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Abstract. Characteristic Formulae (CF) offer a productive, principled
approach to generating verification conditions for higher-order impera-
tive programs, but so far the soundness of CF has only been considered
with respect to an informal specification of a programming language
(OCaml). This leaves a gap between what is established by the verifica-
tion framework and the program that actually runs. We present a fully-
fledged CF framework for the formally specified CakeML programming
language. Our framework extends the existing CF approach to support
exceptions and I/O, thereby covering the full feature set of CakeML, and
comes with a formally verified soundness theorem. Furthermore, it inte-
grates with existing proof techniques for verifying CakeML programs.
This validates the CF approach, and allows users to prove end-to-end
theorems for higher-order imperative programs, from specification to lan-
guage semantics, within a single theorem prover.

1 Introduction

In previous work, Charguéraud introduced a framework for the verification of
imperative higher-order programs, based on characteristic formulae (CF). Given
a source-level program, the approach allows the user to state a specification
for it, in the style of Separation Logic [22], and prove the specification using
the full power of a proof assistant. It has proved successful in verifying robust
and modular specifications for non-trivial programs [6], and even establishing
complexity results [7].

The key component of such a framework is a function that produces, from
a source-level program e, its characteristic formula cf e. Applying the logical
predicate cf e to an environment env , a pre-condition H and a post-condition
Q yields the proposition cf e env H Q , which implies program e admits H as
a pre-condition and Q as a post-condition, in environment env . The user is left
with the task of proving the goal cf e env H Q using specialised CF tactics
alongside general-purpose tactics in an interactive theorem prover.

Charguéraud’s work is realised in a tool named CFML, where (a subset of)
OCaml is the language of the certified programs, and Coq is the proof assistant
that hosts the characteristic formulae. Only part of the soundness theorem for
CFML has been proved in Charguéraud’s Coq formalisation.



In this paper, we describe how a CF framework has been constructed and proved
sound for the entire CakeML language [26], including its exception mechanism
and I/O features. CakeML is a substantial subset of Standard ML, with the no-
table feature that its compiler has been verified (in the HOL4 proof assistant).
In addition to capturing language features not modeled in CFML, we give this
framework a fully verified soundness theorem. The entire development is for-
malised in HOL4, which also plays the role of the proof assistant hosting the
characteristic formulae. Though tactic details are not the main topic of this pa-
per, we also provide HOL4 tactic support for our CF framework, just as CFML
provides Coq tactics to support the proof of cf e H Q theorems.

This paper’s material goes beyond previous work on characteristic formulae
and CFML in the following ways:

– We give a mechanised proof of soundness of characteristic formulae with re-
spect to CakeML’s formal semantics (Section 2). By way of contrast, CFML’s
soundness proof is mostly performed outside of Coq.

– We support additional language features, such as I/O (Section 3) and excep-
tions (Section 3.2). This makes our framework go beyond CFML, and thus
able to handle all features of the CakeML programming language.

– We implement technology to make proofs using characteristic formulae in-
teroperate with the existing synthesis tool for CakeML, namely the proof-
producing translator from HOL functions to CakeML (Section 4).

As an appetiser, in Figure 1 we show the code for a simple implementation
of the Unix cat program, that we are able to verify using our framework. The
specification for cat, proven correct in our framework, and thus a HOL4 theorem,
is given in Figure 2. The main steps of the cat proof are described in Section 5.

1.1 Background on CF

This subsection and the next one provide background on CF and CakeML. Read-
ers familiar with these topics can skip ahead to Section 1.3.

Characteristic formulae, as introduced in Charguéraud’s PhD thesis [4], are
essentially total correctness Hoare triples for ML-style functional programs. The
key component of any CF framework is a function cf that produces, from a
source-level expression e, the expression’s characteristic formula cf e. Applying
cf e to an environment env , pre-condition H and post-condition Q yields a
proposition cf e env H Q , which implies program expression e can have H as a
pre-condition and Q as a post-condition, in environment env .

While the cf function is the main workhorse behind any CF framework, most
user-proved specifications are stated in terms of a Hoare-triple-like judgement for
functional applications, app, written with Hoare-triple notation. The intuition is
that {|H |} f · args {|Q |} is true if the application of function-value f to curried
arguments args admits H as a pre-condition and Q as a post-condition. An
example of a specification stated in terms of app is shown in Figure 2.
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fun cat1 fname =
l e t

va l fd = CharIO . openIn fname

fun recurse ( ) =
case CharIO . read1 fd of

NONE ⇒ ( )
| SOME c ⇒ ( CharIO . write c ; recurse ( ) )

i n
recurse ( ) ;
CharIO . close fd

end

fun cat fnames =
case fnames of

[ ] ⇒ ( )
| f : : fs ⇒ ( cat1 f ; cat fs )

Fig. 1: Code implementing concatenation of files to standard out. The CharIO

module is our verified implementation of an FFI interface to a rudimentary file-
system model (see Section 5 for more details).

FILENAME s sv ⇐⇒ STRING s sv ∧ noNullBytes s ∧ strlen s < 256

` LIST FILENAME fns fnsv ∧ every (λ fnm. inFS fname fnm fs) fns ∧
numOpenFDs fs < 255⇒
{|CATFS fs ∗ STDOUT out |}

cat v · [fnsv ]
{|POSTv u.
〈UNIT () u〉 ∗ CATFS fs ∗
STDOUT (out @ catfiles string fs fns)|}

Fig. 2: A CF specification of the cat function from Figure 1. The app predicate
underlies the {|H |} fv · args {|Q |} notation, giving a CF Hoare triple for a
function, indicating that if fv is applied to args in a state satisfying H , the result
satisfies Q . The (∗) operator (defined on page 14) corresponds to the separating
conjunction of separation logic. Parts of specifications occurring within angle
brackets (here, only in the post-condition) are conditions that do not depend
on the state of the heap. Above, the implication’s assumptions require that
no file name contains a null byte or has 256 characters or more (enforced by
the FILENAME predicate), that every file name corresponds to a real file in
the system, and that fewer than 255 files are open. These various requirements
naturally fall out of the way the interactions with the file-system are mediated
by the FFI interface. The post-condition states that cat returns a unit value,
that the CATFS component (the “cat file-system”) of the state is unchanged,
and that the standard output stream has been extended with the contents of all
the files.
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Charguéraud’s initial version of CF [5] only applied to pure ML programs.
Charguéraud has since extended his approach to support reasoning about im-
perative stateful ML programs in a style inspired by separation logic and its
frame rule [6]. More recently, Charguéraud and Pottier have verified amortized
complexity results using CFML [7]. The version we have ported to CakeML is
based on Charguéraud’s framework for imperative stateful ML programs, but
without support for proofs about complexity results.

