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Abstract. Theorem provers, such as ACL2, HOL, Isabelle and Coq,
rely on the correctness of runtime systems for programming languages
like ML, OCaml or Common Lisp. These runtime systems are complex
and critical to the integrity of the theorem provers.

In this paper, we present a new Lisp runtime which has been formally
verified and can run the Milawa theorem prover. Our runtime consists of
7,500 lines of machine code and is able to complete a 4 gigabyte Milawa
proof effort. When our runtime is used to carry out Milawa proofs, less
unverified code must be trusted than with any other theorem prover.

Our runtime includes a just-in-time compiler, a copying garbage collec-
tor, a parser and a printer, all of which are HOL4-verified down to the
concrete x86 code. We make heavy use of our previously developed tools
for machine-code verification. This work demonstrates that our approach
to machine-code verification scales to non-trivial applications.

1 Introduction

We can never be sure [6] a computer has executed a theorem prover (or any
other program) correctly. Even if we could prove a processor design implements
its instruction set, we have no way to ensure it will be manufactured correctly
and will not be interfered with as it runs. But can we develop a theorem prover
for which there are no other reasonable doubts?

Any theorem prover is based on a formal mathematical logic. Logical sound-
ness is well-studied. It is usually established with social proofs, but some sound-
ness proofs [20, 10] have even been checked by computers. If we accept the logic
is sound, the question boils down to whether the theorem prover is faithful to
its logic: does it only claim to prove formulas that are indeed theorems?

In many theorem provers, the trusted core—the code that must be right to
ensure faithfulness—is quite small. As examples, HOL Light [12] is an LCF-style
system whose trusted core is 400 lines of Objective Caml, and Milawa [5] is a
Boyer-Moore style prover whose trusted core is 2,000 lines of Common Lisp.
These cores are so simple we may be able to prove their faithfulness socially, or
perhaps even mechanically as Harrison [11] did for HOL Light.

On the other hand, to actually use these theorem provers we need a runtime
environment that can parse source code, infer types, compile functions, collect
garbage, and so forth. These runtimes are far more complicated than simple



theorem-prover cores. For a rough perspective, source-code distributions of Ob-
jective Caml and Common Lisp systems seem to range from 15 MB to 50 MB
on disk, and also require C compilers and various libraries.

In this paper, we present Jitawa, the first mechanically verified runtime de-
signed to run a general-purpose theorem prover.

– We target the Milawa theorem prover, so we begin with a brief description
of this system and explain how using a verified runtime increases our level
of trust in Milawa proofs. (Section 2)

– To motivate the design of our runtime, we examine Milawa’s computational
and I/O needs. To meet these needs, Jitawa features efficient parsing, just-in-
time compilation to 64-bit x86 machine code, garbage collection, expression
printing, and an “abort with error message” capability. (Section 3)

– We consider what it means for Jitawa to be correct. We develop a formal
HOL4 [21] specification (400 lines) of how the runtime should operate. This
covers expression evaluation, parsing, and printing. (Section 4)

– We explain how Jitawa is implemented and verified. We build heavily on our
previous tools for machine-code synthesis and verification, so in this paper
we focus on how our compiler is designed and specified and also on how I/O
is handled. We present the top-level correctness theorem that shows Jitawa’s
machine code implements its specification. (Section 5)

– We describe the relationship between Milawa and Jitawa. We have used
Jitawa to carry out a 4 GB proof effort in Milawa, demonstrating the good
capacity of the runtime. We explain the informal nature of this connection,
and how we hope it may be formalized in future work. (Section 6)

We still need some unverified code. We have not tried to avoid using an
operating system, and we use a C wrapper-program to interact with it. This C
program is quite modest: it uses malloc to allocate memory and invokes our
runtime. Jitawa also performs I/O by making calls to C functions for reading
and writing standard input and output (Section 5.3).

