
Efficient Template Attacks

Omar Choudary and Markus G. Kuhn

Computer Laboratory, University of Cambridge
firstname.lastname@cl.cam.ac.uk

Abstract. Template attacks remain a powerful side-channel technique
to eavesdrop on tamper-resistant hardware. They model the probabil-
ity distribution of leaking signals and noise to guide a search for se-
cret data values. In practice, several numerical obstacles can arise when
implementing such attacks with multivariate normal distributions. We
propose efficient methods to avoid these. We also demonstrate how to
achieve significant performance improvements, both in terms of informa-
tion extracted and computational cost, by pooling covariance estimates
across all data values. We provide a detailed and systematic overview of
many different options for implementing such attacks. Our experimental
evaluation of all these methods based on measuring the supply current of
a byte-load instruction executed in an unprotected 8-bit microcontroller
leads to practical guidance for choosing an attack algorithm.

Keywords: side-channel attacks, template attack, multivariate analysis.

1 Introduction

Side-channel attacks are powerful tools for inferring secret algorithms or data
(passwords, cryptographic keys, etc.) processed inside tamper-resistant hard-
ware, if an attacker can monitor some channel leaking such information out of
the device, most notably the power-supply current and unintended electromag-
netic emissions.

One of the most powerful techniques for evaluating side-channel information
is the template attack [4], which relies on a multivariate model of the side-channel
traces. While the basic algorithm is comparatively simple (Section 2), there are a
number of additional steps that must be performed in order to obtain a practical
and efficient implementation.

In this paper we examine several problems that can arise in the implemen-
tation of template attacks (Section 3), especially when using a large number of
voltage samples. We explain how to solve them in two steps: (a) using compres-
sion techniques, i.e. methods to reduce the number of samples involved, either
by throwing away most, or by projecting them into a lower-dimensional space,
using only a few linear combinations (Section 4); and (b) we contribute efficient
variants of the template-attack algorithm, which can avoid numerical limitations
of the standard approach, provide better results and execute faster (Section 5).

A. Francillon and P. Rohatgi (Eds.:): CARDIS 2013, LNCS 8419, pp. 253–270, 2014.
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-08302-5_17

http://dx.doi.org/10.1007/978-3-319-08302-5_17

We evaluate all these methods in practice, against an unprotected 8-bit mi-
crocontroller, comparing their effectiveness using the guessing entropy (Section
6). We focus on gathering information about individual data values, independent
of what algorithm these are part of. Other algorithm-specific attacks that use
dependencies between different data values, e.g. to recover keys from a specific
cipher, could be implemented on top of that, but are outside the scope of this
paper. We show that PCA and LDA provide the best results overall, and that a
previous guideline of selecting at most one point per clock cycle is not optimal
in general. Based on these experiments and theoretical background, we provide
practical guidance for the choice of template-attack algorithm.

2 Template Attacks

To implement a template attack, we need physical access to a pair of identical
devices, which we refer to as the profiling and the attacked device. We wish to
infer some secret value k? ∈ S, processed by the attacked device at some point.
For an 8-bit microcontroller, S = {0, . . . , 255} might be the set of possible byte
values manipulated by a particular machine instruction.

We assume that we determined the approximate moments of time when the
secret value k? is manipulated and we are able to record signal traces (e.g.,
supply current or electro-magnetic waveforms) around these moments. We refer
to these traces as leakage vectors. Let {t1, . . . , tmr} be the set of time samples
and xr ∈ Rmr

be the random vector from which leakage traces are drawn.
During the profiling phase we record np leakage vectors xr

ki ∈ Rmr

from the
profiling device for each possible value k ∈ S, and combine these as row vectors
xr
ki
′ in the leakage matrix Xr

k ∈ Rnp×mr

.1

Typically, the raw leakage vectors xr
ki provided by the data acquisition device

contain a large number mr of samples (random variables), due to high sampling
rates used. Therefore, we might compress them before further processing, either
by selecting only a subset of m � mr of those samples, or by applying some
other data-dimensionality reduction method (see Section 4). We refer to such
compressed leakage vectors as xki ∈ Rm and combine all of these as rows into
the compressed leakage matrix Xk ∈ Rnp×m . (Without any such compression
step, we would have Xk = Xr

k and m = mr.)
Using Xk we can compute the template parameters x̄k ∈ Rm and Sk ∈

Rm×m for each possible value k ∈ S as

x̄k = 1
np

np∑
i=1

xki, Sk = 1
np−1

np∑
i=1

(xki − x̄k)(xki − x̄k)
′
, (1)

where the sample mean x̄k and the sample unbiased2 covariance matrix Sk are
the estimates of the true mean µk and true covariance Σk. Note that a sum of

1 Throughout this paper x′ is the transpose of x.
2 Others [8,11,14] use 1/np rather than 1/(np − 1) in Sk, thereby computing the
maximum likelihood estimator (MLE) of Σk. In theory, the correct estimator for

2

squares and cross products matrix such as

np∑
i=1

(xki− x̄k)(xki − x̄k)
′
, from (1) can

also be written as

np∑
i=1

(xki − x̄k)(xki − x̄k)
′

= X̃′kX̃k, (2)

where X̃k is Xk with x̄′k subtracted from each row.3

Side-channel leakage traces can generally be modeled well by a multivariate
normal distribution [4], which we also observed in our experiments. In this case,
the sample mean x̄k and sample covariance Sk are sufficient statistics: they com-
pletely define the underlying distribution [10, Chapter 4]. Then the probability
density function (pdf) of a leakage vector x, given x̄k and Sk, is

f(x | x̄k,Sk) =
1√

(2π)m |Sk|
exp

(
−1

2
(x− x̄k)

