used
nested unions as we did for addition and multiplication. However, because we are
using native logic rather than a package, we are not forced to formalise this relation
as a function.

"z ≤ (w::int)

≡ ∃ x y u v. x+v ≤ u+y &

(x,y) ∈ Rep Integ z & (u,v) ∈ Rep Integ w"

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 11

We can prove the characteristic equation directly, without proving congruence.
The proof is trivial. Informally, the equation is [(x, y)] ≤ [(u, v)] ⇐⇒ x+v ≤ u+y.
lemma le:

"(Abs Integ(intrel‘‘{(x,y)}) ≤ Abs Integ(intrel‘‘{(u,v)}))

= (x+v ≤ u+y)"

by (force simp add: le int def)

The proofs about the ordering are largely straightforward, and are therefore
omitted. The only difficult one is the monotonicity of multiplication, and it would
be no easier using other treatments of quotient types.

A final example is the coercion from integers to natural numbers. It illustrates a
function that leaves the integers.

"nat z ≡ contents (
S
(x,y) ∈ Rep Integ z. { x-y })"

This function respects the equivalence relation, and its characteristic equation is
nat[(x, y)] = x−y. Note that x−y is natural number subtraction and that x−y = 0
if x ≤ y.
lemma nat: "nat (Abs Integ (intrel‘‘{(x,y)})) = x-y"

proof -

have "(λ(x,y). {x-y}) respects intrel"

by (simp add: congruent def, arith)

thus ?thesis

by (simp add: nat def UN equiv class [OF equiv intrel])

qed

Using this characteristic equation, theorems relating the function nat to the other
integer operations are trivial to prove.

5. QUOTIENTING A RECURSIVE DATA TYPE

Another application of equivalence relations is to impose equations on recursive
datatypes. The necessary declarations are voluminous, but they are not complicated
and can be produced with the assistance of cut-and-paste. This section presents
an example inspired by cryptographic protocols. Many symmetric-key cryptosys-
tems provide separate decryption and encryption operations, which are inverses
of each other. Writing decryption of message X using key K as DK(X) and the
corresponding encryption as EK(X), we have the equations DK(EK(X)) = X and
EK(DK(X)) = X. Decryption can be applied to any message, not just to the result
of an encryption.

To define a datatype with equational constraints, first define an ordinary datatype
(which will be a free algebra). Then, define an equivalence relation expressing
the desired equations; the precise form is illustrated below. Finally, quotient the
datatype. The free datatype constructors are easily lifted to the new recursive
datatype, using the techniques of function definition described above. To define
other functions on the new datatype, first define a concrete version on the free
datatype and then lift it.

5.1 The Concrete Datatype and the Equivalence Relation

This simple datatype has four constructors: a message can be a nonce (a number),
the concatenation of two messages, an encryption or a decryption.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 · Lawrence C. Paulson

datatype
freemsg = NONCE nat

| MPAIR freemsg freemsg

| CRYPT nat freemsg

| DECRYPT nat freemsg

The equivalence relation, msgrel, is defined inductively. The first two rules (CD
and DC) express the desired equations between encryption and decryption. The
next four rules (NONCE to DECRYPT) have many purposes. They make the equations
hold for sub-messages; they allow the abstract constructors to respect msgrel ; they
ensure that msgrel is reflexive. The last two rules (SYM and TRANS) ensure that
msgrel is symmetric and transitive.

inductive "msgrel"

intros
CD: "CRYPT K (DECRYPT K X) ∼ X"

DC: "DECRYPT K (CRYPT K X) ∼ X"

NONCE: "NONCE N ∼ NONCE N"

MPAIR: " [[X ∼ X’; Y ∼ Y’]] =⇒ MPAIR X Y ∼ MPAIR X’ Y’"

CRYPT: "X ∼ X’ =⇒ CRYPT K X ∼ CRYPT K X’"

DECRYPT: "X ∼ X’ =⇒ DECRYPT K X ∼ DECRYPT K X’"

SYM: "X ∼ Y =⇒ Y ∼ X"

TRANS: " [[X ∼ Y; Y ∼ Z]] =⇒ X ∼ Z"

The relation ∼ is easily proved to be reflexive, symmetric and transitive. The proof
of X∼X is by structural induction on the message X .

5.2 Two Functions on the Free Algebra

Two examples will illustrate how functions are lifted to the quotiented abstract
datatype. Obviously, we can only consider functions that respect the equivalence
relation. Both of these functions ignore encryption and decryption altogether, so
they are acceptable.

The function freenonces returns the set of all nonces present in a message. It is
defined by structural recursion.

