
Verified Compilation of CakeML to
Multiple Machine-Code Targets

Anthony Fox
University of Cambridge, UK
anthony.fox@cl.cam.ac.uk

Magnus O. Myreen
Chalmers University of Technology, Sweden

myreen@chalmers.se

Yong Kiam Tan
Carnegie Mellon University, USA

yongkiat@cs.cmu.edu

Ramana Kumar
Data61, CSIRO / UNSW, Australia
ramana.kumar@data61.csiro.au

Abstract
This paper describes how the latest CakeML compiler sup-
ports verified compilation down to multiple realistically
modelled target architectures. In particular, we describe how
the compiler definition, the various language semantics, and
the correctness proofs were organised to minimize target-
specific overhead. With our setup we have incorporated
compilation to four 64-bit architectures, ARMv8, x86-64,
MIPS-64, RISC-V, and one 32-bit architecture, ARMv6.
Our correctness theorem allows interference from the envi-
ronment: the top-level correctness statement takes into ac-
count execution of foreign code and per-instruction inter-
ference from external processes, such as interrupt handlers
in operating systems. The entire CakeML development is
formalised in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification—Correctness proofs,
Formal methods; F.3.1 [Logics and meanings of programs]:
Specifying and Verifying and Reasoning about Programs—
Mechanical verification, Specification techniques, Invariants

Keywords Compiler verification; ML; verified assembly.

1. Introduction
The CakeML compiler (Tan et al. 2016) has an end-to-end
correctness theorem. The correctness theorem states that
the concrete machine code produced by the compiler will
only behave in ways that are consistent with the source

level semantics for the CakeML language. We call this an
end-to-end result because the theorem relates source-level
behaviour with the behaviour of the concrete machine code
as executed by the target architectures.

Following the success of CompCert there have been other
ambitious compiler verification projects. Most compiler ver-
ifications stop at assembly code (Section 9), and thus fall
short of making the proofs relate to concrete machine code.
As a result, such compilers may inadvertently generate code
that has silent encoding errors, e.g. offsets that overflow or
fields that accidentally take on values with special meanings.
Writing instruction encoders is non-trivial, as we will illus-
trate in this paper.

To the best of our knowledge, no previous compiler veri-
fication project has delivered a verified end-to-end compiler
that (a) targets concrete machine code for several commer-
cially available architectures, and (b) has proofs relating the
behaviour of the generated machine code with the semantics
of detailed and carefully validated models of real instruction
set architectures.

This paper describes how (a) and (b) have been achieved
with the latest CakeML compiler. In particular:

• We explain how target-specific details of the compiler
have been factored out as far as possible to facilitate sup-
port for several targets. Section 2 describes where and
how target-specific details affect the compiler’s opera-
tions.
• We explain, in Section 3, how our top-level correctness

theorem takes the target architecture into account and
how we model the low-level interference that the sur-
rounding execution environment can cause at the level
of machine code.
• Sections 4 through 7 explain how the target-specific

proofs were separated from the rest of the proofs, how
much effort it is to add a new target, how we overcame

various quirks of each supported architecture, and finally
how proof automation reduced manual work.

CakeML is formalised in the HOL4 theorem prover and
is available at https://code.cakeml.org. Our previous
publication provides a general overview of the new compiler,
while this paper focuses on the multi-target aspect.

2. Target-specific Details in the Compiler
This section gives an overview of how the compiler imple-
mentation is organised to target multiple ISAs. A description
of the proofs will be covered in subsequent sections.

Configuration All target-specific details are transported
around the compiler as part of the compiler’s configura-
tion record. The configuration contains various options,
e.g. switches for optional optimisations, and some compiler
state. The target-specific details are kept in a field called
t .config with type α asm_config. Here α is a type vari-
able for the architecture size, which is in practice instan-
tiated to type 32 or 64. Figure 1 shows the definition of
α asm_config. Each instance c carries the following:

• The name of the ISA: c.ISA.
• An encoding function, c.encode, which takes a well-

formed unlabelled assembly instruction and returns the
bytes that implement it in ISA machine code. An in-
struction is well-formed if it satisfies the criteria out-
lined informally in the bullet-points below; these criteria
are formally checked by a predicate called asm_ok. The
datatype for assembly instructions is shown in Figure 2.
• Whether the ISA is big endian: c.big_endian.1

• An alignment: machine instructions on this architecture
are always a multiple of 2c.code_alignment bytes.
• Information about available registers: n is available as a

register name if n < c.reg_count and n does not appear
in the list c.avoid_regs. We use natural numbers (type
num) for register names. If c.two_reg_arith is set then
certain combinations of names must be used, to fit the
requirements of two-register architectures (e.g. x86-64).
• Limits on various offsets, e.g. the minimum and maxi-

mum offsets of an unconditional jump are represented by
the pair c.jump_offset.
• A predicate c.valid_imm which checks whether con-

stant immediate values are encodable for a particular
binop or cmp. It would be disadvantageous to use simple
min/max boundaries since some architectures have com-
plicated criteria that allow large immediate values of cer-
tain shapes.
• Finally, a c.link_reg field specifying whether the ISA

supports a conventional call instruction: None means it

1 Some architectures allow switching endianness at runtime, but we forbid
such switching and keep to the conventional endianness for each ISA.

α asm_config =
〈| ISA : architecture;
encode : (α asm → 8 word list);
big_endian : bool;
code_alignment : num;
link_reg : (num option);
avoid_regs : (num list);
reg_count : num;
two_reg_arith : bool;
valid_imm : (binop + cmp → α word → bool);
addr_offset : (α word × α word);
jump_offset : (α word × α word);
cjump_offset : (α word × α word);
loc_offset : (α word × α word) |〉

architecture = ARMv6 | ARMv8 | MIPS | RISC_V | x86_64

Figure 1. The compiler’s target-specific configuration.

α asm =
Inst (α inst)
| Jump (α word)
| JumpCmp cmp num (α reg_imm) (α word)
| Call (α word)
| JumpReg num
| Loc num (α word)
α inst =

Skip
| Const num (α word)
| Arith (α arith)
| Mem memop num (α addr)
α addr = Addr num (α word)
α arith =

Binop binop num num (α reg_imm)
| Shift shift num num num
| Div num num num
| LongMul num num num num
| LongDiv num num num num num
| AddCarry num num num num
α reg_imm = Reg num | Imm (α word)
memop = Load | Load8 | Store | Store8
binop = Add | Sub | And | Or | Xor
cmp = Equal | Lower | Less | Test | NotEqual | NotLower
| NotLess | NotTest

shift = UnsignedLeft | UnsignedRight | SignedRight

Figure 2. Target-neutral assembly instruction datatype.

is not supported and Some v means there is a call in-
struction and it saves the return address in v .

Example Compilation To illustrate how the target-specific
details affect compilation, we show how compilation of a
simple piece of source code touches on the α asm_config
record during compilation. We will use part of the code
generated for the following source expression as our running

https://code.cakeml.org

example. The parentheses are not necessary here, but might
make the nesting clearer.

