
Verified Just-In-Time Compiler on x86

Magnus O. Myreen
Computer Laboratory, University of Cambridge

magnus.myreen@cl.cam.ac.uk

Abstract
This paper presents a method for creating formally correct just-in-
time (JIT) compilers. The tractability of our approach is demon-
strated through, what we believe is the first, verification of a JIT
compiler with respect to a realistic semantics of self-modifying x86
machine code. Our semantics includes a model of the instruction
cache. Two versions of the verified JIT compiler are presented: one
generates all of the machine code at once, the other one is incre-
mental i.e. produces code on-demand. All proofs have been per-
formed inside the HOL4 theorem prover.

General Terms software verification, formal methods

Keywords self-modifying code, compiler verification, just in time

1. Introduction
Just-in-time (JIT) compilation is an effective technique for boosting
the speed of program interpreters. The idea of JIT compilation, i.e.
to dynamically translate input programs into native machine code,
then execute only native code, is an old invention which dates back
to 1960 [15]. However, the concept is still relevant today as JIT
compilation is considered vital for competitive interpreter-based
implementations of modern languages, Java, C# and ML etc.

To date, there seems to be no publications on verification of a
full JIT compiler. The reasons for this is likely to lie in the fact that
verification of JIT compilers poses a number of challenges that are
generally considered hard:

1. Compiler verification. A JIT compiler needs to correctly map
its input programs down to concrete machine code. In this case
the target must be real machine code (numbers), not assembly
code or intermediate code which most other verified compilers
seem to output.

2. Non-static code. Conventional static compilers can treat gen-
erated code purely as data, since execution of generated code
is not done during compilation. However, JIT compilers switch
between execution of static code (the JIT compiler) and dynam-
ically generated code; hence some data needs to be treated as
code.

3. Self-modifying code. The dynamically generated code might
also cause self-modification: the generated code can, in incre-
mental JIT compilers, invoke the code generator which may al-
ter the code that called it (Section 5.1 provides an example).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2010, Madrid, Spain.
Copyright c© 2010 ACM 978-1-60558-479-9/10/01. . . $10.00

Code that can modify itself poses verification challenges that
only few have tackled [8, 6].

4. Pointer arithmetic and code pointers. Pointer arithmetic and
particularly code pointers, both natural parts of JIT compilation
and execution of the generated code, have been considered hard
to deal with in a formal context.

This paper presents a method for creating formally correct
JIT compilers. The tractability of our approach is demonstrated
through, what we believe is the first, verification of a JIT com-
piler with respect to a semantics of self-modifying x86 code. The
contributions of this paper are:

a) a semantics suitable for verification of self-modifying x86 code,
i.e. an operational semantics which takes into account the haz-
ards of a possibly out-of-date instruction cache.

b) a Hoare logic that fits on top of (a) and can reason about self-
modifying code and code pointers by treating code as data and
the program counter as a normal register,

c) a workflow, using (b), with which we verified two JIT compil-
ers: one generates all of the machine code at once, the other one
is incremental i.e. produces code only on-demand.

The input language of our verified JIT compiler is a simple
stack-based bytecode (Section 3) with support for a few branch
instructions and stack operations: pop, push, subtract and swap.

Our definitions and proofs have been developed inside the
HOL4 theorem prover [26], which greatly helped keeping track
of all the details involved. Our HOL4 proof scripts are available
online [1] together with the verified JIT compilers. A very basic
benchmark of how efficient the verified JIT compilers are when
executed on real x86 hardware is presented in Section 4.6.

2. Main ideas
This section presents a high-level summary of the main ideas that
make verification of JIT compilers possible. Subsequent sections
explain the technical details of our proofs (Sections 3, 4, 5) and
verification framework (Sections 6, 7).

2.1 Operational semantics
The basis of this work is a detailed and extensively tested seman-
tics of x86 machine code (Section 6). This semantics is carefully
designed to be suitable for verification of self-modifying x86 code,
i.e. it includes an instruction cache that exposes the intricacies of a
possibly out-of-date instruction cache. The memory is modelled as
a function m and the instruction cache modelled as a function i:

1. instruction-fetches read instruction cache i;

2. data-reads and -writes access only memory m, and

3. occasionally i is updated with values from m.

Cache i can be out-of-date: reading from i might not return values
accurate with respect to what is stored in m.

The model covers a number of 32-bit user-mode x86 instruc-
tions together with their precise bit-level fetch and decode.

2.2 Machine-code Hoare logic
We next set up a Hoare logic (informally described here, but for-
mally defined in Section 7) to ease reasoning about the detailed
x86 semantics. We define a Hoare triple {p} c {q}, in Section 7.4,
as an abbreviating statement above the x86 semantics, and then
prove each individual Hoare-triple statement as a theorem from the
x86 semantics. This approach, from [9], contrasts with the original
Hoare logic [11] where certain Hoare triples were axioms.

The three key features of this machine-code Hoare logic are:

1. the program counter is treated as a normal register,

2. code is simply safe-to-execute (instruction-cache accurate) data

3. updates to the cache ‘are made local’ using a cache abstraction.

A few examples will explain these features. The treatment of
the program counter as a normal register can be observed in the
following Hoare triple. This Hoare-triple theorem describes an x86
instruction xchg eax,ebx, encoded as 93, which swaps the value
v of register eax with the value w of register ebx, and simultane-
ously adds 1 (the byte length of the instruction) to the value p of
program counter pc. For now, read ∗ informally as ‘and’. This sep-
arating conjunction ∗ is defined and explained in Section 7.1.

{eax v ∗ ebx w ∗ pc p}
p : 93
{eax w ∗ ebx v ∗ pc (p+ 1)}

Direct assignments to the program counter are performed by jumps
to code pointers, e.g. x86 instruction jmp eax, encoded as FFE0,
assigns the value of eax to the program counter pc:

{eax v ∗ pc p}
p : FFE0
{eax v ∗ pc v}

This treatment of the program counter significantly eases the effort
involved in reasoning about code pointers.

The fact that code is simply safe-to-execute data can be ob-
served from the following four theorems. First, code need not be
in the middle of a Hoare triple:

{p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

Second, code can always be weakened to data in the postcondition:

{p} c {q ∗ code bdc} =⇒ {p} c {q ∗ datax d}

Third, data in the precondition can be strengthened into code:

{p ∗ datax d} c {q} =⇒ {p ∗ code bdc} c {q}

Fourth, arbitrary data can be turned into code (i.e. data can be
made safe to execute) as a side-effect of certain jump instructions,
e.g. jmp eax, which is encoded as FFE0 and we already saw in a
theorem above, also fits the theorem:

{eax v ∗ pc p ∗ datax d}
p : FFE0
{eax v ∗ pc v ∗ code bdc}

These Hoare triples {p} c {q} satisfies unconventional prop-
erties. Their formal definition is given in Section 7, but for now
informally read them as: for any state which satisfies p ∗ code c,
execution of the x86 semantics will always reach a state for which
q ∗ code c holds, and furthermore, no other part of the state was

modified, i.e. our Hoare triple satisfies the frame rule from separa-
tion logic [24],

{p} c {q} =⇒ ∀r. {p ∗ r} c {q ∗ r}

which is essential for local reasoning.
In order to support the frame rule, we had to introduce a

lightweight cache abstraction (Section 7.3) which makes the non-
local updates to the instruction cache seem local.

2.3 Verification of JIT compilers
We have used our Hoare logic for self-modifying x86 to construct
two JIT compilers based on the following work flow.

1. We start by defining the syntax and operational semantics of
the input bytecode. Let next−→ be a relation which describes one
step of the execution and let exec−→ be sequence of next−→ that end
with execution of a special stop instruction. This semantics
represents states as tuples (xs, l, p, cs) that consist of a stack
xs, a natural number l which keeps track of available stack
space, a bytecode program cs and a program counter p.

2. A coupling invariant, jit inv, is then defined which allows us to
relate states in the bytecode semantics to states in the x86 code,
given a base address a:

∀s t a. s
next−→ t =⇒ {jit inv s a} ∅ {jit inv t a}

Informally, this jit inv assertion requires, for bytecode state
(xs, l, p, cs) and base address a, that a stack is located in
x86 memory containing xs and free space l, that x86 code
equivalent to bytecode program cs is stored in memory from
address a onwards and that the x86 program counter contains
an x86 address equivalent to bytecode program counter p.
The invariant for the incremental version of our JIT compiler
further requires that a code generator is present and that a
mapping is maintained which keeps track of what and where
bytecode instructions have been translated into x86 code.

