
A Trustworthy Monadic Formalization of the
ARMv7 Instruction Set Architecture

Anthony Fox and Magnus O. Myreen

Computer Laboratory, University of Cambridge, UK

Abstract. This paper presents a new HOL4 formalization of the cur-
rent ARM instruction set architecture, ARMv7. This is a modern RISC
architecture with many advanced features. The formalization is detailed
and extensive. Considerable tool support has been developed, with the
goal of making the model accessible and easy to work with. The model
and supporting tools are publicly available – we wish to encourage others
to make use of this resource. This paper explains our monadic specifica-
tion approach and gives some details of the endeavours that have been
made to ensure that the sizeable model is valid and trustworthy. A novel
and efficient testing approach has been developed, based on automated
forward proof and communication with ARM development boards.

1 Introduction

Instruction set architectures (ISAs) provide a precise interface between hard-
ware (microprocessors) and software (high-level code). Formal models of instruc-
tion sets are pivotal when verifying computer micro-architectures and compilers.
There are also areas where it is appropriate to reason directly about low-level
machine code, e.g. in verifying operating systems, embedded code and device
drivers. Detailed architecture models have also been used in formalizing multi-
processor memory models, see [15].

In the past, academic work has frequently examined the pedagogical DLX
architecture, see [6]. When compared to commercial architectures, DLX is rela-
tively uncomplicated – being a simplified version of the MIPS RISC architecture.
Consequently, it is rarely cumbersome to work with the entire DLX instruction
set. More recently there has been a move to modelling, and working with, com-
mercial instruction sets (possibly in a reduced form). This has been motivated
by a desire to carry out demonstrably realistic case studies, showing that various
techniques scale and are not purely “academic” in nature. Common commercial
architectures include: IA-32, x86-64, PowerPC, Sparc and ARM. The ARM
architecture is ubiquitous in low-powered (mobile and embedded) computing
devices – the latest version of the architecture, dubbed ARMv7, is implemented
by, for example, the Cortex-A8 processor.

There are many challenges when working with full-blown ISAs, these in-
clude: (i) official reference manuals are large, stretching to many hundreds of
pages – one can easily overlook subtle details or become bogged down with “un-
interesting” background information; (ii) official descriptions are semi-formal

(ambiguous); (iii) many details are implementation dependent or unpredictable;
(iv) architectures frequently have multiple generations, versions and optional ex-
tensions; and (v) large formalizations can stretch the capabilities of interactive
theorem provers. Most importantly: how can one be sure that the formalization
does not contain bugs? The scale and complexity is such that it is not possi-
ble to eradicate all errors by simply eyeballing the specification or examining
a few instructions. This paper discusses our experiences with constructing and
validating a complete model of the ARMv7 architecture using the HOL4 proof
system [16].

2 Approach

Some key aspects of the work presented here are:

– The ARM instruction set architecture has been modelled in HOL using a
monadic style. This approach has a number of advantages, which are dis-
cussed in Section 3.

– The model is extensive and detailed – it covers all architecture versions cur-
rently supported by ARM, including full support for Thumb-2 instructions.1

– A collection of tools have been built around the model, making it accessible
and easy to work with. This includes an assembler and disassembler, both
of which are implemented in Standard ML. There is also a tool for auto-
matically extracting the semantics of a single instruction from the model:
this is implemented through evaluation (forward proof) and is discussed in
Section 4.

– A distinction is made between entities that are defined or derived inside of
the HOL logic and those that reside outside – this is illustrated in Figure 1.
It is important that everything defined inside of the logic is valid. On the
other hand, although it is advantageous that the other tools (e.g. the parser
and encoder) are bug free, these are not fundamentally relied upon in formal
verification work.

– The model operates at the machine code level, as opposed to a more abstract
assembly code level. In particular, the model does not provide assembly
level “pseudo instructions” and instruction decoding is explicitly modelled
inside the logic. This means that the the model can be directly validated
by comparing results against the behaviour of hardware employing ARM
processors – this is discussed in Section 5.

Through the use of extensive validation, trust in the model is progressively es-
tablished. An efficient testing framework has been developed, which is based on
a HOL session communicating with an ARM development board (via a serial
port). This set-up is required because most PCs are based on x86 processors and
cannot natively run ARM code. The results from this testing are discussed in
Section 5.3. Due to space constraints, precise details of the ARM architecture
are not provided here, readers are instead referred to [4] and [11].
1 It does not cover the ARMv7-M profile (which has a slightly different programmer’s

model) or the ThumbEE, Jazelle, VFP and Advanced SIMD extensions.

Assembly Code
(ML string or quotation)

Machine Code
(HOL n-bit word)

Abstract Syntax
(HOL instruction type)

Machine Code
(Hexadecimal string)

Next Step
Theorem

(HOL theorem)

disassemble

encode

decode next state

parse

Outside HOL Logic

Abstract Syntax
(HOL terms)

Evaluation

validation

code verificationInside HOL Logic

Fig. 1. Overall structure of the formalization.