(fn n => (n = 5 000 000))

The first place where target-specific details affect com-
pilation is when the functional data abstraction is removed.
This happens in the transition from DATALANG into WORD-
LANG (Tan et al. 2016). When the data abstraction is re-
moved, values become machine words and memory be-
comes explicit in the state of the program. Machine values
get their size based on the type variable, α, in the com-
piler configuration record. When the body of the lambda
(fn) above enters WORDLANG, it looks roughly as follows.
Here we take the liberty to make up a concrete syntax for
WORDLANG. The strange switch of value from 5 000 000 to
20 000 000 is due to a shift that inserts marker bits into val-
ues. Similarly, the value for true is 24 and false is 2 at this
level of abstraction.

procedure generated_name_46 (arg1, clos_ptr):
if arg1 == 20 000 000 then

temp1 := 24; return temp1
else

temp1 := 2; return temp1

This program then passes through instruction selection,
register allocation and stack concretisation — all of which
rely on the compiler configuration to produce code with ac-
ceptable register names and immediate constants. If we as-
sume that this compilation targets ARMv6, then the code
above turns into the following by these transformations.
Note that the large constant has been moved to a separate
const assignment, since it does not pass c.valid_imm, but a
separate constant assignment can be done for a constant of
any size. In the code below, CakeML’s internal calling con-
vention has been enforced: register 0 has the return address,
register 1 has the first argument etc.

procedure generated_name_46:
reg2 := 20 000 000;
if reg1 == reg2 then

reg1 := 24; return_to_addr reg0
else

reg1 := 2; return_to_addr reg0

A little further down the compiler, the CakeML register
names get mapped to target-specific names to fit the target
ISA’s naming conventions. Note that the renaming is not part
of α asm_config, but still target specific. For ARMv6, the
naming maps register 0 to register 14, and the other register
names are shifted down. The resulting code expects the first
argument in register 0 and the return address in register 14:

procedure generated_name_46:
reg1 := 20 000 000;
if reg0 == reg1 then

reg0 := 24; return_to_addr reg14
else

reg0 := 2; return_to_addr reg14

At the tail-end of the compiler, our running example gets
translated into the following labelled assembly:

Label lab46:
Const 1 20 000 000
JumpCmp NotEqual 0 (Reg 1) lab46_1
Const 0 24
JumpReg 14

Label lab46_1:
Const 0 2
JumpReg 14

An assembler then runs over this code and replaces the la-
bels with concrete values, which makes each line in the pro-
gram map into the α asm datatype from Figure 2. Note that
the compiler can at this point fail to encode the JumpCmp in
case the label happens to be too far (outside c.cjump_offset)
from the jump instructions. In such cases, the compiler exits
with an encoding error.

The generated concrete machine code for ARMv6 is
shown below, with assembler mnemonics in comments on
the right hand side.

00010430 <lab46>:
10430: e59f1000 ldr r1, [pc];10438 <lab46+0x8>
10434: ea000000 b 1043c <lab46+0xc>
10438: 01312d00 ---
1043c: e1500001 cmp r0, r1
10440: 1a000001 bne 1044c <lab46+0x1c>
10444: e3a00018 mov r0, #24
10448: e12fff1e bx lr
1044c: e3a00002 mov r0, #2
10450: e12fff1e bx lr

Readers familiar with ARM assembly will immediately
note that this is not idiomatic ARM code for two reasons:
the large constant is usually stored at the end of the code
segment, and the short bne-jump could be avoided if the mov
and bx were conditionally executed code. We made a deci-
sion early on to keep the machine code closely connected to
ASM for each target, as opposed to producing completely
idiomatic code. This was a decision motivated by the need
to limit the complexity of the compiler.

Same Example Compiled to Other Targets ARMv6 was
the target for the compilation above. Compiling the same
example to x86-64 would not required a separate Const in-
struction to get the large constant, but would otherwise have
produced similar looking code using other register names.
For MIPS-64 and RISC-V, the constant load would have to
be expanded into multiple instructions that build the constant
in a register. MIPS-64 has a branch-delay slot which we fill
with a no-op — again, we do not attempt to produce strictly
idiomatic code here.

3. Correctness Theorem and Semantics
The top-level correctness theorem for the CakeML compiler
is shown in Figure 3. This section explains what the top-level
correctness statement means, including the target semantics.

` config_ok cc mc ⇒
case compile cc prelude input of
Success (bytes,ffi_limit) ⇒
∃ behaviours.
cakeml_semantics ffi prelude input =
Execute behaviours ∧
∀ms.
code_installed (bytes,cc,ffi ,ffi_limit ,mc,ms)⇒
machine_sem mc ffi ms ⊆
extend_with_resource_limit behaviours

| Failure ParseError ⇒
cakeml_semantics ffi prelude input = CannotParse

| Failure TypeError ⇒
cakeml_semantics ffi prelude input = IllTyped

| Failure CompileError ⇒ true

Figure 3. Top-level compiler correctness theorem

The correctness theorem can be read as follows: if the
compiler configuration cc is valid and consistent with a ma-
chine configuration mc (which is explained further down),
then the list of bytes (bytes) produced by a successful ex-
ecution of the compiler function (compile) will only have
behaviours that are consistent with the behaviours of the
source level semantics for the input CakeML program (a
combination of prelude and input).

The machine-level behaviours are consistent with the
source-level behaviours if the machine-level semantics
(machine_sem, explained further down) only produces be-
haviours that are a subset of source-level behaviours or be-
haviours that match source-level behaviours up to an out-of-
memory error. The theorem allows for out-of-memory errors
because the source semantics has no resource limits while
the target has hard limits, e.g. finite memory.

We allow the machine-level semantics (machine_sem) to
start from any machine state ms that satisfies code_installed.
This is a property which requires that (1) the bytes are
present in memory and ready to execute, (2) the machine
state is consistent with the compiler and machine configura-
tions, and (3) any call to the foreign function interface (FFI)
will operate on a byte array passed from CakeML as speci-
fied by the ffi parameter (see Tan et al. (2016) for details).

Parameterised Machine Semantics The machine-level se-
mantics (machine_sem) used in the top-level correctness
theorem is not tied to any particular target.

We parameterised the details of the target using a machine
configuration, shown in Figure 4. The machine configura-
tion collects various functions that we need for each target
semantics. The most significant function is the next func-
tion which specifies how the target machine will execute an
instruction. There are also functions for reading the value
of registers (get_reg) or memory (get_byte), and informa-
tion about the calling convention (e.g. caller_saved_regs).
Other significant parts include the interference oracles, ffi_-

(α, β, γ) target =
〈| config : (α asm_config);
next : (β → β);
get_pc : (β → α word);
get_reg : (β → num → α word);
get_byte : (β → α word → 8 word);
state_ok : (β → bool);
proj : ((α word → bool) → β → γ) |〉

(α, β, γ) machine_config =
〈| prog_addresses : (α word → bool);
ffi_entry_pcs : (α word list);
ptr_reg : num;
len_reg : num;
ffi_interfer : (num → num × 8 word list × β → β);
callee_saved_regs : (num list);
next_interfer : (num → β → β);
halt_pc : (α word);
target : ((α, β, γ) target) |〉

Figure 4. Machine and target configurations

interfer and next_interfer, which specify how the environ-
ment can interfere with the execution of the next function.