"freenonces (NONCE N) = {N}"

"freenonces (MPAIR X Y) = freenonces X ∪ freenonces Y"

"freenonces (CRYPT K X) = freenonces X"

"freenonces (DECRYPT K X) = freenonces X"

This function respects the equivalence relation. The one-line proof appeals to in-
duction on the definition of ∼ followed by simplification.

theorem msgrel imp eq freenonces:

"U ∼ V =⇒ freenonces U = freenonces V"

by (erule msgrel.induct, auto)

The function freeleft returns the left part of the topmost MPAIR constructor.
(The lifted version, left, will be a destructor function for the abstract MPair con-
structor.) The cases for CRYPT and DECRYPT make it respect the equivalence relation.
The case for NONCE makes the function total, and will yield the further equation
left (Nonce N) = Nonce N.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 13

"freeleft (NONCE N) = NONCE N"

"freeleft (MPAIR X Y) = X"

"freeleft (CRYPT K X) = freeleft X"

"freeleft (DECRYPT K X) = freeleft X"

The proof that freeleft respects the equivalence relation resembles the previ-
ous one, but includes an appeal to msgrel.intros : a list of theorems for proving
membership in ∼.

theorem "U ∼ V =⇒ freeleft U ∼ freeleft V"

by (erule msgrel.induct, auto intro: msgrel.intros)

5.3 The Abstract Message Type and its Constructors

The abstract type of messages is declared by quotienting the universal set (here of
type freemsg) with the relation ∼.

typedef (Msg) msg = "UNIV//msgrel"

by (auto simp add: quotient def)

The abstract versions of the message constructors are called Nonce, MPair, Crypt
and Decrypt. They are defined as functions using unions, as we have already seen for
the integer operations. The following definitions do not use the function contents ;
this simplification is possible because the results are all derived from a set (namely
an equivalence class).

"Nonce N == Abs Msg(msgrel‘‘{NONCE N})"

"MPair X Y ==

Abs Msg (
S
U∈Rep Msg X.

S
V∈Rep Msg Y. msgrel‘‘{MPAIR U V})"

"Crypt K X == Abs Msg (
S
U∈Rep Msg X. msgrel‘‘{CRYPT K U})"

"Decrypt K X == Abs Msg (
S
U∈Rep Msg X. msgrel‘‘{DECRYPT K U})"

Proving the characteristic equations for these constructors is straightforward.
Each equation relates an abstract constructor to the corresponding concrete con-
structor. Each congruence proof is immediate by the definition of the equivalence
relation. Recall that the proof of the characteristic equation from the congruence
property is trivial.

"MPair (Abs Msg(msgrel‘‘{U})) (Abs Msg(msgrel‘‘{V})) =

Abs Msg (msgrel‘‘{MPAIR U V})"

"Crypt K (Abs Msg(msgrel‘‘{U})) = Abs Msg(msgrel‘‘{CRYPT K U})"

There is no characteristic equation for Nonce because its argument is not an
equivalence class. The characteristic equation for Decrypt appears below, with its
proof. As always, congruence is established first.

lemma Decrypt:

"Decrypt K (Abs Msg(msgrel‘‘{U})) =

Abs Msg (msgrel‘‘{DECRYPT K U})"

proof -

have "(λU. msgrel ‘‘ {DECRYPT K U}) respects msgrel"

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 · Lawrence C. Paulson

by (simp add: congruent def msgrel.DECRYPT)

thus ?thesis

by (simp add: Decrypt def UN equiv class [OF equiv msgrel])

qed

As with the integers, the cases lemma lets us replace an abstract message by its
representation as an equivalence class.

lemma eq Abs Msg [cases type: msg]:

"(!!U. z = Abs Msg(msgrel‘‘{U}) ==> P) ==> P"

We now achieve a key objective: Crypt and Decrypt are indeed inverses. Both proofs
are one-liners using cases, the characteristic equations and the corresponding rule
from the inductive definition of ∼.

theorem CD eq: "Crypt K (Decrypt K X) = X"

by (cases X, simp add: Crypt Decrypt CD)

theorem DC eq: "Decrypt K (Crypt K X) = X"

by (cases X, simp add: Crypt Decrypt DC)

Both proofs implicitly refer to the theorem eq equiv class iff, presented in §3
above, which relates equality of equivalence classes to membership in the equiva-
lence relation.

5.4 Defining Functions on the Abstract Message Type

To define a function on the abstract message type, first define an analogous version
on the concrete type and prove that it respects equivalence relation. Then, define
the abstract version as usual using unions.

