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UNITY is an abstract formalism for proving properties of concurrent systems, which typically are
expressed using guarded assignments [Chandy and Misra 1988]. UNITY has been mechanized
in higher-order logic using Isabelle, a proof assistant. Safety and progress primitives, their weak
forms (for the substitution axiom) and the program composition operator (union) have been
formalized. To give a feel for the concrete syntax, the paper presents a few extracts from the
Isabelle definitions and proofs. It discusses a small example, two-process mutual exclusion. A
mechanical theory of unions of programs supports a degree of compositional reasoning. Original
work on extending program states is presented and then illustrated through a simple example
involving an array of processes.
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1. INTRODUCTION

Reasoning about concurrent systems is difficult. Many formalisms have been in-
troduced for this purpose, some involving hand methods and others supported by
various tools. The present paper concerns a recent version of the UNITY formal-
ism [Misra 1995a; Misra 1995b]. It describes preliminary experiments in reasoning
about UNITY using the interactive proof system Isabelle [Paulson 1994].

A novel aspect of the work is its combination of interactive and automatic
theorem-proving. Much recent research concerns fully automatic methods, which
are inherently limited in scope. The present approach is to employ interactive
proof while exploiting Isabelle’s automatic tools to minimize the user’s effort. Many
classic examples [Chandy and Misra 1988] have been done with a modest effort.
Elaborate Isabelle programming has not been required, merely the use of the built-
in classical reasoner and simplifier. Another novelty is the use of set theory to
formalize the many notational conventions adopted by UNITY researchers.
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Paper outline. The paper begins with overviews of UNITY (§2), other UNITY
tools (§3) and Isabelle (§4). It describes the Isabelle formalization of safety and
progress primitives (§§5, 6), including their weak counterparts that satisfy the sub-
stitution axiom (§7). A small example is given: verification of a two-process mutual
exclusion algorithm (§8). The theory of program composition is described (§9). An
operator for changing the representation of states are described (§10) and then ap-
plied to an example involving arrays of processes (§11). Finally, the paper concludes
(§12).

2. AN OVERVIEW OF UNITY

UNITY is a simple model of concurrent programming. There is a single, global
state. A program consists of a collection of guarded atomic commands that are
repeatedly selected and executed under some fairness constraint. There are no
program structures; we cannot even write C1;C2 to express sequential execution.
Typically a program manipulates its program counter in order to direct the flow of
control. UNITY is of enduring interest: a decade after its introduction, it is still
the focus of much research.

In the original version [Chandy and Misra 1988], called classic UNITY below, the
only commands were simultaneous assignments to variables. New UNITY [Misra
1995b] allows any terminating commands. It imposes the trivial assumption that
each program includes a skip command (which has no effect on the state). Com-
mands do not have to be deterministic; they have a simple relational semantics.

UNITY includes a small fragment of temporal logic. While primitive compared
with TLA [Lamport 1994] for instance, the formalism can express basic safety and
progress properties. There is a set of elegant laws for proving such properties.

Safety properties are expressed using the constrains operator, co. The assertion
A co B expresses the usual precondition-postcondition relationship.1 If A holds
then B will hold after the execution of any command of the program. (Since all
commands terminate, partial and total correctness coincide.) If A co A then the
predicate A holds forever once established, and is called stable. A stable predicate
that holds initially is called invariant. Classic UNITY adopted a different safety
primitive, unless, but co has a simpler theory; either operator can be defined in
terms of the other.

Progress properties are expressed using the leads-to relation, 7→. The meaning
of A 7→ B is that if A holds now then B is guaranteed to hold eventually. Leads-to
properties depend upon which fairness policy is adopted. Misra [1995a] describes
three: minimal progress, weak fairness and strong fairness. Most work assumes
weak fairness, which says that a command will eventually be executed if it is enabled
continuously. Strong fairness says that a command will be executed if it is enabled
infinitely often. Minimal progress says that a command other than skip will be
executed if at least one such command is enabled.

3. EXISTING UNITY TOOLS

UNITY originated as a hand formalism. Recent papers continue to present proofs
found by hand. However, hand proofs often contain errors. Automation would be

1Some authors, such as Charpentier and Chandy [1999], use A next B synonymously.
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beneficial.
Model checking has been applied to concurrent systems with great success. It

is fully automatic, but its scope for handling traditional UNITY problems appears
to be limited. Model checking examines fixed, finite-state systems, while typical
UNITY proofs concern infinite-state systems or infinite families of systems (for ex-
ample, a token ring with n nodes). Misra [1995b] supplies many examples where
the program to be verified is not given as specific commands but is described ab-
stractly to be any program satisfying certain low-level constraints. Despite these
objections, Kaltenbach [1996] has developed a model checker for UNITY. Others
have investigated alternative means of verifying UNITY programs automatically,
using decision procedures for example [Thirioux 1998].

However promising automatic methods may be, a general treatment requires
formal proof. A most impressive effort is HOL-UNITY [Andersen et al. 1994a],
which implements classic UNITY and is based upon the HOL system [Gordon
and Melham 1993]. It provides a good degree of automation and sports a graphical
interface for proving progress properties using Owicki-Gries proof lattices [Andersen
et al. 1994b]. Also using HOL, Prasetya [1995] has formalized a UNITY variant
allowing read/write annotations on variables. Building on this work, Vos [1999]
has added a deep embedding of the programming language and devoted special
attention to finding representations of algorithms that simplify their proofs. Heyd
and Crégut [1996] report an encoding of UNITY in the type theory tool Coq. They
add a notion of context to allow program composition. They have investigated
UNITY’s meta-theory, proving that the safety and progress primitives are complete
with respect to an operational semantics of program execution. All of these efforts,
like the present work, derive the UNITY laws from definitions rather than taking
them as axioms.

Private discussions with UNITY researchers indicate that proof support still
needs to be improved, particularly for program composition. The aim of the Isa-
belle formalization is to provide that improved support. One strand of the research
is to seek a better formalization, exploiting the power of set theory. Another is
to continue to seek better forms of automation. A third strand is to mechanize a
new theory for reasoning about program composition [Chandy and Sanders 1998].
This part of the work, still under development, will be useful in its own right while
giving valuable feedback to the theoreticians.

4. OVERVIEW OF ISABELLE

Isabelle [Paulson 1994] is an interactive proof tool. Unlike similar tools, Isabelle is
generic: the underlying mechanisms allow many different logics to be supported.
Examples include Isabelle/HOL, a mechanization of higher-order logic, and Isa-
belle/ZF, a mechanization of untyped set theory [Paulson and Gra̧bczewski 1996].
Higher-order syntax allows new quantifiers to be defined. A variant of Horn clause
resolution supports for user-derived inference rules.

Let us examine Isabelle’s treatment of inference rules by an example. The tradi-
tional way of expressing that the relation ≺ is transitive is by the predicate calculus
formula

∀xyz. x ≺ y ∧ y ≺ z → x ≺ z.



4 · Lawrence C. Paulson

Reasoning with such a formula requires many proof steps to manipulate the quan-
tifiers and connectives. In Isabelle, transitivity can also be expressed by the rule

x ≺ y y ≺ z

x ≺ z.

Isabelle primitives build proofs from rules, working either forwards or backwards.
Forward proof means concluding a ≺ c from the theorems a ≺ b and b ≺ c.
Backward proof means reducing the goal t ≺ u to the subgoals t ≺?y and ?y ≺
u, where ?y can later be instantiated with any term. Usually the instantiation
is performed automatically: Isabelle uses unification rather than matching when
applying a rule.