′
S−1
k (x− x̄k)

)
. (3)

In the attack phase, we try to infer the secret value k? ∈ S processed by
the attacked device. We obtain na leakage vectors xi ∈ Rm from the attacked
device, using the same recording technique and compression method as in the
profiling phase, resulting in the leakage matrix Xk? ∈ Rna×m . Then, for each
k ∈ S, we compute a discriminant score d(k | Xk?). Finally, we try all k ∈ S on
the attacked device, in order of decreasing score (optimized brute-force search,
e.g. for a password or cryptographic key), until we find the correct k?. Given a
trace xi from Xk?, a commonly used discriminant [8,11,14], derived from Bayes’
rule, is

d(k | xi) = f(xi | x̄k,Sk)P (k), (4)

where the denominator from Bayes’ rule is omitted, as it is the same for each
k. Assuming a uniform a-priori probability P (k) = |S|−1, applying Bayes’ rule
becomes equivalent to computing the likelihood

l(k | xi) = d(k | xi) = l(x̄k,Sk | xi) = f(xi | x̄k,Sk), (5)

where the latter can be computed from (3). However, we do not need to compute
a proper a-posteriori probability for each candidate k given a trace xi, but only
a discriminant function that allows us to sort scores and identify the most likely
candidates. Section 5 shows how the latter can be much more efficient.

3 Implementation Caveats

We now present several problems that can appear when implementing the tem-
plate attack, especially when using a large number of samples m.

Σk is the unbiased estimator with 1/(np − 1); the MLE merely maximises the joint
likelihood from the multivariate normal distribution. In practice, we found this choice
made no significant performance difference (even down to np = 10,m = 6).

3 The matrix form allows the use of fast, vectorized linear-algebra routines.

3

3.1 Inverse of Covariance Matrix

Several authors [15,14] noted that inverting the covariance matrix Sk from (1),
as needed in (3), can cause numerical problems for large m. However, we consider
it important to explain why Sk can become singular (|Sk| ≈ 0), causing these
problems.

Since Sk is essentially the matrix product X̃′kX̃k (2), both Sk and X̃k have

the same rank. Therefore Sk is singular iff X̃k has dependent columns, which is
guaranteed if np < m. The constraint on X̃k to have zero-mean rows implies that
it has dependent columns even for np = m. Therefore, np > m is a necessary
condition for Sk to be non-singular. See [10, Result 3.3] for a more detailed proof.

The restriction m < np is one main reason for reducing m through compres-
sion (see Section 4). However, it is not mandatory to compress m further than

what is needed to keep the columns of X̃k independent. Note that in practice
some samples can be highly correlated, in which case np needs to be somewhat
larger than m (e.g., np ≥ 3000 for m = 1250 with our Section 6 data).

If we cannot obtain np > m then we can try the covariance estimator of
Ledoit and Wolf [5], which gave us a non-singular Sk even for np < m. However,
a much better option is to use the pooled covariance matrix (see Section 5.2)
when possible.

3.2 Floating-point Limitations

One practical problem with (3) is that for large m the statistical distance

(x− x̄k)
′
S−1
k (x− x̄k)

can reach values that cause the subsequent exponentiation operation to overflow.
For example, in IEEE double precision, exp(x) is only safe with |x| < 710, easily
exceeded for large m.

Another problem is that for large m the determinant |Sk| can overflow. For
example, considering that |Sk| is the product of the eigenvalues of Sk, in some
of our experiments the 100 largest eigenvalues were at least 106 and multiplying
merely 52 such values again overflows the IEEE double precision format.

4 Compression Methods

A compression method can be used to reduce the length (dimensionality) of
leakage vectors from mr to m. As detailed in Section 3, this may be needed if
we do not have enough traces for a full rank covariance matrix or to cope with
computational or memory restrictions. Several approaches are described in the
literature, which can be divided into two categories: (a) selecting some of the
samples based on some criteria; (b) using some linear combinations of the leakage
vectors, based on the principal components or Fisher’s linear discriminant. All
of the following techniques evaluate the differences x̄k − x̄ where

x̄ =
1

|S|
∑
k∈S

x̄k. (6)

4

1 1.5 2 2.5
clock cycles

dom
sosd
snr
std
clock

Fig. 1. Signal-strength estimates from DOM, SOSD and SNR (identical to SOST) for a
LOAD instruction processing all possible 8-bit values, along with the average standard
deviation (STD) of the traces and clock signal. We used 2000 traces per value. All
estimates are rescaled to fit into the plot, so the vertical axis (linear) has no scale.

4.1 Selection of Samples

In this method we first compute a signal-strength estimate s(t), t ∈ {t1, . . . , tmr},
and then we select a subset of m points based on this estimate.