In Charguéraud’s implementation of CF, called CFML, the mechanism for
generating characteristic formulae from OCaml programs, i.e., the cf function,
is external to the proof assistant (Coq), and the translation from OCaml to Coq
is not completely transparent, e.g., it translates the OCaml’s fixed-size int type
to the mathematical integers in Coq. The soundness theorem for CFML has
been proved on paper using an idealised semantics for a subset of OCaml. In
contrast, our CakeML formalisation of CF models all formal entities in the logic
of the proof assistant (HOL4 in our case) and the key theorem, i.e., soundness,
is proved as a theorem inside the proof assistant.

1.2 Background on CakeML

The original goal of the CakeML project, as outlined in the first CakeML pa-
per [18], was to provide a fully proof-producing code generation tool (code ex-
traction tool) that given ML-like functions in higher-order logic (HOL) automat-
ically produces equivalent executable machine code. The CakeML translator [18]
is a proof-producing tool which generates CakeML code from functions in HOL.
The output of the translator can then be input into a verified compiler [15,26]
that transforms CakeML programs to observationally compatible machine code.
The verified CakeML compiler function was bootstrapped in logic using the fully
proof-producing work-flow mentioned above [15].

As the compiler is maturing, the focus of CakeML project is shifting to the
task of developing a general ecosystem of tools around the CakeML language.
This is where CF technology comes into the picture. Our CF formalisation pro-
vides a verification framework that enables users to prove correctness theorems
for imperative CakeML programs that use any of CakeML’s language features,
e.g., references, arrays, exceptions and I/O. One can, of course, prove correct-
ness theorems directly over the CakeML semantics. However, such direct proofs
would be incredibly tedious for anything but very simple programs.

The formal semantics of the CakeML language is central to its CF frame-
work and the CF framework’s soundness proof. Figures 3 and 5 provide some
detail of CakeML’s operational semantics, which we write in the functional big-
step style [20]. Figure 5 shows the definitions of the datatype for the deeply
embedded CakeML values that the semantics operates over. Figure 3 shows a
few cases of the expression evaluation function evaluate. The figure includes the
case of function application App Opapp [f ; v ], i.e., application of expression f
to expression v , and shows the semantics, using the helper function do opapp,
of applying a non-recursive Closure value to an argument. For this application,
the environment env from the Closure value is extended to map the variable

4



evaluate st env [Lit l ] = (st ,Rval [Litv l ])
evaluate st env [Var n] =

case lookup var id n env of
None ⇒ (st ,Rerr (Rabort Rtype error))
| Some v ⇒ (st ,Rval [v ])

evaluate st env [Fun x e] = (st ,Rval [Closure env x e])
evaluate st env [App Opapp [f ; v ]] =

case evaluate st env [v ; f ] of
(st ′,Rval [v ; f ]) ⇒

case do opapp [f ; v ] of
None ⇒ (st ′,Rerr (Rabort Rtype error))
| Some (env ′,e) ⇒

if st ′.clock = 0 then
(st ′,Rerr (Rabort Rtimeout error))

else evaluate (dec clock st ′) env ′ [e]
| res ⇒ res

do opapp vs =
case vs of

[Closure env n e; v ] ⇒ Some ((n,v)::env ,e)
| [Recclosure env funs n; v ] ⇒ . . .
| ⇒ None

Fig. 3: An extract of the CakeML semantics.

n to value v . Before evaluation enters the expression from the Closure a clock
is checked and decremented, following the style of functional big-step seman-
tics [20]. In the semantics, each function is only applied to one argument at a
time.

1.3 A tour of the material

The remainder of this section provides a brief tour of the contributions of this
paper: the soundness theorem, our extensions for I/O and exceptions, and our
integration of the CakeML CF technology with our existing CakeML proof tools.

We formalise the theorem of soundness of CF with respect to the CakeML
semantics. In CFML, the soundness proof is only captured on paper, using ide-
alised semantics for a subset of ML, and the Coq library uses axioms in the places
where it would relate to the language semantics. In contrast, we were able to im-
plement an axiom-free CF library for the whole CakeML language, and perform
a mechanical proof of soundness, using CakeML’s pre-existing semantics.

This not only validates the CF approach introduced by Charguéraud, but also
shows that it is flexible as well as extensible. Although CakeML’s semantics were
not designed with CF in mind, we could directly reuse the CakeML language
without any modification, and we were able to carry out the proofs without any
particular issue (although some technical details differ from the paper proof).
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Moreover, as detailed in Section 3, we could extend the approach to handle new
language features that are not supported by CFML.

The soundness theorem, which justifies proving properties about a charac-
teristic formula to give equivalent properties about the program itself, is stated
as follows. If the characteristic formula for the deeply embedded expression e
(and environment env) holds for some shallowly embedded pre-condition H
and shallowly embedded post-condition Q , i.e., cf e env H Q , then, starting
from a state satisfying H , e is guaranteed to successfully evaluate in CakeML’s
functional big-step semantics [20], and reach a new state st ′ and value v sat-
isfying Q . Here state to set converts a CakeML state into a representation to
which one can apply separation logic connectives, and split asserts disjoint union:
split s (s1,s2) ⇐⇒ s1 ∪ s2 = s ∧ s1 ∩ s2 = ∅.

` cf e env H Q ⇒
∀ st .

H (state to set st)⇒
∃ st ′ hf hg v ck .

evaluate (st with clock := ck) env [e] = (st ′,Rval [v ]) ∧
split (state to set st ′) (hf ,hg) ∧ Q v hf

This mechanised proof eliminates the last bits of paper proof that need to
be trusted in CFML. Section 2 details the main steps leading to the proof.

We extend the CF framework introduced in CFML to handle two new language
features: exceptions, and I/O through CakeML’s foreign-function interface (FFI).
These extensions are proved sound with respect to the CakeML semantics, and
neatly make our framework able to handle all features of the CakeML program-
ming language.1

The extension which adds support for I/O is implemented by carefully modi-
fying the state to set function, shown in the soundness theorem above. We mod-
ified the state to set function so that it makes visible the state of the FFI in
the pre- and post-conditions. There were numerous tricky details to get right in
the definition of state to set because the design goal was to make I/O reasoning
local in the style of separation logic. Our support for I/O is local in that the
proof for a piece of code which only uses, say, the print-to-stdout FFI ports does
not impose any assumptions on the behaviour, state, or even existence of other
FFI ports, e.g., ports for reading-from-stdin. In the spirit of separation logic,
our framework allows combining different assertions about the FFI using CF’s
equivalent to the separation logic frame rule. Section 3 provides details on how
we modified state to set to make the FFI available in CF proofs.

Support for exceptions is implemented by making the post-conditions differ-
entiate whether the result is a normal return with a value or a value raised as
an exception. The new framework is able to reason about exception handling

1 CakeML’s module system is also supported in our CF framework, but supporting
modules did not require extending the original ideas of CFML.
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code. Section 3.2 explains how exceptions are supported and the effect their
introduction had on the proofs.

