Functional programs: conversions between
deep and shallow embeddings

Magnus O. Myreen

Computer Laboratory, University of Cambridge, UK

Abstract. This paper presents a method which simplifies verification
of deeply embedded functional programs. We present a technique by
which proof-certified equations describing the effect of functional pro-
grams (shallow embeddings) can be automatically extracted from their
operational semantics. Our method can be used in reverse, i.e. from shal-
low to deep embeddings, and thus for implementing certifying code syn-
thesis: we have implemented a tool which maps HOL functions to equiv-
alent Lisp functions, for which we have a verified Lisp runtime. A key
benefit, in both directions, is that the verifier does not need to understand
the operational semantics that gives meanings to the deep embeddings.

1 Introduction

For purposes of program verification, programs can be represented in theorem
provers either in terms of syntax (a deep embedding), e.g. using an abstract
datatype or as a string of ASCII characters

(defun APPEND (x y)
(if (consp x)
(cons (car x) (APPEND (cdr x) y))
y))

or alternatively, directly as functions in the logic of a theorem prover (shallow
embeddings),

append x y = if consp x # nil then
cons (car x) (append (cdr x) y)
else y

Shallow embeddings are easier to work with. Consider e.g. proving associa-
tivity of APPEND. Proving this over the shallow embedding is straightforward.

append z (append y z) = append (append = y) z

Proving the same for a deep embedding, w.r.t. an operational semantics _*y
involves a tedious proof over a transition system: for all res, env, z, vy, z,

(App (Fun "APPEND") [z, App (Fun "APPEND") [y, z]], env, s) 25 (res, s) <=
(App (Fun "APPEND") [App (Fun "APPEND") [x,y], 2], env, s) -5 (res, s)

In some cases, proofs over deep embeddings are unavoidable, e.g. if we are to
connect the verification proof to the correctness theorem of a verified compiler
or runtime, since these are stated in terms of semantics of deep embeddings.

This paper presents a novel proof-producing technique for converting between
the two forms of embedding. Our conversions produce a proof for each run; the
result is a certificate theorem relating the shallow embedding (append) to the
deep embedding (APPEND) w.r.t. an operational semantics 2Py which specifies
how deeply embedded programs evaluate. This will be explained in Section 2.

Vx y state.
code_for_append._in state —>
(Fun "APPEND", [z, y], state) 2Py (append x y, state)

The proof-producing translation technique described in this paper means
that the verifier can let automation deal with the operational semantics and
thus avoid even understanding the definition of the operational semantics. This
work has applications in verification and code synthesis.

Program verification: Given a functional programs written in a deep embed-
ding, e.g. ASCII, we can parse this into an abstract syntax tree and use the
translation from deep to shallow to simplify verification. We have used this tech-
nique to significantly simplify the task of verifying a 2,000-line Lisp program,
the Milawa theorem prover [5], w.r.t a semantics of Lisp [6].

Program synthesis. The ability to translate shallow embeddings into certified
deep embeddings can be used to implement high-assurance code synthesis. We
have implemented such proof-producing code synthesis from HOL4 into our pre-
viously verified Lisp runtime [6]. This improves on the trustworthiness of current
program extraction mechanisms in HOL4, Isabelle/HOL and Coq which merely
print functions into the syntax of SML, Ocaml, Haskell or Lisp without any
assurance proof or connection to a semantics of the target language.

2 From deep to shallow embeddings

For purposes of brevity and clarity we will base our examples in this paper on
the following abstract syntax for Lisp programs. This is a subset of the input
language of our verified Lisp runtime [6].

term = Const sexp | Var string
| If term term term | App func (term list) |
func = PrimitiveFun prim | Fun string | Funcall | Define |
prim = Cons | Car | Cdr | Add |
sexp == Val nat | Sym string | Dot sexp sexp

We define the operational semantics for this language using inductively de-
fined relations: apply 2Py and eval _&“y. Term ezp evaluates, in environment
env, to x (of type sexp) if (exp, env, state) &y (z, new_state); and the application
of function f to arguments zs evaluates to x if (f,zs, state) 2Py (z, new_state).
Certain functions, e.g. Define, Print and Error, alter state.