2 The Milawa system

Milawa [5] is a theorem prover styled after systems like NQTHM [1] and ACL2 [13].
The Milawa logic has three kinds of objects: natural numbers, symbols, and
conses. It also has twelve primitive functions like if, equal, cons, and +, and
eleven macros like list, and, let*, and cond. Starting from these primitives, one
may introduce the definitions of first-order, total, untyped, recursive functions
as axioms. For instance, a list-length function might be introduced as

∀x. (len x) = (if (consp x) (+ ’1 (len (cdr x))) ’0).

Almost all of Milawa’s source code is written as functions in its logic. We can
easily run these functions on a Common Lisp system.



2.1 The trusted core

Milawa’s original trusted core is a 2,000 line Common Lisp program that checks
a file of events. Most commonly,

– Define events are used to introduce recursive functions, and include the
name of a file that should contain a proof of termination, and

– Verify events are used to admit formulas as theorems, and include the name
of a file that should contain a proof of the formula.

The user generates these events and proof files ahead of time, with the help of
an interactive interface that need not be trusted.

A large part of the trusted core is just a straightforward definition of formulas
and proofs in the Milawa logic. A key function is proofp (“proof predicate”),
which determines if its argument is a valid Milawa-logic proof; this function
only accepts full proofs made up of primitive inferences, and it is defined in the
Milawa logic so we can reason about provability.

When the trusted core is first started, proofp is used to check the proofs for
each event. But, eventually, the core can be reflectively extended. The steps are:

1. Define a new proof-checking function. This function is typically a proper
extension of proofp: it still accepts all the primitive proof steps, but it also
permits new, non-primitive proof steps.

2. Verify that the new function only accepts theorems. That is, whenever the
new proof checker accepts a proof of some formula φ, there must exist a
proof of φ that is accepted by proofp.

3. Use the special Switch event to instruct the trusted core to begin using the
new, now-verified function, instead of proofp, to check proofs.

After such an extension, the proofs for Define and Verify events may make
use of the new kinds of proof steps. These higher-level proofs are usually much
shorter than full proofp-style proofs, and can be checked more quickly.

2.2 The verified theorem prover

Milawa’s trusted core has no automation for finding proofs. But separately from
its core, Milawa includes a Boyer-Moore style theorem prover that can carry
out a goal-directed proof search using algorithms like lemma-driven conditional
rewriting, calculation, case-splitting into subgoals, and so on.

All of these algorithms are implemented as functions in the Milawa logic.
Because of this, we can reason about their behavior using the trusted core. In
Milawa’s “self-verification” process, the trusted core is used to Define each of
the functions making up the theorem prover and Verify lemmas about their
behavior. This process culminates in the definition of a verified proof checker
that can apply any sequence of Milawa’s tactics as a single proof step. Once we
Switch to this new proof checker, the trusted core can essentially check proofs
by directly running the theorem prover.



2.3 The role of a verified runtime

Through its self-verification process, the Milawa theorem prover is mechanically
verified by its trusted core. For this verification to be believed—indeed, for any
theorems proven by Milawa to be believed—one must trust that

1. the Milawa logic is sound,

2. the trusted core of Milawa is faithful to its logic, and

3. the computing platform used to carry out the self-verification process has
correctly executed Milawa’s trusted core.

The first two points are addressed in previous work [5] in a social way. Our
verified runtime does not directly bolster these arguments, but may eventually
serve as groundwork for a mechanical proof of these claims (Section 6).

The third point requires trusting some computer hardware and a Common
Lisp implementation. Unfortunately, these runtimes are always elaborate and are
never formally verified. Using Jitawa as our runtime greatly reduces the amount
of unverified code that must be trusted.

3 Requirements and design decisions

On the face of it, Milawa is quite modest in what it requires of the underlying
Lisp runtime. Most of the code for its trusted core and all of the code for its
theorem prover are written as functions in the Milawa logic. These functions
operate on just a few predefined data types (natural numbers, symbols, and
conses), and involve a handful of primitive functions and macros like car, +, list,
and cond. To run these functions we just need a basic functional programming
language that implements these primitives.

Beyond this, Milawa’s original trusted core also includes some Common Lisp
code that is outside of the logic. As some examples:

– It destructively updates global variables that store its arity table, list of
axioms, list of definitions, and so forth.