3. It then follows that each successful execution exec−→ in the byte-
code semantics is mimicked by the x86 implementation. The
x86 code for the special stop instruction exits by jumping to an
addressw given in register edx. Here stack is the stack assertion
from inside jit inv.

(xs, l, p, cs)
exec−→ (xs2, l2, p2, cs2) =⇒

{jit inv (xs, l, p, cs) a ∗ edx w}
∅
{stack (xs2, l2) ∗ pc w ∗ edx w ∗ T}

This theorem guarantees that any x86 state which satisfies
jit inv will correctly perform evaluations according to exec−→.

4. Finally, it remains to produce verified x86 machine code that
can establish an appropriate state which satisfies jit inv. For
this we needed verified x86 code which implements code gen-
eration i.e. the translation from bytecode to x86 code. By ex-
ploiting backwards compatibility to previously proved synthe-
sis tools [22], we were able to easily create this x86 code from
verified functional descriptions.
The final correctness theorem follows as a result of composing
the code for establishing jit inv with the code for executing the
bytecode program.

The resulting correctness theorem states that the JIT compiler
correctly implements exec−→: given a stack, a string representing the
encoding of a bytecode program, and enough space to fit the gen-
erated x86 code, the JIT compiler will always terminate in a state
where the stack has been updated according to exec−→.

3. Input language
To make this paper readable we chose a simple input language for
our JIT compiler.

Syntax. The input language is a stack-based bytecode, supporting
the following instructions. Here i is a 7-bit immediate constant.

pop pop top element off the stack
sub subtract
swap swap top two stack elements
push i push value i onto stack
jump i jump to instruction i
jeq i jump to i, if top two equal
jlt i jump to i, if top two less
stop halt execution

Bytecode programs are lists of the above instructions.

Concrete encoding. The abstract syntax restricts constants to 7-bit
values in order to make the concrete encoding (almost) readable as
a string. Constants are encoded as a character "0" + i. Here ord
maps characters to natural numbers, chr is the inverse of ord.

imm i = chr (ord "0" + i)

This encoding of immediate constants makes small constants 1, 2,
3 readable strings "1", "2", "3", while larger constants are less
intuitive, e.g. 41, 42, 43 are encoded as "X", "Z", "[".

The concrete encoding of individual instructions is defined as
the function enc. Here ++ concatenates strings.

enc (pop) = "p"
enc (sub) = "-"
enc (swap) = "s"
enc (push i) = "c" ++ imm i
enc (jump i) = "j" ++ imm i
enc (jeq i) = "=" ++ imm i
enc (jlt i) = "<" ++ imm i
enc (stop) = "."

Bytecode programs are encoded as the concatenation of the indi-
vidual instruction encodings:

encode [] = ""
encode (c :: cs) = enc c ++ encode cs

This concrete encoding makes small bytecode programs almost
readable, e.g. the string "=6<4-j0sj0." is the encoding of a
bytecode program which calculates the greatest common divisor:

0 : jeq 6
1 : jlt 4
2 : sub
3 : jump 0
4 : swap
5 : jump 0
6 : stop

Semantics. The effect of executing a bytecode program is defined
next. First, let fetch be a function which looks up the next instruc-
tion to be executed from a list of instructions:

fetch n [] = none
fetch n (c :: cs) = some c if n = 0
fetch n (c :: cs) = fetch (n− 1) cs if n > 0

We define the relation next−→ to describe the effect of executing the
next instruction. Here states are tuples (xs, l, p, cs), where xs is the
data stack (a list of 32-bit words), l is a natural number which keeps

track of available stack space, p is the bytecode program counter
and cs is the bytecode program.

fetch p cs = some pop

(x :: y :: xs, l, p, cs)
next−→ (y :: xs, l+1, p+1, cs)

fetch p cs = some sub

(x :: y :: xs, l, p, cs)
next−→ ((x− y) :: y :: xs, l, p+1, cs)

fetch p cs = some swap

(x :: y :: xs, l, p, cs)
next−→ (y :: x :: xs, l, p+1, cs)

fetch p cs = some (push i)

(xs, l+1, p, cs)
next−→ (i :: xs, l, p+1, cs)

fetch p cs = some (jump i)

(xs, l, p, cs)
next−→ (xs, l, i, cs)

fetch p cs = some (jeq i) x = y

(x :: y :: xs, l, p, cs)
next−→ (x :: y :: xs, l, i, cs)

fetch p cs = some (jeq i) x 6= y

(x :: y :: xs, l, p, cs)
next−→ (x :: y :: xs, l, p+1, cs)

fetch p cs = some (jlt i) x < y

(x :: y :: xs, l, p, cs)
next−→ (x :: y :: xs, l, i, cs)

fetch p cs = some (jlt i) y ≤ x
(x :: y :: xs, l, p, cs)

next−→ (x :: y :: xs, l, p+1, cs)

We use next−→ to define an inductive relation exec−→ that describes
the effect of successfully executing a bytecode program. Each suc-
cessful execution must reach the stop instruction.

fetch p cs = some stop

(xs, l, p, cs)
exec−→ (xs, l, p, cs)

s
next−→ t t

exec−→ u

s
exec−→ u

4. Verified JIT compiler – version 1
Given the above definition of an input language, we can construct
our verified JIT compilers. As mentioned earlier, two JIT compilers
will be presented: one JIT compiler generates all of the target
x86 code as an initialisation step, the other one produces code
incrementally on-demand. This section describes the first version;
the second version is presented in Section 5.

4.1 Informal intuition
The most basic JIT compilers perform the following steps, they:

1. generate native machine code from bytecode, and then

2. let the generated code run on bare metal.

The first version our JIT compiler implements this separation be-
tween code generation and code execution.

The code generation, we consider, is also very simple: each
bytecode instruction is always translated to the same x86 instruc-
tions. Before describing the exact mapping from bytecode instruc-
tions to x86 instructions, we start with an informal description of
how the stack xs in the state of a bytecode program, from the pre-
vious section, is represented on x86:

• register eax holds the value of the top of the stack xs,
• register edi points to the rest of the stack; we write [edi] for

the location of the first element of the rest of the stack.

• register edx holds the address to which stop is to jump.

The choice of general purpose registers eax, edi, edx is arbitrary,
and does not depend on any special x86 features.

The mapping from bytecode instructions is informally the fol-
lowing. Push and pop, translate to some pointer arithmetic and
move instruction mov, subtraction translates to subtraction on x86,
the swap instruction translates to x86 instruction xchg (exchange),
and jump instructions are translated into jump instructions on x86,
conditional jumps require a compare instruction before the jump.

pop mov eax,[edi]; add edi,4

sub sub eax,[edi]

swap xchg [edi],eax

push i sub edi,4; mov [edi],eax; mov eax,i
jump i jmp offset
jeq i cmp eax,[edi]; je offset
jlt i cmp eax,[edi]; jb offset
stop jmp edx

The tedious part is to get the jump offsets correct as x86 instruc-
tions vary in length. Fortunately, our proof methodology helped us
find and remove our off-by-one bugs early in the design.

4.2 Invariant maintained by the generated x86 code
The previous section described informally a coupling invariant
which the generated by x86 code maintains to the bytecode. We
start the construction of our JIT compiler by first formalising an
invariant jit inv and proving that execution of each bytecode in-
struction respects this invariant:

∀s t a. s
next−→ t =⇒ {jit inv s a} ∅ {jit inv t a}

Invariant jit inv maintains a stack, makes sure that appropriate
x86 code is in memory, and also requires that the value of x86
program counter is set correctly. We will formalise each part of
the invariant separately.