The definition of machine_sem is shown in Figure 5
and follows the functional big-step semantics style described
in (Owens et al. 2016). Here machine_sem is defined using
a clocked evaluate function, a function that returns Halt,
TimeOut or Error. The machine, i.e. machine_sem, has
terminating behaviour if there is some clock value such that
evaluate reaches Halt; machine_sem has Diverge behaviour
if there does not exist such a clock; and machine_sem has
Fail behaviour if evaluate can get stuck at an Error. We
assume Error is not encountered; type soundness and sound
and complete type inference ensure we can still prove our
top-level correctness theorem.

For each step, evaluate checks whether the clock has run
out. If the clock is non-zero, then evaluate checks whether
the program counter is an address within the code generated
by the CakeML compiler. If it is, then next is executed
followed by one application of the next_interfer oracle and
execution continues from the top. If the program counter is
outside the generated code, then evaluate checks whether it
has reached the halt_pc address. If so, the process Halts.
Otherwise, execution must be about to enter an FFI call: the
name, i.e. index, of the entry point is found and bytes are
read from memory and passed to call_FFI, which simulates
the foreign call, then ffi_interfer updates the machine state.

4. General Compiler Proofs
Each major phase of the CakeML compiler is composed at
the level of observable semantics as described in (Tan et al.
2016). The final phase which transforms labelled assembly,
LABLANG programs, to machine code is no different in this
respect. However, for the verification of this final phase, we
must reason about the target-parameterised machine_sem

apply_oracle oracle x = (oracle 0 x ,(λn. oracle (n + 1)))

evaluate config ffi k ms =
if k = 0 then (TimeOut,ms,ffi)
else if config .target.get_pc ms ∈ config .prog_addresses then
let ms1 = config .target.next ms; (ms2,new_oracle) = apply_oracle config .next_interfer ms1
in
if config .target.state_ok ms ∧ config .target.state_ok ms1 ∧ config .target.state_ok ms2 then
evaluate (config with next_interfer := new_oracle) ffi (k − 1) ms2

else (Error,ms,ffi)
else if config .target.get_pc ms = config .halt_pc then
(if config .target.get_reg ms config .ptr_reg = 0w then Halt Success else Halt Resource_limit_hit,ms,ffi)

else
case find_index (config .target.get_pc ms) config .ffi_entry_pcs 0 of
None ⇒ (Error,ms,ffi)
| Some ffi_index ⇒

case read_byte_array config ms of
None ⇒ (Error,ms,ffi)
| Some bytes ⇒

let (new_ffi ,new_bytes) = call_FFI ffi ffi_index bytes;
(ms1,new_oracle) = apply_oracle config .ffi_interfer (ffi_index ,new_bytes,ms)

in
case new_ffi .final_event of
None ⇒ evaluate (config with ffi_interfer := new_oracle) new_ffi (k − 1) ms1
| Some final_event ⇒ (Halt (FFI_outcome final_event),ms,new_ffi)

machine_sem config st ms (Terminate t io_list) ⇐⇒ ∃ k ms ′ st ′. evaluate config st k ms = (Halt t ,ms ′,st ′) ∧ st ′.io_events = io_list
machine_sem config st ms (Diverge io_trace) ⇐⇒
(∀ k . ∃ms ′ st ′. evaluate config st k ms = (TimeOut,ms ′,st ′) ∧ st ′.final_event = None) ∧
io_trace =

∨
k . fromList (snd (snd (evaluate config st k ms))).io_events

machine_sem config st ms Fail ⇐⇒ ∃ k . fst (evaluate config st k ms) = Error

Figure 5. A functional big-step semantics for machine-code evaluation (evaluate) and the top-level observable semantics
(machine_sem) of the target platform.

function. In order to reason about machine_sem in a target-
neutral manner, we package up all target-specific correctness
criteria into a property called asm_to_target_correct. We
prove asm_to_target_correct for each supported target
architecture, as described in Section 7.

The asm_to_target_correct property is used in the
target-neutral compiler proofs to establish that the target-
specific encode functions only produce machine code such
that repeated applications of the target’s next-state function
implement the target-neutral ASM language, even in the
presence of interference from the next_interfer oracle.

The formal definition of asm_to_target_correct is
shown in Figure 6, and an informal illustration is shown in
Figure 7. In both, asm_step captures the next-state seman-
tics of ASM, and target_state_rel relates ASM states to
machine states. The definition of asm_to_target_correct
assumes that the interference oracle is well-behaved with
respect to CakeML’s part of the state (interference_ok); in
particular, each application of an interfering function env
preserves the parts of the machine state that CakeML de-
pends upon, as identified by the projection t.proj from the
target configuration. This is illustrated below:

t.next(msi) msi+1

asm-statei+1

envi

t.proj t.proj

Here envi represents the intra-instruction side effects of an
exception handler. Handlers for hardware interrupts save
process state upon invocation, which is restored before re-
turning control back to a process. We aim to minimise the
range of t .proj, so as to permit as many side effects (msi+1

states) as is realistic. Section 6 shows the definition of t .proj
for ARMv6.

5. Target Specifications
CakeML currently targets five different instruction set archi-
tectures: ARMv6, ARMv8, MIPS-64, RISC-V and x86-64.
These architectures have been specified using the domain
specific language L3 (Fox 2015), which provides export to
HOL4 and Isabelle/HOL.2 These specifications have been

2 The ISA models used in CakeML can be found under the HOL4 directory
examples/l3-machine-code.

examples/l3-machine-code

s1 s2

ms · ms?1 · ms?2 · ms?3 msn+1

asm_step

target_state_rel t

t .next env0 t .next env1 t .next env2

target_state_rel t

Figure 7. Commuting diagram for target correctness. Machine-states marked with ? must satisfy the property t .state_ok and
the program counter for these states must be valid (the program counter must not go beyond the machine code produced by the
instruction encoding function).

asm_to_target_correct t ⇐⇒
target_ok t ∧
∀ s1 i s2 ms.
asm_step t .config s1 i s2 ∧ target_state_rel t s1 ms ⇒
∃n.
∀ env .
interference_ok env (t .proj s1.mem_domain)⇒
let pcs = all_pcs (length (t .config.encode i)) s1.pc
in
asserts n (λ k s. env (n − k) (t .next s)) ms
(λms ′. t .state_ok ms ′ ∧ t .get_pc ms ′ ∈ pcs)
(λms ′. target_state_rel t s2 ms ′)

target_state_rel t s ms ⇐⇒
t .state_ok ms ∧ t .get_pc ms = s.pc ∧
(∀ a. a ∈ s.mem_domain⇒ t .get_byte ms a = s.mem a) ∧
∀ i .