– It prints some status messages and timing information so the user can eval-
uate its progress and performance.

– It can use the underlying Lisp system’s checkpointing system to save the
program’s current state as a new executable.

It was straightforward to develop a new version of the Milawa core that does away
with the features mentioned above: we avoid destructive updates by adopting
a more functional “state-tuple” style, and simply abandon checkpointing and
timing reports since, while convenient, they are not essential.

On the other hand, some other Common Lisp code is not so easy to deal
with. In particular:

– It instructs the Common Lisp system to compile user-supplied functions as
they are Defined, which is important for running new proof checkers.



– It dynamically calls either proofp or whichever proof checker has been most
recently installed via Switch to check proofs.

– It aborts with a runtime error when invalid events or proofs are encountered,
or if an attempt is made to run a Skolem function.

We did not see a good way to avoid any of this. Accordingly, Jitawa must also
provide on-the-fly compilation of user-defined functions, dynamic function invo-
cation, and some way to cause runtime errors.

3.1 I/O requirements

In Milawa’s original trusted core, each Define and Verify event includes the
name of a file that should contain the necessary proof, and these files are read
on demand as each event is processed. For a rough sense of scale, the proof of
self-verification is a pretty demanding effort; it includes over 15,000 proof files
with a total size of 8 GB.

The proofs in these files—especially the lowest-level proofs that proofp checks—
can be very large and repetitive. As a simple but crucial optimization, an abbre-
viation mechanism [2] lets us reuse parts of formulas and proofs. For instance,

(append (cons (cons a b) c)

(cons (cons a b) c))

could be more compactly written using an abbreviation as

(append #1=(cons (cons a b) c)

#1#).

We cannot entirely avoid file input since, at some point, we must at least
tell the program what we want it to verify. But we would prefer to minimize
interaction with the operating system. Accordingly, in our new version of the
Milawa core, we do not keep proofs in separate files. Instead, each event directly
contains the necessary proof, so we only need to read a single file. This approach
exposes additional opportunities for structure sharing. While the original, indi-
vidual proof files for the bootstrapping process are 8 GB, the new events file is
only 4 GB. It has 525 million abbreviations.

At any rate, Jitawa needs to be able to parse input files that are gigabytes
in size and involve hundreds of millions of abbreviations.

3.2 Designing for performance and scalability

The real challenge in constructing a practical runtime for Milawa (or any other
theorem prover) is that performance and scalability cannot be ignored. Our
previously verified Lisp interpreter [18] is hopelessly inadequate: its direct inter-
preter approach is too slow, and it also has inherent memory limitations that
prevent it from handling the large objects the theorem prover must process.

For Jitawa, we started from scratch and made sure the central design deci-
sions allowed our implementation to scale. For instance:



– To improve execution times, functions are just-in-time compiled to native
x86 machine code.

– To support large computations, we target 64-bit x86. Jitawa can handle up
to 231 live cons cells, i.e., up to 16 GB of conses at 8 bytes per cons.

– Parsing and printing are carefully coded not to use excessive amounts of
memory. In particular, lexing is merged with parsing into what is called a
scanner-less parser, and abbreviations are supported efficiently.

– Since running out of heap space or stack space is a real concern, we ensure
graceful exits in all circumstances and provide helpful error messages when
limits are reached.

4 The Jitawa specification

Jitawa implements a read-eval-print loop. Here is an example run, where lines
starting with > are user input and the others are the output.

> ’3

3

> (cons ’5 ’(6 7))

(5 6 7)

> (define ’increment ’(n) ’(+ n ’1))

NIL

> (increment ’5)

6

What does it mean for Jitawa to be correct? Intuitively, we need to show
the input characters are parsed as expected, the parsed terms are evaluated
according to our intended semantics, and the results of evaluation are printed as
the correct character sequences.

To carry out a proof of correctness, we first need to formalize how parsing,
evaluation, and printing are supposed to occur. In this section, we describe our
formal, HOL specification of how Jitawa is to operate. This involves defining a
term representation and evaluation semantics (Sections 4.1 and 4.2), and speci-
fying how parsing and printing (Section 4.3) are to be done. We combine these
pieces into a top-level specification (Section 4.4) for Jitawa.