The stack consists of an array-like list of 32-bit words xs, that
grows from address a upwards. Here M a x asserts that 32-bit word
x is located at address a, while emp is just the unit of ∗.

list a [] = emp
list a (x :: xs) = M a x ∗ list (a+4) xs

We also have to be precise about what space is reserved as free
stack space. Let space a n state that there is space for n instances
of M elements below address a.

space a 0 = emp
space a (n+1) = ∃x. M (a−4) x ∗ space (a−4) n

The stack maintained by jit inv has the following specification: the
stack must not be empty [], the top of the stack is located in eax
while the rest is placed in memory from some address a upwards,
address a is stored in register edi. We also add an assertion which
requires that a is 32-bit word aligned, i.e. a & 3 = 0.

stack ([], l) = F
stack (x :: xs, l) = ∃a. eax x ∗ edi a ∗ 〈a & 3 = 0〉∗

list a xs ∗ space a l

To formalise that appropriate x86 code is in memory, we need to
define the exact x86 encoding into which each bytecode should be
translated. A 32-bit immediate constant w is represented as follows
in an instruction as a list of 4 bytes. Here w2w translates 32-bit
words to 8-bit words, and� is logical-shift right.

ximm w =
[w2w w,w2w (w � 8),w2w (w � 16),w2w (w � 24)]

The encoding of each instruction is now defined as xenc where
t is a function which given the address of a bytecode instruction
returns the 32-bit address for the corresponding x86 instruction;
w2n converts an unsigned n-bit word into a natural number, and in
this case w2w converts 7-bit words to 8-bit words.

xenc t (pop) = [8B, 07, 83, C7, 04]
xenc t (sub) = [2B, 07]
xenc t (swap) = [87, 07]
xenc t (stop) = [FF, E2]
xenc t (push i) = [83, EF, 04, 89, 07, B8,w2w i, 00, 00, 00]
xenc t (jump i) = [E9] ++ ximm (t (w2n i)− 5)
xenc t (jeq i) = [3B, 07, 0F, 84] ++ ximm (t (w2n i)− 5)
xenc t (jlt i) = [3B, 07, 0F, 82] ++ ximm (t (w2n i)− 5)

Using this encoding function we define the length of each encoding.
Here n2w converts a natural number into a 32-bit word.

xenc length c = n2w (length (xenc (λx. 0) c))

Now we can define a mapping from address p in the bytecode
program cs to addresses in the corresponding x86 code, given that
the x86 code starts at address a:

addr cs a 0 = a
addr [] a p = a
addr (c :: cs) a (p+1) = addr cs (a+ xenc length c) p

The code assertion, code bmc, which jit inv will use, asserts, for
each a ∈ domain m, that the memory of the x86 state contains
code byte m(a) at address a. Let memb a m bs make sure that
bytes bs appear in m from address a onwards.

memb a m [] = T
memb a m (b :: bs) = (m(a) = b) ∧memb (a+1)m bs

We can now define an assertion which states that m contains code
for an entire bytecode program cs, from address a onwards:

code in mem cs a m =
∀p c. fetch p cs = some c =⇒

let branch = (λi. addr cs a i− addr cs a p) in
memb (addr cs a p)m (xenc branch c)

The value of the x86 program counter should always point at the
addr cs a p, i.e. contain the address where instruction with index p
is stored.

Using these definitions we define jit inv as maintaining a stack,
program counter, and appropriate x86 code. (Here s hides the value
of the eflags that are irrelevant between instructions.)

jit inv (xs, l, p, cs) a =
stack (xs, l) ∗ pc (addr cs a p) ∗ s ∗
∃m. code bmc ∗ 〈code in mem cs a m〉

Proving that each case of next−→ satisfies jit inv is a simple ex-
ercise of applying the proof rules from Section 7.5 to Hoare triple
theorems for each of the instructions that xenc can generate. For
example, proving the case for swap starts from theorem:

{eax x ∗ edi w ∗M w y ∗ pc p}
p : 8707
{eax y ∗ edi w ∗M w x ∗ pc (p+2)}

which then implies the following,

(m(p) = 87) ∧ (m(p+1) = 07) =⇒
{eax x ∗ edi w ∗M w y ∗ pc p}
bmc
{eax y ∗ edi w ∗M w x ∗ pc (p+2)}

which in turn leads the following, etc.

code in mem cs a m =⇒
{stack (x :: y :: xs, l) ∗ pc (addr cs a p) ∗ code bmc}
∅
{stack (y :: x :: xs, l) ∗ pc (addr cs a (p+ 1)) ∗ code bmc}

4.3 Bytecode programs are executed by x86 code
The previous section showed how to prove that jit inv is maintained
for each transition of next−→:

∀s t a. s
next−→ t =⇒ {jit inv s a} ∅ {jit inv t a}

To prove that all successful executions exec−→ are handled correctly,
we also proved, in much the same manner, the following result for
the stop instruction:

fetch p cs = some stop =⇒
{jit inv (xs, l, p, cs) a ∗ edx w}
∅
{stack (xs, l) ∗ pc w ∗ edx w ∗ T}

The two theorems above are sufficient for proving that any
successful execution of a bytecode program, i.e. exec−→, will always
be computed by the x86 code inside jit inv:

(xs, l, p, cs)
exec−→ (xs2, l2, p2, cs2) =⇒

{jit inv (xs, l, p, cs) a ∗ edx w}
∅
{stack (xs2, l2) ∗ pc w ∗ edx w ∗ T}

This theorem follows by a simple induction on the relation exec−→.

4.4 Implementing code generation
The remaining part of the construction of the JIT compiler is to
produce verified x86 machine code that can establish an appropriate
state which satisfies jit inv in the precondition of the theorem
above. For this we needed verified x86 code which implements
code generation i.e. translation from bytecode to x86 code.

By exploiting backwards compatibility to previously developed
synthesis tools [22], we can create x86 code from functional de-
scriptions in HOL4. For example, x86 code for calculating addr,
given above, is constructed by first defining, in HOL4, a function
x86 addr which we think might calculate addr.

x86_addr (r1,r5,r6,g) =
if r1 = 0w then (r5,g) else

let r1 = r1 - 1w in
if (g r6 = n2w (ORD #"-")) ∨ (g r6 = n2w (ORD #"s")) ∨

(g r6 = n2w (ORD #".")) then
let r6 = r6 + 1w in let r5 = r5 + 2w in

x86_addr (r1,r5,r6,g) else
if g r6 = n2w (ORD #"p") then

let r6 = r6 + 1w in let r5 = r5 + 5w in
x86_addr (r1,r5,r6,g) else

if g r6 = n2w (ORD #"c") then
let r6 = r6 + 2w in let r5 = r5 + 10w in

x86_addr (r1,r5,r6,g) else
if g r6 = n2w (ORD #"j") then

let r6 = r6 + 2w in let r5 = r5 + 5w in
x86_addr (r1,r5,r6,g) else

if (g r6 = n2w (ORD #"=")) ∨ (g r6 = n2w (ORD #"<")) then
let r6 = r6 + 2w in let r5 = r5 + 8w in

x86_addr (r1,r5,r6,g) else
(r5,g)

Our synthesis tool can from such functions generate x86 code and
prove that the generated x86 code executes the input function. In
this case, the tool returns a Hoare-triple theorem which states that

x86 addr is executed by the generated code:
x86 addr pre (eax, ecx, ebx, g) =⇒
{eax eax ∗ ebx ebx ∗ ecx ecx ∗ data g ∗ pc p ∗ s}
p : 83F8007449 . . .
{let (ecx, g) = x86 addr (eax, ecx, ebx, g) in

eax ∗ ebx ∗ ecx ecx ∗ data g ∗ pc (p+78) ∗ s}

By then manually proving that x86 addr calculates addr correctly,
string in memory(a, encode cs, g) ∧ i < 256 =⇒
x86 addr pre (n2w i, w, a, g) ∧
x86 addr (n2w i, w, a, g) = (addr cs w i, g)

we can produce a formal guarantee that the x86 code produced by
our synthesis tool indeed calculates addr.

We produced the full code generator that establishes the invari-
ant jit inv by synthesising x86 code from functions which were
manually proved to correctly write x86 instructions into memory
with respect to jit inv.

4.5 Final correctness theorem
The resulting overall correctness theorem states that the JIT com-
piler correctly implements exec−→: given a stack (xs, l), a string rep-
resenting the encoding of a bytecode program cs, and enough space
to fit the generated x86 code, this JIT compiler will always termi-
nate in a state where the stack has been updated according to exec−→.