3 Monadic Specification

The HOL4 system provides built-in support for defining recursive, total functions
(see [17]). Consequently, formal specifications can be written in a functional
programming style using syntax roughly similar to that of ML. For example, in
the HOL4 model of the ARMv4 architecture (see [3]), a typical definition is of
the following form:

f(v1, . . . , vm) = let x1 = g1(. . .) in
. . .

let xn = gn(. . .) in
(w1, . . . , wm)

If f defines the semantics of a machine code instruction then the vector v would
represent the components of the programmer’s model state space (for example,
machine registers) and w specifies the next state. The variables xi are intermedi-
ate computations; typically the result of accessing, updating and manipulating
state components. There are a few problems with this particular style of speci-
fication:

– Explicitly naming state component (splitting the state into a vector) can
make it harder to make global changes to sizeable specifications, e.g. adding,
removing or changing the type of state components.

– The semantics is rigidly fixed to that of a state transformer. In particular,
it is not possible to reason about the order of intermediate computations,
observing whether or not they were performed sequentially or in parallel.

– For those more familiar with imperative code, the specification is not espe-
cially readable.

– It is not obvious how to handle memory I/O, non-determinism or “error
states”.

All of these factors motivate the use of a monadic programming style (see [18]),
where computations themselves are represented with an abstract data type.

Let M represent a monad type constructor. The two fundamental monad
operations are return and bind, represented by:

return : α→ α M and �= : α M→ (α→ β M)→ β M

respectively. The return operation gives a value to a computation. The bind
operation composes computations: it takes the result of one computation and
passes it on to another. The type variables α and β represent the types for
working values in a computation: these roughly correspond with the variables and
arguments of procedures and functions in an imperative language. The monad
type constructor M, and associated primitive operations, can be defined in any
number of ways, implementing various underlying computational models – this
can loosely correspond with defining a semantics (and run-time environment)
for a given programming language.

In addition to the two primitive monad operations, our specifications also
makes use of a parallel operation:

9 : α M→ β M→ (α× β) M .

This performs two operations, but without imposing an order of evaluation.

3.1 Sequential Monad

It is possible to define monads in HOL without considering concrete implemen-
tations: one could, for example, provide an axiomatic formalization. However,
there are advantages to being able to actually carry out computations with the
model (see Section 4). This section presents a sequential monad – this has formed
the primary basis for working with the ARM specification. The monad provides
a simple operational semantics in a shallow embedding style – this is suited
to evaluation and code verification with a Hoare style logic. The overall HOL
specification is split into two parts: the monad specification and the instruction
set specification. This means that the instruction set specification part can be
interpreted by any other monad with the same interface.

The type constructor for the sequential monad is as follows:

α Mseq ≡ state→ (α× state) MaybeError

where state is the programmer’s model state space and

β MaybeError = Okay of β | Error of string .

This is essentially a state-transformer monad with error states. The monad type
can be viewed as a partial map, representing a state transition with a return
value. When the map is “undefined”, the result is a tagged string – this can be
used to identify where an error occurred.

The basic monad operations are defined as follows:

return (v) = λs. Okay (v, s) ,

(f �= g) = λs.

[
case f(s) of Error e→ Error e

| Okay (v, s′)→ g(v)(s′)

]

and

(f 9 g) = (f �= (λv1. g �= (λv2. return (v1, v2)))) .

Note that errors are terminal (no further next state computation is performed)
and the parallel operation simply performs computations in a left to right order.

Thanks to Michael Norrish, it is possible to use Haskell’s do-notation when
parsing and printing monadic terms in HOL4. For example, the parallel operation
above is more readable when written as follows:

(f 9 g) = do v1 ← f ; v2 ← g; return (v1, v2) od .

In addition to these operations, there is a collection of operations for accessing
(reading an writing) state components. For example, registers are accessed with:

read reg : iid→ bool[4]→ bool[32] M and
write reg : iid→ bool[4]→ bool[32]→ unit M

where bool[4] is a 4-bit register index (for registers r0–r15); and bool[32] is a 32-
bit register value. The type iid is used to identify threads and is of little interest
here.2 The definitions for these operations derive from pseudo-code contained
within the official ARM programmer’s model description (see [11]).

3.2 Instruction Set Specification

Having defined the underlying monad, one can then define the semantics of
instructions. The following operation runs one instruction:

arm instr : iid→ encoding × bool[4]× instruction→ unit M .

This operation takes a triple (enc, cond , ast), which represents the result of fetch-
ing and decoding an instruction. Instructions are conditionally run: for example,
the instruction addcs r1,r2 will have a cond value of 2 and it will be a no-op
when the carry flag is not set. The enc field indicates the instruction encoding,
e.g. 16-bit Thumb, 32-bit Thumb or 32-bit ARM. The behaviour of instructions
is specified with various sub-operations, these are selected by pattern matching
over the abstract syntax term (ast).