i < t .config.reg_count ∧ ¬mem i t .config.avoid_regs⇒
t .get_reg ms i = s.regs i

Figure 6. Target correctness definition.

validated against hardware and/or test suites3 and they have
also been used extensively in other projects, e.g. the ARMv6
model has been used in the seL4 micro-kernel verifica-
tion (Sewell et al. 2013). The RISC-V model was developed
independently by Prashanth Mundkur at SRI International.
The specifications were not developed with CakeML in mind
and have not been influenced by the design of the compiler.
The instruction set coverage for each of these models goes
well beyond the present needs of CakeML. Although there
are significant differences in the features and details of these
architectures (which is reflected in their associated L3 spec-
ifications), the abstraction methods described in this paper
have helped ensure that these models could be used without
the need for adaptations.4

Specification Style The L3 target specifications define
state and instruction data types. The state type is a record
consisting of numerous ISA components — this includes

3 At present, the ARMv8 model has not been fully validated.
4 Minor changes were made to the RISC-V specification before exporting
it to HOL4. This made it easier to treat the memory as a byte addressable
map.

general purpose registers and main memory. The instruction
type provides an abstract syntax representation of machine
code instructions. The following functions are defined for
each target:

next : state → state

fetch : state → code

decode : code → instruction

run : instruction → state → state

encode : instruction → code

The code type is a byte list for x86-64 and a 32-bit word
for all of the other architectures. The next state function
next captures the operational semantics of the ISA and is
typically defined using the functions run , decode and fetch .
The precise details vary according to architecture, e.g. the
MIPS-64 model needs to accommodate the behaviour of
branch delays. The function encode is used when developing
assemblers (Section 6.1).

Underspecification Each architecture state record contains
a model exception component, which is used to indicate
whether or not the state is valid. For example, some ARMv6
instruction op-codes give rise to unpredictable behaviour
and this is specified by setting the exception state component
to a suitable error value. Model exceptions should not be
confused with architectural exceptions and interrupts, which
are normally modelled explicitly.

6. Target Configuration
The first task in supporting a new target architecture is con-
structing a target record (t : (α, β, γ) target). These
target records are defined in separate HOL4 scripts, one for
each target. Currently each of the next state functions t .next
come directly from L3 specifications of the architectures
(Section 5). The remaining target record elements are dis-
cussed in the following paragraphs.

Registers and Memory The functions t .get_pc, t .get_reg
and t .get_byte provide an interface to each ISA specifica-
tion. These definitions are quite straightforward; for exam-
ple, for ARMv6 they are defined such that:

arm6.get_pc s = s.REG RName_PC
arm6.get_reg s n = s.REG (R_mode s.CPSR.M (n2w n))
arm6.get_byte s = s.mem

Here s represents an ARM state, s.REG is a map from reg-
ister names to 32-bit values, and s.mem is a map from 32-
bit addresses to bytes. The function R_mode gives the reg-
ister name corresponding with the current processor mode
and a 4-bit register index.5 The program counter is called
RName_PC and this always corresponds with register fif-
teen. With the other target architectures the set of visible
registers is independent of the operating mode (such as user
mode or a system mode), so register access is simpler. How-
ever, the RISC-V model supports multiple cores, so register
access is parameterised by the core number.

State Predicate It is important that the property t .state_ok
holds when running CakeML code, otherwise compiled pro-
grams are not guaranteed to behave correctly. Verifying
asm_to_target_correct proves t .state_ok will not switch
from true to false when running machine code generated by
CakeML. However, programs must be started from a valid
state, and all “foreign” code (including exception handlers)
must be well behaved (the state must be valid when control is
handed back to CakeML code). For ARMv6, the following
predicate is used:

arm6.state_ok s ⇐⇒
GoodMode s.CPSR.M ∧ ¬s.CPSR.E ∧ ¬s.CPSR.J ∧
¬s.CPSR.T ∧ s.Architecture = ARMv6 ∧
¬s.Extensions Extension_Security ∧
s.exception = NoException ∧ aligned 2 (s.REG RName_PC)

This asserts that: the processor mode is valid (there are only
seven valid operating modes); the processor is running in
little-endian configuration and is not in Jazelle or Thumb
mode; the machine implements ARMv6 without security
extensions;6 a model exception has not occurred (Section 5);
and the program counter is aligned to four bytes (the lower
two bits are clear).

State Projections The function t .proj identifies state com-
ponents that are needed for the interference_ok property.
These include, but are not limited to, all of the components
that are referenced by t .state_ok, t .get_pc, t .get_reg and
t .get_byte. The projection for ARMv6 is:

arm6.proj d s =
(s.CPSR,s.Architecture,s.Extensions,s.exception,
s.REG ◦ R_mode s.CPSR.M,fun2set (s.mem,d))

Here d is the set of memory addresses that CakeML is
using and fun2set (f ,d) = { (a,f a) | a ∈ d } gives us the
graph of a function with respect to a domain. The term
s.REG ◦ R_mode s.CPSR.M represents the general pur-
pose registers that are visible in the current processor mode.

5 The 5-bit component s.CPSR.M encodes the current operating mode,
e.g. it will have value sixteen when running in user mode. The function
(n2w : num → α word) maps natural numbers to words (modulo 2α).
6 The s.Architecture and s.Extensions components never change value.
Specialising the model to ARMv6 establishes the availability of instruc-
tions, e.g. CakeML makes use of BLX and BX instruction, which are not
available under ARMv4.

The Current Program Status Register (s.CPSR) is projected
out in full. In particular, this ensures that the arithmetic/logic
flags are preserved (e.g. the carry flag s.CPSR.C), as these
are used by some ASM instructions.

ASM Configuration The components of record t .config
were described in Section 2. The basic configuration values
for each architecture are shown in Table 1. The offset limits
and a description of the immediate values for binary opera-
tions are shown in Table 2. The precise values for the offsets
and immediate values are influenced by the definition of the
encode function t .config.encode, which is discussed below.

6.1 ASM Instruction Encoders
Functions t .config.encode are defined by pattern matching
on ASM syntax, with calls made to target specific encoders
(specified in L3). This is achieved by using the abstract syn-
tax type for the target machine code (Section 5). In some
cases there may be conditional expressions that choose in-
structions based on the parameters to the instruction (register
indices and/or immediate values).

