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Abstract
The higher-order logic found in proof assistants such as Coq and
various HOL systems provides a convenient setting for the devel-
opment and verification of pure functional programs. However, to
efficiently run these programs, they must be converted (or “ex-
tracted”) to functional programs in a programming language such
as ML or Haskell. With current techniques, this step, which must
be trusted, relates similar looking objects that have very different
semantic definitions, such as the set-theoretic model of a logic and
the operational semantics of a programming language.

In this paper, we show how to increase the trustworthiness of
this step with an automated technique. Given a functional program
expressed in higher-order logic, our technique provides the corre-
sponding program for a functional language defined with an oper-
ational semantics, and it provides a mechanically checked theorem
relating the two. This theorem can then be used to transfer verified
properties of the logical function to the program.

We have implemented our technique in the HOL4 theorem
prover, translating functions to a core subset of Standard ML, and
have applied it to examples including functional data structures, a
parser generator, cryptographic algorithms, and a garbage collector.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Formal Methods

General Terms Program Synthesis, Verification

1. Introduction
The logics of most proof assistants for higher-order logic (Coq,
Isabelle/HOL, HOL4, PVS, etc.) contain subsets which closely
resemble pure functional programming languages. As a result, it
has become commonplace to verify functional programs by first
coding up algorithms as functions in a theorem prover’s logic, then
using the prover to prove those logical functions correct, and then
simply printing (sometimes called “extracting”) these functions
into the syntax of a functional programming language, typically
SML, OCaml, Lisp, or Haskell. This approach is now used even
in very large verification efforts such as the CompCert verified
compiler [20] and several projects based on CompCert [1, 29, 38];
it has also been used in database verification [27].

However, the printing step is a potential weak link, as Harrison
remarks in a survey on reflection [14]:
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“ [...] the final jump from an abstract function inside the logic
to a concrete implementation in a serious programming
language which appears to correspond to it is a glaring leap
of faith. ”

In this paper we show how this leap of faith can be made into a
trustworthy step. We show how the translation can be automatically
performed via proof — a proof which states that (A:) the transla-
tion is semantics preserving with respect to the logic and an op-
erational semantics of the target language. Ideally, one could then
(B:) run the generated code on a platform which has been proved
to implement that operational semantics. This setup provides the
highest degree of trust in the executing code without any more ef-
fort on the part of programmers and prover users than the current
printing/extraction approach.

In previous work, we have shown that A and B are possible
for the simple case of an untyped first-order Lisp language [32],
i.e. we can synthesise verified Lisp from Lisp-like functions living
in higher-order logic; and achieve B by running the generated
programs on a verified Lisp implementation [33] which has been
proved to implement our operational semantics.

In this paper, we tackle the more complex problem of perform-
ing A for higher-order, typed ML-like functions, i.e. we show how
semantics preserving translations from higher-order logic into a
subset of ML can be performed inside the theorem prover. We be-
lieve our method works in general for connecting shallow and deep
embeddings of functional programming languages. However, for
this paper, we target a specific subset of a Standard ML language,
for which we will be able to achieve B in future work with a ver-
ified compiler and runtime similar to [6], [9], or [33]. We call our
ML subset MiniML and use SML syntax.

1.1 Example
To illustrate what our semantics preserving translation provides,
assume that the user defines a summation function over lists using
foldl as follows:1

sum = foldl (λ(x, y). x + y) 0

This sum function lives in higher-order logic but falls within the
subset of the logic that corresponds directly to pure ML. As a result,
we can translate sum into ML (like Poly/ML [28], our MiniML
supports arbitrary precision integer arithmetic).

val sum = foldl (fn (x,y) => x+y) 0

For each run, our translation process proves a certificate theo-
rem relating the function in the logic, sum, to the abstract syntax of
the ML function, sum, w.r.t. an operational semantics of ML. For
sum, this automatically derived certificate theorem states: when the
closure that represents sum is applied to an argument of the right
type, a list of numbers, then it will return a result, a number, which

1 Throughout the paper we will typeset higher-order logic equations and
definitions in san-serif and MiniML code in typewriter.



is exactly the same as the result of applying the HOL function sum
to the same input.

The challenge is to do this translation in an easily automated,
mechanical manner. In particular, one has to keep track of the re-
lationship between shallowly embedded values, e.g., mathematical
functions, and deeply embedded values in the ML semantics, e.g.,
closures. Our solution involves refinement/coupling invariants and
combinators over refinement invariants.

1.2 Contributions
The main contribution of this paper is a new technique by which
functions as defined in higher-order logic (HOL) can be translated,
with proof, into pure ML equipped with an operational semantics.
The ML-like subset of higher-order logic we consider includes:

• total recursive functions,
• type variables,
• functions as first-class values,
• nested pattern matching and user-defined datatypes, and
• partially specified functions, e.g. those with missing pattern

match cases.

We also show how our translation technique can be extended with
new translations for user-defined operations and types. As an ex-
ample, we show how to add support for translation of operations
over finite sets.

This work improves on the current state of the art of program
synthesis from theorem provers (sometimes called program extrac-
tion, e.g. extract in Coq, emit-ML in HOL4 and code generation
in Isabelle/HOL) by removing that step from the trusted computing
base without requiring any additional work from the user. We prove
the trustworthiness of the translation with certificate theorems stat-
ing that the generated code has exactly the behaviour (including
termination) of the original logic function for all inputs where the
original function is not partially specified.

We show that our technique is practical with case studies from
the HOL4 examples repository, and other examples from the litera-
ture, including functional data structures, a parser generator, cryp-
tographic algorithms, and a garbage collector.

Our translator, all of our examples, our semantics for MiniML,
and its verified metatheory are all available at http://www.cl.
cam.ac.uk/∼mom22/miniml/.

2. Synthesising Quicksort: an example
Before explaining how our technique works, we first show what
it does on a simple, but realistic, example: quicksort. Section 4
presents several larger and more significant examples.