With these extensions our framework covers all of CakeML’s language fea-
tures and makes it possible to develop a verified standard library for CakeML
with complete specifications for library functions that perform I/O or must raise
exceptions in certain circumstances. For example, our cat implementation has
a routine for opening files, called openIn (whose specification is shown in Fig-
ure 4). A call to the CakeML function for openIn raises an exception if the file
could not be opened, e.g., if there is no file at the given path. More precisely,
inFS fname fname fs describes whether a file exists in fs with name fname, and
the BadFileName exception is raised when no file could be found.

` FILENAME s sv ∧ numOpenFDs fs < 255⇒
{|CATFS fs|}

openIn v · [sv ]
{|POST

(λwv .
〈WORD (n2w (nextFD fs)) wv ∧ validFD (nextFD fs) (openFileFS s fs) ∧
inFS fname s fs〉 ∗ CATFS (openFileFS s fs))

(λ e. 〈BadFileName exn e ∧ ¬inFS fname s fs〉 ∗ CATFS fs)|}

Fig. 4: A specification of the openIn function.

In compiled CakeML code, the actual system call for opening a file is handled
by a short stub of C code that is attached to the external side of CakeML’s FFI.
If an error occurs, the C code signals failure via the return value for the FFI
call and, on the CakeML side, the library routine raises the relevant exception
on receiving the error code from the C stub. At present, the external C code
is unverified and we just make assumptions about its effect on the rest of the
world. In the future, we aim to provide verified external assembly stubs that can
replace the current unverified C code.

We integrate the CF framework into the CakeML ecosystem by making it in-
teroperate with an existing synthesis tool, namely the automatic translation
from HOL functions into CakeML. This tool [18] essentially implements a proof-
producing extraction mechanism: given a function in higher-order logic (HOL),
the tool generates CakeML code along with a proof that the produced code cor-
rectly implements the HOL function with respect to CakeML’s semantics. As
HOL functions are pure, the translator is essentially limited to producing purely
functional CakeML code.2

2 To be precise: Myreen and Owens [18] show that the tool can also be used for
production of stateful CakeML code that maintains a hard-coded invariant over a
hard-coded number of references. CF allows for much more flexibility.
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At present, the most important use of this translation tool is in bootstrapping
the verified CakeML compiler, where we now benefit from CF. The translation
tool is used to generate CakeML code for the CakeML compiler’s implementa-
tion. The compiler is defined as functions in HOL, so before we can run the
compiler on itself, we need to transform the compiler definition into the source
language of the compiler, i.e., CakeML abstract syntax. CF comes into the pic-
ture because the translation tool can only produce pure functions. Previously
we had to manually verify low-level I/O code that reads the input and passes
it to the compiler function, and separate code that prints the result of running
the CakeML’s compile function. By making the CF and translation tools able
to build on each other’s results, we have replaced the difficult manual I/O code
proofs by understandable CF proofs about I/O.

The bootstrap has thus far benefited from automatic conversion of translator
produced results to CF theorems. The bridge between them also works in the
other direction: proved results from CF can be used in the translator. Since the
translator essentially only deals in pure functions, the CF-verified programs have
to implement a pure interface in order to fit the translator. Such programs are
not necessarily pure themselves: they can allocate memory, and use imperative
structures and algorithms. We plan to make use of the CF-to-translator direction
in the future to provide more efficient drop-in replacements for parts of the
bootstrapped compiler. These replacement parts would be verified using CF,
and replace the code produced by the translator. The register allocator is a
particular example that we believe would benefit from using an imperative-style
implementation instead of the current automatically generated pure functional
implementation.

Section 4 provides details on how we have connected the translation tool and
the CakeML CF framework.

All our developments were carried out in the HOL4 theorem prover, and
have been integrated into the main CakeML repository. They are avail-
able online at https://cakeml.org and https://code.cakeml.org under the
characteristic sub-directory.

2 A formal proof of soundness for characteristic formulae

In this section, we explain how CakeML CF differs from CFML, how we avoided
axioms in our formalisation, and how we proved soundness of CF for CakeML.

2.1 Adapting CFML to CakeML

A first necessary step towards a proof of soundness was reimplementing the
CFML definitions, lemmas and tactics in the CakeML setting. Most of them
worked similarly to CFML – in particular the CF definitions and the various
tactics (although they are implemented differently). There are however some
technical differences worth noting.
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v =
Litv lit

| Conv ((string × tid_or_exn) option) (v list)
| Closure (v environment) string exp

| Recclosure (v environment) ((string × string × exp) list) string
| Loc num

| Vectorv (v list)

Fig. 5: The CakeML semantic value datatype.

CakeML’s semantics uses environments, whereas CMFL assumes substitution
semantics. As a consequence, CakeML environments (which map names to se-
mantic values) are threaded through CakeML’s characteristic formulae as a new
parameter. Environments are accessed in the generated formulae, e.g., the CF
for Var x , shown below, returns the value for x in the given environment. Here
B is the entailment relation on heap predicates, i.e., H1BH2 is true if any heap
satisfying H1 also satisfies H2, and defined by p B q ⇐⇒ ∀ s. p s ⇒ q s. The
local predicate adds the frame rule of separation logic to the formula.

cf (Var name) env =
local (λH Q . ∃ v . lookup var id name env = Some v ∧ H B Q v)

In practice, environments are never manipulated explicitly by the user. The
user states top-level specifications of the form “∀ xi . {|H |} f · [x1 ; . . . ; xn ] {|Q |}”,
specifying the behavior of the application of the function value f to some ar-
guments x1 , . . . , xn . The value f can be fetched given its name as a CakeML
function, thanks to a small library that keeps track of top-level definitions.

As f is in fact a closure, the following lemma applies. This lemma, which
is a consequence of the CF soundness theorem, turns the goal into proving the
CF of the body of f , for the environment that was packed in the closure. Here
naryClosure creates a Closure value that takes several curried arguments.

` ns 6= []⇒
length xvs = length ns ⇒

cf body (extend env ns xvs env) H Q ⇒
{|H |} naryClosure env ns body · xvs {|Q |}

A custom pretty printer hides the contents of environments from the user.
Sub-goals of the form “lookup var env x env = v” are always automatically
proved by unfolding env.

CF for CakeML uses a deep embedding of CakeML values, while CFML trans-
lates ML values to corresponding Coq values. CakeML values are described by
the HOL type v (shown in Figure 5), which is defined as part of the semantics.