2 It allows register and memory accesses to be tagged with the identity of the thread
that made them.

As an example, consider the bit-field-insert instruction (bfi).3 This is speci-
fied on page A8-49 of the ARM reference [11] with the following pseudo code:

Instruction Details

ARM DDI 0406B Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. A8-49

Assembler syntax

BFI<c><q> <Rd>, <Rn>, #<lsb>, #<width>

where:

<c><q> See Standard assembler syntax fields on page A8-7.

<Rd> The destination register.

<Rn> The source register.

<lsb> The least significant destination bit, in the range 0 to 31. This determines the required value
of lsbit.

<width> The number of bits to be copied, in the range 1 to 32-<lsb>. The required value of msbit is
<lsb>+<width>-1.

Operation

if ConditionPassed() then
 EncodingSpecificOperations();
 if msbit >= lsbit then
 R[d]<msbit:lsbit> = R[n]<(msbit-lsbit):0>;
 // Other bits of R[d] are unchanged
 else
 UNPREDICTABLE;

Exceptions

None.

The “encoding specific operations” part assigns values to components based
on the instruction encoding. For example, with a 32-bit Thumb encoding the
following applies from page A8-48:

Instruction Details

A8-48 Copyright © 1996-1998, 2000, 2004-2008 ARM Limited. All rights reserved. ARM DDI 0406B

A8.6.18 BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at
any position in the destination register.

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(imm3:imm2);
if BadReg(d) || n == 13 then UNPREDICTABLE;

if Rn == ‘1111’ then SEE BFC;
d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); lsbit = UInt(lsb);
if d == 15 then UNPREDICTABLE;

Encoding T1 ARMv6T2, ARMv7
BFI<c> <Rd>,<Rn>,#<lsb>,#<width>

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 (0) 1 1 0 1 1 0 Rn 0 imm3 Rd imm2 (0) msb

Encoding A1 ARMv6T2, ARMv7
BFI<c> <Rd>,<Rn>,#<lsb>,#<width>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 1 1 1 1 0 msb Rd 1sb 0 0 1 Rn

The description above additionally provides the concrete syntax and encoding
for this instruction, together with a list of architecture versions over which the
instruction is defined. The corresponding HOL4 specification for bfi is:

` bit_field_clear_insert_instr ii enc (Bit_Field_Clear_Insert msb d lsb n) =
instruction ii "bit_field_clear_insert"

(thumb2_support CROSS U(:ARMextensions → bool))
(λ v.

(if enc = Encoding_Thumb2 then
((d = 13w) ∨ (d = 15w)) ∨ (n = 13w)

else
d = 15w) ∨ w2n msb < w2n lsb)

do
rd ← read_reg ii d |||
rn ← if n = 15w then return 0w else read_reg ii n;
increment_pc ii enc |||
write_reg ii d (bit_field_insert (w2n msb) (w2n lsb) rn rd);
return ()

od

This code simultaneously specifies the closely related bit-field-clear (bfc) instruc-
tion. Grouping related instructions together greatly reduces the size specifica-
tion, which in turn limits the scope for introducing errors. The helper function
instruction takes: the thread identifier; a string naming the instruction class
(this is used to tag error states); a set representing the architectures and exten-
sions over which the instruction is defined; a predicate that determines whether
the instruction is unpredictable for a particular instruction set version; and an
operation that specifies the behaviour when the instruction is defined and pre-
dictable. Together with the decoding function, this covers all aspects of the
official ARM pseudo code specification.
3 This replaces a bit range in a destination register with bits from a source register,

which is implemented in HOL4 with the bit vector operation bit_field_insert.

Although the HOL4 specification is far from being aesthetically perfect, it is
at least fairly compact and reasonably readable. More importantly, it is precise
and formal. In fact, in order to be of use, the HOL4 specification is in some ways
over-precise, since it specifies the order of resource accesses, as well as specifying
when the program counter is updated. The ARM reference explicitly states that
their pseudo code does not cover such low-level aspects of the behaviour (see
page 4 of Appendix I in [11]). However, cases in which such design choices would
become visible are typically designated (by ARM) as being unpredictable, so
this over-specification should not be a problem at this level of abstraction.

4 Single Step Theorems: Evaluation

For the purposes of code verification and model validation, we require theorems
of the form:

` ∀s. P(s)⇒ (NEXT(s) = s′) (1)

where the predicate P specifies a context (e.g. instruction to be run); and the
function NEXT : state → state option defines the next state behaviour for the
architecture with respect to the sequential monad. Such single step theorems are
needed, for example, to generate Hoare triples for every op-code encountered in
the machine code of a program being verified. How can such theorems be derived
“on-demand” from the monadic specification? First it is necessary to define a
monad operation next : unit M, which calls arm_instr using the result of fetching
and decoding an instruction.4 The following definition is then possible:

NEXT(s) =

[
case next(s) of Error → NONE

| Okay ((), s′)→ SOME s′)

]
.