Example The ASM instruction

JumpCmp cmp r (Imm i) a

compares register r with immediate value i using cmp (e.g.
cmp could be Equal or Lower); if the result is true then a
jump is made by adding offset a to the program counter,
otherwise the program counter moves to the next instruction.
The ARMv6 encoding for this instruction is the following.

arm6_enc (JumpCmp cmp r1 (Reg r2) a) =
let (opc,c) = arm6_cmp cmp
in
arm6_encode 14w
(Data
(TestCompareRegister
(opc,n2w r1,n2w r2,SRType_LSL,0))) @

arm6_encode c (Branch (BranchTarget (a − 12w)))

The function arm6_encode takes a condition code together
with ARM abstract syntax and it returns a list of bytes
(machine code). The bytes for each ARM instruction are
concatenated together. The function EncodeARMImmediate
(defined in L3) attempts to encode a 32-bit immediate value
using a 12-bit representation and the function arm6_cmp
picks an appropriate condition code, as well as a test or
comparison operation.7

The function arm6_enc can be evaluated within the
HOL4 logic, e.g. one can prove

` arm6_enc (JumpCmp Equal 1 (Imm 175w) 2048w) =
[175w; 0w; 81w; 227w; 253w; 1w; 0w; 10w].

which corresponds with the ARM code

7 The condition codes are: 14 (always run); 11 (LT); 10 (GE); 3 (CC); 2 (CS);
1 (NE); and 0 (EQ). The op-codes are: 2 (SUB) and 0 (AND).

ARMv6 ARMv8 MIPS-64 RISC-V x86-64
Word size 32 64 64 64 64
Endianness Little Little Big Little Little
Code alignment (bytes) 4 4 4 4 1
Number of registers 16 32 32 32 16
Link register 14 30 31 1 -
“Avoid” registers 13, 15 31 0, 1, 25 – 29 0, 2, 3, 31 4, 5
Two register binary-ops No No No No Yes

Table 1. Basic ISA configuration. The targets are mostly RISC designs with 32-bit instructions that align on four byte
boundaries, however x86-64 is a CISC design with variable width instructions, e.g. 90 and 48 BB F0 DE BC 9A 78 56 34 12
are both valid x86-64 codes (for nop and mov rbx, 0x123456789abcdef0 respectively).

Location Memory Jump Conditional Jump
ARMv6 -0xFFF7 – 0x10007 -0xFFF – 0xFFF -0x1FFFFF8 – 0x2000007 -0x1FFFFF4 – 0x200000B
ARMv8 -0x80000 – 0x7FFFF -0x100 – 0xFF -0x8000000 – 0x7FFFFFF -0xFFFFC – 0x100003
MIPS-64 -0x7FF4 – 0x8007 -0x8000 – 0x7FFF -0x8000 – 0x7FFF -0x8000 – 0x7FFF
RISC-V -0x80000000 – 0x7FFFF7FF -0x800 – 0x7FF -0x10000 – 0xFFFFF -0xFFFF8 – 0x100003
x86-64 -0x7FFFFFF9 – 0x80000006 -0x80000000 – 0x7FFFFFFF -0x7FFFFFF3 – 0x80000004 -0x7FFFFFF3 – 0x80000004

Immediate values (for binary operations)
ARMv6 12-bit encoding (an 8-bit value is rotated right by a 4-bit value)
ARMv8 Arithmetic 12-bit immediate, optionally shifted left 12 places

Logical Bit run-length encoding (specified algorithmically)
MIPS-64 Subtract -0x7FFF – 0x7FFF (encoded using DADDIU)

Arithmetic -0x8000 – 0x7FFF
Logical 0 – 0xFFFF

RISC-V Subtract -0x7FF – 0x7FF (encoded using ADDI)
Otherwise -0x800 – 0x7FF

x86-64 -0x80000000 – 0x7FFFFFFF

Table 2. Configuration of offset ranges and valid immediate values. [All of the number ranges are inclusive.] The ARM
architectures have complex immediate value encoding schemes, whereas the other architectures have simple ranges that depend
on the binary operation type. MIPS-64 and RISC-V do not have dedicated ‘subtract immediate’ instructions, so addition
instructions (with a negated immediate) are used instead.

cmp r1, #0xAF ; e35100af
beq +#0x7FC ; 0a0001fd

Note that the function EncodeARMImmediate could fail to
produce a 12-bit encoding imm12 for the 32-bit immediate
i . CakeML uses the component arm6.config.valid_imm to
check if this aspect of the encoding is successful. Similarly,
the encoding will only be valid when the 32-bit address
a − 12w can be encoded as a 24-bit value. This is checked
using the bounds arm6.config.cjump_offset.

Observe that the offset supplied to the ARM branch is
a − 12w, whereas the ASM instruction will branch to
pc + a . The reason for this is that when the branch desti-
nation address is computed the ARM program counter will
be eight bytes ahead of the address used to fetch the branch
(this is a legacy of early 3-stage pipeline designs); further-
more, the branch must be relative to the first instruction of
the encoding, which is four bytes before the branch. This

explains why many of the offset ranges in Table 2 look a bit
peculiar. Subtleties like this provide a strong motivating case
for the use of formal verification. It is extremely easy to get
encodings and/or target configuration values slightly wrong.

6.2 Instruction Selection
The target encoder definitions have been manually devel-
oped and they give rise to many possible instruction se-
quences for each architecture. Table 3 shows the set of in-
struction sequences for four ASM instruction patterns. Some
issues regarding instruction selection are discussed below.

Const The instruction Const r i transfers an immediate
value i to a register r , i.e. any 32-bit value for ARMv6 and
any 64-bit value for the other architectures. Only x86-64 is
capable of achieving this with just one instruction. Finding
the optimal (shortest and fastest) sequence of instructions for
the other targets is non-trivial, since there are many target

Constant: Inst (Const _ _)
ARMv6 [MOV | MVN] [LDR; B; <const>]
ARMv8 [MOVZ | MOVW | ORR] [MOVK; MOVK; MOVK; MOVK]
MIPS-64 [ORI | ADDIU] [LUI; XORI] [LUI; ORI; DSLL; ORI; DSLL; ORI]
RISC-V [ORI] [LUI; ADDI | XORI] [LUI; ADDI | XORI; LUI; ADDI | XORI; SLLI; XOR | OR]
x86-64 [MOV]

Add with carry: Inst (Arith (AddCarry _ _ _ _))
ARMv6 [CMP; CMNEQ; ADCS; MOVCC; MOVCS]
ARMv8 [CMP; CCMN; ADCS; MOV; ADC]
MIPS-64 [SLTU; DADDU; SLTU; DADDU; SLTU; OR]
RISC-V [SLTU; ADD; SLTU; ADD; SLTU; OR]
x86-64 [CMP; CMC; ADC; MOV; ADC]

Conditional Jump (immediate): JumpCmp _ _ (Imm _) _
ARMv6 [CMP; BEQ | BCC | BLT | BNE | BCS | BGE] [TST; BEQ | BNE]
ARMv8 [CMP; B.EQ | B.CC | B.LT | B.NE | B.CS | B.GE] [ANDS; B.EQ | B.NE]
MIPS-64 [DADDIU | SLTI | SLTIU | ANDI; BEQ | BNE; NOP]
RISC-V [ORI; BEQ | BLTU | BLT | BNE | BGEU | BGE] [ANDI; BEQ | BNE]

[ORI; BEQ | BLTU | BLT | BNE | BGEU | BGE; JAL] [ANDI; BEQ | BNE; JAL]
x86-64 [CMP; JE | JB | JL | JNE | JNB | JNL] [TEST; JE | JNE]