Recall that the function freenonces returns the set of nonces contained in a
concrete message. We are now ready to declare the corresponding abstract function.

"nonces X ==
S
U∈Rep Msg X. freenonces U"

Congruence is immediate since freenonces respects the equivalence relation, as we
saw in §5.2 above.

lemma nonces congruent: "freenonces respects msgrel"

by (simp add: congruent def msgrel imp eq freenonces)

The recursion equations for nonces, the abstract function, are trivial to prove.
Here are the first three.

"nonces (Nonce N) = {N}"

"nonces (MPair X Y) = nonces X ∪ nonces Y"

"nonces (Crypt K X) = nonces X"

Here is the fourth equation, including its proof. Observe its similarity to proofs
about the integer operations.

lemma nonces Decrypt: "nonces (Decrypt K X) = nonces X"

apply (cases X)

apply (simp add: nonces def Decrypt

UN equiv class [OF equiv msgrel nonces congruent])

done

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 15

Recall that the function freeleft returns returns the left part of the topmost
pair in a concrete message. The abstract version is defined using the techniques
just demonstrated.

"left X == Abs Msg (
S
U∈Rep Msg X. msgrel‘‘{freeleft U})"

Here are the recursion equations for this abstract destructor function.

"left (Nonce N) = Nonce N"

"left (MPair X Y) = X"

"left (Crypt K X) = left X"

"left (Decrypt K X) = left X"

5.5 Freeness of the Abstract Constructors

The abstract datatype satisfies equations between some of its constructors, but the
other constructors are still injective. In my experience, the easiest way to prove
such properties is to define explicit destructor functions, not by inductive proofs
over equivalence relations. We have seen the function left above, and the function
right can be defined similarly. These two functions make it easy to prove that
abstract message pairing is injective.

"(MPair X Y = MPair X’ Y’) = (X=X’ & Y=Y’)"

The function nonces makes it easy to prove that the abstract nonce constructor is
injective.

"(Nonce m = Nonce n) = (m = n)"

Surprising as it may seem, the constructors for encryption and decryption are also
injective in the second argument; the proof is trivial, by the equations relating
them.

"(Crypt K X = Crypt K X’) = (X=X’)"

"(Decrypt K X = Decrypt K X’) = (X=X’)"

They are not injective in the first argument because any abstract message can be
rewritten to have the form of an encryption or decryption with any desired key.
For the same reason, we do not have the discrimination property Nonce N 6= Crypt

K X. However, many discrimination properties do hold, even for Crypt and Decrypt.
They can be proved by defining a discriminator function on the concrete datatype,
using the methods demonstrated above.

"freediscrim (NONCE N) = 0"

"freediscrim (MPAIR X Y) = 1"

"freediscrim (CRYPT K X) = freediscrim X + 2"

"freediscrim (DECRYPT K X) = freediscrim X - 2"

Because encryptions and decryptions cancel each other, this function respects the
equivalence relation. Lifting this function to the quotiented type yields a function
discrim satisfying the four analogous equations on the abstract message construc-
tors. Thus we can prove that no nonce equals a message pair.

"Nonce N 6= MPair X Y"

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 · Lawrence C. Paulson

We can also prove many discrimination results involving encryption, such as this
one.

"Crypt K (Nonce M) 6= Nonce N"

We have seen just one example of a quotiented datatype. Imposing equations on
the constructors seems to be straightforward, using the strategy shown above. Es-
tablishing other properties, such as inequations, requires defining suitable functions
on the free datatype.

At a referee’s request, I have formalized an example involving nested recursion:
a quotiented datatype of expressions, including a constructor to apply a function
to a list of expressions. This development (available upon request) uses a function
to form a equivalence relation on lists from an equivalence relation on list elements.
It also requires a cases lemma analogous to eq Abs Msg, but for lists of expressions.
It is clear that handling the full range of quotient datatypes requires considerable
ingenuity.

6. RELATED WORK AND CONCLUSIONS

The aim of this paper is to demystify the process of defining functions over equiv-
alence classes. Other authors have worked in this field.

Harrison [1994, §5] has written an automated package for HOL that declares the
abstract quotient type and operations, returning theorems about those operations.
Its arguments include the equivalence relation, the desired characteristic equations
for each operation, and proofs of each theorem expressed at the level of represen-
tatives. However, such a package is not essential. The necessary definitions are
straightforward, if they are written as described above, and the reasoning about
equivalence classes poses no difficulties. Not using a package has its advantages:
we do not have to collect all the theorems we shall ever want into one giant list; we
are not restricted to top-level properties but can reason about equivalence classes
within a larger proof; we do not get stuck because the package developer failed to
anticipate our special requirements.