It is possible to derive Equation 1 by directly expanding function definitions
using the HOL4 simplifier, which supports contextual rewriting.5 Unfortunately,
the simplifier is fairly slow and this is a significant problem when working with
such a large model. There is a much faster call-by-value rewrite engine (EVAL), but
this does not directly support contextual rewriting. To get around this limitation,
the following theorem (which is proved once and for all) is used:

` ∀s x h g P.
(∀i. P (i)⇒ (g(i) = i)) ∧ (2)
(next(g(s)) = Okay ((), x)) ∧ (3)
(P (s)⇒ (h(g(s)) = x)) (4)
⇒

(P (s)⇒ (NEXT(s) = SOME (h(s)))) . (5)

A tool for deriving single step theorems “on-the-fly” works in stages as follows:
4 For simplicity sake, non-pipelined operation is assumed here.
5 Some infrastructure is needed to intelligently expand the context, i.e. generate the

predicate P.

– The user supplies an instruction op-code, together with some other context,
e.g. the current architecture version, processor mode and instruction set
(Thumb or ARM).

– The tool examines the op-code (decodes it) and constructs a custom context
predicate P and corresponding function g. Equation 2 is proved to hold. The
context predicate and function must ensure that the supplied instruction
runs successfully. Amongst other things, this includes avoiding error states,
e.g. ensuring that memory addresses are suitably aligned and things like
division by zero do not occur. This stage can be completed fairly quickly.

– The next state operation is evaluated for the initial “context” state g(s),
giving Equation 3. The rewriter (EVAL) is provided with many lemmas to
ensure that the evaluation proceeds properly, i.e. making sure that error
states are actually avoided. It is also necessary to restrict evaluation from
proceeding too far, e.g. expanding with the definition of bit vector operations.

– The terms representing the states g(s) and x are compared and a function
h is constructed. Equation 4 is proved to hold.

– The consequent, Equation 5, is derived by modus ponens using the general
theorem (above) and the three generated theorems (Equations 2–3). This is
a simple application of the MATCH_MP rule in HOL4. Finally, simplifications
are applied and the resulting single step theorem is returned to the user.

Most of the effort with this approach went into automating the construction
of P and g, and proving appropriate evaluation lemmas. For example, consider
the instruction eor pc,r1,r2,asr #2.6 To be predictable in ARMv7, we require
a context P containing (r1 ⊕ (r2 � 2))[1 : 0] 6= 2. This is achieved by defining g
such that

r1 7→ if (r1 ⊕ (r2 � 2))[1 : 0] 6= 2 then r1 else r2 � 2

and, during the next state evaluation, using the general lemma

` ∀x y. ((if (x⊕ y)[1 : 0] 6= 2 then x else y)⊕ y)[1 : 0] 6= 2

which holds because y ⊕ y = 0 and 0[1 : 0] 6= 2. Thus, by applying function
g, we successfully satisfy P and avoid the error case – the evaluation proceeds
automatically as required. Covering all such cases, over all instructions and archi-
tecture versions, was an arduous undertaking. However, the resulting instruction
evaluator is relatively fast (see below) and the internal complexities are invisible
to the user.

The final simplification stage provides a canonical form for state accesses
and updates. For example, registers are read and written using the following
functions:

ARM READ REG : bool[4]→ state→ bool[32] and
ARM WRITE REG : bool[4]→ bool[32]→ state→ state .

6 In ARMv7 this instruction performs a branch with exchange to the target address
r1 ⊕ (r2 � 2), where ⊕ is exclusive-or and � is signed right shift. The “exchange”
part relates to switching between Thumb and ARM code. The behaviour is different
for ARMv6 and different again for all earlier versions – the tool is aware of this.

The theorem below is derived from the single step theorem for 32-bit Thumb
op-code F362 01C7 (bfi r1,r2,#3,#5):

` Abbrev (pc = ARM_READ_REG 15w state) ∧ Abbrev (rd = ARM_READ_REG 1w state) ∧
Abbrev (rn = ARM_READ_REG 2w state) ⇒
(ARM_ARCH state = ARMv7_A) ∧ ... ∧ aligned (pc,2) ∧
(ARM_READ_MEM (pc + 3w) state = 1w) ∧ (ARM_READ_MEM (pc + 2w) state = 199w) ∧
(ARM_READ_MEM (pc + 1w) state = 243w) ∧ (ARM_READ_MEM pc state = 98w) ⇒
(ARM_NEXT state = SOME

(ARM_WRITE_MEM_READ (pc + 3w) (ARM_WRITE_MEM_READ (pc + 2w)
(ARM_WRITE_MEM_READ (pc + 1w) (ARM_WRITE_MEM_READ pc

(ARM_WRITE_REG 1w (bit_field_insert 7 3 rn rd)

The first two lines show some abbreviations – these have been added here to
aid readability. Note that these theorems are not really designed for human con-
sumption – instead, they provide raw input to other automated tools. Observe
that memory accesses (from fetching the instruction) have been recorded with
ARM_WRITE_MEM_READ. This example took around 0.9 s to run,7 which is approxi-
mately the same time that it takes to perform full ground-term evaluation.