(xs, l, p, cs)
exec−→ (xs2, l2, p2, cs2) ∧

string in memory(a, encode cs, g) =⇒
{stack (xs, l) ∗ data g ∗ edx a ∗ enough space for cs}
p : 89D789C60F . . .
{stack (xs2, l2) ∗ pc (p+410) ∗ T}

4.6 Basic benchmark
Finally, we conducted experiments to discover how fast or slow this
JIT compiler is on real x86 hardware (a 2.6 GHz Intel processor).
In order to run our verified machine code, we wrote a small C wrap-
per which essentially just jumps to the verified machine code after
making the necessary calls to the operating system for allocating
heap space with execute permissions enabled. (The verified ma-
chine code is supplied to the GNU C compiler gcc as an assembly
file consisting of only .byte directives.)

Our JIT compiler calculates the greatest common divisor (GCD)
using the bytecode program "=6<4-j0sj0." (Section 3) in very fast
times for small inputs, e.g. 135 and 345:

$ time ./jit "=6<4-j0sj0." 135 345
Top of stack on exit: 5

real 0m0.003s
user 0m0.001s
sys 0m0.002s

Only for large inputs, e.g. the pair 2 and 200,000,000, do we get
more reliable measurements:

$ time ./jit "=6<4-j0sj0." 2 200000000
Top of stack on exit: 2

real 0m0.131s
user 0m0.128s
sys 0m0.003s

Incidentally, the time, 0.128 seconds, matches the execution
time of a C program which calculates GCD using a loop:

while (x != y)
{ if (x < y) { y = y - x; } else { x = x - y; } }

Our C program gcd.c is compiled using gcc version 4.0.1 and
optimisation flag -O3:

$ gcc -O3 gcd.c -o gcd
$ time ./gcd 200000000 2
GCD: 2

real 0m0.129s
user 0m0.127s
sys 0m0.002s

Our JIT compiler makes no optimisations and thus the comparison
can easily be made in favour of gcc by simply providing our
JIT compiler with less optimal bytecode, e.g. "=8<4sj0s-sj0.".
However, the point which we want to make is that simple JIT
compilers produced as described above are not necessarily slow;
by providing the JIT compilers with optimised bytecode we can
get competitive performance.

5. Verified JIT compiler – version 2 – incremental
The previous section presented a JIT compiler which generates all
of the native code at once and then jumps to the generated code.
This section describes the construction of a verified JIT compiler
which only generates code on-demand, incrementally.

The construction and proof of this incremental JIT compiler fol-
lows very closely the workflow of the simpler non-incremental JIT
compiler. Therefore, this section will mainly concentrate on de-
scribing the intuition of how this incremental JIT compiler works,
and will point out how the invariant used in the proof had to be
modified.

5.1 Informal intuition
The basic intuition for our incremental JIT compiler is that each
non-branching instruction (sub, swap, pop, push,stop) is generated
as before, but branch instructions (jump, jlt, jeq) will be generated
with calls to the code generator, e.g. bytecode instruction jeq i at
location p will always initially result in the following x86 code:1

cmp eax,[edi]
je L
xor ecx, p+1
call ebx

L: xor ecx, i
call ebx

When this code is run one of the call instructions will call the code
generator, whose address is in register ebx. The value in register
ecx will tell the code generator for which bytecode instruction it
should generate x86 code.

Suppose for this example that the x86 code calls the code gen-
erator using the first call, i.e. with p + 1 in ecx, then the code
generator will perform a look-up in a table it maintains of where
and what bytecode instructions have been translated to x86 code. If
it finds that p + 1 has not yet been generated then it translates the
longest sequence of non-jump instructions around p + 1 into na-
tive code and replaces the xor and call instructions with a jump
directly to desired location in the new code, i.e. the code becomes:

cmp eax,[edi]
je L
jmp G

L: xor ecx, i
call ebx
. . .
(new code starts here)

G: (code for instruction p+ 1 in bytecode)
(new code ends here)

1 Here xor ecx,i has the effect of ecx := i since, whenever such xor
instructions are encountered, ecx contains zero. We chose to use xor
instead of mov because xor allows us to use a shorter instruction encoding.

In case the code generator had already generated code for instruc-
tion p + 1, then no new code would have been generated, instead
only the new jump instruction would have been inserted.

The interesting aspect of this JIT compiler is that it can generate
slightly different x86 code depending on the input, i.e. depending
on which branches are taken in which sequence. Branches that are
never taken will never be replaced by jmp instructions.

5.2 Invariant
This incremental JIT compiler maintains an invariant which, in-
stead of having static code corresponding to the bytecode program,
states that a code generator is present and x86 code for part of the
bytecode exists.

The interesting part of the invariant describes the state main-
tained in between calls to the code generator. Its state consists of
a partial mapping from bytecode instruction indexes (natural num-
bers) to locations (32-bit addresses) where that particular bytecode
instruction is represented as x86 code. We represent this partial map
as a total function to an option type; the type of this mapping, for
which we will use variable j, is:

N → word32 option

Defining how code is represented in memory is slightly more
complicated now. In particular, each jump can potentially be repre-
sented in two ways, either as the combination of xor and call, or
as just a direct jmp. The encoding of a jump to bytecode location p,
in the generated x86 at address a, is either present as xor ecx, p;
call ebx (encoded as 83F1[i]FFD3) or, if j i = somew, simply as
an unconditional jump jmp (w−a−5) (encoded as E9[w−a−5]).
We reuse the definition of ximm from the Section 4.2.

enc jmp a p j bs =
(bs = [83, F1, n2w p, FF, D3]) ∨
∃w. (j p = some w) ∧ (bs = [E9] ++ ximm (w−a−5))

The relation between bytecode instructions and x86 code is
defined as xenc inc c a p j bs: a relation which states that byte
list bs, at machine address a, is a valid x86 code corresponding to
bytecode instruction c, at location p. The first 5 cases are identical
to the encoding xenc for the non-incremental version.

xenc inc (pop) a p j bs = (bs = xenc (λx. 0) pop)

xenc inc (sub) a p j bs = (bs = xenc (λx. 0) sub)

xenc inc (swap) a p j bs = (bs = xenc (λx. 0) swap)

xenc inc (stop) a p j bs = (bs = xenc (λx. 0) stop)

xenc inc (push i) a p j bs = (bs = xenc (λx. 0) (push i))

xenc inc (jump i) a p j bs = enc jmp a (w2n i) j bs

xenc inc (jeq i) a p j bs =

∃bs0 bs1 bs2. (bs = bs0 ++ bs1 ++ bs2) ∧
(bs0 = [3B, 07, 0F, 84, 05, 00, 00, 00]) ∧
enc jmp (a+8) (p+1) j bs1 ∧ enc jmp (a+13) (w2n i) j bs2

xenc inc (jlt i) a p j bs =

∃bs0 bs1 bs2. (bs = bs0 ++ bs1 ++ bs2) ∧
(bs0 = [3B, 07, 0F, 82, 05, 00, 00, 00]) ∧
enc jmp (a+8) (p+1) j bs1 ∧ enc jmp (a+13) (w2n i) j bs2

We can now define what it means for bytecode cs to be repre-
sented in memory m according to mapping j: whenever bytecode
instruction c is according to j stored at an address w, then there ex-
ists some sequence of bytes bs, which represents c, stored in mem-
ory m at address w. We use memb defined in Section 4.2.

code in mem cs j m =

∀p c w. (fetch p cs = some c) ∧ (j p = some w) =⇒
∃bs. memb w m bs ∧ xenc inc c w p j bs

We separately assert a well-formedness requirement on map-
ping j: each x86 representation of a bytecode instruction which is
not a jump must, if and only if present in the x86 code, be im-
mediately followed by the x86 representation of the next bytecode
instruction. Let ilength c be a function which return the length of
each instruction encoding, e.g. ilength (jump i) = 5.

is jump c = ∃i. c ∈ { jump i, jeq i, jlt i, stop }

wellformed cs j =
∀c p. (fetch p cs = some c) ∧ fetch (p+1) cs 6= none ∧

¬is jump c =⇒
((j p = none) ⇐⇒ (j (p+1) = none)) ∧
∀w. (j p = some w) =⇒

(j (p+1) = some (w + ilength c))

The incremental JIT compiler’s main invariant, i.e. its version
of jit inv, now states that the stack is maintained as stack (xs, l),
defined in Section 4.2; the program counter holds a value eip for
which there exists some generated x86 code, i.e. j p = some eip;
the code cs is represented in memory m according to a wellformed
mapping j; and in order to make code generator work, we also
include that the code generator is present in memory, that ebx
holds a pointer to the entry point in the code generator and register
ecx is zero (which is necessary for the xor trick to work). Some
inessential details are elided with ‘. . . ’.

jit inv (xs, l, p, cs) a =
∃m j eip w.

stack (xs, l) ∗ pc eip ∗ 〈j p = some eip〉 ∗ s ∗
code bmc ∗ 〈code in mem cs j m ∧ wellformed cs j〉 ∗
code (codegen w) ∗ ebx w ∗ ecx 0 ∗ . . .