One can define quicksort for lists in higher-order logic as fol-
lows.2 Here ++ appends lists and partition splits a list into two:
those elements that satisfy the given predicate, and those that do
not.

(qsort R [] = []) ∧
(qsort R (h :: t) =

let (l1, l2) = partition (λy. R y h) t in
(qsort R l1)++[h]++(qsort R l2))

Given this definition of the algorithm, one can use HOL to prove
the correctness of quicksort:

Theorem 1 (Quicksort correctness). Given a transitive, total rela-
tion R and a list l, qsort returns a sorted permutation of list l.

2 In fact, we are re-using Konrad Slind’s verified quicksort algorithm from
HOL4’s library.

Proof. Mechanically verified in HOL4’s library: a textbook exer-
cise in program verification.

Note that this definition and proof could be (and indeed were)
developed in HOL4 without any reference to an intended use of the
ML synthesis technique presented in this paper.

Given quicksort’s definition, our translator can then generate the
AST for the following MiniML function (MiniML doesn’t have
built-in lists; the Nil, Cons, and append constructors and function
come from translating the HOL4 list library used by quicksort):

fun qsort r = fn l => case l of
| Nil => Nil
| Cons(h,t) =>

let val x’ = partition (fn y => r y h) t in
case x’ of
| Pair(l1,l2) =>

append (append (qsort r l1) (Cons(h,Nil)))
(qsort r l2)

end

In the process of generating the above code, the translator also
establishes a correspondence between MiniML values and HOL
terms and proves the following theorem stating correctness of the
translation.

Theorem 2 (Certificate theorem for qsort). When given an ap-
plication of qsort to arguments corresponding to HOL terms, the
MiniML operational semantics will terminate with a value that cor-
responds to the application of HOL function qsort to those terms.

Proof. Automatically proved as part of the translation, the details
of which are the topic of this paper. This proof uses the induction
theorem that arises from the definition of qsort in HOL [39].

We can use this automatically proved theorem to push the veri-
fication result for qsort (Theorem 1) to also apply to the generated
MiniML code qsort:

Theorem 3 (MiniML quicksort correctness). If

1. qsort is bound in the MiniML environment to the implementa-
tion listed above,

2. leq_R is a value that corresponds to a transitive, total HOL
relation leq , and

3. unsorted_l is a value that corresponds to HOL list l,

then evaluation of MiniML program qsort leq_R unsorted_l
terminates with a list value sorted_l that corresponds to the
sorted HOL list (qsort leq l).

Proof. Trivial combination of the two theorems above.

In summary, we have taken the quicksort algorithm, expressed
as a definition in higher-order logic and verified in that setting, and
we have generated a pure functional MiniML program and auto-
matically proved that it is correct, according to the operational se-
mantics of MiniML. Note that the meaning of HOL’s qsort func-
tion is in terms of the proof theory or model theory of higher-order
logic, while the MiniML qsort function has an operational mean-
ing, which is understood by ML compilers.

3. Overview of approach
In this section, we give a tutorial introduction to our translation
approach. Subsequent sections will provide the details (Sect. 5),
case studies (Sect. 4) and formal definitions (Sect. 6) that we omit
in this section.

http://www.cl.cam.ac.uk/~mom22/miniml/
http://www.cl.cam.ac.uk/~mom22/miniml/


3.1 Basic judgements
Our translation from HOL to MiniML derives certificate theorems
stated in terms of a predicate called Eval (which is reminiscent of
a logical relation).

Eval env exp post

Such statements are true if MiniML expression exp evaluates in
environment env to some value x and the postcondition post is
true for this x, i.e. post x. Here env is a list of bindings: names
are bound to MiniML values (as modelled in our semantics of
MiniML), exp is abstract syntax for a MiniML expression and post
is a function from MiniML values to bool .

Typically, post will be instantiated with a refinement invariant
relating a value from HOL to a MiniML value. An example of
such an invariant is int. The relation int n v is true if integer n
is represented in MiniML as value v. With this refinement invariant
we can state that the deep embedding of MiniML expression 5
evaluates to 5 in HOL, as follows. We will denote MiniML abstract
syntax trees of our MiniML language using SML syntax inside b·c.

Eval env b5c (int 5) (1)

We can similarly state that MiniML variable n evaluates to the value
held in HOL integer variable n by writing:

Eval env bnc (int n) (2)

From statements such as (1) and (2), we can derive properties of
compound expressions, e.g. for addition of numbers:

Eval env bn+5c (int (n + 5)) (3)

3.2 Refinement combinator for functions
The above examples considered simple MiniML expressions that
produce concrete values. However, MiniML values can also be
closures, such as produced by

fn n => n+5

To handle closures, we want to combine the refinement invari-
ants for the input and for the output types; in this case both use in-
variant int. To do this, we have a refinement combinator, →, which
takes two invariants, a and b, as arguments:

a → b

The statement (a → b) f v is true if the value v is a closure such
that, when the closure is applied to a value satisfying refinement
invariant input a, it returns a value satisfying output b; and further-
more, its input-output relation coincides with f . In other words,
when evaluated v corresponds to evaluation of HOL function f .
For example, (int → int) (λn. n+5) v specifies that v is a closure
in MiniML which has an input-output relation corresponding to the
HOL function λn. n + 5.

The→ refinement combinator can be introduced using a rule for
the MiniML closure constructor fn. For example, we can derive the
following from statement (3) and its assumption on n, i.e. (2).

Eval env bfn n => n+5c ((int → int) (λn. n + 5)) (4)

Closures that are specified using the → combinator can be ap-
plied to arguments of the corresponding ‘input refinement invari-
ant’. For example, we apply (4) to (1) to arrive at their combination:

Eval env b(fn n => n+5) 5c (int ((λn. n + 5) 5))

3.3 Type variables and functions as first-class values
The above examples used int as a fixed type/invariant. So how do
we translate something that has HOL type α, i.e. a variable type?
Answer: for this we use a regular HOL variable for the invariant,
e.g. we can use variable a with HOL type: α → ml value →

bool as the invariant. (Here and throughout ml value is the HOL
datatype which models MiniML values in HOL as a deep embed-
ding.) The HOL type of int is int → ml value → bool , i.e. all that
we did was abstract the constant int to a variable a and, similarly
in its type, we abstracted the type int to α.