5 Validation

Our ARM model formalizes a substantial part of the 2000-page ARM reference
manual. As a result, the specification is very large and detailed. The ARM model
is sufficiently complex that mistakes are very hard to avoid and very hard to
discover. How do we know that our model correctly describes the execution of
ARM instructions on ARM processors? Furthermore, if there are mistakes in the
model, how do we find them?

Our solution is a validation infrastructure that allows us to compare the ex-
ecution of ARM instructions in our model with their execution on real ARM
hardware. This infrastructure consists of a mixture of ML, C and custom assem-
bly programs, together with the hardware used to run machine code on ARM
processors. The following ARM development boards have been used:

Olimex LPC-2129P board, with a comparatively old ARM7TDMI-S core;

Atmel SAM3U-EK board, with a “lightweight” ARM Cortex-M3 core; and

Texas Instruments BeagleBoard, with a “heavyweight” ARM Cortex-A8 core.

The majority of the testing has been performed on the BeagleBoard, which
supports the latest architecture version, namely ARMv7-A.

5.1 Random Testing

Our principle validation approach is based on generating large test suites of
randomly generated instructions. The generator is designed to provide broad
coverage over the ARM and Thumb instruction spaces. The number of instruc-
tion instances is sufficiently large that it is not feasible to manually achieve such
7 For HOL4 (experimental kernel) under Poly/ML with a Pentium 4, 3.0 GHz and

2 GB of RAM.

wide coverage in a reliable fashion. However, in some cases a custom test suit
is used, which may include manually selected op-codes. This helps speed up the
testing process when examining op-codes that are currently deemed “of interest”
or that require “special treatment”.

Although substantial software engineering effort went into writing this vali-
dation infrastructure, its top-level functionality is conceptually simple:

Step 1: Instruction selection and evaluation.
Instructions are generated by randomly choosing valid abstract syntax terms,
representing instructions of a given kind, e.g. data-processing, branch, load,
store or other. These terms are then encoded into 16-bit or 32-bit instruction
op-codes and the ARM model is evaluated for each concrete instruction
encoding, i.e. we calculate the step theorem described in Section 4. We ignore
instructions for which the model returns “unpredictable”.

Step 2: Installing test code onto an ARM board.
With some boards, installation of new programs requires physically removing
and inserting jumpers on the boards. (The reason for this is that the boards
are implemented as a Harvard architecture, i.e. programs cannot alter them-
selves or install new code.) Consequently, human interaction is sometimes
required, and instructions are generated and tested in batches.

Step 3: Random input generation.
Once the boards have the correct batch of tests installed, test cases can be
sent across the serial cable. We generate random inputs for all registers that
are, according to the model, relevant for this instruction. In order to increase
the chances of hitting corner cases such as “result equals zero”, each input
is chosen, by a fixed probability, to be one of the following constants:

0 1 2 01010101 00FF00FF FF00FF00 FFFFFFFE FFFFFFFF

otherwise input is chosen uniformly from the set of 32-bit numbers.

Step 4: Sending input via serial cable, waiting for reply.
Input is sent to the boards as strings, e.g. the following echo command
will tell the board to test instruction 1917F303 on inputs 20000000 FF00FF00

9E466F33, if the board is listening to serial port ttyS0:
echo "1917F303 20000000 FF00FF00 9E466F33" > /dev/ttyS0

(To save space, this example omits showing all other register values.) The
tester program on the board: reads this input; finds the right instruction to
execute; sets up the state; executes the instruction; saves the state and sends
back the following output, which can be read from ML as a normal text file
at location /dev/ttyS0:

instruction: 1917F303

input: 20000000 FF00FF00 9E466F33

output: 28000000 FF00FF00 FF800000

Programming the board software was by far the hardest part of the validation
effort.

Step 5: Validating results against the model.

Once the board has responded to the input, the instruction’s step theorem
is instantiated and evaluated using the concrete values for the input line (as
shown above). If the test results disagree with the model then a failure is
reported in a log file, e.g. the following log entry records a genuine error in
the first revision of our ARM model. Here the values of the flag register cpsr
and register r9 differ from their expected values.

FAIL: 1917F303 ARCH ARMv7-M THUMB ssat r9,#24,r3,lsl #4

resource: cpsr r3 r9

input: 20000000 FF00FF00 9E466F33

board.out: 28000000 FF00FF00 FF800000

model.out: 20000000 FF00FF00 00800000

diff: ^^^^^^^^ ^^^^^^^^

The cause of this error was a minor misinterpretation of the ARM manual.