Location with offset: Loc _ _
ARMv6 [ADD | SUB] [ADD; ADD] [SUB; SUB]
ARMv8 [ADR]
MIPS-64 [BLTZAL; DADDIU] [ORI; BLTZAL; DADDIU; ORI]
RISC-V [AUIPC; ADDI]
x86-64 [LEA]

Table 3. Machine code instruction sequences for some ASM instructions. Instruction sequences are represented by bracketed
blocks with semi-colons indicating the order of instructions. Instruction variants within a sequence are marked with a | infix.
Thus, with conditional jumps there are 16 possible instruction sequences for RISC-V and eight possible sequences for the other
targets (one for each jump condition). Some mnemonics may have complex encodings (giving rise to further cases), e.g. the
precise encoding of MOV on x86-64 will depend on the choice of registers and on the size of any immediate value.

specific tricks that could be used. To avoid proof complex-
ity, the CakeML encoders have been kept reasonably sim-
ple. The MIPS-64 and RISC-V architectures do not provide
a direct means of transferring an immediate value to the top
thirty-two bits of a register, which is why sequences of six in-
struction (employing left shifts) are used. The sign-extension
used in RISC-V was problematic and the encoder resorts to
using tricks with XORI, as well as using an extra register
(register thirty-one is added to riscv.config.avoid_regs list).
An alternative approach would be to use a load instruction
instead; this method is used for ARMv6, which has a more
complex immediate encoding scheme.8 Fortunately ARMv8
does make it relatively easy to progressively build up imme-
diate values, with at most four instructions needed.

AddCarry The ARMv6, ARMv8 and x86-64 architectures
all support an ADC instruction, which sums together registers
using a carry-in flag. In these architectures arithmetic/logic
flags form part of the programmer’s model state. The carry
flag can be updated with the carry output of a sum — this

8 Having data (an immediate) within a code segment is not ideal with
modern Harvard architectures, so this encoding choice may be changed.

happens by default on x86-64 and with ADCS on ARMv6 and
ARMv8. However, MIPS-64 and RISC-V do not provide
arithmetic/logic flags and for uniformity it was decided not
to have flags within ASM as well. Instead, the instruction
AddCarry r1 r2 r3 r4 treats register r4 as a carry flag. This
instruction first computes

r = R2 + R3 + if R4 = 0 then 0 else 1

(Ri ∈ N is the value of register ri) and updates register r1
with r mapped to a 32-bit (ARMv6) or 64-bit value, and
updates r4 with 1 or 0, according to whether or not there
was a carry-out. This instruction can be implemented on all
of the target architectures, but it is not idiomatic for any of
them. For ARMv6, ARMv8 and x86-64, two instructions
are required either side of the add-with-carry in order to
transfer the carry flag to and from a register. For MIPS-64,
two DADDU instructions are needed, with tests for carry out
occuring after each of them. This is illustrated below:

-- Inst (Arith (AddCarry 2 3 4 5)) --
sltu $1, $0, $5 ; r1 := is 0 < r5 (1 or 0)
daddu $2, $3, $4 ; r2 := r3 + r4
sltu $5, $2, $4 ; r5 := is r2 < r4 (carry out 1)

daddu $2, $2, $1 ; r2 := r2 + r1 (result)
sltu $1, $2, $1 ; r1 := is r2 < r1 (carry out 2)
or $5, $5, $1 ; r5 := r1 or r5 (carry out)

This code uses register one to facilitate the computation and
this register is included in the mips.config.avoid_regs list.
Similar code is generated for RISC-V.

JumpCmp On ARMv6, ARMv8 and x86-64 the instruc-
tion JumpCmp is implemented cleanly by virtue of their
arithmetic/logic flags. With RISC-V the immediate is first
moved to register thirty-one and then a register-register com-
pare and branch is used. Unfortunately, this gives a fairly
short offset range, so a three instruction form is used when
the offset is larger, e.g.

-- JumpCmp Less 5 (Imm 4w) 16w --
ori t6, $0, 0x4 ; r31 := 4 (t6 is r31, t0 is r5)
blt t0, t6, 0xc ; if r5 < r31 then pc := pc + 12
-- JumpCmp Less 5 (Imm 4w) 0x8000w --
ori t6, $0, 0x4 ; r31 := 4
bge t0, t6, 0x8 ; if r5 < r31 then pc := pc + 8
jal $0, 0x7ff8 ; pc := pc + 0x7ff8

With MIPS-64 register one either stores the result of the
comparison (using the instruction SLTI, SLTIU or ANDI)
or it stores the immediate value itself (transferred using
DADDIU). The branch is then taken via either BEQ or BNE,
and the branch delay slot is filled with a NOP.

Loc The ASM instruction Loc r a transfers the address
pc + a to register r . This instruction is easily implemented
on ARMv8 and x86-64, via ADR and LEA. On ARMv6, the
program counter is accessible as a normal register, so one
can use ADD r, pc, #a. However, this would result in a very
limited single byte offset range, since the 12-bit immediate
encoding is not continuous. The offset range is extended by
using either two additions or two subtractions.

The RISC-V instruction AUIPC r, i transfers the address
pc + SignExtend (i << 12) to register r . This offers a large
offset range and an ADDI instruction can be used to set the
lower twelve bits. The address i for AUIPC must take sign-
extension into consideration, i.e. i = a − SignExtend a ′

where a ′ is the lower twelve bits of a .
MIPS-64 does not have a specialist instruction for read-

ing the program counter, so a conditional branch and link
instruction (BLTZAL) is used. This instruction stores the
link address (pc + 8w) in register thirty-one, regardless
of whether or not the branch is taken. A DADDIU instruc-
tion can then be used to compute the required offset. If r
is not (conveniently) register thirty-one then additional in-
structions are needed to save and restore register thirty-one.
This is illustrated below:

-- Loc 2 0xF00w ----
ori $1, $31, 0 ; r1 := r31
bltzal $0, 0 ; r31 := pc + 8
daddiu $2, $31, 0xef4 ; r2 := r31 + 0xef4
ori $31, $1, 0 ; r31 := r1

-- Loc 31 0xF00w ----
bltzal $0, 0 ; r31 := pc + 8
daddiu $31, $31, 0xef8 ; r31 := r31 + 0xef8

The branches are never taken because a ‘less-than-zero’ test
is made on register zero, which is hard-wired to value zero.
As such, the branch address (zero above) is irrelevant and
could be set to anything. The immediate value arguments for
the DADDIU instructions differ by four because the BLTZAL
instruction occurs one instruction (four bytes) later in the
second code snippet.

7. Target Proofs
The property asm_to_target_correct has been verified
for five target architecture records. This section gives an
overview of these proofs. Naturally, the majority of the
proof effort centres on checking the commuting property
show in Figure 7. It is also necessary to check the condition
target_ok t but this part of the verification is comparatively
short and uninteresting, so this is not discussed further here.