2.1 Method

When converting deep embeddings into shallow embeddings our task is to derive
a definition of a function append and prove a connection between them, e.g.

(Fun "APPEND", [z, y], state) 2Py (append z y, state)

The method by which we accomplish this has two phases. The first phase
derives a theorem of the following form, for some hypothesis and expression.

hypothesis = (body, env, state) &5 (expression, state)

This derivation proceeds as a bottom-up traversal of the abstract syntax tree
for the body of the function we are extracting. At each stage a lemma is applied
to introduce the relevant syntax in body and, at the same time, construct the
corresponding shallowly embedded operations in ezpression.

The second phase defines a shallow embedding using expression as the right-
hand side of the definition and discharges (most of) the hypothesis using the
induction that arises from the termination proof for the shallow embedding.

There is no guess work or heuristics involved in this algorithm, which means
that well-written implementations can be robust.

2.2 Example: append function

An example will illustrate this algorithm. Consider APPEND from above. For the
first phase, we aim to derive a theorem describing the effect of evaluating the
body of the APPEND function, i.e.

If (App (PrimitiveFun Consp) [Var "X"])
(App (PrimitiveFun Cons) [...,App (Fun "APPEND") [...]]) (1)
(Var "y")

Our bottom-up traversal starts at the leaves. Here we have variable look-ups
and thus instantiate v to "X" and "Y" in the following lemma to get theorems
describing the leaves of the program.

v € domain env = (Var v, env, state) &5 (env v, state)

Now that we have theorems describing the leaves, we can move upwards and
instantiate lemmas for primitives, e.g. for Cdr using modus ponens against:

(hyp = (z, enw, state) &5 (exp, state)) —
(hyp = (App (PrimitiveFun Cdr) [z], env, state) 2, (cdr exp, state))

When we encounter the recursive call to APPEND we, of course, do not have a
description yet. In this case, we insert a theorem where hypothesis makes the
assumption that some function variable append describes this application.

(Fun "APPEND", [z, y], state) 2Py (append x y, state) —>
(Fun "APPEND", [z, y], state) 2Py (append x y, state)

The result of the first phase is a theorem of the form
hypothesis = (body, env, state) &Yy (expression, state)

Here body is the abstract syntax tree for the body of APPEND; and expression is
the following, if env = {"X" — z,"Y" — y},

if consp = # nil then
cons (car x) (append (cdr x) y) (2)
else y

and, with the same env instantiation, hypothesis is:

consp x # nil =
(Fun "APPEND", [cdr z,y], state) 2Py (append (cdr x) y, state)
Next we enter the second phase: we define append so that its right-hand side is

(2) with append replaced by append. As part of the straightforward termination
proof for this definition, we get an induction principle

VP.
(Vz y. (consp z # nil = P (cdrz)y) = Py = (3)
Vzy. Pxy)
which we will use to finalise the proof of the certificate theorem as follows.
For the running example, let P abbreviate the following.

Az y. (Fun "APPEND", [z, y], state) 2Py (append x y, state)
We now restate the result of phase one using P and the definition of append:

Vo y. (consp z # nil = P (cdrz) y) =
(body, {"X" +— z,"Y" — y}, state) 25 (append z y, state)

(4)

Let code_for_append_in state state that the deep embedding (1) is bound to the
name APPEND and parameter list ["X", "Y"] in state. Now the operational seman-
tics” rule for function application (Sec. 4.2 of [6]) gives us the following lemma.

()

Vo y. (body, {"X" — x,"Y" — y}, state) Y, (append z y, state) A
code_for_append_in state = Pz y

By combining (4) and (5) we can prove:
Vx y. code_for_append_in state — (6)
(consp x #nil = P (cdrz)y) = Pzy
And a combination of (3) and (6) gives us:

Vz y. code_for_append_in state = Pz y (7)

An expansion of the abbreviation P shows that (7) is the certificate theorem
we were to derive for APPEND: it states that the shallow embedding append is an
accurate description of the deep embedding APPEND.