UNITY proofs traditionally proceed in the forward direction. Isabelle mainly
supports backward proof, for when working interactively it is natural to start with
a claim and break it down. Commands for reducing goals to subgoals are called
tactics. The simplest tactics, used for proof checking, merely apply a rule or list of
rules to a subgoal. These could be familiar UNITY rules, perhaps modified to suit
the backward style.

The UNITY development is based upon Isabelle/HOL. It relies on the typed set
theory inherent in higher-order logic. Sets over type α have type α set; membership
is written x ∈ A and comprehension is written {x | φ}. Conceptually sets are
just predicates, but expressing membership as A(x) and comprehension as λx. φ is
unpleasant. Set operators such as A∪B, A∩B and ArB (difference) are defined
in the obvious way using comprehension. Binding operators such as general union
are defined and rules such as the following are derived:

x ∈ A b ∈ B(x)

b ∈
(⋃

x∈AB(x)
) (1)

Isabelle/HOL accepts inductive definitions of sets, which it translates to least fixed-
points. The set of states reachable in a UNITY program is defined inductively, as
is the leads-to relation (Fig. 2).

Isabelle provides powerful automatic tactics. The simplifier performs conditional,
contextual and permutative rewriting. The classical reasoner (Blast tac) proves
subgoals using tableau methods [Paulson 1999]. It is generic, applying user-supplied
rules such as (1) above and UNITY rules. Auto tac attempts to prove as many sub-
goals as possible, using both the simplifier and the classical reasoner. An arithmetic
tactic proves many goals involving linear arithmetic.

Polymorphism simplifies the treatment of set theory. The set-theoretic operators
are polymorphic in the type of elements. Isabelle automatically uses the correct
type, for example when rules are applied by the classical reasoner. (Dozens of rules
are installed for this purpose.) The UNITY primitives are also polymorphic, as
discussed below.

For ease of reading below, ASCII symbols will be replaced by their mathematical
equivalents in Isabelle texts, so x : A Un B will appear as x ∈ A∪B. Rules are
often presented entirely in mathematical notation.
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co :: "[’a set, ’a set] => ’a program set" (infixl 60)

"A co B == {F. ∀act∈Acts F. act‘‘A ⊆ B}"

stable :: "’a set => ’a program set"

"stable A == A co A"

invariant :: "’a set => ’a program set"

"invariant A == {F. Init F ⊆ A} ∩ stable A"

Fig. 1. Declaring UNITY’s Safety Primitives in Isabelle

5. FORMALIZING SAFETY PROPERTIES

UNITY deals with programs and their properties. A UNITY program is a set of
guarded commands, while a property typically expresses a relationship between two
predicates over states. How are these concepts best formalized?

I have chosen to work with sets of states rather than predicates over states.
The difference is purely notational. Formulas are easier to read when they are
expressed using familiar operators such as union rather than unusual operators such
as “disjunction lifted over state variables.” Other set-theoretic notions turn out to
be useful, such as taking the image of a set under a function. Equally important is
that Isabelle can prove many theorems about set theory automatically. Predicate
notation is used below whenever it is clearer, typically when we are discussing
particular programs instead of meta-theory.

Another fundamental decision concerns the representation of actions. A UNITY
action can be executed only if it is enabled: if its guard is satisfied. Classic
UNITY [Chandy and Misra 1988] includes only deterministic actions, with nonde-
terminism arising only in the choice of action. Accordingly, some researchers [An-
dersen et al. 1994a; Heyd and Crégut 1996] model actions as total functions over
the state space. If there is a guard, then the function behaves as the identity un-
less the guard is satisfied. Thus we have the odd situation that the following two
commands become indistinguishable:

x := f(x)
x := f(x) if x 6= f(x)

These commands are certainly different in the operational semantics, since the first
is always enabled and the second need not be. However, a skip action (required
in all UNITY programs) can be executed if x = f(x). So, the same sequences of
states can be generated regardless of which of the two commands is included in a
program.

Like Prasetya [1995], I prefer to represent actions by relations. One reason is
that Misra [1995b] allows actions to be nondeterministic. Another reason is that
relations are sets and will work smoothly with the set-theoretic formalization. In
particular, the guard of an action is simply the domain of the corresponding relation.
A relation will often be expressed as a set comprehension such that its guard can
be determined trivially by rewriting; in mechanical proof, this will be easier than
working with guards of the form {x | x 6= f(x)}.

And so, an action is a relation over states: a set of (σ, σ′) pairs where σ is a
state before execution of the command and σ′ is a possible state after execution.
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Relational semantics does not distinguish between divergence and abortion, but
UNITY actions are atomic and admit neither. In the relational semantics, a com-
mand is enabled in state σ provided it can move to some next state σ′. As noted
above, the relation’s domain is the set of enabled states. There is little support for
conventional program syntax: commands are expressed in set-theoretic notation.

The Isabelle formalization is polymorphic: a program has the type αprogram,
where α is the type of states. For example, the constrains operator takes two argu-
ments of type α set and returns a result of type αprogram. Given the precondition
and postcondition, it yields the set of programs satisfying that specification.

A UNITY program comprises a set of initial states, Init and a set of actions,
Acts. Among the actions must be skip, which is formalized by the built-in iden-
tity relation, Id . The abstract type αprogram embodies these conditions; it
is essentially a subtype of a product type and has a single constructor function,
mk program, which satisfies two equations:

Init(mk program(init, acts)) = init
Acts(mk program(init, acts)) = {Id} ∪ acts

Figure 1 presents the Isabelle definitions of the constrains primitive and related
safety operators. The formalization follows Misra [1995b]. The assertion F ∈ AcoB
relates A and B, which are sets of states, with respect to the program F . A
specification denotes a set of programs, as in the “propositions-as-types” paradigm;
this allows a smooth formalization, especially for working with programs comprising
several components, as in §11.

The meaning of F ∈ AcoB is that if any command of F is executed in some state
belonging to A then the next state will belong to B. The Isabelle theory defines
constrains as follows:

A coB , {F | ∀act∈Acts F (act“A ⊆ B)}

Here, act“A denotes the image of the set A under the relation act: the set of all y
such that (x, y) ∈ act for x ∈ A. The assertion is that B includes these images for
every possible action. It is not essential to use the image operator; there are many
equivalent ways of expressing co. However, the image operator reduces the need
for quantifiers while allowing the use of laws such as R“(A ∪B) = R“A ∪R“B.

The definition of stable(A) as A co A is standard. The theory also defines
A unless B as (A r B) co (A ∪ B), where A r B denotes set difference. This set-
theoretic definition, omitted from the figure, is equivalent to the usual definition:
if first we have A and not B, then afterwards A or B will hold. The notion of
invariant is defined such that

F ∈ invariantA ⇐⇒ InitF ⊆ A ∧ F ∈ stable(A). (2)

The Isabelle theory proves some forty theorems about these safety operators.
Nearly all are proved in one step, typically by calling Auto tac or Blast tac.
These theorems include a few technical lemmas, but most of them express well-
known properties of the operators co, stable and invariant. Let us review a few
of them.2

2The full list can be viewed on the Internet at URL http://www.cl.cam.ac.uk/Research/HVG/
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The relation co is transitive:

F ∈ A coB F ∈ B co C
F ∈ A co C

The relation satisfies a disjunction property, stated here in terms of union:

F ∈ A coA′ F ∈ B coB′

F ∈ (A ∪B) co (A′ ∪B′)

If co holds between two I-indexed families of sets then it holds between the corre-
sponding intersections:

∀i∈I (F ∈ Ai coA′
i)

F ∈
(⋂

i∈I Ai

)
co

(⋂
i∈I A

′
i

)
The elimination theorem concerns a fixed program variable, say x. In set theory, it
takes on an unconventional form. Here {s | s(x) = m} is the set of all states such
that the program variable x holds the value m.