To relate CakeML values of type v to logical values (such as int, bool, ...),
we re-use the refinement invariants presented by Myreen and Owens [18] in the
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i f x < 0 then
print_int (∼ x )

e l s e
print_int x

(a) Original program

l e t va l _x1 = x < 0 i n
i f _x1 then

( l e t va l _x2 = ∼ x i n
print_int _x2

end )
e l s e

print_int x

end

(b) Normalised program

Fig. 6: An example of the normalisation pass.

context of a proof-producing translation from HOL functions to CakeML pro-
grams. These refinement invariants are a collection of composable predicates that
relate HOL types and data structures to the same concepts as deeply embedded
CakeML values. The INT and BOOL refinement invariants are defined as follows:

INT i = (λ v . v = Litv (IntLit i))

BOOL T = (λ v . v = Conv (Some (“true”,TypeId (Short “bool”))) [])

BOOL F = (λ v . v = Conv (Some (“false”,TypeId (Short “bool”))) [])

A specification for the CakeML addition function can then be written as
follows. Here the angle brackets turn a pure proposition into a heap predicate
for heaps represented as sets: 〈c〉 = (λ s. s = ∅ ∧ c); and emp is 〈T〉.

` INT x0 v0 ∧ INT x1 v1 ⇒
{|emp|} plus v · [v0; v1] {|(λ v . 〈INT (x0 + x1) v〉)|}

This is somewhat heavier than CFML specifications, where Coq integers
would simply be used in place of semantic values. We believe it is hardly an
issue for more involved data structures, for which it is common to define such
predicates anyway in CFML in order to keep track of additional invariants.

Normalisation of input programs and CF generation are performed in the logic,
whereas in CFML they are performed by an external tool. Before being fed to
the cf function, programs are normalised in a process similar to A-normalisation.
The motivation is that it significantly simplifies formally reasoning about pro-
grams, while preserving their semantics. Figure 6 displays an example of the
normalisation process. Due to the fact that cf is implemented as a total function
in the logic, assumptions about the program being in normal form are made
explicit in characteristic formulae. In CFML, the external CF generator simply
fails on unhandled input programs.

The cf function assumes that the input program is in normal form. This
assumption is reflected by the use of the exp is val predicate in characteristic
formulae. This predicate, of type v environment → exp → v option, checks
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whether an expression is in fact a value or a name bound to a value. It is used in
characteristic formulae to assert that some expression must be trivial, because of
the normalisation pass. For example, the CF for If, below, uses exp is val to assert
that evaluation of the condition must be dealt with beforehand, by introducing
a let-binding, which the normalisation step does. If for some reason the program
appears not to be in normal form, the corresponding CF reduces to F.

cf p (If cond e1 e2) env =
local

(λH Q .
∃ condv b.

exp is val env cond = Some condv ∧ BOOL b condv ∧
((b ⇐⇒ T)⇒ cf p e1 env H Q) ∧
((b ⇐⇒ F)⇒ cf p e2 env H Q))

The sub-goals related to exp is val in characteristic formulae are always au-
tomatically proved by our CF tactics, and are thus kept hidden from the user.

2.2 Realising CFML axioms

Using CakeML’s semantics, we are able to give an implementation of the app
predicate, which was axiomatised in CFML.

Let us first consider the semantics of a Hoare triple for an expression e in en-
vironment env , denoted env ` {|H |} e {|Q |}. We define validity for such a Hoare
triple, which we then use to define app. The Hoare triple env ` {|H |} e {|Q |}
holds if and only if evaluation of the expression e, in a heap that satisfies the
heap predicate H , terminates and produces a value v and a heap satisfying Q v.

env ` {|H |} e {|Q |} ⇐⇒
∀ st hi hk .

split (state to set st) (hi ,hk )⇒
H hi ⇒
∃ v st ′ hf hg ck .

split3 (state to set st ′) (hf ,hk ,hg) ∧
evaluate (st with clock := ck) env [e] = (st ′,Rval [v ]) ∧ Q v hf

In this definition, split and split3 are used to split a state repre-
sented as a set of state elements into disjoint subsets: split s (s1,s2) ⇐⇒
s1 ∪ s2 = s ∧ s1 ∩ s2 = ∅; similarly split3 s (s1,s2,s3) splits a set s into three
disjoint subsets s1, s2, s3. This state splitting is here in order to make the frame
rule available, as explained further down.

We now define a simple version of app, called app basic, which characterises
the application of a closure to a single argument. When provided a valid function
application, where do opapp can extract the body of the closure and the extended
environment, app basic simply asserts the general Hoare triple defined above.
When do opapp fails, app basic asserts that the pre-condition H cannot hold of
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any state (because otherwise the function application would need to succeed).

{|H |} f · x {|Q |} ⇐⇒
case do opapp [f ; x ] of

None ⇒ ∀ st h1 h2. split (state to set p st) (h1,h2)⇒ ¬H h1

| Some (env ,exp) ⇒ env ` {|H |} exp {|Q |}

Finally we define the app predicate, which characterises the application of a
closure to multiple arguments, by iterating app basic.

{|H |} f · [] {|Q |} ⇐⇒ F
{|H |} f · [x ] {|Q |} ⇐⇒ {|H |} f · x {|Q |}
{|H |} f · x ::x ′::xs {|Q |} ⇐⇒
{|H |} f · x {|(λ g . ∃∃ H ′. H ′ ∗ 〈{|H ′|} g · x ′::xs {|Q |}〉)|}

It is worth noting that our Hoare triple validity integrates the frame rule
in its definition. The split predicate (respectively split3) expresses that some
heap can be split into two (resp. three) disjoint parts. Therefore, the function
application may involve only some subpart of the heap hi , while the rest hk is
preserved. The function is also allowed to produce some garbage hg , which is
left unconstrained. This is necessary for top-level specifications to be modular,
as they are formulated in terms of app.

The built-in frame rule also means that when carrying proofs using the
framework, the definition of app is kept abstract and never unfolded. When
faced with a “{|. . . |} f · . . . {|. . . |}” goal, a specification for f , also of the form
“{|. . . |} f · . . . {|. . . |}” will be fetched and used to prove the goal, either directly
or using the frame rule.

2.3 Proving CF soundness

Soundness of characteristic formulae means that, for every expression e, if
cf e env H Q holds, then the Hoare triple env ` {|H |} e {|Q |} is valid. We
define soundness for arbitrary formulae as follows.

sound e R ⇐⇒ ∀ env H Q . R env H Q ⇒ env ` {|H |} e {|Q |}

The main result of this section can now be stated. We prove soundness of cf as
the following HOL theorem:

Theorem 1 (CF are sound wrt. CakeML semantics).

` sound e (cf e)

Proof. By induction on the size of e.

This proof is most tricky for CakeML language constructs for which charac-
teristic formulae differ significantly from the semantics. The reason is typically
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to abstract away from specifics of the semantics, and have proof-friendly char-
acteristic formulae. Two instances of this are closures and pattern matching.

CakeML semantics has closure values. Functions evaluate to closures, and
function application is defined in terms of applying a closure to values. The
CF for function declaration introduces an abstract value fv , and a specification
H for it. Our formulation differs from that in CFML [6] due to CakeML’s use
environment semantics instead of CFML’s substitution semantics.

cf (Let (Some f ) (Fun x e1) e2) env =
local (λH Q . ∀ fv . H ⇒ cf e2 ((f ,fv)::env) H Q)

where H ⇐⇒ ∀ xv H ′ Q ′. cf e1 ((x ,xv)::env) H ′ Q ′ ⇒ {|H ′|} fv · [xv ] {|Q ′|}

In the soundness proof, fv is instantiated by a function closure, and one has to
prove that H characterises it.