Proof Outline Below is a sketch of the main verification:

1. The proof starts by considering two ASM states s1, s2, an
ASM instruction i and a target machine state ms , with:

asm_step t .config s1 i s2 and target_state_rel t s1 ms

By the definition of asm_step it is known that the bytes
t .config.encode i are in ASM memory at the program
counter address, and also i must satisfy the predicate
asm_ok. This means that instruction i must conform to
the limitations expressed within the target record t . In
particular, the register indices are valid, offsets are within
range, and immediate values are encodable. The state s2
is related to s1 by a single application of the ASM next
state function. The state ms satisfied t .state_ok by the
definition of target_state_rel.

2. The proof proceeds by case splitting on the structure
of i . Further case splitting is considered in accordance
with the definition of t .config.encode. All instruction
sequences for the target architecture must be considered.
Each case is checked as follows.

3. The expression t .config.encode i is simplified to give
a symbolic representation of the machine code bytes in
ASM memory. Also, simplification is applied for the
ASM next state function, so that s2 becomes expressed
in terms of register and memory updates to s1.

4. A witness is supplied for cycle count n . This must be
one less than the exact number of ISA cycles that are
needed to run the machine code under consideration. At
this stage the interference_ok property can be assumed
to hold for an environment function env .

5. The asserts property is expanded with respect to n .
At this stage the proof goal consists of n instances of

t .state_ok and t .get_pc ms ∈ pcs , and an instance of
target_state_rel t s2 ms ′, where ms ′ is the machine
state after running n + 1 instructions with interleaved
interference from env .

6. The machine code bytes in memory are split into single
instruction blocks and it is inferred that these bytes must
be in the target memory at incremental locations (based
on target_state_rel holding for the initial states).

7. The next state function for the target architecture is
symbolically evaluated and simplification occurs using
rewrites derived from interference_ok for env . This hap-
pens incrementally, spanning n + 1 applications of the
next state function.

8. Finally, the properties from stage 5 are all discharged,
using simplification and bit-blasting. The simplifications
may incorporate pre-proven lemmas that are specific to
the target verification.

Proof Implementation Laboriously writing a purely con-
ventional HOL4 tactic proof that follows the outline above
presents a number of difficulties — the resulting proof would
invariably be very long, complex and potentially slow to run.
One reason for this is that there is inherently a lot repeti-
tion, since stages 3 – 8 have to be repeated (with modifica-
tions) for each case of interest (of which there are many).
Furthermore, a significant challenge is stage 7, where the
ISA model must be evaluated with respect to a list of ma-
chine code bytes. These bytes are generated by an encoder
function and they may contain bit-vector literals, concate-
nations, sub-field extractions, casts and sign-extensions. The
ISA models themselves are very complex and naive evalua-
tion (direct simplification using definitions) is intractable.

To overcome these challenges, custom tactics have been
developed for each architecture, which help in partially au-
tomating stages 3 – 8. These tactics are similar in style
for each architecture and they make use of pre-existing
HOL4 proof tools (Fox 2015). Thus, the target proofs mostly
take the form of case splitting over ASM instructions, fol-
lowed by a single application of a custom tactic, often called
next_tac. These tactics achieve the following:

• They may automatically determine the cycle count wit-
ness n . With the four RISC architectures n can be de-
duced from the number of bytes in the encoding, possibly
with checks for special cases, e.g. examining instruction i
to see if code will be skipped due to a branch. For x86-64
the tactic next_tac takes an extra argument, which is a
list of instruction lengths. This is used to determine n and
to split the bytes into chunks of the right size (stage 6).
• They orchestrate calls to target specific step tools, which

help evaluate the instruction semantics (Fox 2015). It
is also necessary to accommodate interference from
the environment env using assumptions derived from
interference_ok.

• The automation also takes care of stage 8, where ASM
states are compared with states of the target architecture.

The interface to the step tools is a list of terms that represent
the bit values of the machine code instruction. These bit
values will come from the encoder and they will either be
concrete (T or F) or an expression, e.g. a ’ 3 would denote
bit three of an ASM address a . The output of the step tool is
a step theorem of the form

A0, . . . , An ` next(s0) = s1

where state s1 is expressed in terms of updates to s0 (using
values constructed from bits of the input op-code). The hy-
potheses Ai cover: absence of ISA exceptions (e.g. checks
on address alignments); the processor mode and ISA con-
figuration (e.g. endianness and architecture version); and
assertions that the bytes of the evaluated instruction are
in memory at the current program counter location. These
hypotheses are discharged using assumptions coming from
target_state_rel, t .state_ok, asm_ok and asm_step (it is
assumed that there are no dynamic ASM failures).

When considering longer sequences of instructions, the
expression representing the final machine state are invariably
large and complex. However, discharging the proof obliga-
tions in stage 8 has not been overly problematic, mainly due
to the availability of a bit-blasting decision procedure.

The simplest ASM instruction to verify is Skip, which
corresponds with the machine-code e1a00000 (ARMv6),
d503201f (ARMv8), 00000000 (MIPS-64), 00000013
(RISC-V), 90 (x86-64). A costly instruction is JumpCmp
because there are two forms (register and immediate), two
outcomes (taken and not taken), eight conditions and at least
two instructions for each encoding.

The proof automation described above has resulted in rea-
sonably short and efficient proofs, with 1,091 lines of config-
uration scripts, 3,813 lines of proof (including code for cus-
tom tactics) and a total proof run time of around thirty-eight
minutes (on a Core i7-4771 machine). However, replaying
the proofs step-by-step is not straightforward. Maintaining
the proofs requires a good understanding of the automation.
This contrasts with conventional HOL4 proofs, which are
relatively easy for HOL4 users to step through. This situa-
tion could be improved by adapting the automation so that it
generates lots of diagnostic tracing information.

Verification Benefits Verifying asm_to_target_correct
helped to identify many errors in the candidate target en-
coders. A common error would be for address or immediate
value calculations to be subtly incorrect. For example, the
Const encoding for RISC-V required quite a few iterations
to get right. Longer sequences of machine code can be prone
to accidental side-effects, i.e. registers being modified when
they should not be. In some cases, the property asm_ok has
been updated to reflect the ability to encode instructions for a
target. For example, for MIPS-64 and RISC-V the necessary

register inequality assertion r1 6= r3 ∧ r1 6= r4 for AddCarry
was established during the course of the verification.

8. Compiler Validation
The final step in using the CakeML compiler is to set up
an environment for the compiled code to run. We use a small
(unverified) assembly program specific to each target for this
purpose. Briefly, this program:

1. Provides CakeML with heap and stack space

2. Sets up appropriate jump targets for external CakeML
calls (FFI and system calls) assumed by the compiler

3. Initialises four registers to point to: the entry address
for CakeML code, the first address of the heap, the first
address of the stack, and the first address past the end of
the stack

4. Jumps to the CakeML entry address

Although CakeML uses its own stack internally, it still
needs to obey target-specific calling conventions for exter-
nal calls. Most importantly, we ensure that the return ad-
dress register which CakeML uses internally maps to the tar-
get’s link register9. We also ensure that CakeML code never
clobbers important global state, e.g. the stack pointer on all
architectures, the base pointer on x86-64, and the global
pointer on RISC-V. Both of these are achieved by tweaking
the compiler’s register name mapping described in Section 2
and (Tan et al. 2016). For the latter requirement, we also re-
strict CakeML from using certain registers by adding to the
“avoid" registers for each target (see Table 1).