Altogether, our specification takes 400 lines of HOL code. It is quite abstract:
it has nothing to do with the x86 model, compilation, garbage collection, and
so on. We eventually (Section 5.4) prove Jitawa’s machine code implements this
specification, and we regard this as a proof of “Jitawa is correct.”

4.1 Syntax

Milawa uses a typical s-expression [15] syntax. While Jitawa’s parser has to deal
with these expressions at the level of individual characters, it is easier to model



these expressions as a HOL datatype,

sexp ::= Val num (natural numbers)
| Sym string (symbols)
| Dot sexp sexp (cons pairs).

We use the name Dot instead of Cons to distinguish it from the name of the
function called Cons which produces this structure; the name Dot is from the
syntax (1 . 2). As an example, the sexp representation of (+ n ’1) is

Dot (Sym "+")
(Dot (Sym "N")

(Dot (Dot (Sym "QUOTE") (Dot (Val 1) (Sym "NIL")))
(Sym "NIL"))).

Our specification also deals with well-formed s-expression, i.e. s-expressions
that can be evaluated. We represent these expressions with a separate datatype,
called term. The term representation of (+ n ’1) is

App (PrimitiveFun Add) [Var "N",Const (Val 1)].

The definition of term is shown below. Some constructors are marked as
macros, meaning they expand into other terms in our semantics and in the
compiler, e.g., Cond expands into If (if-then-else) statements. These are the same
primitives and macros as in the Milawa theorem prover.

term ::= Const sexp
| Var string
| App func (term list)
| If term term term
| LambdaApp (string list) term (term list)
| Or (term list)
| And (term list) (macro)
| List (term list) (macro)
| Let ((string × term) list) term (macro)
| LetStar ((string × term) list) term (macro)
| Cond ((term × term) list) (macro)
| First term | Second term | Third term (macro)
| Fourth term | Fifth term (macro)

func ::= Define | Print | Error | Funcall
| PrimitiveFun primitive | Fun string

primitive ::= Equal | Symbolp | SymbolLess
| Consp | Cons | Car | Cdr |
| Natp | Add | Sub | Less



4.2 Evaluation semantics

We define the semantics of expressions as a relation ev−→ that explains how
objects of type term evaluate. Following Common Lisp, we separate the store k
for functions from the environment env for local variables. We model the I/O
streams io as a pair of strings, one for characters produced as output, and one
for characters yet to be read as input. Our evaluation relation ev−→ explains
how terms may be evaluated with respect to some particular k, env , and io to
produce a resulting sexp and an updated k′ and io′.

As an example, the following rule shows how Var terms are evaluated. We
only permit the evaluation of bound variables, i.e. x ∈ domain env .

x ∈ domain env
(Var x, env , k, io) ev−→ (env(x), k, io)

Our evaluation relation is defined inductively with auxilliary relations evl−→
for evaluating a list of terms and ap−→ for applying functions. For instance, the
following rule explains how a function (i.e., something of type func) is applied:

first the arguments are evaluated using evl−→ , then the apply relation ap−→ de-
termines the result of the application.

(args, env , k, io) evl−→ (vals, k′, io′) ∧ (f, vals, env , k′, io′) ap−→ (ans, k′′, io′′)
(App f args, env , k, io) ev−→ (ans, k′′, io′′)

With regards to just-in-time compilation, an interesting case for the apply
relation ap−→ is the application of user-defined functions. In our semantics, a
user-defined function name can be applied when it is defined in store k with the
right number of parameters.

k(name) = (params, body) ∧ (length vals = length params) ∧
(body , [params ← vals], k, io) ev−→ (ans, k′, io′) ∧ name 6∈ reserved names

(Fun name, vals, env , k, io) ap−→ (ans, k′, io′)

Another interesting case is how user-defined functions are introduced. New
definitions can be added to k by evaluation of the Define function. We disallow
overwriting existing definitions, i.e. name 6∈ domain k.

name 6∈ domain k
(Define, [name, params, body ], env , k, io) ap−→ (nil, k[name 7→ (params, body)], io)

In Jitawa’s implementation, an application of Define compiles the expression
body into machine code. Notice how nothing in the above rule requires that it
should be possible to evaluate the expression body at this stage. In particular, the
functions mentioned inside body might not even be defined yet. This means that
how we compile function calls within body depends on the compile-time state: if
the function to be called is already defined we can use a direct jump/call to its
code, but otherwise we use a slower, dynamic jump/call.