∀m∈M (F ∈ {s | s(x) = m} coBm)
F ∈ {s | s(x) ∈M} co (

⋃
m∈M Bm)

Misra [1995b] presents a detailed proof of the elimination theorem, but Isabelle
proves it automatically.3 The automation owes something to Blast tac but more to
the formalization itself: the standard UNITY safety laws correspond to elementary
statements in set theory.

6. FORMALIZING PROGRESS PROPERTIES

Figure 2 presents part of the Isabelle formalization of the progress primitives
transient, ensures and 7→. Misra [1995a] notes that transient is the only prim-
itive whose definition depends upon the form of fairness adopted. Its definition in
Isabelle specifies a policy of weak fairness, which the other constants inherit. Other
fairness policies, such as minimal progress or strong fairness, might be provided in
the future; one possibility is to supply the fairness policy to each progress primitive
as an argument.

Fairness applies to all actions. To deny fairness to an action, simply form its
union with the identity relation, allowing the action to do nothing. This is a
further advantage of allowing nondeterministic actions, an issue discussed at the
beginning of §5.

A program satisfies transient(A) provided whenever the state belongs to A
eventually an atomic action will take it out of A. Under weak fairness, it suffices
that some command is guaranteed to take any state in A to a state outside that set.
The Isabelle definition of transient expresses those conditions using the operations
of domain, image and set complement. The conjunct A ⊆ dom act makes explicit

Isabelle/library/HOL/UNITY/UNITY.html
3M corresponds to p in Misra’s paper, a predicate that concerns only x, while Bm corresponds
to q.
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transient :: "’a set => ’a program set"

"transient A ==

{F. ∃act∈Acts F. A ⊆ Domain act & act‘‘A ⊆ -A}"

ensures :: "[’a set, ’a set] => ’a program set" (infixl 60)

"A ensures B == (A-B co A∪B) ∩ transient (A-B)"

leadsTo :: "[’a set, ’a set] => ’a program set" (infixl 60)

"A leadsTo B == {F. (A,B) ∈ leads F}"

wlt :: "[’a program, ’a set] => ’a set"

"wlt F B == Union {A. F ∈ A leadsTo B}"

(*relation symbol for the inductive definition*)

leads :: "’a program => (’a set * ’a set) set"

inductive "leads F"

intrs

Basis "F ∈ A ensures B ==> (A,B) ∈ leads F"

Trans "[| (A,B) ∈ leads F; (B,C) ∈ leads F |]

==> (A,C) ∈ leads F"

Union "{(A,B) | A. A∈S} ∈ Pow(leads F) ==> (Union S, B) ∈ leads F"

monos Pow_mono

Fig. 2. Declaring UNITY’s Progress Primitives in Isabelle

that the command is enabled over the whole of A, and is required since otherwise
the empty relation would trivially satisfy transientA.

transientA , {F | ∃act∈Acts F (A ⊆ dom act ∧ act“A ⊆ A)} (3)

A program satisfies A ensures B provided whenever the state belongs to A even-
tually an atomic action will take it into B. Misra’s definition is straightforwardly
expressed with set operators. Note that the co-assertion is just A unlessB.

A ensuresB , ((ArB) co (A ∪B)) ∩ transient(ArB)

A program satisfies A 7→ B provided whenever the state belongs to A execution
will eventually take it into B. The leads-to relation is defined inductively to be
the closure of the ensures relation under transitivity and arbitrary unions. (For
technical reasons, the Isabelle declaration requires the constant leads and use of
the powerset operator, as can be seen in Fig. 2.)

Progress properties are harder to establish than safety properties. Although
Blast tac remains invaluable, many of the proofs require induction over the def-
inition of leads-to. In a few cases it was essential to follow the proofs of Misra
[1995a]. The Isabelle theory for leads-to has some sixty theorems, proved with an
average of under three tactic calls each. Most of them are properties of leads-to,
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sometimes proved in several variant forms. Let us consider four of these theorems.4

The first is a version of the cancellation law. Proofs involving these laws can be
hard to mechanize, since first the goal must be massaged until it contains a union
of the right form.

F ∈ A 7→ (A′ ∪B) F ∈ (B rA′) 7→ B′

F ∈ A 7→ (A′ ∪B′)

The second example is PSP (progress-safety-progress). The six-step Isabelle
proof uses the cancellation law and requires, as a lemma, the analogous property
for the ensures relation. Compared with Misra [1995a], the following version has
a slightly stronger conclusion.

F ∈ A 7→ A′ F ∈ B coB′

F ∈ (A ∩B′) 7→ ((A′ ∩B) ∪ (B′ rB))

This rule may require an explanation. Given that A 7→ A′, we consider when an
execution first reaches a state outside B. It might stay in B persistently, so that
we eventually find ourselves in (A′∩B). If we leave B, then given B coB′ the state
we next reach must belong to B′, or B′ r B to be precise. The start state might
already belong to B′ rB; note that execution starts in B′.

The third example is leads-to induction. This rule lets us conclude A 7→ B from
a complicated premise involving a measure: if A holds then execution will reach a
state in which either A remains true and the measure decreases or else B holds.
Given that the measure cannot decrease for ever, we conclude that A leads to B.
The rule, which should not be confused with induction over the definition of the
leads-to relation, takes an unusual form in set notation. Let r be a well-founded
relation over type α and f a function of type β ⇒ α; the combination of r and f
constitute a measure on states (of type β). The quantified premise expresses that
the program, if started in A, either remains in A while decreasing its measure or
else reaches a state in B. Here f−1“M is the inverse image of M under f : the
set of all states that f maps into M . The Isabelle derivation of this rule comprises
eleven steps, including a lemma.

∀m.F ∈ (A ∩ f−1“{m}) 7→ ((A ∩ f−1“(r−1“{m})) ∪B)
F : A 7→ B

In practice, this rule is less formidable than it looks. Note that f−1“{m} is just
{s. fs = m}, and the inverse image often disappears after simplification.

The completion theorem, our fourth example, is a major result about progress for
conjunctions of properties. As a special case, if A1 7→ B1 and A2 7→ B2, where B1

and B2 are stable properties, then A1 ∩A2 7→ B1 ∩B2. Intuitively, if the program
starts in a state belonging to both A1 and A2 then it makes progress towards B1

and B2 until eventually both hold. (In particular, if B1 and B2 are disjoint, then
so are A1 and A2.) We can obviously extend this theorem to an arbitrary finite

4The full list can be viewed on the Internet at URL http://www.cl.cam.ac.uk/Research/HVG/

Isabelle/library/HOL/UNITY/WFair.html
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index set I (this version is needed in an example later):

∀i∈I F ∈ (Ai 7→ Bi) ∀i∈I F ∈ stable(Bi)
F ∈ (

⋂
i∈I Ai) 7→ (

⋂
i∈I Bi)

(4)

The completion theorem appears obvious, but I know of no simple proof. Misra
[1995a] establishes the theorem by first defining wlt, the weakest leads-to predicate
transformer: if B is a set of states then wlt B is the largest set A such that A 7→ B.
Misra’s proof makes use of many lemmas about wlt, such as his property W5:

F ∈ (wltFB rB) co (wltFB)

Given the theory of wlt we can finally prove the completion theorem in its general
form.

F ∈ A 7→ A′ ∪ C F ∈ A′ coA′ ∪ C F ∈ B 7→ B′ ∪ C F ∈ B′ coB′ ∪ C
F ∈ A ∩B 7→ (A′ ∩B′) ∪ C

The special case mentioned above follows by setting C = ∅.