There are several proposals for producing s(t), such as difference of means
(DOM) [4, Section 2.1], the sum of squared differences (SOSD) [9], the Signal
to Noise Ratio (SNR) [15] and SOST [9]. All these are similar, with the notable
difference that the first two do no take the variance of the traces into considera-
tion, while the latter two do. We show the difference between these estimates for
our experiments in Figure 1. The methods SNR and SOST are in fact the same
if we consider the variance at each sample point to be independent of the can-
didate k, which is expected in our setting. Under this condition SNR and SOST
reduce to computing the following value used by the F-test in the Analysis of
Variance [10]:

F(t) =

(
np

∑
k∈S

(x̄k(t)− x̄(t))2

)/
(|S| − 1)(∑

k∈S

np∑
i=1

(xki(t)− x̄k(t))2

)/
(|S|(np − 1))

. (7)

F(t) can be used to reject, at any desired significance level, the hypothesis that
the sample mean values at sample point t are equal, therefore providing a good
indication of which samples contain more information about the means.

In the second step of this compression method we need to choose m samples
based on the signal-strength estimate s. The goal is to select the smallest set of
samples that contains most of the information about our target. An accepted
guideline, by Rechberger and Oswald [7, Section 3.2], is to select at most one
sample per clock cycle among the samples with highest s. In Section 6 we evaluate
several other options, and we show that this guideline is not optimal in general.

5

4.2 Principal Component Analysis (PCA)

Archambeau et al. [8] proposed the following method for using PCA as a com-
pression method for template attacks. First compute the sample between groups
matrix B:

B = np

∑
k∈S

(x̄r
k − x̄r)(x̄r

k − x̄r)
′
. (8)

Next obtain the singular value decomposition (SVD) B = UDU′, where each
column of U ∈ Rmr×mr

is an eigenvector uj of B, and D ∈ Rmr×mr

contains
the corresponding eigenvalues δj on its diagonal.4 The crucial point is that only
the first m eigenvectors [u1 . . .um] = Um are needed in order to preserve most
of the information from the mean vectors x̄r

k. Therefore we can restrict U to
Um ∈ Rmr×m . Finally, we can project the mean vectors x̄r

k and covariance
matrices Sr

k (computed with (1) on the raw traces xr
i) into the new coordinate

system defined by Um to obtain the PCA template parameters x̄k ∈ Rm and
Sk ∈ Rm×m :

x̄k = Um′x̄r
k, Sk = Um′Sr

kUm. (9)

Choice of PCA Components. Archambeau et al. [8] propose to select only
those first m eigenvectors uj for which the corresponding eigenvalues δj are a
few orders of magnitude larger than the rest. This technique, also known as
elbow rule or Scree Graph [6], requires manual inspection of the eigenvalues.
Another technique, which does not require manual inspection of the eigenvalues,
is known as the Cumulative Percentage of Total Variation [6]. It selects those m
eigenvectors that retain at least fraction f of the total variance, by computing
the score

φ(m) =

∑
1≤j≤m δj∑
1≤j≤mr δj

, 1 ≤ m ≤ mr, (10)

and selecting the lowest m for which φ(m) > f .5 We recommend trying both
approaches, as “there is no definitive answer [to the question of how many com-
ponents to choose]” [10, Chapter 8].

Alternative Computation of PCA Templates. Even though in [11, Section
4.1] the authors mention that PCA can help where computing the full covariance
matrix Sr

k is prohibitive (due to large mr), their approach still requires the
computation of Sr

k (see (9)). Also, numerical artifacts during the double matrix

4 Archambeau et al. [8] show a method for computing U that is more efficient when
mr � |S|, but in our experiments with mr = 2500 this direct approach worked well.

5 In our experiments, for f = 0.95 and np < 1000 this method retained the m = 4
largest components, which correspond to the same components that we had selected
using the elbow rule. However, when np > 1000 the number of components needed
for f ≥ 0.95 decreased to m < 4, which led to worse results of the template attack.

6

multiplication in (9) can make Sk non-symmetric. One way to avoid the latter
is to use the Cholesky decomposition Sr

k = C′C and compute

Sk = Um′Sr
kUm = Um′C′CUm = (CUm)

′
(CUm) = V′V. (11)

However, to avoid both the numerical artifacts and the computation of large
covariance matrices, we propose an alternative PCA method, based on the fol-
lowing result: given the leakage matrix Xr

k and the PCA projection matrix Um,
it can be shown [10, Eq. (2-45)] that

Sk = Cov(Xr
kUm) = Um′Cov(Xr

k)Um = Um′Sr
kUm. (12)

Therefore, instead of first computing Sr
k and then applying (9) or (11), we

can first compute the projected leakage matrix

Xk = Xr
kUm (13)

and then compute the PCA-based template parameters using (1). We use this
method for all the results shown in Section 6.

4.3 Fisher’s Linear Discriminant Analysis (LDA)

Given the leakage traces xr
ki (rows of Xr

k), Fisher’s idea [2,10] was to find some
coefficients aj ∈ Rmr

that maximise the following ratio:∑
k∈S

(ȳkj − ȳj)2

Var(yj)
=

∑
k∈S

(aj
′(x̄r

k − x̄r))2

Var(aj
′x)

=
aj
′Baj

aj
′Spooledaj

, (14)

where the linear combinations yj = aj
′x are known as sample discriminants,

B is the treatment matrix from (8) and Spooled = 1
|S|
∑

k∈S Sr
k is the common

covariance of all groups (see also Section 5.2). Note the similarity between the
left hand side of (14) and (7) which is used by the F-test, SNR and SOST.
This allows us to make an interesting observation: while in the sample selection
method we first compute (7) for each sample and then select the samples with the
highest F(t), Fisher’s method finds the linear combinations of the trace samples
that maximise (14). The coefficients aj that maximise (14) are the eigenvectors
[u1 . . .umr] = U corresponding to the largest eigenvalues of S−1

pooledB.6

As with PCA, we only need to use the first m coefficients a1, . . . ,am , which
can be selected using the same rules discussed in Section 4.2. If we let A =
[a1 . . .am] = Um be the matrix of coefficients, we can project each leakage
matrix as:

Xk = Xr
kA = Xr

kUm (15)

and compute the LDA-based template parameters using (1).