Step 6: Repeat from Step 3.

By looping through Steps 3–6, we get through five tests per second on av-
erage. This speed is achieved by only once evaluating the full ARM model
symbolically for each instruction (Step 1) and then in the test loop (Steps
3–6) evaluating only fully instantiated terms, which is relatively fast in HOL.
The overall performance is limited by communication speeds.

5.2 Other Means of Gaining Assurance

There are other means of gaining assurance that the model is correct. For exam-
ple, we gain some assurance that the model cannot be completely wrong from:

– Observing that code verified against this model (see [13]) seems to behave
as expected when executed on real hardware.

– Running the model over ARM code that calculates a non-trivial known func-
tion, e.g. MD5. For example, a reference C implementation of MD5 (see [14])
was cross-compiled to ARM machine code using GCC. This was then run on
an SML version of the HOL model, which was generated using Konrad Slind’s
EmitML tool. This approach sacrifices trust (using the LCF approach) for
performance – running a few thousand ARM instructions per second.

However, both of these approaches are inferior to the testing described above,
since these approaches have smaller coverage of the instruction space and make
finding the source of erroneous output very complicated.

5.3 Test Results

Comparing the execution of instructions on hardware to evaluations of the ARM
model has been a successful method for both quickly finding bugs in the model

and as a means of gaining evidence that the HOL definitions are, if not com-
pletely accurate, very close to exactly right. At the time of writing the test-
ing coverage is good but not yet complete. Progress and tests are recorded
at www.cl.cam.ac.uk/~mom22/arm-tests. This should allow others to benefit
from, and independently assess, this work.

The following bugs were found using the approach described in Section 5.1.

1. Bit-field insert (BFI): the following update should occur
Rd<msb:lsb> ← Rn<(msb-lsb):0>

but instead the following was occurring
Rd<msb:lsb> ← Rn<msb:lsb> .

2. Signed saturates (SSAT and SSAT16): there was a missing application of a
sign-extension function.

3. 16-bit signed saturate (again) and an assortment of signed multiples (SSAT16,
SMLA<x><y>, SMUL<x><y>, SMLAW<x><y>, SMULW<x><y> and SMLAL<x><y>): sign ex-
tension was not working properly because the bit vector operation word_bits

was being used instead of word_extract.
4. The 32-bit Thumb versions of load signed half-word and load signed byte

(LDRSH and LDRSB): these were incorrectly decoded (flag values were being
extracted from the wrong bit position).

In each of the cases listed above there was a clear discrepancy between the
“real” register output values and those obtained through evaluating the model.
In addition to these bugs it also became clear that the 32-bit Thumb register shift
instructions (LSR, ASR, LSL and ROR) were not being tested. This was because the
model was incorrectly identifying them as being unpredictable. It later transpired
that there was also a bug in decoding these instruction.8

Finally, a bug was found through the MD5 example mentioned in Section 5.2.
The condition test was wrong for the greater-than (GT) and less-than or equal
(LE) conditions: the carry flag (C) was being used instead of the zero flag (Z).9

As an unforeseen consequence of this project, it has has been possible for us
to identify and report bugs in the GNU assembler (gas). These mostly concern
Thumb-2 support in versions 2.19 and 2.20. That is to say, there were errors in
the binary encoding of SEV.W, PKHTB, QADD, QDADD, QSUB and QDSUB. The reported
bugs are documented at sourceware.org/bugzilla/ under bug numbers 10168,
10169, 10186 and 11013.

6 Restrictions

There are some limitations to our approach. We have not found a clean way
to simultaneously consider multiple monadic interpretations of the specification
in HOL4. This has not been a problem for our work, where we focus on the
sequential semantics, but we speculate that some kind of module system (such
as Locales in Isabelle or Sections in Coq) could be helpful here. The testing
framework has proved to be very successful, however, note that:
8 A bit vector extract was off by one position.
9 This bug was fixed before the random testing covered conditional instructions.

– Store instructions require special treatment.
– Care must be taken with instructions that access or update the program

counter or stack pointer (registers fifteen or thirteen). The random instruc-
tion generator normally avoids these instructions, since most instances are
unpredictable. The predictable cases must be tested separately but it is nec-
essary to address the problem of providing a mechanism for safely branching
when running tests.

– If something does go wrong (e.g. an op-code is unexpectedly undefined or is
a branch) then it can be tricky to recover and work out what has happened.
A “hang” must be treated as a possible fail case.

– It is hard to be confident that the coverage is exactly right for each supported
architecture version. That is to say, one cannot be totally sure that unpre-
dictable and undefined instruction instances have been properly identified.
Testing has not been carried out on ARMv5 or ARMv6 boards. Further-
more, the testing automatically filters out all instructions that the model
says are unpredictable and some of these cases are not easy to spot in the
ARM reference [11]. Omissions can be spotted by examining the table of
results, but this process is not foolproof.

