
A typed foreign function

interface for ML

Jeremy Yallop

26 November 2013

1 / 18

Itinerary

Background / using ctypes / inside ctypes

2 / 18

Itinerary

Background / using ctypes / inside ctypes

3 / 18

Foreign function interfaces

Function calls between (e.g.) ML and C

Calling system libraries or other C code from an ML program. Registering
ML functions as callbacks.

Different views of data

ML data is a tagged graph. C data is untagged and essentially flat.

Integration between runtimes

GC vs manual memory management. Possibly different calling conventions,

etc.

4 / 18

Foreign function interfaces

Function calls between (e.g.) ML and C
Calling system libraries or other C code from an ML program. Registering
ML functions as callbacks.

Different views of data

ML data is a tagged graph. C data is untagged and essentially flat.

Integration between runtimes

GC vs manual memory management. Possibly different calling conventions,

etc.

4 / 18

Foreign function interfaces

Function calls between (e.g.) ML and C
Calling system libraries or other C code from an ML program. Registering
ML functions as callbacks.

Different views of data
ML data is a tagged graph. C data is untagged and essentially flat.

Integration between runtimes

GC vs manual memory management. Possibly different calling conventions,

etc.

4 / 18

Foreign function interfaces

Function calls between (e.g.) ML and C
Calling system libraries or other C code from an ML program. Registering
ML functions as callbacks.

Different views of data
ML data is a tagged graph. C data is untagged and essentially flat.

Integration between runtimes
GC vs manual memory management. Possibly different calling conventions,

etc.

4 / 18

OCaml’s FFI

A single value representation

Values are immediates or pointers to blocks, distinguished by the low bits.

Macros for accessing OCaml values

Macros (Val int / Int val) for converting between C integers and tagged
integers. Macros and functions (caml alloc string / String val &c.) for
allocating/accessing blocks.

Macros for interacting with the GC

Macros (CAMLParam* / CAMLreturn) for registering/unregistering local

values with the runtime.

5 / 18

OCaml’s FFI

A single value representation
Values are immediates or pointers to blocks, distinguished by the low bits.

Macros for accessing OCaml values

Macros (Val int / Int val) for converting between C integers and tagged
integers. Macros and functions (caml alloc string / String val &c.) for
allocating/accessing blocks.

Macros for interacting with the GC

Macros (CAMLParam* / CAMLreturn) for registering/unregistering local

values with the runtime.

5 / 18

OCaml’s FFI

A single value representation
Values are immediates or pointers to blocks, distinguished by the low bits.

Macros for accessing OCaml values
Macros (Val int / Int val) for converting between C integers and tagged
integers. Macros and functions (caml alloc string / String val &c.) for
allocating/accessing blocks.

Macros for interacting with the GC

Macros (CAMLParam* / CAMLreturn) for registering/unregistering local

values with the runtime.

5 / 18

OCaml’s FFI

A single value representation
Values are immediates or pointers to blocks, distinguished by the low bits.

Macros for accessing OCaml values
Macros (Val int / Int val) for converting between C integers and tagged
integers. Macros and functions (caml alloc string / String val &c.) for
allocating/accessing blocks.

Macros for interacting with the GC
Macros (CAMLParam* / CAMLreturn) for registering/unregistering local

values with the runtime.

5 / 18

OCaml’s FFI: pitfalls

An example C stub

6 / 18

OCaml’s FFI: pitfalls

char *first line(size t max bytes, const char *filename)
{

char *buf = malloc(max bytes);
if (buf == NULL) return NULL;

FILE *fp = fopen(filename, "r");
if (fp != NULL) {

fgets(buf, max bytes, fp);
fclose(fp);

}
else { free(buf); buf = NULL; }

return buf;
}

C code
7 / 18

OCaml’s FFI: pitfalls

value first line(value max bytes, value filename)
{

char *buf = malloc(max bytes);
if (buf == NULL) return NULL;

FILE *fp = fopen(filename, "r");
if (fp != NULL) {

fgets(buf, max bytes, fp);
fclose(fp);