6 There are a maximum of s = min(mr, |S| − 1) non-zero eigenvectors, as that is the
maximum number of independent linear combinations available in B.

7

Several authors [11,14] have used Fisher’s LDA for template attacks, but
without mentioning two important aspects. Firstly, the condition of equal covari-
ances (known as homoscedasticity) may be important for the success of Fisher’s
LDA. Therefore, the PCA method (Section 4.2), which does not depend on this
condition, might be a better choice in some settings. Secondly, the coefficients
that maximise (14) can be obtained using scaled versions of Spooled

7 or different
approaches [11,14], which will result in a different scale of the coefficients aj . This
difference has a major impact on the template attack: only when we scale the
coefficients aj , such that aj

′Spooledaj = 1, the covariance between discriminants
becomes the identity matrix [10], i.e. Sk = I. That means the sample means in
(1) suffice and we can discard the covariance matrix from the discriminant scores
in Section 5, which greatly reduces computation and storage requirements.

Continuing the steps that led to (15), we can compute the diagonal matrix

Q ∈ Rm×m , having the values qjj = (1
aj

′Spooledaj
)

1
2 = (1

uj
′Spooleduj

)
1
2 on its

diagonal, to obtain the scaled coefficients AQ = UmQ, and replace (15) by

Xk = Xr
kAQ = Xr

kUmQ. (16)

An alternative approach is to compute the eigenvectors uj of S
− 1

2

pooledBS
− 1

2

pooled and

then obtain the coefficients aj = S
− 1

2

pooleduj , which leads directly to coefficients
that satisfy aj

′Spooledaj = 1.

5 Efficient Implementation of Template Attacks

In this section we introduce methods that avoid the problems identified in Sec-
tion 3 and implement template attacks very efficiently.

5.1 Using the Logarithm of the Multivariate Normal Distribution

Mangard et al. [15, p. 108] suggested calculating the logarithm of (3), as in

log f(x | x̄k,Sk) = −1

2

(
log [(2π)m |Sk|] + (x− x̄k)

′
S−1
k (x− x̄k)

)
. (17)

They then claim that “the template that leads to the smallest absolute value [of
(17)] indicates the correct [candidate]”.

The first problem with this approach is that (17) does not avoid the compu-
tation of |Sk|, which we have shown to be problematic. Therefore we propose to
compute the logarithm of the multivariate normal pdf as

log f(x | x̄k,Sk) = −m
2

log 2π − 1

2
log |Sk| −

1

2
(x− x̄k)

′
S−1
k (x− x̄k), (18)

7 Instead of Spooled we could use W = |S|(np − 1)Spooled, known as a sample within
groups matrix.

8

where we compute the logarithm of the determinant as

log |Sk| = 2
∑

cii∈diag(C)

log cii, (19)

using the Cholesky decomposition Sk = C′C of the symmetric matrix Sk. (Since
C is triangular, its determinant is the product of its diagonal elements.)

Secondly, it is incorrect to choose the candidate k that leads to the “small-
est absolute value” of (17,18), since the logarithm is a monotonic function and
preserves the property that the largest value corresponds to the correct k.8

We can use (18,19), dropping the first term which is constant across all k, to
compute a discriminant score based on the log-likelihood:

dLOG(k | xi) = −1

2
log |Sk| −

1

2
(xi − x̄k)

′
S−1
k (xi − x̄k) (20)

= log f(xi | x̄k,Sk) +
m

2
log 2π = log l(k | xi) + const.

5.2 Using a Pooled Covariance Matrix

When the leakages from different candidates k have different means but the
same covariance Σ = Σ1 = Σ2 = · · · = Σk, it is possible to pool the covariance
estimates Sk into a pooled covariance matrix [10, Section 6.3]

Spooled =
1

|S|(np − 1)

∑
k∈S

np∑
i=1

(xki − x̄k)(xki − x̄k)
′
, (21)

an average of the covariances Sk from (1). The great advantage of Spooled over
Sk is that it represents a much better estimator of the real covariance Σ, since
Spooled estimates the covariance using np|S| traces, while Sk uses only np. This
in turn means that the condition for a non-singular matrix (see Section 3.1)
relaxes to np|S| > m or np >

m
|S| . Therefore the number of traces that we must

obtain for each candidate k is reduced by a factor of |S|, a great advantage in
practice. Nevertheless, the quality of the mean estimate x̄k still depends directly
on np. Also note that for Fisher’s LDA (Section 4.3) we need to compute the
inverse of Spooled ∈ Rmr×mr

, which requires np|S| > mr.
Several authors used Spooled with template attacks [12,16], but gave no moti-

vation for its use. We would expect the assumption of equal covariances to hold
for many side-channel applications, because Sk captures primarily information
about how noise, that is variation in the recorded traces unrelated to k, is corre-
lated across trace samples. After all, the data-dependent signal x̄k was already
subtracted. As a result, we should not expect substantial differences between
the Sk for different candidate values k, unless the targeted device contains a

8 Note that a pdf, such as f from (3), unlike a probability, can be both larger or smaller
than 1 and therefore its logarithm can be both positive or negative.