– It is not possible to test instruction instances that need to be run in privileged
modes (e.g. supervisor mode) or that change the current processor mode.
This affects the testing of mrs, msr, cps, bkpt, rfe, svc and smc instructions.
This also covers hardware exceptions – interrupts, aborts and resets.

– One cannot fully test implementation dependent or system features. This
includes semaphore instructions, such as ldrex and clrex (clear-exclusive),
and hint instructions, such as wfe, wfi (wait for interrupt), pld (pre-load
data) and dmb (data memory barrier). In some cases it is possible to simply
observe whether or not these instruction behave like no-op instructions.

It is possible that many of these shortcomings could be overcome by using the
JTAG interface on the development boards, instead of using the serial port.
The JTAG interface is specifically designed for carrying out debugging with
embedded processors. However, this would require more specialist equipment
and know-how. We believe that the testing that has been completed to date
provides an excellent basis for establishing trust in the model.

7 Related Work

This section discusses related work in formalizing various commercial instruction
set architectures using interactive theorem provers, i.e. in ACL2, Coq, Isabelle
and HOL4. There is much work that is indirectly related, but here we exclude
non-commercial architectures (e.g. DLX) and informal or semi-formal ISA mod-
els (e.g. in C, System Verilog, Haskell and so forth). It is worth noting that there
have been significant efforts made in testing large formal models in other areas,
e.g. network protocols, see [2]. Work in the area of commercial ISAs includes the
following.

ARM. The ARM specification presented here has its origins in work on verifying
the ARM6 processor to the RTL level, see [3]. The specification of the architec-
ture (then version 3) has been almost completely rewritten in the process of
upgrading to a monadic specification for architecture versions 4–7. Neverthe-
less, the experience gained from that project was invaluable and it provided an
excellent point of reference.

Processor implementations of the modern architecture versions are propri-
etary and so we are unable to prove our specification correct with respect to
RTL level models. Instead we have validated the model through extensive test-
ing against modern ARM hardware.

ARM/C. The L4 verified project [8] has produced a formally verified micro-
kernel running on ARMv6. However, the model stays at and above the C level
and only describes how ARM specific details are seen through C code (e.g.
details of interrupts). They assume correctness of C compilers and assume the
correctness of in-lined ARM assembly, which constitutes approximately 7% of
the microkernel’s implementation. Their low-level functional specification of the
C code uses monads to make it look similar to the original C.

x86. Our work on testing the model against real hardware was inspired by
similar work by Susmit et al. [15] on validation of an operational semantics for
x86 machine code. We achieved higher throughput of tests by structuring our
test framework differently: we evaluated the ARM model once for each concrete
instruction instance and reuse the resulting theorem for multiple test of the same
instruction, while the x86 work re-evaluated the x86 model for each test and that
work did not make use of development boards.

An extensive formal model of the x86 instruction set is being developed by
Hunt in conjunction with work on specifying and verifying the media unit, i.e.
a unit which performs floating point arithmetic, of a Centaur Technology’s x86
processor [7]. As part of this work, Hunt developed the E hardware specification
language which has some monad-like features – in so far as allowing the model to
support multiple interpretations. Unfortunately this high-fidelity model of the
x86 instruction set architecture is not publicly available.

AAMP7G. Another commercial formal specification has been developed by
Rockwell Collins. They have an executable ACL2 model of the Rockwell Collins
AAMP7G microprocessor at the instruction-set level [5]. Unfortunately, as with
Hunt’s x86 model, this model is also not in the public domain.

PowerPC. The Compcert project [10] has produced, and proved the correct-
ness of, an optimising C compiler that targets PowerPC. As part of this work
they formalized a subset of PowerPC assembly. Their model is smaller in scope
than our ARM model (but sufficient for a compiler) and does not include an
instruction decoder, thus their model is an assembly level model. They also have
a more abstract view of memory which is expressed in terms of memory blocks,
in contrast to our very concrete mapping from 32-bit addresses to 8-bit data.

JVM. A succession of increasingly sophisticated models of the JVM bytecode
have been developed in ACL2 [12], the most complicated of which includes

threaded behaviour and untyped execution. Models of JVM have also been de-
veloped in Isabelle/HOL [9] and Coq [1].

8 Summary

The ARMv7 architecture reference [11] is a sizeable document (stretching to over
two thousand pages in length) and it covers all aspects of the architecture. This
ARM reference has been used to construct a formal instruction set model in HOL
using a monadic specification style. In total the specification comes to around
6500 lines of HOL4 script. The model covers many thousands of instruction
instances, which perform non-trivial arithmetic and logical bit vector operations.
Instruction decoding is modelled explicitly – mapping ARM and Thumb machine
code to an AST data type.