7. WEAK SPECIFICATION PRIMITIVES AND THE SUBSTITUTION AXIOM

The substitution axiom, which was part of the original UNITY logic [Chandy and
Misra 1988], asserts that an invariant can be replaced by true in any program
property. The Isabelle formalization is definitional rather than axiomatic, so rather
than assuming the substitution axiom, we must define specification primitives for
which substitution is valid.

The definitions of co and 7→ given above do not satisfy the substitution axiom.
For example, consider the program whose initial condition is x = 0 and that has only
a skip command. The program trivially satisfies x > 0cox > 0 and x > 0 7→ x > 0,
and obviously x = 0 is an invariant. Substituting with x = 0 in the postconditions
yields the invalid assertions x > 0 co false and x > 0 7→ false.

To make versions of co and 7→ that satisfy the substitution axiom, it suffices to
intersect the precondition with the set of reachable states, an observation first made
by Sanders [1991]. Let R(F ) stand for the set of states reachable in program F .
This set is defined inductively to Isabelle:

consts reachable :: "’a program => ’a set"

inductive "reachable F"

intrs

Init "s ∈ Init F ==> s ∈ reachable F"

Acts "[| act ∈ Acts F; s ∈ reachable F; (s,s’) ∈ act |]

==> s’ ∈ reachable F"

An elementary induction over this definition shows that R(F ) is the strongest
invariant of the program F . With the help of R(F ), we define new safety and
progress operators:

F ∈ A cow B ⇐⇒ F ∈ (R(F ) ∩A) coB

F ∈ A 7→w B ⇐⇒ F ∈ (R(F ) ∩A) 7→ B
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These are called the weak specification operators because by precondition strength-
ening

F ∈ A coB implies F ∈ A cow B

and F ∈ A 7→ B implies F ∈ A 7→w B.

The Isabelle theory defines always(A) to satisfy

F ∈ always(A) ⇐⇒ InitF ⊆ A ∧ F ∈ stablew(A),

where stablew(A) , A cow A.

This definition resembles that of invariant(A) but uses the weak form of stable:
always(A) is the weak form of invariant(A). A program belongs to always(A)
if all its reachable states belong to A. One way of proving F ∈ always(A) is
to show that I ⊆ A where I is an invariant of F . Recall from law (2) that a
program belongs to invariant(A) provided A includes its initial states and all of
its commands preserve A.

Both the weak and strong specification operators are necessary. The strong forms
have simpler definitions and are easier to reason about. Theorems such as PSP and
completion are proved first about the strong version of 7→ and then transported to
the weak version. Statically-checked properties of a program, such as that it does
not update a certain variable, are best expressed using the strong operators: they
hold regardless of what states are reached at run time.

But for general reasoning about programs, it seems natural that specifications
should only be concerned with reachable states, so we also need the weak operators.
The main additional properties they satisfy are closely related to the substitution
axiom. If I is a weak invariant (an always property) then we may assume it to
hold in the precondition:

F ∈ always I
F ∈ (I ∩A) cow A′ ⇐⇒ F ∈ A cow A′

Dually, we may conclude that I holds in the postcondition:

F ∈ always I
F ∈ A cow (I ∩A′) ⇐⇒ F ∈ A cow A′

Similar rules hold for 7→w and the other weak specification operators.

8. EXAMPLE: TWO-PROCESS MUTUAL EXCLUSION

In one of the “Notes on UNITY,” Misra [1990] discusses Peterson’s algorithm for
mutual exclusion. He shows how it can be derived from a high-level algorithm,
replacing a shared queue by three shared booleans during the refinement. Then, he
modifies the refinement to obtain a new program. Figure 3 presents the final UNITY
program. The integer variables m and n are program counters for processes u and v,
respectively.5 Misra proves safety and progress properties for this program. His

5I simplify the program by removing the predicates u.h and v.h, which determine when u and
v complete their noncritical sections, since their formal semantics is unclear. Fairness alone will
cause these events to occur.



12 · Lawrence C. Paulson

initially u, v, m, n = false, false, 0, 0

{program for u}
u, m := true, 1 if m = 0

[] p, m := v, 2 if m = 1

[] m := 3 if ¬p ∧m = 2

[] u, m := false, 4 if m = 3 (*u’s critical section*)

[] p, m := true, 0 if m = 4

[]

{program for v}
v, n := true, 1 if n = 0

[] p, n := ¬u, 2 if n = 1

[] n := 3 if p ∧ n = 2

[] v, n := false, 4 if n = 3 (*v’s critical section*)

[] p, n := false, 0 if n = 4

Fig. 3. The Mutual Exclusion Program in UNITY

invariants are flawed, but fortunately the proofs are still basically correct [Dappert-
Farquhar 1990]. Misra’s error makes our example more realistic: when the property
being “verified” is false, proof tools should help us find out what is wrong. The
failed Isabelle proof describes a state that violates the faulty invariant.

This program can be analyzed trivially using a model checker because its state
space is finite. The example is nonetheless instructive, and the mechanical proofs
can be compared with the UNITY discussion documents mentioned above. With its
ten actions, the mutual exclusion program is more complicated than many published
UNITY programs, which often consist of a single parametric assignment. The proof
procedures demonstrated below work by logical inference, not by state enumeration,
and they are equally effective against infinite-state problems.

8.1 Formalization

Figure 4 presents the Isabelle version of the program. The type state defines pro-
gram states to be records whose components are the program variables p, m, n, u
and v. Here is a summary of the record notation:

—To inspect a record field, use function application. For example, m(s) returns
the value of field m of record s.

—To update a record field, use the (| . . . |) notation. For example, s(|m := 1|) is the
record obtained from s by changing the value of field m to be 1. Several fields
can be changed at the same time, as in s(|m := 1, n := 1|).

The constants U0–U4 denote commands 0–4, respectively, for process u, while V 0–
V 4 have the analogous meaning for v. The constant Mutex denotes the program
with its initial state (u = v = false, m = n = 0) and commands 0–4 for both
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record state =

p :: bool

m :: int

n :: int

u :: bool

v :: bool

(** The program for process U **)

"U0 == {(s,s’). s’ = s (|u:=True, m:=#1|) & m s = #0}"

"U1 == {(s,s’). s’ = s (|p:= v s, m:=#2|) & m s = #1}"

"U2 == {(s,s’). s’ = s (|m:=#3|) & ~ p s & m s = #2}"

"U3 == {(s,s’). s’ = s (|u:=False, m:=#4|) & m s = #3}"

"U4 == {(s,s’). s’ = s (|p:=True, m:=#0|) & m s = #4}"

(** The program for process V **)

"V0 == {(s,s’). s’ = s (|v:=True, n:=#1|) & n s = #0}"

"V1 == {(s,s’). s’ = s (|p:= ~ u s, n:=#2|) & n s = #1}"

"V2 == {(s,s’). s’ = s (|n:=#3|) & p s & n s = #2}"

"V3 == {(s,s’). s’ = s (|v:=False, n:=#4|) & n s = #3}"

"V4 == {(s,s’). s’ = s (|p:=False, n:=#0|) & n s = #4}"

"Mutex == mk_program ({s. ~ u s & ~ v s & m s = #0 & n s = #0},

{U0, U1, U2, U3, U4, V0, V1, V2, V3, V4})"

Fig. 4. The Mutual Exclusion Program in Isabelle

"IU == {s. (u s = (#1 ≤ m s & m s ≤ #3)) &

(m s = #3 --> ~ p s)}"

"IV == {s. (v s = (#1 ≤ n s & n s ≤ #3)) &

(n s = #3 --> p s)}"

"bad_IU == {s. (u s = (#1 ≤ m s & m s ≤ #3)) &

(#3 ≤ m s & m s ≤ #4 --> ~ p s)}"

Fig. 5. Good and Bad Invariants
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processes. The function mk program implicitly adds a skip command, required
in all UNITY programs. (The figure omits the types of constants; recall that
commands are binary relations on states and that program properties are sets of
states.)