With this variable a ranging over all possible refinement invari-
ants, we can state that MiniML variable x evaluates to HOL vari-
able x of type α as follows.

Eval env bxc (a x)

Similarly, we can use the invariant combinator from above to spec-
ify that the MiniML value is some closure such that HOL function
f of type α → α is an accurate representation in the HOL logic.

Eval env bfc ((a → a) f)

Since these statements are stated in terms of refinement invari-
ants and →, we can apply the combinator rules mentioned above.
For example, we can derive MiniML code corresponding to a HOL
function λf x. f (f x) which has an abstract type involving α.

Eval env bfn f => fn x => f (f x)c
(((a → a) → a → a) (λf x. f (f x)))

(5)

Evaluation of fn f => fn x => f (f x) results in the fol-
lowing closure in our semantics of MiniML:3

Closure env "f" bfn x => f (f x)c
If we assume that MiniML variable name "twice" is bound to
this value in the evaluation environment env then we can prove,
from (5), that the MiniML code twice evaluates to a closure
with exactly the same behaviour as a HOL function defined by
twice = λf x. f (f x).

env "twice" = Closure twice env . . . =⇒
Eval env btwicec (((a → a) → a → a) twice))

(6)

This is the way we translate non-recursive functions into MiniML.
The example above used variables in place of some refinement

invariants. These variables can, of course, be instantiated when
combined with Eval-theorems of more specific types. For example,
we can plug together (4) and (6) to derive:

env "twice" = Closure . . . =⇒
Eval env btwice (fn n => n+5)c

((int → int) (twice (λn. n + 5))))

3.4 Recursive functions
ML code for non-recursive functions can be derived as shown
above. However, recursive functions require some additional effort.
To illustrate why, consider the following definition of gcd.

gcd m n = if 0 < n then gcd n (m mod n) else m

If we were to do exactly the same derivation for the right-hand
side of the definition of gcd, we would get stuck. The algorithm
that the examples above illustrate proceeds in a bottom-up manner:
it traverses the structure of the HOL term for which we want
to generate MiniML. When translating the right-hand side of a
recursive function’s definition, what are we to use as the Eval-
description of the effect of applying the recursive call? At that stage
we would like to have a theorem of the form:

. . . =⇒ Eval env bgcdc ((int → int → int) gcd)

In other words, we would like to assume what we set out to prove.
Our solution is to make a more precise assumption: we formu-

late the assumption in such a way that it records for what values it

3 We represent a closure in three parts: an environment, a parameter, and a
body expression.



was applied; we then discharge these assumptions using an induc-
tion which will be explained later.

We use a new combinator eq to ‘record’ what values we have
assumed that the recursive call is applied to. The definition of eq,

eq a x = λy v. (x = y) ∧ a y v

is explained in Section 6.7 together with a more thorough explana-
tion of this example. However, for now, read the following as saying
that a call to MiniML gcd has exactly the behaviour of HOL gcd if
it is applied to int inputs m and n.

Eval env bgcdc ((eq int m → eq int n → int) gcd) (7)

For the rest of this example we abbreviate (7) as P m n.
For the recursive call in gcd’s right-hand side we can derive

the following Eval-theorem. Note how the assumption P mentions
exactly what values gcd was called with.

P n (m mod n) =⇒
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By making this kind of assumption at every recursive call site,
we can proceed with our bottom-up derivation as before. The entire
right-hand side of gcd produces the following result:

(0 < n =⇒ P n (m mod n)) =⇒
Eval env bif 0 < n then gcd . . .c (int (gcd m n))

We now proceed to package the right-hand side of gcd into a
closure, very much as we did for twice above, except this time we
need a recursive closure (which is described in Section 6.2). We
omit the details regarding recursive closures here, but note that the
result of this packaging is a theorem:

env "gcd" = Recclosure . . . bif 0 < n . . .c =⇒
∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n

(8)

We now turn to the phase where we discharge the assumptions
that were made at the call sites. For this we will use an induction
principle which arises from the totality proof for gcd. All functions
in HOL are total, and as a side product of definitions we get
an automatically proved induction scheme that is tailored to the
structure of the recursion in the definition. The induction scheme
that comes out of the definition of gcd is:

∀P. (∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n)
=⇒ (∀m n. P m n)

(9)

Note that this induction scheme matches the structure of (8)
precisely. This means that, by one application of modus ponens
of (8) and (9), we arrive at a theorem with a right-hand side:
∀m n. P m n. By expanding the abbreviation P (and some sim-
plification to remove eq as explained in Section 6.8), we arrive at
the desired certificate theorem for gcd:

env "gcd" = Recclosure . . . bif 0 < n . . .c =⇒
Eval env bgcdc ((int → int → int) gcd)

To summarise: we use eq together with the custom induction
scheme that HOL gives us for each recursive definition to perform
translations of recursive HOL functions.

3.5 Datatypes and pattern matching
HOL provides ways of defining ML-like datatypes, e.g. the list
type can be defined as follows:

datatype α list = Nil | Cons of α× (α list)

These datatypes can be used in ML-like pattern matching. In the
following text we will write Cons as :: and Nil as [ ].

We can support such datatypes in translations by defining a
refinement invariant for each datatype that is encountered. For

α list, we define list which takes a refinement invariant a as an
argument. We write application of list in post-fix notation, i.e.
a list, to make it look like a type. The definition of list can be
automatically produced from the datatype definition. Here Conv
is a constructor-value from the MiniML semantics (as opposed to,
say, a Closure value we saw previously).

(a list) [ ] v = (v = Conv "Nil" [ ])
(a list) (x :: xs) v = ∃v1 v2. (v = Conv "Cons" [v1, v2])

a x v1 ∧ (a list) xs v2

Based on this definition, we can derive lemmas (see Section 6.6)
with which we can translate constructors and pattern matching for
this datatype.