9

mechanism by which k can modify the correlation between samples (which we
do not completely exclude).

Box’s test [3] can be used to reject the hypothesis of equal covariances, al-
though it can be misleading for large |S| or large m. In our experiments, with
|S| = 28, m = 6 and np = 2000, Box’s variable C ∼ Ff1,f2(α) had the value
2.03, which was above the rejection threshold for any realistic significance level
(e.g. Ff1,f2(0.99) = 1.045). Nevertheless, we found the different Sk to be visu-
ally similar (viewed as bitmaps with linear colour mapping), and we consider
that our hypothesis was confirmed by the superior results from using the pooled
estimate (Section 6).

Using Spooled, we can discard the first two terms in (18) and use the gener-
alized statistical distance

d2
M(x | x̄k,Spooled) = (x− x̄k)

′
S−1

pooled(x− x̄k) ≥ 0, (22)

also known as the Mahalanobis distance [1], to compare the candidates k. The
inequality in (22) holds because the covariance matrix is positive semidefinite.
From (18,22) we can derive the discriminant score

dMD(k | xi) = −1

2
d2

M(xi | x̄k,Spooled) = dLOG(k | xi) + const., (23)

where the constant does not vary with k.

5.3 Linear Discriminant Score

When using the pooled covariance matrix Spooled we can rewrite the distance
from (22) as:

d2
M(x | x̄k,Spooled) = x′S−1

pooledx− 2x̄′kS−1
pooledx + x̄′kS−1

pooledx̄k, (24)

and observe that the first term is constant for all groups k so we can discard it.
That means, that we can now use the following linear discriminant score:

dLINEAR(k | xi) = x̄′kS−1
pooledxi −

1

2
x̄′kS−1

pooledx̄k = dMD(k | xi) + const., (25)

which depends linearly on xi (where const. does not depend on k). Although
equivalent, the linear discriminant dLINEAR can be far more efficient to compute
than the quadratic dMD.

5.4 Combining Multiple Attack Traces

We have to combine the na individual leakage traces xi from Xk? into the final
discriminant score d(k | Xk?). We present two sound options for doing so:

10

Option 1: Average all the traces in Xk? (similar to the mean computation in
(1)) in order to remove as much noise as possible and then use this single mean
trace x̄k? to compute

davg(k | Xk?) = d(k | x̄k?). (26)

This option is computationally fast, requiring O(nam + m2) time for any pre-
sented discriminant, but it does not use all the information from the available
attack traces (in particular the noise).

Option 2: Compute the joint likelihood l(k | Xk?) =
∏

xi∈Xk?

l(k | xi). By

applying the logarithm to both sides we have log l(k | Xk?) =
∑

xi∈Xk?

log l(k | xi)

and we obtain the derived scores:

djoint
LOG(k | Xk?) = −na

2
log |Sk| −

1

2

∑
xi∈Xk?

(xi − x̄k)
′
S−1
k (xi − x̄k), (27)

djoint
MD (k | Xk?) = −1

2

∑
xi∈Xk?

(xi − x̄k)
′
S−1
k (xi − x̄k), (28)

djoint
LINEAR(k | Xk?) = x̄′kS−1

pooled

(∑
xi∈Xk?

xi

)
− na

2
x̄′kS−1

pooledx̄k. (29)

Given the na leakage traces xi ∈ Xk?, dLOG and dMD require time O(nam
2)

while dLINEAR only requires O(nam + m2), since the operations x̄′kS−1
pooled and

x̄′kS−1
pooledx̄k only need to be done once, which is a great advantage in practice.

As a practical example, our evaluations of the guessing entropy (see Section 6)
for m = 125 and 1 ≤ na ≤ 1000 took about 3.5 days with dLOG but only 30
minutes with dLINEAR.9 We note that for dLINEAR the computation time is the
same regardless of which option we use to combine the traces, and both give the
same results for the template attack.

5.5 Unequal Prior Probabilities

In the previous descriptions we have assumed equal prior probabilities among the
candidates k. When this is not the case, we only need to add the term logP (k) to
the discriminant scores davg

LOG, davg
MD, davg

LINEAR, or na logP (k) to the discriminant

scores djoint
LOG, djoint

MD , djoint
LINEAR.

6 Evaluation of Methods

We evaluated the efficiency of many template-attack variants on a real hard-
ware platform, comparing all the compression methods from Table 110 and all

9 MATLAB, single core CPU with 3794 MIPS.
10 We arbitrarily chose to use the DOM estimate, computed as the sum of absolute

differences between the mean vectors. Using SNR instead of DOM as the signal
strength estimate s(t) has provided very similar results, omitted due to lack of space.

11

Table 1. List of compression methods evaluated in this paper.