The verification proof can be found in our HOL4 proof scripts [1].

6. x86 semantics
We use an operational semantics for (user-mode) x86 machine code
which builds on a previously presented semantics of x86 [25]. The
following subsections will detail how the sequential instantiation of
our previously developed x86 semantics is extended to include an
instruction cache and read/write/execute memory permissions.

6.1 x86 state and memory model
The operational semantics represents x86 states as tuples which
consist of a register file r, program counter/instruction pointer e,
status bits/eflags s, memory m and instruction cache i:

(r, e, s,m, i)

The type definition makes use of the following data-types:

α option ::= some α | none
regs ::= EAX | EBX | ECX | EDX | EDI | ESI | EBP | ESP
eflags ::= CF | PF | AF | ZF | SF
perm ::= r | w | x

The type of each x86 state component is:

r : regs→ word32
e : word32
s : eflags→ bool option
m : word32→ (word8 * perm set) option
i : word32→ (word8 * perm set) option

The option type is used in places where the actual value may be
missing, e.g. the value of an eflag in s may be any of three values:

some T has value true (written T),
some F has value false (written F), or
none has undefined/unpredictable value.

Memory locations in m can either be absent (none), or present
(some). Memory locations contain two components: the 8-bits of
data that are stored at the address and a set of read/write/execute
permissions describing how this data can be accessed.

All memory reads and writes are defined in the operational
semantics using read mem, write mem and read instr.

read mem a (r, e, s,m, i) =
case m a of

none→ none
| some (w, p)→ if {r} ⊆ p then some w else none

write mem a v (r, e, s,m, i) =
case m a of

none→ none
| some (w, p)→ if {w} ⊆ p then

some (r, e, s,m[a 7→ some (v, p)], i)
else none

The function which fetches 8-bits of an instruction gives priority to
the instruction cache, and requires the execute permission x.

read instr a (r, e, s,m, i) =
case (i a,m a) of
(none, none)→ none
| (none, some (w, p))→ if {r, x} ⊆ p then some w else none
| (some (w, p),)→ if {r, x} ⊆ p then some w else none

Our user-mode semantics has no instructions for altering the
permissions attached to memory locations; instead permissions re-
main static through out execution. In reality operating systems pro-
vide user-mode programs with procedures they can call to alter
such read/write/execute permissions on a per-page granularity.

6.2 Instruction-cache update

Our semantics executes an instruction-cache update icache−→ before
each instruction is performed. Each update deletes some set of
old address from the cache and loads, from memory, a new set of
addresses into the cache:

(r, e, s,m, i)
icache−→ (r2, e2, s2,m2, i2)

=
∃new old.
r2 = r ∧ e2 = e ∧ s2 = s ∧m2 = m ∧
i2 = λaddr. if addr ∈ new then m addr else

if addr ∈ old then none else i addr

This cache update transition over approximates the number of
different updates a real instruction cache can perform, e.g. a real
cache cannot load the entire memory. Over approximating possible
cache updates is sufficient, since we will prove that no cache update
can cause unwanted behaviour.

A noteworthy feature of this cache update transition is that it
will never introduce new inaccuracies. We say that the instruction
cache is accurate (not out-of-date) for address a if the instruction
cache either does not contain an entry for address a or memory
location a is correctly represented in the cache, i.e.

accurate a (r, e, s,m, i) = i a = none ∨ i a = m a

Automatic cache updates will never introduce inaccurate entries:

∀s t a. s icache−→ t ∧ accurate a s ⇒ accurate a t

Similarly inaccuracies might be removed:

∀a s. ¬(accurate a s) ⇒ ∃t. s icache−→ t ∧ accurate a t

Address a becomes inaccurate whenever address a is repre-
sented in the instruction cache and a store instruction successfully

modifies the byte stored at address a using write mem a v, for
some 8-bit data v.

6.3 Next-state relation

The top level next-state relation x86−→ is defined as a composition
of an instruction cache update, then fetch-and-decode, followed by
execution of the fetched instruction. The definition of execute can
be found in our proof scripts [1]. The function fetch and decode
is explained in Appendix A.

s
x86−→ u

=
∃t instr len.
(s

icache−→ t) ∧
(fetch and decode t = some (instr, len)) ∧
(execute instr len t = some u)

Both the decoder and the execute function have been tested exten-
sively against real x86 hardware, as part of previous work [25]. This
gives us confidence that our semantics is, if not completely correct,
at least very nearly completely right for the instructions it covers:

ADC ADD AND CALL CMOVA CMOVB CMOVE CMOVNA CMOVNB
CMOVNE CMOVNS CMOVS CMP CMPXCHG DEC DIV INC JA
JB JE JMP JNA JNB JNE JNS JS LEA LOOP LOOPE
LOOPNE MOV MOVZX MUL NEG NOT OR POP POPAD PUSH
PUSHAD RET SAR SBB SHL SHR SUB TEST XADD XCHG XOR

6.4 Clearing the instruction cache
The x86 instruction set has no instruction for the sole purpose of
clearing the instruction cache. However, the Intel Manual (March
2009) [12] states that it is safe to execute self-modifying code (in
sequential programs) if the following steps are taken:

1. store modified code

2. jump to new code or intermediate code

3. execute new code

This ambiguous description makes it seem safe to assume that some
kind of jump is enough to erase any instruction cache inaccuracies
that might make the new code unsafe to execute.

In order to make as few assumptions as possible, we will only
assume that one type of jump has the ability to clear the instruction
cache. We make clearing the instruction cache a side-effect of
execution of jump instructions of the form “jmp r32”, i.e. jumps to
a code pointer stored in a 32-bit register. Other jump instructions,
such as branch-to-offset, procedure calls, and procedure returns,
are not given this extra side-effect. The relevant part of the execute
definition sets i to the empty cache, i.e. λa.none:

execute (Xjmp (Xreg d)) len (r, e, s,m, i) =
some (r, r(d), s,m, λa.none)

All other cases of execute leave the instruction cache i untouched.

6.5 Execution sequences
In the next section we will quantify over all possible x86 execution
sequences. For this purpose, we define a valid execution sequence
x from initial state s, written x86 seq s x, to be an infinite sequence
of x86 states (with type N→ x86 state) such that

x(0) = s

and for each natural number n:

x(n)
x86−→ x(n+ 1) if ∃y. x(n)

x86−→ y

x(n+ 1) = x(n) otherwise

The above definition of x86 seq makes stuck states repeat for-
ever. Repeating stuck states is reasonable as we will only consider
judgements of total-correctness which asserts that each execution
sequence x will contain a desirable final state x(n) satisfying some
postcondition post:

∀x. x86 seq s x =⇒ ∃n. post (x(n))

7. Machine-code Hoare logic
This section presents a definition of a Hoare triple and associated
Hoare proof rules which allow local reasoning in the presence of
an instruction cache. The work presented in this section builds on
previous experience [19, 21] in adapting separation logic [24] to
machine languages.

7.1 Separating conjunction: ∗
Conventionally the separating conjunction ∗ is defined to split par-
tial functions. However, for this work, and previous work on Hoare
logic for machine languages, we have found that such a separating
conjunction is ill suited for machine languages as processor states
are essentially multiple different mappings (mappings from regis-
ter names to register values, memory locations to memory values,
status-bit names to bit values etc.).

We choose to use a set-based separating conjunction in order
to treat all resources uniformly and hence make the frame rule
(presented later) apply to all types of resources simultaneously. Our
set-based separating conjunction ∗ splits a set (of state elements)
into two sets: p ∗ q is true for set s if s can be split into two disjoint
sets u and v such that p is true for u and q is true for v.