Strictly speaking, Milawa does not require that Define is to be applicable to
functions that cannot be evaluated. However, we decided to allow such definitions
to keep the semantics clean and simple. Another advantage of allowing compi-
lation of calls to not-yet-defined functions is that we can immediately support
mutually recursive definitions, e.g.:

(define ’even ’(n) (if (equal n ’0) ’t (odd (- n ’1))))

(define ’odd ’(n) (if (equal n ’0) ’nil (even (- n ’1))))

When the expression for even is compiled, the compiler knows nothing about
the function odd and must thus insert a dynamic jump to the code for odd.
But when odd is compiled, even is already known and the compiler can insert a
direct jump to the code for even.

4.3 Parsing and printing

Besides evaluation, our runtime must provide parsing and printing. We begin by
modeling our parsing and printing algorithms at an abstract level in HOL as two
functions, sexp2string and string2sexp, which convert s-expressions into strings
and vice versa. The printing function is trivial. Parsing is more complex, but we
can gain some assurance our specification is correct by proving it is the inverse
of the printing function, i.e.

∀s. string2sexp (sexp2string s) = s.

Unfortunately, Jitawa’s true parsing algorithm must be slightly more compli-
cated. It must handle the #1=-style abbreviations described in Section 3.1. Also,
the parser we verified in previous work [18] assumed the entire input string was
present in memory, but since Jitawa’s input may be gigabytes in size, we instead
want to read the input stream incrementally. We define a function,

next sexp : string → sexp × string ,

that only parses the first s-expression from an input string and returns the unread
part of the string to be read later.

We can prove a similar “inverse” theorem for next sexp via a printing function,
abbrevs2string, that prints a list of s-expressions, each using some abbreviations a.
That is, we show next sexp correctly reads the first s-expression, and leaves the
other expressions for later:

∀s a rest . next sexp (abbrevs2string ((s, a) :: rest)) = (s, abbrevs2string rest).

4.4 Top-level specification

We give our top-level specification of what constitutes a valid Jitawa execution
as an inductive relation, exec−→ . Each execution terminates when the input stream
ends or contains only whitespace characters.

is empty (get input io)
(k, io) exec−→ io



Otherwise, the next s-expression is read from the input stream using next sexp,
this s-expression s is then evaluated according to ev−→ , and finally the result of
evaluation, ans, is appended to the output stream before execution continues.

¬is empty (get input io)∧
next sexp (get input io)) = (s, rest)∧
(sexp2term s, [], k, set input rest io) ev−→ (ans, k′, io′)∧
(k′, append to output (sexp2string ans) io′) exec−→ io′′

(k, io) exec−→ io′′

5 The Jitawa implementation

The verified implementation of Jitawa is 7,500 lines of x86 machine code. Most
of this code was not written and verified by hand. Instead, we produced the
implementation using a combination of manual verification, decompilation and
proof-producing synthesis [19].

1. We started by defining a simple stack-based bytecode language into which
we can easily compile Lisp programs using a simple compilation algorithm.

2. Next, we defined a heap invariant and proved that certain machine instruc-
tion “snippets” implement basic Lisp operations and maintain this invariant.

3. These snippets of verified machine code were then given to our extensible
synthesis tool [19] which we used to synthesise verified x86 machine code for
our compilation algorithm.

4. Next, we proved the concrete byte representation of the abstract bytecode
instructions is in itself machine code which performs the bytecode instruc-
tions themselves. Thus jumping directly to the concrete representation of
the bytecode program will correctly execute it on the x86 machine.