However, there is one trick involved: HOL functions that have
pattern matching at the top-level tend to be defined as multiple
equations. For example, the map function is typically defined in
HOL using two equations:

map f [ ] = [ ]
map f (x :: xs) = f x :: map f xs

In the process of defining this in HOL, the theorem prover reduces
the multi-line definition to a single line with a case statement:

map f xs = case xs of . . .

It is these single-line definitions that we translate into MiniML
functions with similar case statements. The translation of case
statements will be explained in more detail in Section 6.6.

3.6 Partial functions and under specification
The use of pattern matching leads to partiality.4 The simplest case
of this partiality is the definition of hd for lists, which is defined
intentionally with only one case:

hd (x :: xs) = x

This definition could equally well have been defined in HOL as:

hd xs = case xs of [ ] ⇒ ARB | (x :: xs) ⇒ x

using the special ARB5 constant in HOL, which cannot be trans-
lated into MiniML.

When translating a partial definition into MiniML, we can only
prove a connection between MiniML and HOL for certain well-
defined input values. For this purpose we use eq from above to
restrict the possible input values. The theorem that relates hd to
its MiniML counterpart includes a side-condition xs 6= [ ] on the
input, which is applied via eq:

(env "hd" = . . .) ∧ xs 6= [ ] =⇒
Eval env bhdc ((eq (a list) xs → a) hd)

The generated MiniML code includes raise Error in the
places where the translation is disconnected from the HOL func-
tion.

hd xs = case xs of [] => raise Error | ...

At the point in the derivation where we require a MiniML value
corresponding to ARB, we have a trivially true theorem with false
on the left-hand side of an implication.

false =⇒ Eval env braise Errorc (a ARB)

This false assumption trickles up to the top level causing the side
condition, xs 6= [ ] for hd.

4 All functions in HOL are total. However, their definitions can omit cases
causing their equational specification to appear partial.
5 ARB is defined non-constructively using Hilbert’s arbitrary choice opera-
tor.



Translation of recursive partial functions results in recursive
side conditions, e.g. the zip function is defined in HOL as:

zip ([ ], [ ]) = [ ]
zip (x :: xs, y :: ys) = (x, y) :: zip (xs, ys)

The side condition which is produced for zip is:

zip side ([ ], [ ]) = true
zip side ([ ], y :: ys) = false
zip side (x :: xs, [ ]) = false

zip side (x :: xs, y :: ys) = zip side (xs, ys)

These side conditions arise in the derivation as assumptions that are
not discharged when the definition-specific induction is applied.

3.7 Equality types
There is another source of partiality: equality tests. MiniML and
HOL have different semantics regarding equality. In MiniML,
equality of function closures cannot be tested, while equality of
functions is allowed in HOL. Whenever an equality is to be trans-
lated, we use the following lemma which introduces a condition,
EqualityType, on the refinement invariant a for the values that are
tested. The definition of EqualityType is given in Section 6.4.

Eval env bxc (a x) ∧ Eval env byc (a y) =⇒
EqualityType a =⇒
Eval env bx = yc (bool (x = y))

In contrast to the partiality caused by missing patterns, this form
of partiality is neater in that it applies to the refinement invariant,
not the actual input values.

For each datatype definition we attempt to prove a lemma which
simplifies such equality type constraints, e.g. for the list invariant
we can automatically prove:

∀a. EqualityType a =⇒ EqualityType (a list)

Such lemmas cannot always be proved, e.g. if the datatype contains
a function type.

3.8 User-defined extensions
Our approach to supporting user-defined datatypes in Section 3.5
involves machinery which automatically defines new refinement
invariants and proves lemmas that can be used in the translation
process. The same kind of extensions can also be provided by
the user with custom refinement invariants and lemmas for types
defined in ways other than datatype (e.g., a quotient construction).

As a simple example, consider the following naive refinement
invariant for finite sets represented as lists in MiniML:

(a set) s v = ∃xs. (a list) xs v ∧ (s = set from list xs)

Using basic list operations we can prove judgements that can be
used for translating basic sets and set operations, e.g. {}, ∪ and ∈
are implemented by [], append and mem. The last one also depends
on EqualityType a.

Eval env b[]c ((a set) {})

Eval env bxc ((a set) x) ∧ Eval env byc ((a set) y) =⇒
Eval env bappend x yc ((a set) (x ∪ y))

Eval env brc (a r) ∧ Eval env bxc ((a set) x) =⇒
Eval env bmem r xc (bool (r ∈ x))

The example above is naive and can potentially produce very
inefficient code. However, the basic idea can be applied to more
efficient data structures, e.g. the datatypes presented in Okasaki’s
book on functional data structures [36].

We have implemented extensions which can deal with finite
sets, finite maps, natural numbers and n-bit machine arithmetic.

4. Case studies
Our translation is implemented (Section 5.1) as an ML program that
operates over the HOL4 prover’s internal representation of higher-
order logic terms, producing HOL4 theorems about MiniML pro-
grams (whose semantics we have formally specified in HOL4, see
Section 6.2). To demonstrate that it is robust, we have successfully
applied it to the following algorithms:

• Miller-Rabin primality test (by Hurd [16])
This example uses higher-order, recursive, and partial func-
tions, and it requires that all three of these aspects be handled
simultaneously.

• An SLR parser generator (by Barthwal [2])
This is non-trivial algorithm with a long definition: 150 lines in
HOL. Its definition makes use of pattern matching.

• AES, RC6 and TEA private key encryption/decryption algo-
rithms (verified by Duan et al. [11])
These algorithms operate on fixed-size word values, which we
support through the technique for user-defined extensions (Sec-
tion 3.8). We represent fixed-size words as integers in MiniML
and use a refinement invariant to make sure the correspondence
is maintained.

• McCarthy’s 91 function, quicksort (by Slind [39]), and a regu-
lar expression matching function (by Owens [37])
The 91 function and regular expression matcher both have intri-
cate totality proofs, but our technique can easily and automat-
ically prove termination based on the HOL-provided induction
principles (which were justified by the original totality proofs).