Name Description m

DOM 1ppc DOM, 1 sample per clock at most 6–10
DOM 3ppc DOM, 3 samples per clock at most 18–30
DOM 20ppc DOM, 20 samples per clock at most 75–79
DOM allap DOM, all samples above 95th percentile of F(t) 125
PCA Fixed selection of number of principal components 4
LDA Fixed selection of number of coefficients 4

the implementation options from Section 5. We compare the commonly used
high-compression methods, such as PCA, LDA and sample selection using the
guideline [7] of 1 sample per clock at most (1ppc), against weak compressions
providing a larger number of samples: the 3ppc, 20ppc and allap selections.11

6.1 Experimental Setup

Our target is the 8-bit CPU Atmel XMEGA 256 A3U, an easily available micro-
controller without side-channel countermeasures, mounted on our own evaluation
board to monitor the total current in all CPU ground pins via a 10 ohm resistor.
We powered it from a battery via a 3.3 V regulator and supplied a 1 MHz sine
clock. We used a Tektronix TDS 7054 8-bit oscilloscope with P6243 active probe,
at 250 MS/s, with 500 MHz bandwidth in SAMPLE mode. We used the same
device for both the profiling and the attack phase, which provides a good setting
for the focus of our work.

For each candidate value k ∈ {0, . . . , 255} we recorded 3072 traces xr
ki (i.e.,

786 432 traces in total), which we divided into a training set (for the profil-
ing phase) and an evaluation set (for the attack phase). Each trace contains
mr = 2500 samples, recorded while the target microcontroller executed the same
sequence of instructions loaded from the same addresses: a MOV instruction,
followed by several LOAD instructions. All the LOAD instructions require two
clock cycles to transfer a value from RAM into a register, using indirect address-
ing. In all the experiments our goal was to determine the success of the template
attacks in recovering the byte k processed by the second LOAD instruction.
All the other instructions were processing the value zero, meaning that in our
traces none of the variability should be caused by variable data in other nearby
instructions that may be processed concurrently in various pipeline stages.12

11 The selections 1ppc, 3ppc and 20ppc provide a variable number of samples because
of the additional restriction that the selected samples must be above the highest
95th percentile of F(t), which varies with np for each clock edge.

12 A similar approach was used by Standaert et al. [11] and Oswald and Paar [16] to
report results of template attacks on (part of) the key loading stage of a block cipher.

12

6.2 Guessing Entropy

We use the guessing entropy as the sole figure of merit to compare all methods.
It estimates the (logarithmic) cost of any optimized search following a template
attack to find the correct k? among the values k with the highest discriminant
scores. It gives the expected number of bits of uncertainty remaining about the
target value k?. The lower the guessing entropy, the more successful the attack
has been and the less effort remains to search for the correct k?.

To compute the guessing entropy, we compute the score d(k | Xk?) (see Sec-
tion 5) for each combination of candidate value k and target value k?, resulting
in a score matrix M ∈ R|S|×|S| with M(k?, k) = d(k | Xk?). Each row in M
contains the score of each candidate value k given the traces Xk? corresponding
to a given target value k?. Next we sort each row of M, in decreasing order, to
obtain a depth matrix D ∈ N|S|×|S| with

D(k?, k) = position of d(k | Xk?) in the sorted row of M(k?, ·). (30)

Finally, using the matrix D we define the guessing entropy

g = log2

1

|S|
∑
k∈S

D(k, k). (31)

Standaert et al. [13] also used this measure, but without the logarithm.

6.3 Experimental Results and Practical Guidance

We performed each attack 10 times for each combination of na, k and k?, using
a different random selection of Xk? for each na and k?. We plot in Figure 2
and 3 the averaged guessing entropy, resulting in highly reproducible graphs.
The standard deviation across all experiments is around 0.1 bits.

These results, as well as the considerations discussed earlier, allow us to
provide the following practical guidance regarding the choice of algorithm:

1. Use Option 2 (djoint) in preference to Option 1 (davg) to combine the dis-
criminant scores for na > 1 attack traces. For na = 1 or when using Spooled,
these options are equivalent. Otherwise, as the number na of attack traces
increases and the covariance matrix is better estimated (e.g. due to a large
number np of profiling traces or small number m of variables) djoint outper-
forms davg for all compression methods.

2. Try using a common covariance matrix Spooled with dLINEAR (unless dif-
ferences between individual estimates Sk are very evident, e.g. from visual
inspection). Failing a statistical test for homoscedasticity (e.g., Box’s test)
alone does not imply that using individual estimates Sk will improve the
template attack. Using individual estimates Sk prevents use of the signifi-
cantly faster and more robust discriminant dLINEAR. Then:
(a) If your target allows you to acquire a large number of traces (na > 100):

try the compression methods PCA, LDA and sample-selection with large
m since they may perform differently based on the level of noise from
the profiling traces Xk.

13

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

PCA, m=4 joint
PCA, m=4 avg
sample, 1ppc joint
sample, 1ppc avg
sample, 3ppc joint
sample, 3ppc avg
sample, 20ppc joint
sample, 20ppc avg
sample, allap joint
sample, allap avg

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

na (log axis)

G
ue

ss
in

g
en

tr
op

y
(b

its
)

LDA, m=4
PCA, m=4
sample, 1ppc
sample, 3ppc
sample, 20ppc
sample, allap

S
k

(d
L
O
G

)
S
p
o
o
le
d

(d
L
IN

E
A
R

)

np = 200 np = 2000

PCA

LDA

1ppc

Fig. 2. Guessing entropy remaining after template attacks, with different compres-
sions, for np = 200 (left) and np = 2000 (right) profiling traces, using individual
covariances Sk with dLOG (top) or a pooled covariance Spooled with dLINEAR (bottom).