Proving the soundness of CF for pattern-matching also requires some amount
of proof engineering. CakeML semantics provides a logical function that imple-
ments a pattern-matching algorithm, and returns whether the match succeeded
or not. Characteristic formulae for pattern-matching are instead formulated as
nested ifs, which test the equality between the matched value and values pro-
duced from the successive patterns.

3 Sound extensions of CF for I/O and exceptions

This section explains how our CF framework has extended the original CFML
framework to enable reasoning about I/O and exceptions.

3.1 Support for I/O

As mentioned earlier, the goal of our extension for I/O was to enable convenient
local reasoning about I/O operations without unreasonable restrictions on the
kind of I/O one can verify.

We start with a quick explanation of how I/O is supported in the CakeML
language, then show how we made CF pre- and post-conditions able to make
assertions about parts of the I/O state, what I/O looks like in the cf function’s
output, and finally how we have used these techniques in the bootstrapping of
the latest CakeML compiler.

The CakeML language supports I/O through a byte-array-based foreign-function
interface (FFI). The abstract syntax for CakeML includes an FFI expression.
The semantics of executing an FFI expression is to update the state of the FFI
which is threaded through the operational semantics together with the state of
the CakeML references. The intuition is that CakeML’s FFI state component
models the state of the outside world and how the outside world will react to
any calls made from the CakeML program to the external world.

The formal definition of the FFI state is shown in Figure 7. When designing
the CakeML semantics we wanted to make the FFI state as flexible as possible,
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so we left the type of the rest of the world as a type variable θ, and we only
require that the user provide some oracle function s.oracle that describes how the
outside world will react to any FFI call. The FFI state has a s.final event field
that indicates whether the outside world has stopped the process (e.g., due to a
call to exit). The FFI state also keeps a list of all calls to the FFI (s.io events):
each event records the name of the FFI port3 that was called, and a list of byte
pairs, where map fst of that list is the input to the FFI call and map snd of the
list is the state of the array on return from the FFI call.

θ ffi_state =
<| oracle : (string → θ → byte list → θ oracle_result);

ffi state : θ;
final event : (final_event option);
io events : (io_event list) |>

final_event = Final event string (byte list) ffi_outcome

ffi_outcome = FFI diverged | FFI failed

io_event = IO event string ((byte × byte) list)

θ oracle_result = Oracle return θ (byte list) | Oracle diverge | Oracle fail

Fig. 7: The type for an FFI state in the CakeML operational semantics.

We enable reasoning about I/O in CF by modifying the state to set function
to expose an image of the FFI state as part of the set representation that the
separation logic connectives operate over.

The role of the state to set function is to split the state into parts that can be
separated using separating conjunction (∗). For example, a CakeML state s1 with
references at locations 0, 1 and 2 becomes the following. Note that state to set
can only produce one Mem l _ for each location l in the store.

state to set s1 = { Mem 0 val0; Mem 1 val1; Mem 2 val2; . . . }

We can use p ∗ q = (λ s. ∃ u v . split s (u,v) ∧ p u ∧ q v) to separate between as-
sertions such as the following. Here Loc l is the value of a reference in the
CakeML semantics (Figure 5), and Refv, Varray, and W8array are constructors
of the value type for store values.

r  v = (λ s. ∃ loc. r = Loc loc ∧ s = { Mem loc (Refv v) } )
array r vs = (λ s. ∃ loc. r = Loc loc ∧ s = { Mem loc (Varray vs) } )
byte array r bs = (λ s. ∃ loc. r = Loc loc ∧ s = { Mem loc (W8array bs) } )

With these definitions it follows from (r1  v1 ∗ r2  v2 ∗ . . . ) (state to set s)
that r1 6= r2 and that updates to reference r1 do not affect r2  v2 ∗ . . . .
3 We have recently switched to using strings for port names, while numbers were used

previously [26] for FFI port names. Johannes Åman Pohjola made this improvement.
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The simplest way to make it possible to reason about FFI using CF would
be to just make state to set produce sets that contain an element that contains
the entire current state of the CakeML FFI, i.e., s.ffi state. However, such a
simplistic approach would mean that there can only be one assertion about the
state of the FFI in any pre- or post-condition since the assertion could not be
split by separating conjunction (∗). We need to make state to set split the FFI
state into multiple elements of the state component sets so that we can use the
separating conjunction in reasoning about FFI states.

The splitting of the FFI state is non-trivial since we want to keep the FFI
state as abstract as possible in the CakeML semantics. The FFI state is modelled
by a type variable θ, and thus we know nothing about its structure. Our solution
is to parametrise the state to set function with information on how to partition
an FFI state. The information is a pair consisting of:

– proj : a projection function of type θ → (string 7→ ffi), which given an
FFI state of type θ returns a finite map from strings to a new type called
ffi. Here ffi is a datatype that is meant to be convenient for modelling
projected FFI states in general.4

ffi =
Str string
| Num num

| Cons ffi ffi

| List (ffi list)
| Stream (num stream)

– parts: a list of partitions which are pairs: each pair contains a list of FFI port
names (of type string list) and a behaviour modelling next-state function,
i.e., a representation of part of the oracle function in CakeML’s FFI state.
The type of the behaviour modelling function is:

string → ffi → byte list → (byte list × ffi) option

The partitioning information (proj ,parts) is considered well-formed and ap-
plicable to an FFI state st if:

– the FFI state st has not hit a stopping state, i.e., st .final event = None

– no partition has names that overlap with other partitions

– every I/O event has an index that belongs to one of the partitions

– for each partition, proj maps all states to the same ffi value

4 We would have liked to use a type variable instead of ffi, but a type variable would
have been shared between all partitions. Such sharing would need to be done across
FFI partitions which goes against the design goal of local specifications and local
reasoning. This is a restriction imposed by the HOL type system, which we could
have avoided by using a variant of HOL with quantifiers for type variables [13].
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– the update function u in each partition respects the FFI’s oracle function5.

The FFI-enabled definition of state to set maps CakeML states to the union
of the parts of the state that describe the references and the partitioned parts
of the FFI state. If the partition for the FFI state is well-defined, then the FFI
state is split into a set of FFI part elements, where each such element carries:

– s, the projected view of the state of this partition
– u, the update function for the partition
– ns, the FFI port names associated with the partition
– ts, a list of all previous I/O events for these names.

We can now make assertions about I/O in CF using state to set and separation
logic connectives. We define a generic IO assertion as follows.

IO st u ns = (λ s. ∃ ts. s = { FFI part st u ns ts } )

With these we can make assertions about I/O. For example, the follow-
ing asserts that the projected FFI state must have a part that is described
by FFI part s1 u1 [n], and a disjoint part that is described by FFI part s2 u2 ns.