To validate these assembly wrappers, we ran a suite of
CakeML compiler benchmarks on all five targets (an emu-
lator was used for RISC-V and MIPS-64). All benchmarks
compiled and executed successfully, except a few compila-
tions to MIPS-64. The compiler failed to compile some pro-
grams to MIPS-64 because the CakeML assembler produced
jump offsets that were too large. At the time of writing, we
are looking to improve the MIPS-64 encoder.

9. Related Work
The first version of the CakeML compiler (Kumar et al.
2014) supports compilation down to x86-64 assembly via a
bytecode IL. Each bytecode instruction is mapped to a block
of x86-64 instructions, and the translation was manually
verified using decompilation tools. Our approach here goes
further by compiling down to an assembly IL. This exposes
more target-specific detail to the compiler, and allowed us
to perform target-specific optimisations. At the same time,
it hides the low-level implementation details, allowing the
compiler to target multiple architectures with less overhead.

The CompCert C compiler (Leroy 2009) compiles down
to the Mach intermediate language before further compi-

9 For x86-64, which does not have a link register, our external wrapper
additionally pushes the return address onto the stack.

lation to different assembly languages for each of its tar-
gets. Importantly, these assembly languages are modelled at
the AST level i.e. assembling and encoding is done outside
the verified part of the compiler. In contrast, our compiler
assembles and generates byte-level outputs for each ISA;
this is made possible by our low-level machine models. Our
compiler also differs in compiling down to a shared assem-
bly language for all the targets. CompCert’s approach opens
up more opportunities for target-specific optimisation at the
last compilation step down to specific target assembly. For
example, peephole optimisations were provided for the x86
target (Mullen et al. 2016). We believe similar optimisations
(parameterised by ISA) could be performed for CakeML at
the shared assembly level although we have yet to explore
that possibility.

Other verified compilers typically target assembly lan-
guages that are idealised in some way. The Lambda Tamer
project (Chlipala 2010) presented a verified compiler down
to idealised assembly with infinite memory and registers
storing natural numbers. The original CompCert memory
model was also idealised in a similar way, with infinite
memory, and pointers represented using integers. Subse-
quent work (Besson et al. 2015; Leroy et al. 2012) concre-
tises the memory model’s pointer representation. We cannot
rely on such idealised pointers in the CakeML compiler be-
cause (1) they are not present in our low-level models, and
(2) we needed word-level control over pointers for garbage
collection and pattern matching optimisations.

The verification of the Piton compiler (Moore 1989) goes
even further than other verified compilers (including ours).
The FM8502 machine on which Piton is to be executed
is verified down to the gate level. However, this processor
design lacks a physical implementation.

Another line of research provides assembly languages
that are suited for verification. Bedrock (Chlipala 2011,
2013) is an assembly-like language designed to support
highly automated reasoning over low-level code. The CAP
framework (Ni and Shao 2006) allows verifiers to apply
Hoare logic-style reasoning over an assembly language.
Both Bedrock and CAP languages are modelled after real
assembly languages, but their compilation down to real as-
sembly is unverified. Direct assembly-level reasoning is not
the main purpose of our IL, but it is certainly possible to
reason over its semantics (as we do in our compiler).

10. Summary
This paper has explained how the latest verified CakeML
compiler is able to compile to several machine-code targets.
Our verification proofs reach all the way down to the low-
level details of machine code execution for each target.

Acknowledgments The first author was partially supported
by EPSRC Programme Grant EP/K008528/1, UK. The sec-
ond author was partially supported by the Swedish Research
Council, Sweden.

References
F. Besson, S. Blazy, and P. Wilke. A concrete memory model

for CompCert. In C. Urban and X. Zhang, editors, Interactive
Theorem Proving (ITP), LNCS. Springer, 2015.

A. Chlipala. A verified compiler for an impure functional language.
In M. V. Hermenegildo and J. Palsberg, editors, Principles of
Programming Languages (POPL). ACM, Jan. 2010.

A. Chlipala. Mostly-automated verification of low-level programs
in computational separation logic. In Programming Language
Design and Implementation (PLDI). ACM, 2011.

A. Chlipala. The Bedrock structured programming system: Com-
bining generative metaprogramming and Hoare logic in an ex-
tensible program verifier. In International Conference on Func-
tional Programming (ICFP). ACM, 2013.

A. C. J. Fox. Improved tool support for machine-code decompila-
tion in HOL4. In C. Urban and X. Zhang, editors, Interactive
Theorem Proving (ITP), LNCS, 2015.

R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. CakeML: a
verified implementation of ML. In S. Jagannathan and P. Sewell,
editors, Principles of Programming Languages (POPL). ACM,
2014.

X. Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7), 2009. doi:10.1145/1538788.1538814.

X. Leroy, A. W. Appel, S. Blazy, and G. Stewart. The CompCert
memory model, version 2. Research report RR-7987, INRIA,
June 2012. URL http://hal.inria.fr/hal-00703441.

J. S. Moore. A mechanically verified language implementation.
Journal of Automated Reasoning, 5(4):461–492, 1989.

E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Verified peep-
hole optimizations for CompCert. In C. Krintz and E. Berger,
editors, Programming Language Design and Implementation
(PLDI). ACM, 2016.

Z. Ni and Z. Shao. Certified assembly programming with em-
bedded code pointers. SIGPLAN Not., 41(1), Jan. 2006.
doi:10.1145/1111320.1111066.

S. Owens, M. O. Myreen, R. Kumar, and Y. K. Tan. Functional big-
step semantics. In P. Thiemann, editor, European Symposium on
Programming (ESOP), LNCS. Springer, 2016.

T. A. L. Sewell, M. O. Myreen, and G. Klein. Translation validation
for a verified OS kernel. In Programming Language Design and
Implementation (PLDI). ACM, 2013.

Y. K. Tan, M. O. Myreen, R. Kumar, A. Fox, S. Owens, and
M. Norrish. A new verified compiler backend for CakeML.
In J. Garrigue, G. Keller, and E. Sumii, editors, International
Conference on Functional Programming (ICFP). ACM, 2016.

http://dx.doi.org/10.1145/1538788.1538814
http://hal.inria.fr/hal-00703441
http://dx.doi.org/10.1145/1111320.1111066

	Introduction
	Target-specific Details in the Compiler
	Correctness Theorem and Semantics
	General Compiler Proofs
	Target Specifications
	Target Configuration
	ASM Instruction Encoders
	Instruction Selection

	Target Proofs
	Compiler Validation
	Related Work
	Summary