(p ∗ q) s = ∃u v. p u ∧ q v ∧ (u ∪ v = s) ∧ (u ∩ v = {})

The separating conjunction ∗ is associative and commutative.
Its unit is emp and angled brackets 〈. . .〉 will be used for carrying
pure boolean assertions (∀p c s. (p ∗ 〈c〉) s = p s ∧ c):

emp s = (s = {})
〈b〉 s = (s = {}) ∧ b

This separating conjunction requires states to be represented as
sets of state components. Let the type of an x86 state component
be defined by a data-type x86 el with the following constructors. A
boolean is attached to each memory component to indicate whether
of not that byte is accurately represented in the instruction cache.

Eip : word32→ x86 el
Reg : regs→ word32→ x86 el
Status : eflags→ bool option→ x86 el
Mem : word32→ (word8 ∗ perm) option→ bool→ x86 el

This data-type allows us to define a translation function x86set
which maps states represented as tuples x86 state, as described
in the previous section, to states represented as sets of x86 state
elements. Here range f = { y | ∃x. f x = y }.

x86set (r, e, s,m, i) =
{ Eip e } ∪
range (λa. Reg a (r a)) ∪
range (λa. Status a (s a)) ∪
range (λa. Mem a (m a) (accurate a (r, e, s,m, i)))

Let R r w assert that register r has value w, similarly let S a x
assert that eflag a has value x, and let pc assert the value of the
instruction pointer.

(R a x) s = (s = {Reg a x})
(S a x) s = (s = {Status a x})
(pc x) s = (s = {Eip x})

The above assertions have their intended meaning when used to-
gether with the translation function x86set, e.g.

(R a x ∗ p) (x86set(r, e, s,m, i)) =⇒ (r a = x)
(S a x ∗ p) (x86set(r, e, s,m, i)) =⇒ (s a = x)
(pc x ∗ p) (x86set(r, e, s,m, i)) =⇒ (e = x)

but ∗ also separates between assertions of the same kind:

(R a x ∗ R b y ∗ p) (x86set(r, e, s,m, i)) =⇒ a 6= b
(S a x ∗ S b y ∗ p) (x86set(r, e, s,m, i)) =⇒ a 6= b
(pc x ∗ pc y ∗ p) (x86set(r, e, s,m, i)) =⇒ F

We will often abbreviate R EAX w with just eax w, R EBX w
with ebx w etc. Another abbreviating assertion is s which hides the
values of the eflags:

s = ∃c p a z s. S CF c ∗ S PF p ∗ S AF a ∗ S ZF z ∗ S SF s

Assertion s is used in theorems where we need to state that the
eflags were modified but we want hide their actual values, which
are frequently not of interest.

7.2 Memory assertions: M, code, data

The most basic memory assertion B a x is defined to state that
byte x, which can be read and written but not executed, is located
in memory at address a, which might or might not be accurately
represented in the instruction cache:

(B a x) s = ∃acc. s = {Mem a (some (x, {r,w})) acc}
A similar assertion M, which states that 32-bit data w is at

address a, can be defined using four B assertions. Here w[j−i]
extracts bits i to j (inclusive) from 32-bit word w.

M a w = B (a+0) (w[7−0]) ∗
B (a+1) (w[15−8]) ∗
B (a+2) (w[23−16]) ∗
B (a+3) (w[31−24])

Our machine-code Hoare triple represents code as set of code
fragments: each element is a tuple (a, x, p) where a is a 32-bit
address, x is 8-bits of an instruction and p is write permission w
iff location a has write permissions set. The code assertion makes
sure that code set c is stored in memory and accurately represented
in the instruction cache, hence T below.

(code c) s =
(s = { Mem a (some (x, {r, x, p})) T | (a, x, p) ∈ c })

The data assertion data m, which informally states that m(a)
is stored in memory at location a if a ∈ domain m, is defined as
using auxiliary function aux:

aux(m, p, acc) =
{ Mem a (some (m(a), {r,w, p})) (acc a) | a ∈ domain m }

Now let data m and datax m, respectively, assert that m is non-
executable or executable data, regardless of which addresses are
accurately represented acc in the instruction cache:

(data m) s = ∃acc. s = aux(m, r, acc)
(datax m) s = ∃acc. s = aux(m, x, acc)

When turning datax m into a code assertion code bmc, the
notation “bmc” stands for:

{ (a,m(a),w) | a ∈ domain m }

7.3 Cache abstraction: �
Separation logic, which we use as an inspiration for our machine-
code Hoare logic, is based on the notion of local reasoning: each
action can be described by a Hoare triple that only describes small
local updates, such Hoare triples can separately be brought into a

grander context using, what is known as, the frame rule, which will
be described later.

Applying ideas from separation logic naively to our x86 model
does not work as the updates to the instruction cache are non-local
and can occur at random; a basic set up that exposes instruction-
cache updates would struggle to support the vital frame rule.

In order to regain local-reasoning, the definition of our Hoare
triple will assert pre/postconditions p, not just as,

p (x86set(s))

but instead using an instruction cache abstraction p � s which
allows p to be true for some state t with a less accurate instruction
cache but otherwise equivalent to s:

p � s = ∃t. t icache−→ s ∧ p (x86set t)

Since all non-local cache updates only introduce new accuracies, a
different state t can always be chosen in such a way that old inac-
curacies (that p might potentially depend on) can be reintroduced
before p is asserted.

7.4 Definition of Hoare triple: {p} c {q}
The previous subsections defined the necessary building blocks
for our instruction-cache-aware Hoare triple, namely: �, code and
x86 seq. We first define p q to be a total-correctness Hoare
“triple” without any code: if some part of the x86 state satisfies
p then every possible execution sequence will reach a state which
satisfies q. Here ‘∗ r’ ensures that every resource that is modified
is mentioned in precondition p.

p q = ∀s r. (p ∗ r) � s⇒
∀x. x86 seq s x⇒ ∃n. (q ∗ r) � x(n)

Our machine-code Hoare triple {p} c {q} is an abbreviation
which maintains code c as an invariant separate from pre- and
postcondition p and q, respectively:

{p} c {q} = (p ∗ code c) (q ∗ code c)

The relationship between the two judgements can be seen in the
following theorems. Here ∅ is the empty set.

{p} ∅ {q} = p q

{p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

These arise from the fact that: p ∗ code ∅ = p ∗ emp = p.

7.5 Proof rules
The machine-code Hoare triple, defined above, supports a few un-
usual proof rules, i.e. theorems proved from the definition of our
machine-code Hoare triple {p} c {q} and x86 semantics. Sec-
tion 2.2 already presented the following proof rules for transform-
ing data into code and vice versa:

{p} c {q} = {p ∗ code c} ∅ {q ∗ code c}

{p} c {q ∗ code bdc} =⇒ {p} c {q ∗ datax d}

{p ∗ datax d} c {q} =⇒ {p ∗ code bdc} c {q}
Section 2.2 also mentioned that jumps to code pointers, i.e. instruc-
tions of the form jmp r32, can turn data into code, e.g. jmp eax,
encoded as FFE0, turns data into code:

{eax v ∗ pc p ∗ datax d}
p : FFE0
{eax v ∗ pc v ∗ code bdc}

Other code related rules include the rule for code extension:

{p} c {q} =⇒ ∀e. {p} (c ∪ e) {q}

which illustrates well that these Hoare triples state only that code c
is sufficient to transform states satisfying p into states satisfying q.
Thus any extension e to set cwill also be sufficient for transforming
states satisfying p into states satisfying q. The last code related rule
is one which introduces bmc:

{p} c {q} =⇒
((∀a w. (a,w) ∈ c =⇒ m(a) = w) =⇒ {p} bmc {q})

Other more conventional rules are:

{p} c {q} =⇒ ∀r. {p ∗ r} c {q ∗ r}

{p} c1 {q} ∧ {q} c2 {r} =⇒ {p} c1 ∪ c2 {r}

{p} c {q} ∧ (∀s. q s =⇒ r s) =⇒ {p} c {r}

{p} c {q} ∧ (∀s. r s =⇒ p s) =⇒ {r} c {q}

{∃x. p x} c {q} = ∀x. {p x} c {q}

{p ∗ 〈b〉} c {q} = (b =⇒ {p} c {q})

8. Quantitative data
Large parts of the basis for this work, the x86 semantics, machine-
code Hoare logic and some proof automation, consist of only minor
extensions to proof scripts/automation which were developed in
previous work [19, 21, 22, 25]. The following table lists the number
of lines of HOL4 code, i.e. proof scripts and automation, that were
reused (column old) and that are new for this work (column new).

old new total

x86 semantics 2319 150 2469
general Hoare logic 425 7 432
x86 instantiation of Hoare logic 587 430 1017
proof automation∗ 4851 21 4872
input language for JIT compiler 0 99 99
JIT compiler version 1 0 1231 1231
JIT compiler version 2 0 2550 2550

total 8182 4488 12670

∗ includes a proof-producing compiler [22] which
maps functions in the logic of HOL4 to ARM, x86
and PowerPC machine code, used in Section 4.4.
This compiler is based on a proof-producing decom-
piler [21] which is also included in the number 4851.