(IO s1 u1 [n] ∗ IO s2 u2 ns ∗ . . . ) (state to set pp st)

Using such statements in their pre- and post-conditions, the user may express
strong specifications concisely.

The following proof obligation is generated every time the cf function is
applied to the abstract syntax for an FFI expression. This proof obligation can
be read as follows: pre-condition H must imply that there is a byte array and
I/O partition in the state. The I/O partition must include the name of the called
FFI entry point. Furthermore, the result of running the next-state function from
the FFI partition, i.e., u, must successfully return a new state s ′ and this state
and the updated byte array must imply the desired post-condition Q . FFI calls
return unit value.

cf pp (App (FFI name) [array ]) env =
local
(λH Q .
∃ rv .

exp is val env array = Some rv ∧
∃ bs F bs ′ s s ′ u ns.

u name bs s = Some (bs ′,s ′) ∧ mem name ns ∧
H B F ∗ byte array rv bs ∗ IO s u ns ∧
F ∗ byte array rv bs ′ ∗ IO s ′ u ns B Q unit value)

5 Our use of projection functions and updates at both a concrete and abstract view
of the state bears some resemblance to lenses [21]. Note however that lenses must
have get and putback functions. Our set up lacks the putback functions, i.e., we only
project in one direction. Our initial formalisation had a putback function, but we
decided to simplify the definitions and arrived at the current solution with only a
get function, which we call proj .
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The proof goal produced by cf mentions IO, which from the user’s perspective
is the primitive I/O assertion in CakeML CF. Users define their own specialisa-
tions of IO for each application, see Section 5.

This support for I/O has, together with the connection between CF and the
CakeML translator (Section 4), been used to verify the I/O code required for giv-
ing input and producing output from the bootstrapped CakeML compiler. The
I/O code is a little snippet of code that wraps around the translator-generated
pure CakeML code which implements the logical CakeML compile function.

3.2 Support for exceptions

We implement complete support for specifying CakeML programs that use ex-
ceptions. Up to this point, we required expressions to evaluate and reduce to
a value: post-conditions were of type v → heap → bool, taking the re-
turned value as an argument. We now allow expressions to raise an exception
instead: we define a res datatype res = Val v | Exn v, and change the type of
post-conditions to be res → heap → bool. We define some wrappers for
writing post-conditions, in particular for the cases where the expression never
(resp. always) raises an exception. POST handles both cases by taking one post-
condition for each case.

(POSTv) Qv = (λ r . case r of Val v ⇒ Qv v | Exn e ⇒ 〈F〉)
(POSTe) Qe = (λ r . case r of Val v ⇒ 〈F〉 | Exn e ⇒ Qe e)
POST Qv Qe = (λ r . case r of Val v ⇒ Qv v | Exn e ⇒ Qe e)

We update the definitions that relate CF to CakeML semantics. For example,
the definition of Hoare triple validity we presented earlier contains:

. . . ∧ evaluate (st with clock := ck) env [exp] = (st ′,Rval [v ])

The second component returned by evaluate, of which Rval is a constructor,
is of type (v list, v) result, where:

(α, β) result = Rval α | Rerr (β error_result)
α error_result = Rraise α | Rabort abort

This gives us two other cases: Rerr (Rraise exn) for expressions that raise an
exception, and Rerr (Rabort cause) for expressions that fail to evaluate. We still
rule out the latter, but add support for the former: the definition of Hoare triple
validity becomes:

env ` {|H |} e {|Q |} ⇐⇒
∀ st hi hk .

split (state to set p st) (hi ,hk )⇒
H hi ⇒
∃ r st ′ hf hg ck .

split3 (state to set p st ′) (hf ,hk ,hg) ∧ Q r hf ∧
case r of

Val v ⇒ evaluate (st with clock := ck) env [e] = (st ′,Rval [v ])
| Exn v ⇒ evaluate (st with clock := ck) env [e] = (st ′,Rerr (Rraise v))
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We update the existing CF definitions as well. We add side-conditions to deal
with exceptions; for example the CF for Let handles the case where an exception
is raised by the first expression.

cf p (Let (Some x ) e1 e2) env =
local

(λH Q .
∃Q ′.

cf p e1 env H Q ′ ∧ Q ′ Ie Q ∧
∀ xv . cf p e2 ((x ,xv)::env) (Q ′ (Val xv)) Q)

This uses the entailment relation on post-conditions for the exception case,
written Q1 Ie Q2, and defined as ∀e. Q1 (Exn e) B Q2 (Exn e). On exceptions,
the post-condition for e1 (Q′) has to directly entail validity of the post-condition
for the whole formula (Q), since e2 does not get executed in case e1 raises an
exception.

Some other side-conditions are not needed for establishing the soundness
theorem, but are added to enforce a “no garbage” property on post-conditions.
For example, the CF for Var becomes as follows, where F is a post-condition
false for any value and any heap:

cf p (Var name) env =
local

(λH Q .
(∃ v . lookup var id name env = Some v ∧ H B Q (Val v)) ∧
Q Ie F)

This requires Q to be false on exceptions, as evaluating a Var x always pro-
duces a value on well scoped code. We believe having such side-conditions make
the following proposition true (and plan to prove it as future work): if the CF
for e is true for pre-condition H and post-condition Q, then Q Ie F if and only
if e does not raise exceptions.

We update the existing tactics, so that easy side-conditions are automatically
proved. We rely on the following lemma:

` (POSTv) Qv Ie Q

This is trivially true, as (POSTv) Qv (Exn e) unfolds to 〈F〉. Thanks to
this lemma, carrying out proofs about programs that do not involve exceptions
requires no additional effort. The only modification necessary is changing the
“λ v . . . . ” to “POSTv v . . . . ” in post-conditions.
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Finally, we handle CakeML’s primitives for exception handling, Raise and
Handle, whose semantics match SML’s. Here (f ## g) (x ,y) = (f x ,g y).

cf p (Raise e) env =
local (λH Q . ∃ v . exp is val env e = Some v ∧ H B Q (Exn v) ∧ Q Iv F)

cf p (Handle e rows) env =
local
(λH Q .
∃Q ′.

cf p e env H Q ′ ∧ Q ′ Iv Q ∧
∀ ev .

cf cases ev ev (map (I ## cf p) rows) env (Q ′ (Exn ev)) Q)

The entailment relation on post-conditions for the value case, written
Q Iv Q2, is without surprise defined as ∀v. Q1 (Val v) B Q2 (Val v). The CFs
for Raise and Handle resemble the CFs for Var and Let respectively, but with
the respectives roles of exceptions and values swapped. The cf cases auxiliary
definition corresponds to the CF for pattern-matching.