(b) If your target allows only acquisition of a limited number of attack traces
(na < 10): use LDA. Note that in this case, as the covariance esti-
mate improves due to large |S|np, performance increases with larger
m (cf. 3ppc, 20ppc, allap). In particular, for na < 10, we see in Fig-
ure 2 (bottom) that we got more than 1 bit of data from 20ppc and
allap compared to 1ppc, which contradicts the claim [7, Section 3.2] that
“additional [samples] in the same clock cycle do not provide additional
information”. In this setting, 20ppc and allap can outperform PCA.

3. If you cannot use the pooled covariance Spooled, then use the individual co-
variances Sk with dLOG and use PCA as the compression method.

This guidance should work well in situations similar to our experimental
conditions. Further research is needed to also consider pipelining, where other
data in neighbour instructions can partially overlap in the side-channel.

14

np

na = 1

200 2000

1

2

3

4

5

6

np

na = 1000

200 2000

log 1ppc

log 3ppc

log 20ppc

log allap

log pca

md 1ppc

md 3ppc

md 20ppc

md allap

md pca

md lda
1

2

3

4

5

6

Fig. 3. Guessing entropy from the methods discussed, for na = 1 (left) and na =
1000 (right), using djoint (at np ∈ {200, 500, 1000, 1500, 2000}, linearly interpolated).

7 Conclusions

In this paper, we have explored in detail the implementation of template attacks
based on the multivariate normal distribution, comparing different compression
methods, discriminant scores, and number of profiling and attack traces.

We explained why several numerical obstacles arise when dealing with a large
number m of variables (e.g. when retaining a large part of the leakage vectors),
and we presented efficient methods that can be used in this case, such as the
discriminant dLOG.

Based on the observation that the covariance matrices Sk of each candidate
k are similar, we explained the use of the pooled covariance estimate Spooled and
we showed how Spooled allows us to derive a linear discriminant dLINEAR which
is much more efficient than dLOG. For na = 1000 attack traces and m = 125
samples, the computation of the guessing entropy remaining after the template
attacks can be reduced from 3 days (using dLOG) to 30 minutes (using dLINEAR).
This is a great advantage for the evaluation of template attacks, which is often
a requirement to obtain Common Criteria certification.

We applied all the methods presented in this paper on real traces from an
unprotected 8-bit microcontroller and we evaluated the results using the guessing
entropy. Using the efficient methods presented in this paper we were able to
obtain a guessing entropy close to 0, i.e. we are able to extract all 8 bits processed
by a single LOAD instruction, not just their Hamming weight.

Based on these results and theoretical arguments, we proposed a practical
guideline for the choice of algorithm when implementing template attacks.
Data and Code Availability: In the interest of reproducible research we make
available our data and associated MATLAB scripts at:

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

Acknowledgement: Omar Choudary is a recipient of the Google Europe Fellowship in
Mobile Security, and this research is supported in part by this Google Fellowship. The
opinions expressed in this paper do not represent the views of Google unless otherwise
explicitly stated.

15

http://www.cl.cam.ac.uk/research/security/datasets/grizzly/

References

1. P.C. Mahalanobis, “On the Generalised Distance in Statistics”. In: Proceedings
National Institute of Science, India, vol. 2, pp 49–55, 1936.

2. R.A. Fisher, “The Statistical Utilization of Multiple Measurements”, in Annals
of Eugenics, 8, pp 376–386, 1938.

3. G.E.P. Box, “Problems in the Analysis of Growth and Wear Curves”, in Bio-
metrics, 6, pp 362–389, 1950.

4. S. Chari, J. Rao, and P. Rohatgi, “Template Attacks”, CHES 2002, Springer,
2003, LNCS 2523, pp 51–62.

5. O. Ledoit, M. Wolf, “A well-conditioned estimator for large-dimensional covari-
ance matrices”, in Journal of Multivariate Analysis, 2004.

6. I. Jolliffe, “Principal Component Analysis”. John Wiley & Sons, Ltd, 2005.
7. C. Rechberger and E. Oswald, “Practical Template Attacks”, in Information

Security Applications, Springer, 2005, LNCS 3325, pp 440–456.
8. C. Archambeau, E. Peeters, F. Standaert, and J. Quisquater, “Template Attacks

in Principal Subspaces”, in CHES 2006, Springer, 2006, LNCS 4249, pp 1–14.
9. B. Gierlichs, K. Lemke-Rust, and C. Paar, “Templates vs. Stochastic Methods”,

in CHES 2006, Springer, LNCS 4249, pp 15–29.
10. R. Johnson and D. Wichern, “Applied Multivariate Statistical Analysis”, 6th

ed. Pearson, 2007.
11. F.-X. Standaert and C. Archambeau, “Using Subspace-Based Template Attacks

to Compare and Combine Power and Electromagnetic Information Leakages”,
in CHES 2008, Springer, LNCS 5154, pp 411–425.

12. L. Batina, et al. “Comparative Evaluation of Rank Correlation Based DPA on
an AES Prototype Chip”, Information Security, 2008, LNCS 5222, pp 341–354.