Two important questions arise. How to make the model accessible and easy
to use in formal verification projects. How to ensure that the model is trustwor-
thy and as free from bugs as possible. To address these points significant tool
support has been developed. In fact, this endeavour requires more code than the
model itself, accounting for approximately 15000 lines of code/script. The most
important tool is an instructions evaluator – this takes an instruction op-code
and outputs a theorem giving that instruction’s operational semantics. This sin-
gle step theorem can be used in code verification and in validating the model. A
novel technique is used to ensure that the evaluator works efficiently and auto-
matically. The formalization is made more accessible through tight integration
with a custom written ARM assembler and disassembler. This saves users having
to build and rely upon gas as a cross-compiler.

The model has been systematically tested through comparison against the
behaviour of ARM hardware. Batches of instructions are randomly generated and
loaded onto development boards. The single step theorems are used to evaluate
the instructions for multiple data inputs (register assignments) and the results
are compared against the output from the boards. This technique has enabled
us to run many thousands of tests, identifying and fixing a number of bugs in
the model. We encourage others to examine and use the model, tools and test
data/results, which are publicly available at www.cl.cam.ac.uk/~acjf3/arm.

Acknowledgements. Many thanks to all those who have provided valuable
support and feedback for this work. In particular, we would like to thank Mike
Gordon, Peter Sewell, Scott Owens and Michael Norrish.

References

1. Robert Atkey. CoqJVM: An executable specification of the Java virtual machine
using dependent types. In Marino Miculan, Ivan Scagnetto, and Furio Honsell,
editors, TYPES, volume 4941 of Lecture Notes in Computer Science, pages 18–32.
Springer, 2007.

2. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
and Keith Wansbrough. Rigorous specification and conformance testing techniques
for network protocols, as applied to TCP, UDP, and Sockets. In Proceedings of
the 2005 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 265–276, New York, NY, 2005. ACM.

3. Anthony Fox. Formal specification and verification of ARM6. In David Basin and
Burkhart Wolff, editors, Proceedings of Theorem Proving in Higher Order Logics
(TPHOLs), volume 2758 of LNCS. Springer, 2003.

4. Steve Furber. ARM: system-on-chip architecture. Addison-Wesley, second edition,
2000.

5. David S. Hardin, Eric W. Smith, and William D. Young. A robust machine code
proof framework for highly secure applications. In the ACL2 theorem prover and
its applications (ACL2 ’06), pages 11–20, New York, NY, 2006. ACM.

6. John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 3rd edition, 2002.

7. Warren A. Hunt Jr. and Sol Swords. Centaur technology media unit verification.
In Ahmed Bouajjani and Oded Maler, editors, CAV, volume 5643 of Lecture Notes
in Computer Science, pages 353–367. Springer, 2009.

8. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Nor-
rish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification
of an OS kernel. In Symposium on Operating Systems Principles (SOSP), pages
207–220. ACM, 2009.

9. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like lan-
guage, virtual machine, and compiler. ACM Transactions on Programming Lan-
guages and Systems, 28(4):619–695, 2006.

10. Xavier Leroy. Formal certification of a compiler back-end, or: programming a
compiler with a proof assistant. In Principles of Programming Languages (POPL),
pages 42–54. ACM Press, 2006.

11. ARM Limited. ARM architecture reference manual: ARMv7-A and ARMv7-R
edition. Technical Report ARM DDI 0406B, ARM Limited, 2008.

12. Hanbing Liu and J Strother Moore. Executable JVM model for analytical reason-
ing: a study. In Interpreters, virtual machines and emulators (IVME’03), pages
15–23, New York, NY, 2003. ACM.

13. Magnus O. Myreen and Michael J. C. Gordon. Verified LISP implementations on
ARM, x86 and PowerPC. In Stefan Berghofer, Tobias Nipkow, Christian Urban,
and Makarius Wenzel, editors, TPHOLs, volume 5674 of Lecture Notes in Computer
Science, pages 359–374. Springer, 2009.

14. Ron Rivest. The MD5 message-digest algorithm. http://www.ietf.org/rfc/

rfc1321.txt, (accessed in January 2010).
15. Susmit Sarkar, Pater Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge,

Thomas Braibant Magnus O. Myreen, and Jade Alglave. The semantics of x86-CC
multiprocessor machine code. In Principles of Programming Languages (POPL).
ACM, 2009.

16. Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aı̈t
Mohamed, César Muñoz, and Sofiène Tahar, editors, Theorem Proving in Higher
Order Logics (TPHOLs), LNCS, pages 28–32. Springer, 2008.

17. Konrad X. Slind. TFL: An environment for terminating functional programs.
http://www.cl.cam.ac.uk/~ks121/tfl.html, (accessed in January 2010).

18. Philip Wadler. Comprehending monads. In Mathematical Structures in Computer
Science, pages 61–78, 1992.