As a notation for commands, set theory leaves much to be desired. The definition
of u’s first command is

U0 , {(s, s′) | s′ = s(|u := true,m := 1|) ∧m(s) = 0}.

Here s is the initial state, s′ is the final state and . . . ∧ m(s) = 0 formalizes the
command’s guard. The explicit references to states hinder readability. We can even
express impossible commands, which is not necessarily a drawback: sometimes we
may wish to describe a command independently from any possible implementation.

Figure 5 presents the Isabelle specifications of the invariants. The constants IU
and IV are the correct invariants for processes u and v respectively:

IU ⇐⇒ (u ≡ 1 ≤ m ≤ 3) ∧ (m = 3 → ¬p)
IV ⇐⇒ (v ≡ 1 ≤ n ≤ 3) ∧ (n = 3 → p)

The constant bad IU is Misra’s original, flawed invariant for u:

bad IU ⇐⇒ (u ≡ 1 ≤ m ≤ 3) ∧ (3 ≤ m ≤ 4 → ¬p)

8.2 Safety

The safety property for this program is mutual exclusion. The critical section of
each process is command 3, so we must show that the program can never reach a
state in which m = n = 3. The Isabelle proof is simple. Both invariants are proved
with three tactic calls each; from their conjunction, the proof that no reachable
states satisfy m = n = 3 is automatic.

To illustrate the proof style for simple safety proofs, here is the complete proof
script for u’s invariant. Using the weak specification form, we enter the goal
Mutex ∈ always IU . Isabelle’s response is shown in a slanted typeface.

Goal "Mutex ∈ Always IU";

Level 0 (1 subgoal)

Mutex ∈ Always IU

1. Mutex ∈ Always IU

The first step is to refine by the rule AlwaysI, which reduces the goal to showing
that IU includes the initial states and is (weakly) stable:

by (rtac AlwaysI 1);

Level 1 (2 subgoals)

Mutex ∈ Always IU

1. Init Mutex ⊆ IU

2. Mutex ∈ Stable IU

The tactic constrains tac attempts to prove safety properties. It unfolds the
program definition in a controlled manner, performing a case split over the different
commands, and simplifies the resulting subgoals. Here, as often, it proves the
subgoal automatically:
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by (constrains_tac 2);

Level 2 (1 subgoal)

Mutex ∈ Always IU

1. Init Mutex ⊆ IU

The remaining subgoal, concerning the initial state, is proved automatically:

by Auto_tac;

Level 3 (0 subgoal)

Mutex ∈ Always IU

No subgoals!

The invariant for process v, namely Mutex ∈ always IV , is proved in the same
way. Mutual exclusion is expressed as Mutex ∈ always{s | ¬(ms = 3 ∧ ns = 3)}.
Its proof consists of three further steps: invocation of a weakening rule, combining
the previous two invariants and calling Auto tac.

Isabelle identifies the command that falsifies the original, flawed invariant. Ap-
plying the three tactics shown above leaves an unproved subgoal in which n = 1,
p = false, m = 4 and u = false. Recall that n is a program counter. Looking at
the program for v, we find that if n = 1 then it can execute p, n := ¬u, 2. This
assignment sets p to true and violates the assertion’s second conjunction, namely
(3 ≤ m ≤ 4 → ¬p).

8.3 Progress

The key progress properties are that each process can reach its critical section:
m = 1 7→ m = 3 and n = 1 7→ n = 3. The proofs follow Misra’s note precisely.
For each process there are eight lemmas, which are proved with fifteen tactic calls.
Combining them to reach the main result requires several further calls.

For an impression of how progress properties are tackled, here is part of a proof
of m = 3 7→ p = true:

Goal "Mutex ∈ {s. m s = #3} LeadsTo {s. p s}";

Level 0 (1 subgoal)

Mutex ∈ {s. m s = #3} LeadsTo {s. p s}

1. Mutex ∈ {s. m s = #3} LeadsTo {s. p s}

The first step is by transitivity of 7→, giving m = 4 as an intermediate assertion:

by (res_inst_tac [("B", "{s. m s = #4}")] LeadsTo_Trans 1);

Level 1 (2 subgoals)

Mutex ∈ {s. m s = #3} LeadsTo {s. p s}

1. Mutex ∈ {s. m s = #3} LeadsTo {s. m s = #4}

2. Mutex ∈ {s. m s = #4} LeadsTo {s. p s}

The two new subgoals both follow by the corresponding ensures property. (In
other words, they will eventually be established by an atomic action.) Command U3
takes a state satisfying m = 3 to one in which m = 4 and command U4 takes a
state satisfying m = 4 to one in which p = true. The UNITY package defines a
tactic ensures tac to prove ensures properties. As discussed in §6 above, F ∈
A ensures B provided F ∈ (A r B) co (A ∪ B) and F ∈ transient(A r B). The
tactic uses constrains tac to tackle the safety property and, given the relevant
command, attempts also to prove the transient property. Any unproved subgoals
are given to the user, but typically everything is proved automatically. To complete
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our proof of m = 3 7→ p = true requires invoking ensures tac twice, with U3 and
U4 as arguments.

8.4 Other Examples

The lift example from Andersen, Petersen, and Pettersson [1994a] has become the
standard benchmark for UNITY implementations. It has also been done using
Isabelle. The system consists of a lift and an arbitrary number of floors, with a
button for each floor. Among the safety properties are that if the door is open then
the lift is stopped; also, the lift car must stay within the available floors. The key
progress property is that all requests to visit a floor are eventually met. Progress is
hard to prove because the lift may have to go further away from a requested floor;
the formal measure of distance involves many case splits.

The example is too big to present in detail, but some statistics may be illuminat-
ing. The Isabelle mechanization consists of around thirty theorems proved using
three tactics per theorem; it runs in well under three minutes.

The lift example has a serious problem: the model omits the passengers who
make floor requests. A trivial invariant is that no buttons are ever pressed; the lift
never moves. Andersen informs me that the progress proofs consider all possible
combinations of floor requests. However, extending the program with a “request”
action falsifies several progress theorems expressed using the ensures primitive.
Recall that an ensures property is established by an atomic operation. Many
actions of the lift depend on the set of outstanding requests, that is, on which
buttons have been pushed. In a given state, if a new request can influence the
lift’s behaviour then progress should not be expressed in terms of ensures. The
most we can say about the lift is that it will service any static set of floor requests.
Considering dynamic requests will require new proofs, which could be a significant
exercise.

Many minor examples have been mechanized, such as common meeting time,
deadlock and the token ring [Misra 1995a]. Another small example is reachability
in directed graphs [Chandy and Misra 1988, p. 121]. The task is to flag all the
vertices that are reachable from a given initial vertex in a finite graph. Verifying
the program involves showing that all executions terminate and that if the program
terminates then the task has been accomplished. (A UNITY program is considered
to have terminated if it has reached a fixed point: no action can change the state.)
Progress is proved by leads-to induction, using as a metric the number of unflagged
vertices. The reachability example involves 14 theorems proved with 46 tactic calls,
and it runs in eight seconds. Mechanizing this example took me four days.