For defining abstract datatypes, the situation is different. Each constructor and
destructor function requires a separate declaration and congruence proof. The
declarations are uniform and the proofs are trivial, but there are too many of them.
Who would like to see the full treatment of a 20 constructor abstract datatype?
Nested and mutual recursion are also difficult. If such declarations on needed
frequently, the proof tool should provide automated support.

Homeier [2001] has developed an elaborate package for HOL that offers special
support for quotient constructions on recursive data types. Homeier has used it
to define a type of λ-terms quotiented under α-equivalence. Wenzel’s treatment of
quotient types in Isabelle uses axiomatic type classes, which streamlines the nota-
tion but tends to require additional type declarations.4 Slotosch [1997] has devel-
oped an Isabelle/HOL theory of higher-order quotients based on partial equivalence
relations.

PVS supports quotients in its standard prelude, but not with dedicated code.
Jackson has done a few examples, including a construction of the integers (pri-

4See the theory at http://isabelle.in.tum.de/library/HOL/Library/Quotient.html.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Defining Functions on Equivalence Classes · 17

vate communication), while Tews [2004] has formalized one of the theorems in a
theoretical paper on coalgebras.

All of these other treatments of quotients use the axiom of choice, typically via
Hilbert’s ε-operator, to pick arbitrary elements of equivalence classes. However,
using the axiom of choice does not lessen the proof obligations. Pragmatists may
argue that in verification nobody cares whether choice is used or not. However,
pragmatists should be concerned that reasoning about ε-terms is tricky, while the
unions over equivalence classes are simplified away automatically.

We have seen, through a series of simple examples, how to define functions on
equivalence classes and how to reason about them. No special tools are required,
only a small lemma library. Each function definition must be expressed in a partic-
ular form. Provided it respects the equivalence relation, its characteristic equation
is easily proved. Properties of the function can then be reduced to properties of
the representing type, with proofs that resemble textbook presentations.

ACKNOWLEDGMENTS

Rob Arthan, Francis Flannery, Tom Harke, Farhad Mehta, Lockwood Morris,
Markus Wenzel and the referees commented on this paper. Peter Homeier pro-
vided extensive information about his tools. The U.K.’s Engineering and Physical
Sciences Research Council (EPSRC) supported the development of Isabelle.

REFERENCES

Crow, J., Owre, S., Rushby, J., Shankar, N., and Srivas, M. 1995. A tutorial introduction
to PVS. Tech. rep., Computer Science Laboratory, SRI International.

de Bruijn, N. G. 1972. Lambda calculus notation with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser Theorem. Indagationes
Mathematicae 34, 381–392.

Geuvers, H., Pollack, R., Wiedijk, F., and Zwanenburg, J. 2002. A constructive algebraic
hierarchy in Coq. Journal of Symbolic Computation 34, 4, 271–286.

Gordon, M. J. C. and Melham, T. F. 1993. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press.

Harrison, J. 1994. Constructing the real numbers in HOL. Formal Methods in System
Design 5, 35–59.

Homeier, P. V. 2001. Quotient types. In TPHOLs 2001: Supplemental Proceedings, R. J.
Boulton and P. B. Jackson, Eds. Number EDI-INF-RR-0046 in Informatics Report Series.
Division of Informatics, University of Edinburgh, 191–206. Online at
http://www.informatics.ed.ac.uk/publications/report/0046.html.

Kaufmann, M. and Moore, J. S. 2002. ACL2 Version 2.7. University of Texas at Austin. On
the Internet at http://www.cs.utexas.edu/users/moore/acl2/v2-7/.

Kolman, B., Busby, R. C., and Ross, S. C. 2000. Discrete Mathematical Structures, 4th ed.
Prentice-Hall.

Nipkow, T., Paulson, L. C., and Wenzel, M. 2002. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer. LNCS Tutorial 2283.

Slotosch, O. 1997. Higher order quotients and their implementation in Isabelle HOL. In
Theorem Proving in Higher Order Logics: TPHOLs ’97, E. L. Gunter and A. Felty, Eds.
LNCS 1275. Springer, 291–306.

Tews, H. 2004. Predicate and relation lifting for parametric algebraic specifications. In CMCS
2004, Seventh Workshop on Coalgebraic Methods in Computer Science, J. Adámek, Ed.
Electronic Notes in Theoretical Computer Science. 361–378.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 · Lawrence C. Paulson

Received April 2004; revised September 2004; accepted September 2004

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