The verified JIT compilers can be run on real x86 hardware. A
few tests, in Section 4.6, suggest that the JIT compiler is reason-
ably efficient: the JIT compiler evaluates the bytecode program for
calculating the greatest common divisor (GCD), from Section 3, for
the pair 2 and 200,000,000 in 0.13 seconds — a time which matches
the execution time of compiled C code for calculating GCD. The C
code to which we compare, also listed in Section 4.6, was compiled
using the GNU C compiler gcc with optimisation turned on.

9. Related work
This paper has touched on a number of topics: JIT compilation,
self-modifying code, verification of machine-code programs and
compiler verification. Related work on each topic is briefly dis-
cussed below.

JIT compilation. The history of JIT compilation has been surveyed
by Aycock [3] who traced back the origins of JIT compilation to
McCarthy’s LISP paper in 1960 [15]. But the term just-in-time

(JIT) was only introduced in connection with attempts to speed up
Java, which was slow before using JIT technology:

“ Java isn’t just slow, it’s really slow, surprisingly slow. ”
— from Tyma [28] and Aycock [3]

Discussions such as those of Tyma [28] and Aycock [3] make it
clear that JIT compilation is vital for implementation of efficient
interpreters for modern languages: Java, C#, ML etc.

Self-modifying code. There is very little published work [8, 6] on
verification of self-modifying code. To the best of our knowledge,
Gerth [8] was the first to propose a solution. His solution is to
not have code but instead only data. He demonstrates that linear
temporal logic can be used to prove functional correctness and
termination of self-modifying code in a toy assembly language.
Gerth presents only a few small examples, questions whether his
approach will scale, and does not include an instruction cache in
his model of the assembly language.

More recent work by Cai et al. [6] is somewhat more closely
related to our work: they use a Hoare logic and target larger case
studies in more realistic machine languages. Cai et al. developed
an extension, called GCAP, to an assembly-level Hoare logic called
CAP [29], and formalised GCAP in the Coq theorem prover. They
present a long list of small verification examples for MIPS and 16-
bit x86 code, some of which generate code dynamically, but none
of which is a full JIT compiler.

One of the main differences to this paper is their approach for
mutable code: they introduce the concept of possibly overlapping
code blocks that might or might not be present at any given time,
but one of which must be present in memory when starting execu-
tion of a block at that address. In comparison, our approach seems
much simpler since for us code is just safe-to-execute data:

{p} c {q} = {p ∗ code c} ∅ {q ∗ code c}
Another contrast to the work by Cai et al. is that our work builds
on a semantics of x86 which takes into account hazards of an out-
of-date instruction cache, while their work ignores the instruction
cache. Also our framework provides total-correctness results, while
GCAP produces partial-correctness results.

Verified machine code. Construction of the two versions of our
JIT compiler required verified (functional correctness) implemen-
tations of code generation, i.e. x86 code that reads the input byte-
code and produces equivalent x86 code.

The obvious way of creating this verified code would have
been to, first, either handcraft or generate the machine code, then
apply post hoc verification to the proposed machine code. Such an
approach could have used:

• symbolic simulation which the ACL2 community has empha-
sised and successfully applied [4, 17], e.g. Boyer and Yu [5]
verified of machine code for the Motorola MC68020;
• a programming logic directly, e.g. Cai et al. [6] chose this

method, which works for small examples, but is very labour-
intensive to apply to larger examples [16];
• verification condition generation (VCG) applied to machine

code: Matthews et al. [14] presented a light-weight approach to
trustworthy VCG for machine code – an approach that Hardin et
al. have applied to AAMP7G machine code [10]; or
• decompilation into logic — a new method proposed by Myreen

et al. [21] which maps, via proof, machine code into equivalent
functions in logic (details and examples in Myreen [19]).

Instead of using any of the above methods for post hoc verification
of handcrafted code, we chose to synthesis appropriate machine
code using a proof-producing compiler [22]. Our compiler maps

functions from the logic of HOL4 down to functionally equivalent
x86 machine code and completely automatically proves a certificate
theorem. In order to get the desired verified machine code we wrote
functions with the appropriate behaviour, proved them correct, and
then related the verification result to the automatically generated
machine code using the certificate theorem produced by our proof-
producing compiler [22].

Influential work on proof-carrying code (PCC) by Necula [23],
typed-assembly language (TAL) by Morrisett et al. [18], and foun-
dational PCC (FPCC) by Appel [2, 27] share the goal of creating
trustworthy software, but are not directly applicable, since work in
this direction has aimed to automatically ensure safety properties.
In contrast, this paper targets much stronger properties of full func-
tional correctness and termination.

Compiler verification. This paper touched on the topic of com-
piler verification: the code generator inside the JIT compilers was
proved to correctly translate (without any optimisations) bytecode
into x86 machine code. From the point of view of compiler veri-
fication, this is a very simple and slightly unusual implementation
to prove correct. Most papers on compiler verification, of which
Dave has made a survey [7], concentrate on proving a few optimis-
ing transformations correct. An impressive exception to this trend
is Leroy’s recent proof a full end-to-end implementation of an op-
timising C compiler [13].

Another contrast to previous work on compiler verification, is
that our simple code generator is implemented in x86 machine code
(numbers) and produce concrete x86 code as output (numbers);
while majority of other work implement the compiler in small toy
languages or functional languages and output either assembly code
or code in an intermediate language used only inside compilers.

10. Future work
The input language of our verified JIT compiler is a simple stack-
based bytecode. In the future, we plan to extend this input language
to a bytecode language suitable for reimplementation of our ver-
ified x86, ARM and PowerPC implementations of a LISP inter-
preter [20], i.e. we aim to extend the language to operate over a
garbage collected stack of s-expressions. Such an extension ought
to be largely orthogonal to the developments here as that extension
should boil down to replacing the stack assertion in jit inv with a
more complicated assertion sexp stack, while code generation is,
in principle, unchanged.

Acknowledgments
I would like to thank John Matthews for suggesting that I try
to tackle the problem of verifying a JIT compiler. I am grateful
for comments from Mike Gordon. This work was funded by the
EPSRC, UK.

A. Instruction fetch and decode
Modelling fetch and decode for x86 is made interesting due to
the complex instruction encodings that result in variable length
instructions. Modelling x86 instruction fetch and decode was part
of previous work [25] but did not get a thorough explanation there,
so we present fetch-and-decode here, as the current author was
responsible for modelling of fetch-and-decode for [25].

Fetch. First, how do we cleanly separate fetching from decoding?
The problem is that fetching needs to know how many bytes to
fetch, but the number of bytes (the length of the x86 instruction) is
only known after decoding.