13. F.-X. Standaert, et al. “A Unified Framework for the Analysis of Side-Channel
Key Recovery Attacks”, Eurocrypt 2009, LNCS 5479, pp 443–461.

14. T. Eisenbarth, C. Paar, and B. Weghenkel, “Building a Side Channel Based
Disassembler”, Trans. on Computational Science X, 2010, vol. 6340, pp 78–99.

15. S. Mangard, E. Oswald, and T. Popp, “Power Analysis Attacks: Revealing the
Secrets of Smart Cards”, 1st ed., Springer, 2010.

16. D. Oswald and C. Paar, “Breaking Mifare DESFire MF3ICD40: Power Analysis
and Templates in the Real World”, in CHES 2011, LNCS 6917, pp 207–222.

A Evaluation Board

For our experiments, we built a custom PCB for the Atmel microcontroller (see
Figure 4, left). This 4-layer PCB has inputs for the clock signal and supply
voltage, a USB port to communicate with a PC, and a 10-ohm resistor in the
ground line for power measurements. The PCB connects all the ground pins of
the microcontroller to the same line, which leads to the measurement resistor.

B Executed Code

During all our experiments we recorded traces with 2500 samples, covering the
execution of several instructions, as shown in Figure 4 (right). The executed
instruction sequence is

16

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5172&rep=rep1&type=pdf#page=29
http://perso.ens-lyon.fr/patrick.flandrin/LedoitWolf_JMA2004.pdf
http://perso.ens-lyon.fr/patrick.flandrin/LedoitWolf_JMA2004.pdf
http://cs5517.userapi.com/u133638729/docs/9465d37dec42/Jolliffe_I_Principal_Component_Analysis_224360.pdf
http://link.springer.com/chapter/10.1007/978-3-540-31815-6_35
http://perso.uclouvain.be/fstandae/PUBLIS/38.pdf
http://perso.uclouvain.be/fstandae/PUBLIS/38.pdf
https://www.hgi.rub.de/media/crypto/veroeffentlichungen/2011/01/29/ches2006v15.pdf
http://www.iacr.org/archive/ches2008/51540408/51540408.pdf
http://www.iacr.org/archive/ches2008/51540408/51540408.pdf
https://eprint.iacr.org/2006/139.pdf
https://eprint.iacr.org/2006/139.pdf
http://link.springer.com/content/pdf/10.1007%2F978-3-642-17499-5_4.pdf
http://link.springer.com/content/pdf/10.1007%2F978-3-642-17499-5_4.pdf
http://www.springer.com/computer/security+and+cryptology/book/978-0-387-30857-9
http://www.springer.com/computer/security+and+cryptology/book/978-0-387-30857-9
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_14
http://link.springer.com/chapter/10.1007/978-3-642-23951-9_14

5a5c: 00 00 nop ; several previous NOPs ommited in this listing
5a5e: fc 01 movw r30, r24 ; 1 clock cycle, recorded traces start here
5a60: 81 90 ld r8, Z+ ; 2 clock cycles per ld instruction
5a62: 91 90 ld r9, Z+ ; this is our target instruction (2 clock cycles)
5a64: a1 90 ld r10, Z+ ; we want to infer the data loaded in r9
5a66: b1 90 ld r11, Z+
5a68: c1 90 ld r12, Z+ ; recorded trace ends after first clock cycle of this ld

The load instructions use the Z pointer (which refers to registers r31:r30) for
indirect RAM addressing. The initial value of registers r8–r12 before the load
operations is zero. The initial value of Z before the first load instruction is 2020.

C Some Proofs

In Section 5.3 we rewrote (22) as (24). This is possible because

x̄′kS−1
pooledx = (x̄′kS−1

pooledx)
′

= x′S−1
pooled

′
x̄k = x′S−1

pooledx̄k. (32)

In Section 5.4 we state that dLINEAR provides the same results for both op-
tions of combining the traces (from average trace and based on joint likelihood).
This happens because if we let ck = − 1

2 x̄′kS−1
pooledx̄k for any k, then we have

djoint
LINEAR(k | Xk?) = x̄′kS−1

pooled

(∑
xi∈Xk?

xi

)
+ nack, (33)

davg
LINEAR(k | Xk?) = x̄′kS−1

pooled

(
1

na

∑
xi∈Xk?

xi

)
+ ck, (34)

and therefore for any u, v ∈ S it is true that

davg
LINEAR(u | Xk?) > davg

LINEAR(v | Xk?)⇔

x̄′uS−1
pooled

(
1

na

∑
xi∈Xk?

xi

)
+ cu > x̄′vS−1

pooled

(
1

na

∑
xi∈Xk?

xi

)
+ cv ⇔

x̄′uS−1
pooled

(∑
xi∈Xk?

xi

)
+ nacu > x̄′vS−1

pooled

(∑
xi∈Xk?

xi

)
+ nacv ⇔

djoint
LINEAR(u | Xk?) > djoint

LINEAR(v | Xk?).

0 2 4 6 8 10
−2

−1

0

1

2

3
x 10

4

Time [µs]

O
sc
il
lo
sc
o
p
e
1
6
-b
it
d
a
ta

MOV

LD k

Fig. 4. Left: the device used during our experiments. Right: A single example trace
xr
i from our experimental setup.

17

	Efficient Template Attacks