Let us present an illustrative example. The cat program presented earlier in
Figure 1 doesn’t do any exception handling, and for simplicity its specification
(Figure 2) requires that all input filenames represent existing files. In this way,
our specification above only specifies the non-exceptional behaviour. Nonethe-
less, the various I/O primitives can be modeled so as to allow the possibility
that they might raise various exceptions, and when they are, we can prove more
detailed post-conditions capturing those behaviours.

We define a simple cat1exn program that handles invalid filenames. It
is implemented as shown in Figure 8, by calling cat1 and handling the
CharIO.BadFileName exception that may be raised.

fun cat1exn fname =
cat1 fname handle CharIO . BadFileName ⇒ ( )

Fig. 8: Code displaying the contents of a single file.

Figure 9 shows the specification of cat1, and Figure 10 shows the specification
we prove for cat1exn. It relies on the catfile string function, which corresponds
to the text displayed by cat1exn, and is defined as:

catfile string fs fnm = if inFS fname fnm fs then file contents fnm fs else []

Proving the specification for cat1exn boils down to proving three subgoals,
corresponding to the three conjunctions appearing in the Handle case of cf. The
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` FILENAME fnm fnv ∧ numOpenFDs fs < 255⇒
{|CATFS fs ∗ STDOUT out |}

cat1 v · [fnv ]
{|POST

(λ u.
∃∃ content .
〈UNIT () u〉 ∗ 〈alist lookup fs.files fnm = Some content〉 ∗
CATFS fs ∗ STDOUT (out @ content))

(λ e.
〈BadFileName exn e〉 ∗ 〈¬inFS fname fnm fs〉 ∗ CATFS fs ∗
STDOUT out)|}

Fig. 9: A specification for cat1, which outputs the contents of a file on standard
out, or raises an exception if the file could not be found.

` FILENAME fnm fnmv ∧ numOpenFDs fs < 255⇒
{|CATFS fs ∗ STDOUT out |}

cat1 v · [fnmv ]
{|POSTv u.
〈UNIT () u〉 ∗ CATFS fs ∗
STDOUT (out @ catfile string fs fnm)|}

Fig. 10: A specification for cat1exn, which will not raise the BadFileName excep-
tion.

first one is trivially solved using the appropriate tactic. The second one requires
proving that the post-condition of cat1 entails the post-condition of cat1exn,
for the value case. This is true, using a lemma proving that inFS fname fnm fs
holds if the file could be found with some content in the file system. The last
goal finally requires proving that the file system fs is unchanged in the exception
case. Knowing ¬inFS fname fnm fs, this is proved by unfolding catfile string.

4 Interoperating with the CakeML translator

We prove an equivalence result between the theorems produced by the translator,
and a particular shape of CF specifications.

Called on a function succ of type int → int, the translator will produce
a CakeML program succ ml, and the following theorems. The theorems state
that: running the succ ml program results in an environment, succ env, in which
looking up the variable “succ” yields a value succ v, and finally that this value
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implements the function succ.

` run prog succ ml succ env
` lookup var “succ” succ env = Some succ v
` (INT −→ INT) succ succ v

We are here mostly interested in the last theorem, expressed using the “arrow”
predicate, “(a −→ b) f fv”, which relates the HOL function f to the closure fv .
It states that for any argument xv satisfying a x , evaluating the closure produces
a value u satisfying b (f x ). Formally:

(a −→ b) f fv ⇐⇒
∀ x xv refs.

a x xv ⇒
∃ env exp refs ′ u c.

do opapp [fv ; xv ] = Some (env ,exp) ∧
evaluate (empty state with <|clock := c; refs := refs|>) env [exp] =
(empty state with <|clock := 0; refs := refs @ refs ′|>,Rval [u]) ∧

b (f x ) u

This is reminiscent of the app basic predicate used in CF, and indeed we prove
that “arrow” is a special case of app basic.

The CF specifications we prove equivalent to “arrow” are of the form
{|emp|} f · x {|POSTv v . 〈P v〉|}, where P is some logical predicate of type
v → bool. A pure function does not raise exceptions, hence the post-condition
is false for exceptions. Both the pre- and post-condition assert emptiness of the
heap.

A function f satisfying such a spec can still be called on any heap, thanks
to the frame rule built into the CF framework. The specification simply means
that the function cannot assume anything about the heap, or access it. Less
obviously, this kind of specification allows the function to allocate heap objects
(references, arrays, ...) for internal use. This becomes apparent after unfolding
the definition of Hoare triple validity that underlies app basic (which we recall
below).

env ` {|H |} exp {|Q |} ⇐⇒
∀ st hi hk .

split (state to set p st) (hi ,hk )⇒
H hi ⇒
∃ r st ′ hf hg ck .

split3 (state to set p st ′) (hf ,hk ,hg) ∧ Q r hf ∧ . . .

The final heap “state to set p st ′” is split in three sub-heaps: hf , hk and hg. The
post-condition must be true on hf , and hk was present in the initial heap and is
unchanged. There remains hg, which represents heap objects that may have been
allocated by the function and now need to be garbage collected. Consequently,
even though such specifications require the function f to offer a pure interface, it
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is not necessarily pure itself: it can be implemented using imperative structures
and algorithms.

The exact equivalence theorem we prove is as follows:

` (a −→ b) f fv ⇐⇒ ∀ x xv . a x xv ⇒ {|emp|} fv · xv {|POSTv v . 〈b (f x ) v〉|}

The arrow-to-app basic direction is the easiest to prove. With the right au-
tomation, it allows programs certified using CF to use programs produced by the
translator, and automatically retrieve their specification. The app basic-to-arrow
direction is significantly trickier. It required changing the definition of “arrow”
to allow heap allocation (represented by refs ′ earlier), and subsequent updating
of the translator. Moreover, the proof itself involved careful reasoning about the
state of the FFI. This direction makes it possible to provide programs certified
using CF as drop-in replacements for translated functions.

5 Case study: a verified cat implementation

Our case study builds a simple model coupling a read-only file-system with one
standard output stream. The type of the read-only file-system is

RO_fs =
<| files : ((mlstring × byte list) list);

infds : ((num × mlstring × num) list) |>

The files and infds fields are association lists. The files field maps file names to
file contents. The infds field maps file descriptors (numbers) to pairs of file names
and offsets within that file. File names are of type mlstring; in CakeML, these
map to vectors of characters occupying contiguous blocks of memory. This model
supports multiple descriptors reading from a common file at different positions,
and is also subject to realistic problems such as the possibility of file descriptors
becoming stale.

The four file-system operations needed for our example are openFile, eof,
read1, and closeFD. At this initial stage, we can define the type and its operations
in a natural style, concerning ourselves only with the logical model, and not
needing to worry about its realisation in the CF framework. (One exception is
the use of association lists; it would be more natural to use finite maps, but we
must ultimately encode our values into the ffi type presented on page 15.)