5. Finally, we verified code for parsing and printing of s-expressions from an
input and output stream and connected these up with compilation to produce
a “parse, compile, jump to compiled code, print” loop, which we have proved
implements Jitawa’s specification.

Steps 2 and 3 correspond very closely to how we synthesised, in previous work [18],
verified machine-code for our Lisp evaluation function lisp eval.

5.1 Compilation to bytecode

Jitawa compiles all expressions before they are executed. Our compiler targets a
simple stack-based bytecode shown in Figure 1. At present, no optimizations are
performed except for tail-call elimination and a simple optimization that speeds
up evaluation of LambdaApp, Let and LetStar.

We model our compilation algorithm as a HOL function that takes the name,
parameters, and body of the new function, and also a system state s. It returns



bytecode ::= Pop pop one stack element
| PopN num pop n stack elements below top element
| PushVal num push a constant number
| PushSym string push a constant symbol
| LookupConst num push the nth constant from system state
| Load num push the nth stack element
| Store num overwrite the nth stack element
| DataOp primitive add, subtract, car, cons, . . .
| Jump num jump to program point n
| JumpIfNil num conditionally jump to n
| DynamicJump jump to location given by stack top
| Call num static function call (faster)
| DynamicCall dynamic function call (slower)
| Return return to calling function
| Fail signal a runtime error
| Print print an object to stdout
| Compile compile a function definition

Fig. 1. Abstract syntax of our bytecode.

a new system state, s′, where the compiled code for body has been installed and
other minor updates have been made.

compile (name, params, body , s) = s′

We model the execution of bytecode using an operational semantics based
on a next-state relation next−→ . For simplicity and efficiency, we separate the value
stack xs from the return-address stack rs; the relation also updates a program
counter p and the system state s. The simplest example of next−→ is the Pop
instruction, which just pops an element off the expression stack and advances
the program counter to the next instruction.

contains bytecode (p, s, [Pop])

(top :: xs, rs, p, s) next−→ (xs, rs, p + length(Pop), s)

Call pos is not much more complicated: we change the program counter to
pos and push a return address onto the return stack.

contains bytecode (p, s, [Call pos])

(xs, rs, p, s) next−→ (xs, (p + length(Call pos)) :: rs, pos, s)

A DynamicCall is similar, but reads the name and expected arity n of the
function to call from the stack, then searches in the current state to locate the
position pos where the compiled code for this function begins.

contains bytecode (p, s, [DynamicCall]) ∧ find func (fn, s) = some (n, pos)

(Sym fn :: Val n :: xs, rs, p, s) next−→ (xs, (p + length(DynamicCall)) :: rs, pos, s)



The Print instruction is slightly more exotic: it appends the string representa-
tion of the top stack element, given by sexp2string (Section 4.3), onto the output
stream, which is part of the system state s. It leaves the stack unchanged.

contains bytecode (p, s, [Print]) ∧ append to output (sexp2string top, s) = s′

(top :: xs, rs, p, s) next−→ (top :: xs, rs, p + length(Print), s′)

The most interesting bytecode instruction is, of course, Compile. This in-
struction reads the name, parameter list, and body of the new function from the
stack and updates the system state using the compile function.

contains bytecode (p, s, [Compile]) ∧ compile (name, params, body , s) = s′

(body :: params :: name :: xs, rs, p, s) next−→ (nil :: xs, rs, p + length(Compile), s′)

At first sight, this definition might seem circular since the compile function op-
erates over bytecode instructions. It is not circular: we first define the syntax of
bytecode instructions, then the compile function which generates bytecode, and
only then define the semantics of evaluating bytecode instructions, next−→ .