Vx y state.
code_for_append_in state —>
(Fun "APPEND", [z, y], state) 2P, (append z y, state)

2.3 Example: reverse function

Now consider an implementation for REVERSE which calls APPEND. In the first
phase of the translation, the certificate theorem for APPEND (from above) can be
used to give a behaviour to Fun "APPEND". The second phase follows the above
proof very closely. The result is the following shallow embedding,

reverse z = if consp = # nil then
append (reverse (cdr x)) (cons (car z) nil)
else nil

and a similar certificate theorem:

Vx state.
code_for_reverse_in state —>
(Fun "REVERSE", [z], state) 2Py (reverse x, state)

Here code_for_reverse_in state also requires that code for APPEND is present.

2.4 More advanced language features

The most advanced feature our Lisp language supports is dynamic function calls
using Funcall: the name of the function to be called is the first argument to
Funcall. The equivalent in ML is a call to a function variable. The difference is
that Funcall is potentially unsafe, e.g. if called with an invalid function name or
with the wrong number of arguments. (ML’s type system prevents such unsafe
behaviour in ML.) We can support Funcall as follows. First two definitions:

funcall_ok args state = Jv. (Funcall, args, state) 2Py (v, state)
funcall args state = ev. (Funcall, args, state) 2Py (v, state)

We use the following lemma in the first phase of the translation algorithm when-
ever Funcall is encountered.

funcall_ok args state = (Funcall, args, state) 2P, (funcall args state, state)

The result from phase two is a certificate theorem containing a side-condition
which collects the hypothesis that the induction is unable to discharge, e.g. if
we were translating a function CALLF that uses Funcall then we get:

Vx state.
code_for_callf_in state A callf_side x state —
(Fun "CALLF", [z], state) 2P (callf = state, state)

So far we have only considered pure functions, i.e. functions that don’t alter
state. Impure functions are also supported: they translate into shallow embed-
dings that take the state as input and produce a result pair: the return value
and the new state, e.g. (Fun "IMPURE_FUN", [z], state) 2Py (impure_fun z state).

3 From shallow to deep embeddings

The description above explains how proof-producing translations from deep to
shallow embeddings can be performed. The same algorithm can be used for
translations in the opposite direction: start by inventing a deep embedding cor-
responding to the given shallow embedding and, at phase two, refrain from in-
venting a shallow embedding, instead use the given shallow embedding and its
induction principle.

4 Summary and related work

This paper has presented a proof-producing algorithm for translating between
shallow and deep embeddings of untyped first-order Lisp programs.

Trustworthy program synthesis is one application area of this work. Li et
al. [4] have worked on compiling shallowly embedded functions into assembly
code directly from HOL. In this paper we instead establish a connection between
HOL and a high-level language (which has a verified runtime). Work by Hardin
et al. [2] on decompiling Guardol programs has similar goals.

Program verification is another application area of this work. In this area,
Charguéraud [1] has proposed a completely different way of verifying deep em-
beddings of functional programs. Charguéraud proposes that reasoning is to be
carried out using characteristic formulae for functional programs. These formu-
las provide a way of unrolling the operational semantics without dealing with
the operational semantics directly. His approach does not require functions to be
total, unlike our approach. However, his technique provides relations, while our
approach produces equations which fit better with powerful rewriting tactics.

The algorithm presented here bears some resemblance to work by Krauss et
al. [3] on constructing termination proofs from termination of rewriting systems.

Ack. I thank Mike Gordon for commenting on drafts and EPSRC for funding.

References

1. Arthur Charguéraud. Program verification through characteristic formulae. In
International Conference on Functional Programming (ICFP). ACM, 2010.

2. David Hardin, Konrad Slind, Michael W. Whalen, and Tuan-Hung Pham. The
Guardol language and verification system. In Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS), LNCS. Springer, 2012.

3. Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and Jiirgen
Giesl. Termination of Isabelle functions via termination of rewriting. In Interactive
Theorem Proving (ITP), LNCS. Springer, 2011.

4. Guodong Li, Scott Owens, and Konrad Slind. A proof-producing software compiler
for a subset of higher order logic. In Furopean Symposium on Programming (ESOP),
LNCS. Springer, 2007.

5. Magnus O. Myreen and Jared Davis. http://www.cl.cam.ac.uk/~mom22/jitawa/.

6. Magnus O. Myreen and Jared Davis. A verified runtime for a verified theorem
prover. In Interactive Theorem Proving (ITP), LNCS. Springer, 2011.