• A copying Cheney garbage collector (by Myreen [31])
This is a model of Cheney’s algorithm for copying garbage
collection — a verified algorithm used in constructing a verified
Lisp runtime [33]. It models memory as a mapping from natural
numbers to a datatype of abstract memory values.

• Functional data structures from Okasaki’s book [36]

heap datatypes: leftist, pairing, lazy, splay, binomial

set datatypes: unbalanced, red-black

sorting algorithms: merge sort

list datatypes: binary random-access lists

queues datatypes: batched, bankers, physicists, real-time,
implicit, Hood-Melville

The algorithms from all but the last point above have been pre-
viously verified in HOL4. We have verified 13 of the 15 functional
data structures from the last point. These data structures are the
examples that Charguéraud [4] uses for his characteristic formula
technique (except that we omit the bootstrapped heap and catenable
list whose datatypes are not supported by HOL’s datatype package).
Compared with Charguéraud’s verification proofs, ours are similar
in length. However, Charguéraud had to use special purpose tactics
to deal with his characteristic formulae. In contrast, our verification
proofs use only conventional HOL4 tactics. See the related work
section for further comparison.

5. Algorithm
We have thus far omitted details and explained our approach
through examples. Here, and in the next section, we provide formal
definitions and explain that technicalities that earlier text avoided.

We start with an outline of the algorithm for translation. Our
method translates one top-level function definition at a time. Each
function is translated using the following automatic steps:



Information retrieval. The initial phase collects the necessary in-
formation about the function, e.g. is it a constant definition, is
it recursive? If it is recursive then the induction theorem associ-
ated with its definition is fetched from the context.

Preprocessing. The next step prepares the definition for transla-
tion: the definition is collapsed to a single top-level clause, as
mentioned in Section 3.5, and certain implicit pattern matching
is rewritten into explicit pattern matching, e.g. λ(x, y). body is
expanded into λx. case x of (x, y) ⇒ body. For the rest of this
section, assume that the definition is now of the form:

f x1 x2 . . . xn = rhs

Bottom-up traversal. The next phase takes the right-hand side of
the definition to be translated and constructs an Eval-theorem,
as demonstrated in Section 3. This theorem is derived through
a bottom-up traversal of the HOL expression. At each stage the
proof rule or lemma which is applied introduces the correspond-
ing MiniML syntax into the Eval-theorem. The result of this
traversal is a theorem where the right-hand side of the HOL
function appears together with its derived MiniML counterpart.

assumptions =⇒ Eval env derived code (inv rhs)

The next phases attempt to discharge the assumptions. Trivial
assumptions, such as some EqualityType assumptions, can be
discharged as part of the bottom-up traversal.

Packaging. The next phase reduces the rhs to the function con-
stant f. To do this, rules are applied which introduce a λ for
each formal parameter, and then perform the following simpli-
fication on the right-hand side: the definition is collapsed and
eta conversion is performed.

λx1 x2 . . . xn. rhs
= λx1 x2 . . . xn. f x1 x2 . . . xn

= f

Introduction of λ in the right-hand side of the HOL expression
introduces closures on the MiniML side. For recursive func-
tions, the final closure lemma is a special rule for introducing a
recursive closure, explained in Section 6.5.

Induction. For recursive functions, the induction theorem associ-
ated with the function definition is used to discharge the as-
sumptions that were made at the recursive call sites. The as-
sumptions that the induction theorem fails to discharge are col-
lected and defined to be a side-condition. Such side conditions
usually arise from partiality in pattern matching (Section 3.6).

Simplification. As mentioned in Section 3.4, after the induction
theorem has been applied the resulting theorem contains redun-
dant occurrences of the eq combinator. These are removed us-
ing rewriting as explained in Section 6.8.

Future use. Once the translation is complete, the certificate theo-
rem is stored into the translator’s memory. Future translations
can then use this certificate theorem in their Bottom-up traver-
sal phase, when function constant f is encountered.

5.1 Implementation
Implementing the above algorithm in a HOL theorem prover is
straightforward. One writes an ML program which performs the
proof steps outlined above. Concretely, this involves writing ML
functions that construct elements of type thm using the logical ker-
nel’s primitives (which correspond to axioms and inference rules of
higher-order logic). Following the LCF-approach, this design en-
sures that all proved theorems are the result of the basic inference
rules of higher-order logic.

t := α | tc | (t1, . . . , tn)tc | t1 → t2
p := x | C p1 . . . pn

e := x | ARB | C e1 . . . en | λx.e | e1 e2 | e1 = e2

| e1 ∧ e2 | e1 ∨ e2

| if e1 then e2 else e3 | let x = e1 in e2

| case e of p1 ⇒ e1 | . . . | pn ⇒ en

c := C | C of t1 ⇒ . . . ⇒ tn

d := x1 = c11 | . . . | c1n1 ; . . . ; xm = cm1 | . . . | cmnm

| (x1 p11 . . . p1n1 = e1) ∧ . . . ∧ (xm pm1 . . . pmnm = em)
where x ranges over identifiers, C over constructor names,
and tc over type constructor names

Figure 1. Core HOL source grammar

t := . . . | bool | int | num | char | t1 × t2 | t list | t option
p := . . .

| T | F | Z | N | (p1, p2) | [] | p1 :: p2 | SOME p1 | NONE
e := . . .

| T | F | Z | N | (e1, e2) | [] | e1 :: e2 | SOME e1 | NONE

Figure 2. HOL source grammar after prelude extension

We have implemented our translator in the HOL4 theorem
prover. Source code and examples are available at:

http://www.cl.cam.ac.uk/∼mom22/miniml/

6. Technical details
This section dives into some technical details. We provide defini-
tions and descriptions of the lemmas that are used as part of trans-
lations.