}
else { free(buf); buf = NULL; }

return buf;
}

Parameters/return values become value
7 / 18

OCaml’s FFI: pitfalls

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
char *buf = malloc(max bytes);
if (buf == NULL) return NULL;

FILE *fp = fopen(filename, "r");
if (fp != NULL) {

fgets(buf, max bytes, fp);
fclose(fp);

}
else { free(buf); buf = NULL; }

CAMLreturn(buf);
}

Add GC hooks for parameters
7 / 18

OCaml’s FFI: pitfalls

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(filename, "r");
if (fp != NULL) {

fgets(buf, max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Allocate the buffer in the OCaml heap

7 / 18

OCaml’s FFI: pitfalls

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
const char *c filename = String val(filename);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(c filename, "r");
if (fp != NULL) {

fgets(String val(buf), max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Extract string addresses to pass to C

7 / 18

OCaml’s FFI: pitfalls

external first line : string −> int −> string = "first_line"

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
const char *c filename = String val(filename);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(c filename, "r");
if (fp != NULL) {

fgets(String val(buf), max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Add an OCaml declaration
7 / 18

OCaml’s FFI: pitfalls

external first line : string −> int −> string = "first_line"

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
const char *c filename = String val(filename);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(c filename, "r");
if (fp != NULL) {

fgets(String val(buf), max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Compiles successfully!

7 / 18

OCaml’s FFI: pitfalls

external first line : string −> int −> string = "first_line"

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
const char *c filename = String val(filename);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(c filename, "r");
if (fp != NULL) {

fgets(String val(buf), max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Bug: parameters interchanged (crash!)

7 / 18

OCaml’s FFI: pitfalls

external first line : string −> int −> string = "first_line"

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
const char *c filename = String val(filename);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(c filename, "r");
if (fp != NULL) {

fgets(String val(buf), max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Bug: invalidated pointer (crash?)

7 / 18

OCaml’s FFI: pitfalls

external first line : string −> int −> string = "first_line"

value first line(value max bytes, value filename)
{

CAMLparam2(filename, max bytes);
const char *c filename = String val(filename);
CAMLlocal1(buf);
buf = caml alloc string(max bytes);

FILE *fp = fopen(c filename, "r");
if (fp != NULL) {

fgets(String val(buf), max bytes, fp);
fclose(fp);

}
else failwith("fopen failed");

CAMLreturn(buf);
}

Bug: missing conversion (misbehaviour)

7 / 18

Itinerary

Background / using ctypes / inside ctypes

8 / 18

Outline of the ctypes approach

OCaml, not C

Access C values from OCaml, not vice-versa. Why? abstraction, type
safety, automatic memory management,

Types, not values

Types are sufficient to determine the interface.

“What,” not “how”

Build a typed embedded DSL, separating construction from interpretation.

9 / 18

Outline of the ctypes approach

OCaml, not C
Access C values from OCaml, not vice-versa. Why? abstraction, type
safety, automatic memory management,

Types, not values

Types are sufficient to determine the interface.

“What,” not “how”

Build a typed embedded DSL, separating construction from interpretation.

9 / 18

Outline of the ctypes approach

OCaml, not C
Access C values from OCaml, not vice-versa. Why? abstraction, type
safety, automatic memory management,

Types, not values
Types are sufficient to determine the interface.

“What,” not “how”

Build a typed embedded DSL, separating construction from interpretation.

9 / 18

Outline of the ctypes approach

OCaml, not C
Access C values from OCaml, not vice-versa. Why? abstraction, type
safety, automatic memory management,

Types, not values
Types are sufficient to determine the interface.

“What,” not “how”
Build a typed embedded DSL, separating construction from interpretation.

9 / 18

Ctypes in action

[demo: hello, world]

10 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Ctypes in action

11 / 18

Embedded DSLs

Tailored to a specific domain

Parsing, database queries, music, financial contracts, graphics, &c.