Compile instructions are generated when we encounter an application of De-
fine. For instance, when the compiler sees an expression like

(define ’increment ’(n) ’(+ n ’1)),

it generates the following bytecode instructions (for some specific k):

PushSym "INCREMENT" pushes symbol increment onto the stack
LookupConst k pushes expression (n) onto the stack
LookupConst (k+1) pushes expression (+ n ’1) onto the stack
Compile compiles the above expression

5.2 From bytecode to machine code

Most compilers use some intermediate language before producing concrete ma-
chine code. However, our compiler goes directly from source to concrete machine
code by representing bytecode instructions as a string of bytes that are machine
code. For example, the Compile instruction is represented by bytes

48 FF 52 88

which happens to be 64-bit x86 machine code for call [rdx-120], i.e. an in-
struction which makes a procedure call to a code pointer stored at memory
address rdx-120.

For each of these byte sequences, we prove a machine-code Hoare triple [17]
which states that it correctly implements the intended behaviour of the bytecode
instruction in question with respect to a heap invariant lisp bytecode inv.

compile (name, params, body , s) = s′ =⇒
{ lisp bytecode inv (body :: params :: name :: xs, rs, s) ∗ pc p }
p : 48 FF 52 D8

{ lisp bytecode inv (nil :: xs, rs, s′) ∗ pc (p+ 4) ∨ error }



At this stage you might wonder: but doesn’t that Hoare triple rely on more
code than just those four bytes? The answer is yes: it requires machine code
which implements the compile function from above. We have produced such
machine code by a method described in previous work [19]; essentially, we teach
the theorem prover about basic operations w.r.t. to a heap invariant and then
have the theorem prover synthesize machine code that implements the high-level
algorithm for compilation. The code we synthesized in this way is part of lisp
invariant lisp bytecode inv shown above. Thus when the above x86 instruction
(i.e. call [rdx-120]) is executed, control just jumps to the synthesised code
which when complete executes a return instruction that brings control back to
the end of those four bytes.

The Hoare triples used here [17] do not require code to be at the centre of
the Hoare triple as the following “code is data” theorem shows:

∀p c q. {p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

A detailed explanation of this rule, and a few others that are handy when dealing
with self-modifying code, can be found in our previous paper [17].

5.3 I/O

Jitawa calls upon the external C routines fgets and fputs to carry out I/O.
These external calls require assumptions in our proof. For instance, we assume
that calling the routine at a certain location x—which our unverified C program
initializes to the location of fgets before invoking the runtime—will:

1. produce a pointer z to a null-terminated string that contains the first n
characters of the input stream, for some n, and

2. remove these first n characters from the input stream.

We further assume that the returned string is only empty if the input stream
was empty. The machine-code Hoare triple representing this assumption is:

{ rax x ∗ rbx y ∗memory m ∗ io (x, in, out) ∗ pc p }
p : call rax

{ ∃z n. rax x ∗ rbx z ∗memory m′ ∗ io (x, drop n in, out) ∗ pc (p+ 3) ∗
〈string in mem at (z,m′, take n in) ∧ (n = 0 =⇒ in = "")〉 }

The fact that Jitawa implements an interactive read-eval-print loop is not
apparent from our top-level correctness statement: it is just a consequence of
reading lazily—our next sexp style parser reads only the first s-expression, and
fgets reads through at most the first newline—and printing eagerly.

5.4 Top-level correctness theorem

The top-level correctness theorem is stated as the following machine-code Hoare
triple. If the Jitawa implementation is started in a state where enough memory



is allocated (init state) and the input stream holds s-expressions for which an
execution of Jitawa terminates, then either a final state described by exec−→ is
reached or an error message is produced.

{ init state io ∗ pc p ∗ 〈terminates for io〉 }
p : code for entire jitawa implementation

{ error message ∨ ∃io′. 〈([], io) exec−→ io′〉 ∗ final state io′ }

This specification allows us to resort to an error message even if the evaluated
s-expressions would have a meaning in terms of the exec−→ relation. This lets us
avoid specifying at what point implementation-level resource limits are hit. The
implementation resorts to an error message when Jitawa runs into an arithmetic
overflow, attempts to parse a too long symbol (more than 254 characters long),
or runs out of room on the heap, stack, symbol table or code heap.