UNITY can also be applied to the verification of security protocols. The inductive
method [Paulson 1998] maps into UNITY straightforwardly, using the same theory
of messages and trace model. The inductive definition is replaced by a UNITY
program, replacing the rules by actions. (Thus, the program has one action for
each message round and a further action to model the adversary.) This approach
opens new possibilities and requires careful thought. Protocol specialists usually
assume that messages can be blocked, but with weak fairness, every protocol step
must eventually be executed. The disagreement makes little real difference: fairness
allows an arbitrary finite delay, and delaying the honest agents gives the adversary
time to mount an attack. Protocol analyses normally consider safety only; UNITY
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JOIN :: [’a set, ’a => ’b program] => ’b program

"JOIN I F == mk_program (
T
i∈I. Init (F i),

S
i∈I. Acts (F i))"

Join :: [’a program, ’a program] => ’a program

(infixl 65)

"F Join G == mk_program (Init F ∩ Init G, Acts F ∪ Acts G)"

SKIP :: ’a program

"SKIP == mk_program (UNIV, {})"

Fig. 6. Some Program Composition Operators in Isabelle

gives us a theory of progress, which could become useful if protocols arise that have
a non-trivial control structure.

One thing most of these examples share is a high degree of automation. Most
safety and ensures properties are proved easily. Occasionally a theorem has a
lengthy proof, as when progress lemmas are combined using transitivity, union and
PSP laws to derive a leads-to property. The average theorem is proved using three
or four tactic calls.

9. UNIONS OF PROGRAMS

Systems are built from components. We should prove the properties of a system
from those of its components; reasoning about the system as one huge program is
unfeasible. Many issues are involved here. For a start, we must formalize program
composition itself. How to reason about composed systems is a separate matter.

9.1 Formalizing Program Union

The Isabelle mechanization follows Misra [1994]. The composition of programs F
and G, written F t G, is the program whose set of actions is the union of those
of F and G and whose set of initial states is the intersection of those of F and G.
(Other authors use other symbols; because composition is the join of a lattice, I
prefer t.) The composition for i ∈ I of Fi is written

⊔
i∈I Fi and represents a

program built from a family of similar components. We are seldom interested in
infinite programs; typically I is a finite, non-empty set.

Composition can go wrong in two ways. (1) The set of initial states could become
empty; then the program cannot be executed. (2) The expression F t G is well-
typed only if F and G have the same type of states; in the resulting program, all
variables are available to both components. Variable naming and renaming leads
to complex issues that are discussed in §10 below.

Figure 6 shows the Isabelle declarations of the main primitives. The constant
JOIN formalizes

⊔
i∈I Fi while the infixed constant Join formalizes F tG. Finally,

SKIP denotes the null program, which has no commands other than skip and allows
any initial state. (UNIV is a polymorphic constant denoting the universal set.) The
null program is written as ⊥ below because it is the bottom element of the lattice
of programs. Note that ⊥ is polymorphic: it can denote the null program for any
state type.
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9.2 Basic Properties of Unions

The first results proved are mostly trivial. There are equations to specify the initial
states and commands of composite programs:

Init
(⊔

i∈I

Fi

)
=

⋂
i∈I

InitFi (5)

Acts
(⊔

i∈I

Fi

)
= {Id} ∪

⋃
i∈I

ActsFi (6)

The inclusion of {Id} on the right-hand side of equation (6) is necessary in case the
index set, I, is empty.

The lattice properties of the operators are proved. For example, t has ⊥ for its
identity element; it is associative and commutative and satisfies F t F = F . Laws
governing the join of a family of programs include the following:⊔

i∈∅

Fi = ⊥

Fk t
(⊔

i∈I

Fi

)
=

⊔
i∈I

Fi (if k ∈ I)

⊔
i∈I∪J

Fi =
(⊔

i∈I

Fi

)
t

(⊔
i∈J

Fi

)
⊔
i∈I

(Fi tGi) =
(⊔

i∈I

Fi

)
t

(⊔
i∈I

Gi

)
Such laws are not required in typical published examples, but they give the theory
a convenient algebraic structure. They assume extensional equality: two UNITY
programs that have the same initial states and the same sets of commands are equal
(by definition).

9.3 Strong Safety Properties

The next group of results cover what Misra [1994] calls the Union Theorem and its
corollaries. These include theorems for the inheritance of strong safety properties.
If F ∈ A co B and G ∈ A co B then F t G ∈ A co B, since an action of F t G is
either an action of F or an action of G and therefore takes the precondition A to
the postcondition B. The converse direction holds too: we have the equivalence

F tG ∈ A coB ⇐⇒ (F ∈ A coB) ∧ (G ∈ A coB) (7)

and the version for indexed families (I 6= ∅),(⊔
i∈I

Fi

)
∈ A coB ⇐⇒ ∀i∈I (Fi ∈ A coB). (8)

Among the other safety properties is the inheritance of strong invariants:

F ∈ invariantA G ∈ invariantA
F tG ∈ invariantA
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9.4 Weak Safety Properties

Weak safety properties do not have the same rules for inheritance. For a counterex-
ample, let programs F and G have among their variables the booleans p and q. The
commands of F include the assignment q := true; all other commands are guarded
by p. Similarly, G has p := true and its other commands are guarded by q. Each
program has p and q initially false; in isolation neither can reach a state in which
its other commands are enabled. So if A is any program property not involving p
and q then A will be weakly stable, giving F ∈ A cow A and G ∈ A cow A. Once F
and G are put together, each can set the other program’s guard to true, enabling
their commands, and (for most A) causing F tG ∈ A cow A to fail.

Misra [1994, §5.4.1] points out that when applying the substitution axiom to
F t G, the invariant used must hold for the program as a whole rather than only
for one component. The guarantees primitive of Chandy and Sanders [1998] also
makes weak specifications of program units refer to the reachable states of the
program as a whole.

The root of the problem is there is no obvious relation between states reachable in
F tG and those reachable in F and G. There is no simple expression for R(F tG)
in terms of R(F ) and R(G). The initial condition of F t G is the intersection of
those for F and G, which could make fewer states reachable, but the actions of
F tG comprise those of F and G, which could make more states reachable.

9.5 Progress Properties

For progress properties, inheritance is a complex matter. Law (7) has no analogue
for leads-to. Having F ∈ A 7→ B and G ∈ A 7→ B does not guarantee F t G ∈
A 7→ B because the two programs might interfere with each other. For example,
F might increment the shared variable x while G decrements it. Each program
satisfies true 7→ |x| > 10, but F t G does not: it can alternately increment and
decrement x forever.

The most useful lemma proved about progress is an equivalence for transient
properties,

F tG ∈ transientA ⇐⇒ (F ∈ transientA) ∨ (G ∈ transientA),

and its analogue for indexed families,(⊔
i∈I

Fi

)
∈ transientA ⇐⇒ ∃i∈I (Fi ∈ transientA). (9)

I have also proved some of Misra’s laws relating safety and progress, such as

F ∈ stable(A) G ∈ A ensuresB
F tG ∈ A ensuresB,

and used them in a small example, the handshake protocol [Misra 1994, §5.3.2].
Section 11 will present a small example of inheritance of a progress property.

10. PROGRAM STATES

As mentioned in §5, the formalization does not specify a particular representation
of program states. Various representations exist, each with their own advantages.
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"extend_set h A == h ‘‘ (A×UNIV)"

"extend_act h act ==
S
(s,s’)∈act.

S
y. {(h(s,y), h(s’,y))})"

"extend h F == mk_program (extend_set h (Init F),

extend_act h ‘‘ Acts F)"

Fig. 7. Primitives for Changing the State Representation

States can be functions from variable names to values; this natural idea, however,
requires giving all variables the same type, or else resorting to dependent types.
States can be records with one field for each program variable; this treatment is
more complicated but allows mixed types. The states of the system consisting of F
and G running in parallel with no shared variables could be ordered pairs of states
(sF , sG). A similar representation is best for modelling an array of processes.