Host language functions for building terms

Can also borrow host language binding constructs.

Host language types for typing terms

For example, use a subset of ML types to type SQL tables or C types.

Separate building terms from interpretation

The meaning of “declarative.” Allows multiple interpretations.

12 / 18

Embedded DSLs

Tailored to a specific domain
Parsing, database queries, music, financial contracts, graphics, &c.

Host language functions for building terms

Can also borrow host language binding constructs.

Host language types for typing terms

For example, use a subset of ML types to type SQL tables or C types.

Separate building terms from interpretation

The meaning of “declarative.” Allows multiple interpretations.

12 / 18

Embedded DSLs

Tailored to a specific domain
Parsing, database queries, music, financial contracts, graphics, &c.

Host language functions for building terms
Can also borrow host language binding constructs.

Host language types for typing terms

For example, use a subset of ML types to type SQL tables or C types.

Separate building terms from interpretation

The meaning of “declarative.” Allows multiple interpretations.

12 / 18

Embedded DSLs

Tailored to a specific domain
Parsing, database queries, music, financial contracts, graphics, &c.

Host language functions for building terms
Can also borrow host language binding constructs.

Host language types for typing terms
For example, use a subset of ML types to type SQL tables or C types.

Separate building terms from interpretation

The meaning of “declarative.” Allows multiple interpretations.

12 / 18

Embedded DSLs

Tailored to a specific domain
Parsing, database queries, music, financial contracts, graphics, &c.

Host language functions for building terms
Can also borrow host language binding constructs.

Host language types for typing terms
For example, use a subset of ML types to type SQL tables or C types.

Separate building terms from interpretation
The meaning of “declarative.” Allows multiple interpretations.

12 / 18

Embedded DSLs: multiple

interpretations in ctypes

Interpretation

Dynamic binding, dynamic call construction. Interactive, but with
interpretative overhead and some loss of safety.

Compilation

Generation of C stubs from ctypes values. Type safe and efficient but with
some complexity in the build system.

Multi-process implementation

Sandbox C libraries to contain memory corruption. Intriguing possibilities:
fork-based debugging, improved parallelism, . . .

etc.
13 / 18

Embedded DSLs: multiple

interpretations in ctypes

Interpretation
Dynamic binding, dynamic call construction. Interactive, but with
interpretative overhead and some loss of safety.

Compilation

Generation of C stubs from ctypes values. Type safe and efficient but with
some complexity in the build system.

Multi-process implementation

Sandbox C libraries to contain memory corruption. Intriguing possibilities:
fork-based debugging, improved parallelism, . . .

etc.
13 / 18

Embedded DSLs: multiple

interpretations in ctypes

Interpretation
Dynamic binding, dynamic call construction. Interactive, but with
interpretative overhead and some loss of safety.

Compilation
Generation of C stubs from ctypes values. Type safe and efficient but with
some complexity in the build system.

Multi-process implementation

Sandbox C libraries to contain memory corruption. Intriguing possibilities:
fork-based debugging, improved parallelism, . . .

etc.
13 / 18

Embedded DSLs: multiple

interpretations in ctypes

Interpretation
Dynamic binding, dynamic call construction. Interactive, but with
interpretative overhead and some loss of safety.

Compilation
Generation of C stubs from ctypes values. Type safe and efficient but with
some complexity in the build system.

Multi-process implementation
Sandbox C libraries to contain memory corruption. Intriguing possibilities:
fork-based debugging, improved parallelism, . . .

etc.
13 / 18

ctypes back in action

[demo: multi-process implementation]

14 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

ctypes back in action

15 / 18

Itinerary

Background / using ctypes / inside ctypes

16 / 18

Levels of type safety

algebraic data types
unsafe interface, unsafe implementation.

phantom types
safe interface, unsafe implementation.

generalized algebraic data types
safe interface, safe (and efficient!) implementation.

17 / 18

Other Embedded DSLs

parsing (parsec)

SQL

financial contracts

music

graphics

etc.

18 / 18