6.1 HOL source language
Figure 1 gives the subset of HOL definitions d that we can trans-
late. This grammar describes a subset of the HOL4 logic, it is not
deeply embedded in HOL4, nor do we formally reason about it. It
includes (possibly mutually) recursive, higher-order functions that
operate over (possibly mutually) recursive, user-defined datatypes.
The translation will fail if it encounters a term not in this subset
(e.g. universal and existential quantifiers, Hilbert’s choice) in the
definitions being translated. The translator comes with a standard
prelude that includes support for booleans, integers, natural num-
bers, characters, pairs, lists, and options (Figure 2).

6.2 MiniML target language
Figure 3 gives the source grammar for MiniML types t, values v,
patterns p, expressions e, type definitions td/c and top-level defini-
tions d. The language is a mostly unsugared subset of core Standard
ML. It includes mutually recursive datatype definitions; higher-
order, anonymous, and mutually recursive functions; nested pattern
matching; and abrupt termination (a simplified raise). MiniML
integers are arbitrary precision (which is how the Poly/ML com-
piler implements integers natively, other ML implementations usu-
ally support them as a library). Unsupported features are records,
mutable references, exception handling, and the module system.

We give MiniML both small-step and big-step call-by-value
operational semantics, and a type system. Each of these three has
an expression-level and definition-level component; here we only
present the expression level, but see http://www.cl.cam.ac.
uk/∼mom22/miniml/ for complete definitions as well as HOL4
proofs of the theorems below, at both levels. The type system is
typical. Figure 4 gives the auxiliary definitions needed to support
the semantics (in this figure we abbreviate ml value to v), and
Figure 5 gives the shapes of the various semantic relations.

http://www.cl.cam.ac.uk/~mom22/miniml/
http://www.cl.cam.ac.uk/~mom22/miniml/
http://www.cl.cam.ac.uk/~mom22/miniml/


t := α | x | (t1, . . . ,tn)x | t1 -> t2 | int | bool
v := C | true | false | Z
p := x | v | C(p1, . . . ,pn)
e := raise ex

| x | v | C(e1, . . . ,en)
| fn x => e
| e1 e2 | e1 op e2 | e1 andalso e2 | e1 orelse e2

| if e1 then e2 else e3

| case e of p1 => e1 | . . . | pn => en

| let val x = e1 in e2 end
| let fun x1 y1 = e1 and . . . and xn yn = en in e end

c := C | C of t1 * . . . * tn

td := (α1, . . . ,αm) x = c1 | . . . | cn

| x = c1 | . . . | cn

d := val p = e
| fun x1 y1 = e1 and . . . and xn yn = en

| datatype td1 and . . . and tdn

ex := Bind | Div
op := = | + | - | * | div | mod | < | <= | > | >=

where x and y range over identifiers and C over constructor names

Figure 3. MiniML source grammar

v := C(v1, . . . ,vn)
| 〈env , x, e〉
| 〈env , (fun x1 y1 = e1 and . . . and xn yn = en), x〉
| C | true | false | Z

F := [] e | v [] | [] op e | v op []
| [] andalso e | [] orelse e
| if [] then e2 else e3

| case [] of p1 => e1 | . . . | pn => en

| let val x = [] in e end
| C(v1, . . . ,vn,[],e1, . . . ,en)

S := 〈Cenv , env , e, 〈F1, env1〉 . . . 〈Fn, envn〉〉
Rmatch := env | no match | type error
Rstep := S | type error | stuck
Reval := v | raise ex | type error
where env ranges over finite maps from x to v,
Cenv ranges over finite maps from C to 〈N, 2C〉.
envT ranges over finite maps from x to (α1, . . . , αn) t, and
CenvT ranges over finite maps from C to
〈(α1, . . . , αm), t1 . . . tn, x〉

Figure 4. Semantic auxiliaries for MiniML

The small-step semantics is a CEK-like machine [12] (see [13]
for a textbook treatment) with states S (Figure 4) using a contin-
uation stack built from frames F and environments env . Values
are extended with constructed values (e.g., Some(1)), with closures
pairing a function’s environment, parameter, and body, and with re-
cursive closures pairing an environment with a mutually recursive
nest of functions. A single reduction step either gives a new state,
signals a “type error”, e.g., due to a misapplied primitive, or gets
stuck (Rstep). We use the small-step semantics to support a type
soundness proof via preservation and progress [41], and to ensure
a satisfactory treatment of divergence. Small-step evaluation and
divergence are defined in terms of the transitive closure of the re-
duction relation.

Our technique for translating from HOL to MiniML uses a
bottom-up, syntax-directed pass, and so requires a syntax-directed
big-step semantics. The big-step semantics returns the same kind
of things as small-step evaluation: values, exceptions and “type er-
rors” (Reval ). We ensure that it gives type errors in enough cases so

Pattern matching: 〈Cenv , p, v, env〉 ⇓ Rmatch

Small-step reduction: S −→ Rstep

Small-step evaluation: S ↓ Reval

Small-step divergence: 〈Cenv , env , e〉 ↑
Big-step evaluation: 〈Cenv , env , e〉 ⇓ Reval

Alternate big-step evaluation: 〈env , e〉 ⇓ Reval

Typing: 〈CenvT , envT 〉 ` e : t
Typing for environments: Cenv ` env : envT

Figure 5. MiniML semantic relations

that only diverging expressions are not related to any result. This
allows us to use (in our non-concurrent, deterministic setting) an in-
ductive relation, instead of following a co-inductive approach [21].
Theorems 4 and 6 guarantee this property.

6.3 MiniML metatheory
Theorem 4 (Small-step/big-step equivalence). 〈Cenv , env , e, ε〉 ↓
Reval iff 〈Cenv , env , e〉 ⇓ Reval .

Proof. In HOL4.

• Forward implication:
We first extend the big-step relation with context
stack inputs, Fs := 〈F1, env1〉 . . . 〈Fn, envn〉.
We then show that if 〈Cenv1, env1, e1,Fs1〉 −→
〈Cenv2, env2, e2,Fs2〉 and 〈Cenv2, env2, e2,Fs2〉 ⇓ Reval

then 〈Cenv1, env1, e1,Fs1〉 ⇓ Reval by cases on the small-
step relation. We then finish the proof by induction on the
transitive closure of −→. Note that unlike type soundness, we
go backwards along the small-step trace; this is necessary to
properly handle non-termination.