Sometimes the representation of states has to be changed. Programs F and G
can be composed only if their representations of states are identical; all variables
are shared by the two components. If F reads data from the variable in and G
writes data to the variable out, then combining the producer and consumer requires
identifying the variables, which is most easily done by renaming them both to a
common name such as io. Also, any local variables of F will have to be present
in G’s representation of states, and vice versa. Ideally, we should be able to prove
properties of F using a representation of states that includes only F ’s variables,
adding further variables later if they are required in order to compose F with other
programs.

Renaming or adding variables should preserve program properties between the
two representations. Marques [1998] has shown that the new representation inherits
the properties of the old. He works in the UNITY theory of Heyd and Crégut [1996],
where actions are functions; straightforward modifications make his approach work
in the Isabelle theory, where actions are relations. His idea is invaluable for recon-
ciling differences in naming between program components.

His work can be strengthened by showing that program properties are preserved
in both directions. In other words, the new representation should satisfy pre-
cisely the same properties (modulo the renaming) as the old. Equivalences can
be expressed as rewrite rules and performed automatically, which allows better
automation. However, the equivalence is surprisingly hard to prove for progress
properties. The proofs are easy for the atomic progress properties, namely tran-
sient and ensures; the difficulty lies in expressing an induction over the definition
of leads-to.

A function h of type α×β ⇒ γ formalizes a change of state representation. Here
α is the old type of states, β is a type representing the items (if any) being added to
states and γ is the new type of states. The function h is required to be surjective (it
can express all target states) as well as injective in its first argument (it faithfully
copies the source state). It does not have to be injective in its second argument.
The requirements on h are left implicit in the theorems stated below.

Figure 7 presents the Isabelle definitions of the primitives for extending the rep-
resentation of states. The function extend set uses h to map a set of old states to
the corresponding set of new states; extend act is similar, transforming an action
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over old states to an action over new states. Here are their definitions in standard
mathematical notation:

extend sethA , {h(x, y) | x ∈ A}
extend acth act , {(h(s, y), h(s′, y)) | (s, s′) ∈ act}

The function extend uses these two functions to transform a program over old
states to a program over new states. If the effect of h is to add a variable v to
the state, then the new program’s initial condition will be independent of v and
its actions will preserve the value of v. Defining extend as a function is another
departure from Marques [1998], who formalizes extending the state space as a
relation between programs.

Many facts about extend are proved easily. For example, it distributes over
composition:

extendh
(⊔

i∈I

Fi

)
=

(⊔
i∈I

extendhFi

)
Since I can be empty, a corollary is that extendh⊥ = ⊥.

Safety properties are preserved in both directions:

extendhF ∈ (extend sethA) co (extend sethB)) ⇐⇒ F ∈ A coB

extendhF ∈ invariant(extend sethA) ⇐⇒ F ∈ invariantA

Proving R(extendhF ) = extend seth (R(F )), which requires two separate in-
ductions over the definition of reachability, yields analogous results for the weak
specification operators:

extendhF ∈ (extend sethA) cow (extend sethB) ⇐⇒ F ∈ A cow B

extendhF ∈ always(extend sethA) ⇐⇒ F ∈ alwaysA

Among the progress properties, it is easy to show that transient and ensures
are preserved:

extendhF ∈ transient(extend sethA) ⇐⇒ F ∈ transientA

extendhF ∈ (extend sethA) ensures (extend sethB) ⇐⇒ F ∈ A ensuresB

An elementary induction over the definition of leads-to establishes that it is pre-
served in one direction:

F ∈ A 7→ B

extendhF ∈ (extend sethA) 7→ (extend sethB)
(10)

To prove the opposite direction also requires induction. Using

(extend sethA) 7→ (extend sethB)

in the induction formula will not work; it must be generalized to have the form
A′ 7→ B′, relating arbitrary sets and expressing the conclusion using an inverse
of extend seth. Since h is injective in its first argument, there is a function f
such that f(h(x, y)) = x for all x and y. An obvious inverse of extend seth is to
take a set’s image under f , which has the effect of forgetting the new variables and
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projecting down to the original set. Unfortunately, the base case of the induction
fails: the projection preserves neither transient nor ensures.

Here is a counterexample. For A to be transient, some action must include A
in its domain and map every element of A out of A; recall definition (3) of §6.
Consider the action i := 3− i. The singleton set of states {i = 1} is transient under
that action, as is {i = 2}. Now extend the state to have another variable, j. The
extended action updates i by i := 3− i and leaves j unchanged. It maps the two-
element set of states {(i = 1, j = 1), (i = 2, j = 2)} to {(i = 2, j = 1), (i = 1, j = 2)}
and back again. Since these sets are disjoint, both are transient. Projecting either
set down to states over i yields {i = 1, i = 2}, which is not transient: the assignment
maps it to itself.

The solution is not to project from the extended set as a whole, but to regard it
as the union of “slices” for fixed values of y:

sliceAy , {x | h(x, y) ∈ A}

Now we can easily prove that transient properties are preserved if we project down
to a slice on the old state type:

extendhF ∈ transientA
F ∈ transient(sliceAy)

A complicated argument is necessary to show that ensures properties are similarly
preserved. Note that the postcondition is given by a simple projection, f“B; having
a weaker postcondition makes the result easier to prove.

extendhF ∈ A ensuresB
F ∈ (sliceAy) ensures (f“B)

Using the rule above for the base case, we can finally apply induction over the
definition of leads-to, obtaining

extendhF ∈ A 7→ B

F ∈ (sliceAy) 7→ (f“B)

Since slice is an inverse of extend seth, this result yields the converse of the
rule (10): leads-to properties are preserved in both directions. The analogous for
weak leads-to is immediate.

11. ARRAYS OF PROCESSES

Charpentier and Chandy [1999] verify an abstract system consisting of a resource
allocator and clients communicating over a network. Clients request resources from
the allocator, receive them and eventually return them. The specification describes
the properties of a single client, but elsewhere the example assumes that there are
many clients, each meeting the same specification. Generalizing from this example,
we arrive at the notion of a process array.

The extend operator, described in the previous section, can express such arrays
of processes. Suppose that we know some properties of a program F . Perhaps F
has been given as code from which we have proved the properties, or perhaps F
has been specified abstractly. If {F [i]}i∈I is an array of processes, each executing
program F , what properties does the array inherit from its components?
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An array of processes can be modelled by a UNITY program containing many
copies of F , indexed by the set I. For example, suppose that F has just two
variables, v and w. An F -state might be modelled as a record with two suitably-
named fields. (By F -states I mean F ’s state type, not its set of reachable states.)
In the array program, a state is a function mapping I to F -states, intuitively an
array of records. If instead we wish to model v and w as array variables, a second
use of extend is needed to perform the renaming.

An array of processes is formalized by first defining the meaning of F [i] in terms of
that of F . Then, the array {F [i]}i∈I is defined to be the indexed join of its elements,⊔

i∈I F [i]. To define F [i] using extend requires a suitable state-transforming func-
tion hi. Let s be an F -state and let f be an array state (a function from I to
F -states). Then hi(s, f) forms an F [i]-state by taking its ith component to be s
and the other components from f . It is easy to check that hi is surjective and is
injective in its first argument.