A close inspection of the x86 manual [12] shows that no 32-bit
mode x86 instruction is longer than 20 bytes. Our solution is to first

fetch 20 bytes using fetch 20 a s,

fetch 0 a s = []
fetch (n+1) a s = read instr a s :: fetch n (a+1) s

Then evaluate decode (outlined later) on a list in which errors, i.e.
none elements, have been replaced by zero: decode is applied to
clean (fetch 20 a s) where clean is:

clean [] = []
clean (none :: cs) = 0 :: clean cs
clean (some x :: cs) = x :: clean cs

A successful application of decode returns some (i, len), where i
is the abstract syntax tree representation of the instruction and len
is the length (number of bytes) of the encoding. Before returning
the result, we check that the first len bytes are not none, using
not none len:

not none 0 cs = T
not none (n+1) (none :: cs) = F
not none (n+1) (some x :: cs) = not none n cs

The definition of fetch and decode is hence:
fetch and decode (r, e, s,m, i) =

let cs = fetch 20 e (r, e, s,m, i) in
case decode (clean cs) of

none→ none
| some (i, len)→ if not none len cs then

some (i, len) else none

Decode. The Intel Manual [12] defines instruction encodings using
lists of the following style: each line has two parts, the first part
(left of the bar) provides the encoding formats, the second part
(right of the bar) provides the assembly instruction. Most assembly
instructions have multiple different encodings. Here are some of
the encodings for the move instruction mov:

" 89 /r | MOV r/m32, r32 "
" 8B /r | MOV r32, r/m32 "
" B8+rd id | MOV r32, imm32 "
" C7 /0 id | MOV r/m32, imm32 "

The Intel manual provides a description of what each encoding
symbol 89, B8+rd, /r, etc. means.

In order to minimise errors that can occur when trying to write
the equivalent definitions in a theorem prover, we decided to copy
across these lines from the Intel Manual into HOL4 and then write,
in the HOL4 logic, an interpreter for this syntax based on Intel’s
description of what it means. The interpreter first splits each string
into two at the bar character | and then breaks each side up into a
list of tokens, e.g. the first line from above becomes the pair:

["89", "/r"] and ["MOV", "r/m32", "r32"]

When the interpreter receives a concrete input to decode, e.g. a list
of bytes [0x89, 0x07, 0x86, . . .], it will execute a match function
which attempts to fit the encoding format, in this case ["89", "/r"],
onto the concrete byte list. If a match is found then a separate func-
tion constructs the data-type used for representing the assembly in-
struction in our operational semantics. The interpreter also returns
the unused tail of the input. The example above produces:

some (Xmov (Xrm r (Xm none (some EDI) 0) EAX),
[0x86, . . .])

This output from the interpreter means that decoding found x86
instruction mov [edi], eax and that input [0x86, . . .] was left
unused, and hence the instruction consisted of the first two bytes
of the input. The top-level decode function returns the generated
data-type together with the number of bytes consumed from the
input list.

Decoder speed-up. Running the decoder inside the theorem prover
logic, e.g. evaluating decode [0x89, 0x07, 0x86, . . .], to prove de-
coding results about specific machine instruction is very slow if
done naively. It takes nearly 15 minutes for HOL4 to evaluate the
above example without helping lemmas. (Evaluating decode out-
side the logic is not acceptable as we want a theorem certified by
the logical core of HOL4.) However, a significant speed up can eas-
ily be achieved by partially evaluating the decode function for the
list of x86 instruction encodings, i.e. the list of strings mentioned
above. When the theorem produced by partial evaluation is supplied
to the standard HOL4’s evaluation engine, evaluation is performed
inside the logic in less than 2 seconds for most instruction, some
take up to a bearable 6 seconds.

References
[1] HOL4 proof scripts, verified x86 code and other supporting material:

http://www.cl.cam.ac.uk/~mom22/jit/.
[2] Andrew W. Appel. Foundational proof-carrying code. In Logic in

Computer Science (LICS). IEEE, 2001.
[3] John Aycock. A brief history of just-in-time. ACM Computing

Surveys, 35:97–113, 2003.
[4] R. S. Boyer and J S. Moore. Proving theorems about pure LISP

fucntions. JACM, 22(1):129–144, 1975.
[5] Robert S. Boyer and Yuan Yu. Automated proofs of object code for a

widely used microprocessor. J. ACM, 43(1):166–192, 1996.
[6] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-

modifying code. In Jeanne Ferrante and Kathryn S. McKinley, editors,
Programming Language Design and Implementation (PLDI), pages
66–77. ACM, 2007.

[7] Maulik A. Dave. Compiler verification: a bibliography. SIGSOFT
Softw. Eng. Notes, 28(6):2–2, 2003.

[8] R. Gerth. Formal verification of self modifying code. In Int. Conf. for
Young Computer Scientists, pages 305–313. International Academic
Publishers, China, 1991.

[9] Michael J. C. Gordon. Mechanizing programming logics in higher or-
der logic. In Current Trends in Hardware Verification and Automated
Theorem Proving. Springer, 1989.

[10] David S. Hardin, Eric W. Smith, and William D. Young. A robust
machine code proof framework for highly secure applications. In
Panagiotis Manolios and Matthew Wilding, editors, Proceedings of
the Sixth International Workshop on the ACL2 Theorem Prover and
Its Applications, 2006.

[11] C. A. R. Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969.

[12] Intel. Intel 64 and IA-32 Architectures Software Developers Manual.
Intel Corporation, March 2009.

[13] Xavier Leroy. Formal certification of a compiler back-end, or: pro-
gramming a compiler with a proof assistant. In Principles of Pro-
gramming Languages (POPL), pages 42–54. ACM Press, 2006.

[14] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Ver-
ification condition generation via theorem proving. In Logic Program-
ming and Automated Reasoning (LPAR), volume 4246 of LNCS, pages
362–376. Springer, 2006.

[15] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. Communications of the ACM, 1960.

[16] Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A gen-
eral framework for certifying garbage collectors and their mutators. In
Jeanne Ferrante and Kathryn S. McKinley, editors, Proceedings of the
Conference on Programming Language Design and Implementation
(PLDI), pages 468–479. ACM, 2007.

[17] J Strother Moore. Symbolic simulation: An ACL2 approach. In
Ganesh Gopalakrishnan and Phillip J. Windley, editors, Formal Meth-
ods in Computer-Aided Design (FMCAD), pages 334–350, 1998.

[18] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From
System F to typed assembly language. In Principles of Programming
Languages (POPL), pages 85–97. ACM Press, 1998.

[19] Magnus O. Myreen. Formal verification of machine-code programs.
PhD thesis, University of Cambridge, 2009.

[20] Magnus O. Myreen and Michael J.C. Gordon. Verified LISP imple-
mentations on ARM, x86 and PowerPC. In Stefan Berghofer, To-
bias Nipkow, Christian Urban, and Makarius Wenzel, editors, Theorem
Proving in Higher Order Logics (TPHOLs), LNCS. Springer, 2009.

[21] Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon.
Machine-code verification for multiple architectures – An application
of decompilation into logic. In Alessandro Cimatti and Robert B.
Jones, editors, Formal Methods in Computer Aided Design (FMCAD).
IEEE, 2008.

[22] Magnus O. Myreen, Konrad Slind, and Michael J.C. Gordon. Extensi-
ble proof-producing compilation. In Michael I. Schwartzbach Oege de
Moor, editor, Compiler Construction (CC), LNCS. Springer, 2009.

[23] George C. Necula. Proof-carrying code. In Principles of Programming
Languages (POPL), pages 106–119. ACM, 1997.

[24] John Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings of Logic in Computer Science (LICS). IEEE
Computer Society, 2002.

[25] Susmit Sarkar, Pater Sewell, Francesco Zappa Nardelli, Scott Owens,
Tom Ridge, Thomas Braibant Magnus O. Myreen, and Jade Alglave.
The semantics of x86-CC multiprocessor machine code. In Principles
of Programming Languages (POPL). ACM, 2009.

[26] Konrad Slind and Michael Norrish. A brief overview of HOL4.
In Otmane Aı̈t Mohamed, César Muñoz, and Sofiène Tahar, editors,
Theorem Proving in Higher Order Logics (TPHOLs), LNCS, pages
28–32. Springer, 2008.

[27] Gang Tan and Andrew W. Appel. A compositional logic for control
flow. In E. Allen Emerson and Kedar S. Namjoshi, editors, Proceed-
ings of Verification, Model Checking and Abstract Interpretation (VM-
CAI), LNCS. Springer, 2006.

[28] Paul Tyma. Why are we using Java again? Commun. ACM, 41(6):38–
42, 1998.

[29] Dachuan Yu, Nadeem A. Hamid, and Zhong Shao. Building certified
libraries for PCC: Dynamic storage allocation. Science of Computer
Programming, 50(1-3):101–127, 2004.