6 The combination of Milawa and Jitawa

Jitawa runs fast enough and manages its memory well enough to successfully
complete the proof of self-verification for Milawa. This is a demanding proof
that many Common Lisp systems cannot successfully complete. The full input
file is 4 gigabytes and contains 520 million unique conses. On our computer,
Clozure Common Lisp—an excellent, state-of-the-art Common Lisp implemen-
tation—takes 16 hours to finish the proof; this is with all optimization enabled,
garbage collection tuning, and inlining hints that provide significant benefits.

Jitawa is currently about 8x slower for the full proof. While this is consider-
ably slower, it may be adequate for some proof efforts. We are also investigating
how performance may be improved. Jitawa is only 20% slower than CCL on the
first 4,500 events (about 1.5 hours of computation), so it seems that competitive
performance may be possible.

Is there a formal connection between Jitawa and Milawa? We would eventu-
ally like to mechanically prove that, when run with Jitawa, Milawa’s trusted core
is faithful to the Milawa logic. We have not yet done this, but we have at least
proved a weaker connection, viz. evaluation in Jitawa respects the 52 axioms [5,
Ch. 2] of the Milawa logic that constrain the behavior of Lisp primitives.

For instance, the Closed Universe Axiom says every object must satisfy either
natp, symbolp, or consp. In Milawa, this is written as:

(por* (pequal* (natp x) ’t)

(por* (pequal* (symbolp x) ’t)

(pequal* (consp x) ’t)))

The corresponding HOL theorem is stated as:

valid sexp ["x"] (" (por* (pequal* (natp x) ’t) " ++

" (por* (pequal* (symbolp x) ’t) " ++

" (pequal* (consp x) ’t))) ")

We are able to copy the axiom statements into HOL nearly verbatim by having
valid sexp use our parser to read the string into its datatype representation.



7 Discussion and related work

Theorem provers are generally very trustworthy. The LCF [7] approach has long
been used to minimize the amount of code that must be trusted. Harrison [11]
has even formally proved—using an altered version of HOL Light—theorems
suggesting HOL Light’s LCF-style kernel is faithful to its logic. By addressing
the correctness of the runtime system used to execute the prover, we further
increase our confidence in these systems.

Runtime correctness may be particularly important for theorem provers that
employ reflective techniques. In a separate paper [9], Harrison remarks:

“ [...] the final jump from an abstract function inside the logic to a concrete
implementation in a serious programming language which appears to
correspond to it is a glaring leap of faith. ”

While we have not proven a formal connection between Milawa and Jitawa, our
work suggests it may be possible to verify a theorem prover’s soundness down to
the concrete machine code which implements it, thus reducing this “glaring leap
of faith.” We have kept Jitawa’s top-level specification (Section 4) as simple as
possible to facilitate such a proof.

Most of this paper has dealt with the question: how do we create a verified
Lisp system that is usable and scales well? The most closely related work on
this topic is the VLISP project [8], which produced a “comprehensively” (not
formally) verified Scheme implementation. The subset of Scheme which they
address is impressive: it includes strings, destructive updates and I/O. However,
their formalisation and proofs did not reach as far as machine or assembly level,
as we have done here and in previous work [18].

Recently, Leroy’s Coq-verified C compiler [14], which targets PowerPC, ARM
and 32-bit x86 assembly, has been extended with new front-ends that makes it
compile MiniML [4] and a garbage-collected source language [16]. The latter
extension has been connected to intermediate output from the Glasgow Haskell
Compiler. Our runtime uses a verified copying garbage collector similar to the
sample collector in McCreight et al. [16], but less than 10% of our proof scripts
are directly concerned with verification of our garbage collector and interfacing
with it; our approach to this is unchanged from our previous paper [18].

Unrelated to Leroy’s C compiler, Chlipala [3] has done some interesting ver-
ification work, in Coq, on compilation of a functional language: he verified a
compiler from a functional language with references and exceptions to a toy as-
sembly language. Chlipala emphasises use of adaptive programs in Coq’s tactic
language to make proofs robust.

Source code. The code for Jitawa and its 30,000-line verification proof are
available at http://www.cl.cam.ac.uk/~mom22/jitawa/. Similarly, Milawa is
available at http://www.cs.utexas.edu/~jared/milawa/Web/.
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