In Isabelle, we can formalize hi as a curried function, lift map. The definition
utilizes the := notation for function updating, where f [y := z] denotes the function
that maps y to z and maps x to f(x) if x 6= y.

lift_map i (s,f) == f(i := s)

The operators lift set and lift act, analogues of extend set and extend act, can
be defined as follows:

lift_set i A == {f. f i ∈ A}

lift_act i act == {(f,f’). f(i:= f’ i) = f’ & (f i, f’ i) ∈ act}

Note that lift set i A is the set of F [i]-states whose ith component belongs to A,
while lift act i act is the F [i]-action that transforms the ith component using the
supplied F -action while leaving the other components unchanged.

Now lift prog can be defined in the obvious way, giving its initial condition
using lift set and its actions using lift act. It is easy to prove that lift set i
equals extend set (lift map i). Simply to define lift set in terms of extend set
would have been more direct; however, it then would have been natural to ask what
the definition simplifies to, so either approach involves proving that

extend set (lift map i) = {f | f i ∈ A}.

Analogous equations hold for lift act and lift prog, and so their properties follow
immediately from those of extend act and extend. Here are two examples:

lift prog i F ∈ (lift set i A) co (lift set i B) ⇐⇒ F ∈ A coB (11)
lift prog i F ∈ transient(lift set i A) ⇐⇒ F ∈ transientA (12)

We can do better. If lift prog i F ∈ transient(lift set j A) then i = j provided
A is not the empty set (the state predicate false), for if i 6= j then actions of
lift prog i F never affect component j. This result is used to derive rule (15)
below.

Arrays of programs are defined by

{F [i]}i∈I ,
⊔
i∈I

lift prog i F.
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Safety properties of arrays can be proved using the equivalence

{F [i]}i∈I ∈ (lift set i A) co (lift set i B) ⇐⇒ (F ∈ A coB), (13)

which holds for i ∈ I; the component i determines the safety property for the whole
array because lift prog j affects only component j, while lift set i lets the other
components take on any values. This law is a consequence of equations (8) and (11).

Elementary progress properties of arrays can be proved using the equivalence

{F [i]}i∈I ∈ transientA ⇐⇒ ∃i∈I (F ∈ transientA), (14)

which is an immediate consequence of equation (9). We next can derive a rule
concerning ensures properties:

i ∈ I F ∈ A ensuresB
{F [i]}i∈I ∈ (lift set i A) ensures (lift set i B)

(15)

Removing the occurrences of ensures from the premise and conclusion yields a
rather specialized rule for deducing progress properties:

i ∈ I F ∈ (ArB) co (A ∪B) F ∈ transient(ArB)
{F [i]}i∈I ∈ (lift set i A) 7→ (lift set i B)

(16)

These laws reason in terms of existential and universal properties, following
Chandy and Sanders [1998]. The program property X is existential provided that
if Fi satisfies X for some i ∈ I then

⊔
i∈I F satisfies X. It is universal provided

that if Fi satisfies X for all i ∈ I then
⊔

i∈I F satisfies X. In this terminology,
laws (8) and (9) tell us that co properties are universal while transient properties
are existential. Although leads-to properties are neither existential nor universal,
they can be derived from combinations of existential and universal properties, using
the ensures primitive, the PSP law, etc.

A simple example will demonstrate this reasoning style. Let a timer be a pro-
gram whose state consists of a single natural number and whose action decrements
this number provided it is positive. Obviously, a timer will eventually reach zero
regardless of its starting value, and a finite array of timers will eventually reach a
state in which all the timers are zero.

Here is the Isabelle description of the timer:

decr ==
S

n. {(Suc n, n)}

Timer == mk_program (UNIV, {decr})

The statement to be proved takes the following form, where plam i∈I. F i is the
array construction {F [i]}i∈I :

finite I ==> (plam i∈I. Timer) ∈ UNIV leadsTo {s. ∀ i∈I. s i = 0}

Provided the index set is finite, starting the array of timers (plam i∈I. Timer) in
any initial state (expressed by UNIV) will reach a state in which all the timers are
zero. Here are some extracts from the 12-step proof.

First, we appeal to the completion theorem (4), which was described at the end
of §6. Simplification yields two subgoals:
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finite I ==> (plam i∈I. Timer) ∈ UNIV leadsTo {s. ∀ i∈I. s i = 0}

1. !!i. i ∈ I ==> (plam i∈I. Timer) ∈ UNIV leadsTo lift_set i {0}

2. !!i. i ∈ I ==> Timer ∈ stable {0}

The second of these states that once a timer reaches zero, it stays there. Note
that it refers to a single timer, not an array. The tactic constrains tac proves it
instantly.

The first subgoal states that the array will eventually reduce timer i to zero,
where i ∈ I. Here, we invoke leads-to induction, and after a few steps are left with
the successor case:

finite I ==> (plam i∈I. Timer) ∈ UNIV leadsTo {s. ∀ i∈I. s i = 0}

1. !!i n.

i ∈ I

==> (plam i∈I. Timer)

∈ lift_set i {Suc n} leadsTo lift_set i (lessThan (Suc n))

Here lessThan k abbreviates {j. j < k}. If timer i holds n + 1, the array reduces
this value. To prove this fact, we appeal to rule (16). After simplification, we are
left with two new subgoals:

finite I ==> (plam i∈I. Timer) ∈ UNIV leadsTo {s. ∀ i∈I. s i = 0}

1. !!i n. i ∈ I ==> Timer ∈ {Suc n} co lessThan (Suc (Suc n))

2. !!i n. i ∈ I ==> Timer ∈ transient {Suc n}

The first, which states that a timer value never increases, falls to constrains tac.
The second, which states that a timer cannot hold the value n + 1 forever, has a
two-step proof.

This example illustrates how assertions about an array of processes can be proved
by reasoning about the elements. We never regard the array as a monolithic
program. However, reducing progress properties to combinations of existential
and universal properties can be criticised as being unnatural and implementation-
dependent. Chandy and Sanders [1998] also propose a guarantees operator that
allows compositional reasoning about program properties in a more general way. I
have formalized this operator and proved its basic properties, but using it in com-
bination with extend and lift prog requires much additional theory that will have
to wait for another paper.

12. CONCLUSIONS

UNITY was designed for hand proofs. Making sense of its many notational conven-
tions within the rigid discipline of a mechanical proof tool is a challenge. Like most
program verification formalisms, UNITY leaves program states implicit and makes
little distinction between program variables and variables of the logic. This conven-
tion makes assertions concise and readable, but causes other notational problems.
Program variables are not variables at all, but constants denoting locations in the
state. Leaving states implicit means that formulas often denote state predicates
rather than truth values. Implication might stand for three different concepts:

(1) Ordinary logical implication, yielding a truth value.
(2) Implication lifted over states, yielding a state predicate.
(3) Implication between state predicates, yielding a truth value.
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The scope for confusion is endless. Even if the human reader can work out what is
intended, heavily overloaded syntax makes parsers struggle.

The solution to these notational problems, as I have argued in this paper, lies in
the language of set theory. Ordinary implication (item 1 above) is written φ→ ψ,
as usual. Lifted implication (item 2) is expressed using complement and union,
A ∪ B. Implication between state predicates (item 3) is expressed using inclusion,
A ⊆ B. An alternative solution, used by Chandy and Sanders [1998], is to adopt
Dijkstra’s formalism. The everywhere operator provides a means of distinguishing
state predicates from relations between state predicates. Unfortunately, everywhere
is ambiguous: it denotes universal quantification over the domain of interest, which
must be understood from the context. It is familiar to a minority, while elementary
set theory is covered in most undergraduate discrete mathematics courses.

Much work remains to be done with the Isabelle/UNITY development. I have
started to mechanize a case study: the resource allocation system of Charpentier
and Chandy [1999].
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