• Reverse implication:
By induction on the big-step relation, with pervasive reasoning
about adding context frames to the frame stacks of many-step
small-step reduction sequences.

Theorem 5 (Big-step determinism). If 〈Cenv , env , e〉 ⇓ Reval1

and 〈Cenv , env , e〉 ⇓ Reval2 then Reval1 = Reval2.

Proof. In HOL4, by induction on the big-step evaluation relation.

Corollary 1 (Small-step determinism). If 〈Cenv , env , e, ε〉 ↓
Reval1 and 〈Cenv , env , e, ε〉 ↓ Reval2 then Reval1 = Reval2.

Theorem 6 (Untyped safety). 〈Cenv , env , e, ε〉 ↓ Reval iff it is
not the case that 〈Cenv , env , e〉 ↑.

Proof. In HOL4, by cases on the small-step relation.

Theorem 7 (Type soundness). If

• Cenv and CenvT are well-formed and consistent,
• CenvT ` env : envT , and
• 〈CenvT , envT 〉 ` e : t

then either

• 〈Cenv , env , e〉 ↑, or
• 〈Cenv , env , e, ε〉 ↓ Reval and Reval 6= type error.

Proof. In HOL4, a typical preservation and progress proof about
the small-step semantics.



The small- and big-step semantics are given a Cenv which al-
lows them to return type error when an undefined data construc-
tor (i.e., one not defined in a datatype definition) is applied, or
when a data constructor is applied to the wrong number of argu-
ments. However, we can simplify the translation from HOL by us-
ing an alternate big-step semantics that omits this argument. This
alternate big-step semantics differs only in that mis-applied con-
structors are accepted and do not result in an error. However, they
coincide on well-typed programs.

Theorem 8 (Alternate big step equivalence). If Cenv and CenvT
are well-formed and consistent, and CenvT ` env : tenv
and 〈CenvT , envT 〉 ` e : t then 〈Cenv , env , e〉 ⇓ Reval iff
〈env , e〉 ⇓ Reval .

Proof. In HOL4, by induction on the big-step relation, and Theo-
rems 6 and 7 and Corollary 1.

6.4 Key definitions
As described in earlier sections, our translation makes statements
about the semantics in terms of a predicate called Eval. We define
this predicate as follows using the alternate big-step semantics
evaluation relation ⇓. We define Eval env exp post to be true if exp
evaluates, in environment env , to some value v such that post v.
The fact that it returns a value — as opposed to an error, raise ex
— tells us that no error happened during evaluation, e.g. evaluation
did not hit any missing cases while pattern matching.

Eval env exp post = ∃v. 〈env , exp〉 ⇓ v ∧ post v

Here post has type ml value → bool .
The interesting part is what we instantiate post with, i.e. the

refinement invariants. The basic refinement invariants have the fol-
lowing definitions. Boolean and integer values relate to correspond-
ing literal values in the MiniML semantics:

bool true = λv. (v = true)
bool false = λv. (v = false)

int i = λv. (v = i) where i ∈ Z

We also have combinators for refinement invariants. The defini-
tion of the eq combinator was given in Section 3.4. We now turn
to the → combinator which lifts refinement invariant to closures.
The → combinator’s definition is based on an evaluation relation
for application of closures, evaluate closure (which is defined in
terms of ⇓, and applies to non-recursive and recursive closures).
Read evaluate closure v cl u as saying: application of closure cl
to argument v returns value u. We define a total-correctness Hoare-
triple-like Spec for closure evaluation on top of this:

Spec p cl q =
∀v. p v =⇒ ∃u. evaluate closure v cl u ∧ q u

The definition of the → combinator is an instance of Spec, where
an abstract value x is universally quantified:

(a → b) f = λv. ∀x. Spec (a x) v (b (f x))

Here the type of f is α → β and the type of v is simply the type of
a MiniML value in our MiniML semantics, i.e. ml value .

The remaining definition is that of EqualityType a. A refine-
ment invariant a supports equality if the corresponding MiniML
value cannot be a closure, not contains closure, and testing for
structural equality of MiniML values is equivalent to testing equal-
ity at the abstract level:

EqualityType a =
(∀x v. a x v =⇒ not contains closure v) ∧
(∀x v y w. a x v ∧ a y w =⇒ (v = w ⇐⇒ x = y))

For example, bool and int, defined above, satisfy EqualityType.

6.5 Lemmas used in translations
In this section we present the lemmas about Eval that are used
to perform the translations. All variables in these theorems are
implicitly universally quantified at the top-level. The proof of these
lemmas follow almost directly from the underlying definitions:
none of the proofs required more than ten lines of script in HOL4.

Closure application. We start with the rule for applying a closure.
A closure a → b can always be applied to an Eval-theorem with
a matching refinement invariant a.

Eval env bfc ((a → b) f) ∧
Eval env bxc (a x) =⇒
Eval env bf xc (b (f x))

Closure introduction. Closures can be created with the following
rule if the abstract and concrete values, x and v, which the body
depends on can be universally quantified. Here n 7→ v extends
the environment env with binding: name n maps to value v.

(∀x v. a x v =⇒ Eval (env [n 7→ v]) bbodyc (b (f x))) =⇒
Eval env bfn n => bodyc ((a → b) f)

Alternative closure introduction. The rule above is not always
applicable because side conditions restrict the variable x, i.e.
the universal quantification cannot be introduced. This is an al-
ternative rule which achieves the same without universal quan-
tification of x — at the cost of introducing the eq combinator.