Making a model of this sort visible within the CF framework then requires
us to cast the operations as messages being sent using single, fixed-size buffers
(a mutable array of bytes, to be precise). For example, when accessed from
CakeML, the read1 operation must begin by writing the file descriptor value
into such a buffer. The same buffer is then used to store the return value. If the
file descriptor passed to read1 is not valid, or if the file descriptor has come to
the end of file, the error-condition must be returned using the same buffer.

We choose to use a one-byte buffer in the case of read1, partly because it is
simple, but also because it naturally leads to realistic “misfeatures”: bad inputs
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cause a −1 return code, which must be returned “in-band”. To know whether
or not this is genuine, the client has to call the eof test first.

The final part of the process requires us to write CakeML wrappers that
make calls through the FFI. The wrapper code for read1, using the one-byte
buffer onechar, is presented in Figure 11.

fun read1 fd =
l e t va l eofp = eof fd i n

i f eofp then NONE

e l s e
l e t va l _ = Word8Array . update onechar 0 fd

va l _ = FFI "read1" onechar

va l c = Word8Array . sub onechar 0
i n

SOME c

end
end

Fig. 11: CakeML code implementing read1. For the purposes of simplicity this
does not catch the error possible when the argument fd is not valid; rather the
specification we use imposes “fd-validity” as a pre-condition. By using the eof
function, the code does allow for the successful return of any character, including
character 255 (−1).

We now have a piece of CakeML abstract syntax given the name read1, as well
as a logical function of the same name operating over values of type RO_fs. We
make the logical RO_fs values visible to the CF framework by lifting them into
the language of assertions over I/O-extended heaps, using the IO function defined
on page 16. The CATFS predicate is of type RO_fs → hprop. A proposition
CATFS fs asserts that the state of the external file-system is as given by the
logical value fs.

Our specification for read1 is given in Figure 12. When this, and the specifi-
cations for the other entry-points have been proved, the verification of cat1 and
then cat (see Figures 1 and 2) proceeds quite straightforwardly. In particular,
the low-level specifications ensure that the proofs are oblivious to the fact that
I/O through the FFI is involved; instead, they proceed just as if the state of the
file-system was a part of memory. The proof of cat1 is by induction on the length
of the file still to be read; that of cat by induction on the list of arguments.

6 Discussion of related work

The CakeML projects aims to build an extensive ecosystem of verification tools
around the CakeML programming language. By adapting CF techniques to the
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`WORD fdw fdv ∧ validFD (w2n fdw) fs ⇒
{|CATFS fs|}

read1 v · [fdv ]
{|POSTv coptv .
〈OPTION WORD (FDchar (w2n fdw) fs) coptv〉 ∗
CATFS (bumpFD (w2n fdw) fs)|}

Fig. 12: The specification of read1. The read1 v value is the closure defined by the
abstract-syntax for read1. The function FDchar returns the current character des-
ignated by the given file descriptor, if any; the function bumpFD increments the
position of the file descriptor within its file. At the ML level, file descriptors are
encoded as bytes, but the underlying model for file-system uses natural numbers.
This is why the logic of the specification coerces from one to the other with w2n.
This is also what causes the pre-condition in openFile’s specification (Figure 4)
requiring that not too many files be open already.

setting of CakeML, this paper has extended the toolset and, at the same time,
validated some of the pen-and-paper proofs of prior word on CF. Prior work on
CF and CakeML is discussed in Section 1.1 and 1.2.

In this section we discuss other verification projects that build ecosystems
of verification tools around and within theorem provers such as HOL4, Is-
abelle/HOL, Coq, Nqthm and ACL2.

In the Isabelle/HOL theorem prover, a substantial ecosystem of verification
technology has been developed around the Simpl framework by Schirmer [23],
which is an extensible framework for Hoare logic over imperative programs.
Simpl played a central role in the seL4 micro-kernel verification [14], where the
C code was verified using Simpl. Later, a tool called AutoCorres by Green-
away [12] was developed for automatically lifting C programs written in Simpl
into more-convenient-to-verify monadic functions in the logic. The AutoCorres
tool and Simpl were subsequently used in the recent proof-producing Cogent
compiler [19] for its translation validation step. The Cogent compiler compiles a
by-design restrictive functional language to C and produces a correctness theo-
rem in Isabelle/HOL for each compiler run.

The Isabelle Refinement Framework by Lammich [17,16] is a recent set of
tools for producing verified code using the Isabelle/HOL prover. In this work,
the Sepref tool can synthesise concrete code from high-level descriptions of imper-
ative algorithms and data structures. Lammich’s work takes a top-down path,
in contrast to CF and AutoCorres, and the final translation from code in Is-
abelle/HOL to code running outside the prover is not proved correct w.r.t. any
formal semantics of the target programming language.

In the context of Coq, the Bedrock project [9] lead by Chlipala has devel-
oped an impressive ecosystem around a separation-logic-inspired Hoare logic
for low-level code. Bedrock connects to FIAT [11], which is a set of tools for
performing refinement from high-level declarative specifications to concrete im-
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plementations. This technology has been applied to complicated examples such
as a web server, database applications and even file systems [8].

The Verified Software Toolchain (VST) [2] from Princeton is another sub-
stantial verification framework in Coq. VST defines a C-like language, provides
a separation logic on top of this C-like language and maps it into the Com-
pCert C compiler, with proof in Coq relating properties proved at the top to the
assembly that CompCert produces.

The CertiCoq project [1] also from Princeton aims to build a proof-producing
code extraction mechanism for Coq, which will essentially do for Coq what
CakeML’s translator and CakeML compiler already does for HOL.

The Nqthm theorem prover hosted a project in this area that was two or three
decades ahead of the field: the “CLI stack” project [3] developed a substantial
verification toolchain with a verification-friendly programming language sup-
ported by a verified compiler, which targetted a machine language for which the
project developed a verified hardware implementation. The logic of the Nqthm
prover is a pure first-order functional language but the input language of the
verified compiler is not functional.

The recent F* project [25] develops a new dependently-typed monadic lan-
guage with refinement types. One can use F*’s expressive types to verify pro-
grams written in F*. Users can have extra confidence in the results since the
typechecker for F* has been verified using Coq [24]. Programs developed in F*
can be extracted to OCaml for compilation and execution.

There are many other functional languages with type-systems that allow
verification using types. Ynot is one that has been re-implemented in Coq [10].

There are numerous verification ecosystem without connections to the above
mentioned theorem provers. Most of these other ecosystems only consider im-
perative programs. HALO is one such system that applies to functional pro-
grams [28]. HALO enables verification of contracts for Haskell programs and
uses first-order provers in its implementation.

7 Summary

In this paper, we have explained how to build a fully verified CF framework for
the entirety of the CakeML language. We have shown how to add support for
I/O and exceptions, as well as interoperability with the CakeML tool used for
bootstrapping the verified CakeML compiler.

At a higher level, one can read this paper as a validation that Charguéraud’s
original work on CF is flexible as well as extensible.
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