(∀v. a x v =⇒ Eval (env [n 7→ v]) bbodyc (b (f x))) =⇒
Eval env bfn n => bodyc ((eq a x → b) f)

Closure evaluation. The translator always returns theorems where
the code is described by an assumption stating that the function
name refers to the relevant code in the environment, i.e. an as-
sumption of the form env name = closure . . . . The follow-
ing rule is used for deriving theorems with such assumptions
for non-recursive closures:

Eval cl env bfn n => bodyc p =⇒
env name = Closure cl env n bbodyc =⇒
Eval env bnamec p

Introduction of recursive closure. Our rule for introducing recur-
sive closures, i.e. closures where the environment can refer to it-
self and hence perform recursive function calls to itself, is more
verbose. Introduction of recursive closures is done using the
following lemma. For this lemma to be applicable some name
name must refer to a recursive closure where name is given.
Let Recclosure cl env [(name, n, bbodyc)] name be abbre-
viated by Rec below.

(∀v. a x v =⇒
Eval (env [n 7→ v, name 7→ Rec]) bbodyc (b (f x)))

=⇒
env name = Rec =⇒
Eval env bnamec ((eq a x → b) f)

Let introduction. Let-statements are constructed using the follow-
ing lemma. Here let is HOL’s internal combinator which repre-
sents let expressions. In HOL, let f x = f x and the HOL
printer knows to treat let as special, e.g. let (λa. a + 1) x is
printed on the screen as let a = x in a + 1.

Eval env bxc (a x) ∧
(∀v. a x v =⇒ Eval (env [n 7→ v]) bbodyc (b (f x))) =⇒
Eval env blet val n = x in body endc (b (let f x))

Variable simplification. During translation, the intermediate theo-
rems typically contain assumptions specifying which HOL val-



ues relate to which MiniML values. It’s convenient to state these
as Eval env bmc (inv n), for some inv and some fixed vari-
able name m. When variables get bound, e.g. as a result of in-
troducing a closure, env is specialised and these assumptions
can be simplified. We use the following lemma to simplify the
assumptions when env gets specialised.

Eval (env [name 7→ v]) bmc p =
if m = name then p v else Eval env bmc p

If statements. The translation of HOL’s if statements is done using
the following rule. Note that the assumptions h2 and h3 get
prefixed by the guard expression x1.

(h1 =⇒ Eval env bx1c (bool x1)) ∧
(h2 =⇒ Eval env bx2c (inv x2)) ∧
(h3 =⇒ Eval env bx3c (inv x3)) =⇒
(h1 ∧ (x1 =⇒ h2) ∧ (¬x1 =⇒ h3)) =⇒

Eval env bif x1 then x2 else x3c
(inv (if x1 then x2 else x3))

Literal values. MiniML has boolean and integer literals. The rele-
vant lemmas for such literals:

Eval env btruec (bool true)

Eval env bfalsec (bool false)

Eval env bic (int i) where i ∈ Z

Binary operations. Each of the operations over the integers and
booleans have separate lemmas. A few examples are listed
below. Division and modulo have a side condition.

Eval env bic (int i) ∧
Eval env bjc (int j) =⇒
Eval env bi + jc (int (i + j))

Eval env bic (int i) ∧
Eval env bjc (int j) =⇒
j 6= 0 =⇒ Eval env bi div jc (int (i div j))

Eval env bic (int i) ∧
Eval env bjc (int j) =⇒
Eval env bi < jc (bool (i < j))

Eval env bac (bool a) ∧
Eval env bbc (bool b) =⇒
Eval env ba andalso bc (bool (a ∧ b))

There are also dynamically derived lemmas, e.g. each translation
results in a new lemma that can be used in subsequent translations
and datatype definitions result in a few lemmas (as described in the
next section). Users can also manually provide additional lemmas.

6.6 Lemmas automatically proved for datatypes
For each datatype, we define a refinement invariant that relates
it to ML values. Type variables cause these definitions to take
refinement invariants as input. For example, for the list datatype
from Section 3.5 we define a refinement invariant, called list, as the
following map into constructor, Conv, applications in MiniML. We
write application of list in post-fix notation, i.e. a list, to make it
look like a type.

(a list) [ ] v = (v = Conv "Nil" [ ])
(a list) (x :: xs) v = ∃v1 v2. (v = Conv "Cons" [v1, v2])

a x v1 ∧ (a list) xs v2

Based on this definition we can derive lemmas that aid transla-
tion of constructor applications in HOL.

Eval env bNilc ((a list) [ ])

Eval env bxc (a x) ∧
Eval env bxsc ((a list) xs) =⇒
Eval env bCons(x,xs)c ((a list) (x :: xs))

We also derive lemmas which aid in translating pattern match-
ing over these HOL constructors. As mentioned in Section 3.5,
multi-line pattern matches, i.e. HOL definitions that are defined as
multiple equations, are merged into a single line definition with a
case statement by the definition mechanism. By making sure trans-
lations are always performed only on these collapsed single line
definitions, it is sufficient to add support for translations of case
statements for the new datatype:

case l of [ ] ⇒ . . . | (x :: xs) ⇒ . . .

In HOL, case statements (including complicated-looking nested
case statements) are internally represented as primitive ‘case func-
tions’. The case function for the list datatype is defined using the
following two equations:

list case [ ] f1 f2 = f1

list case (x :: xs) f1 f2 = f2 x xs

Thus, in order to translate case statements for the list datatype, it is
sufficient to be able to translate any instantiation of list case l f1 f2.
The lemma which we use for this is shown below. This lemma can
be read as a generalisation of the lemma for translating closure
introduction and if statements.

(h0 =⇒ Eval env blc ((a list) l)) ∧
(h1 =⇒ Eval env byc (b f1)) ∧
(∀x xs v vs.

a x v ∧ (a list) xs vs ∧ h2 x xs =⇒
Eval (env [n 7→ v][m 7→ vs]) bzc (b (f2 x xs))) =⇒

(∀x xs.
h0 ∧ ((l = []) =⇒ h1) ∧
((l = x :: xs) =⇒ h2 x xs)) =⇒

Eval env bcase l of Nil => y | Cons(n,m) => zc
(b (list case l f1 f2))

6.7 Translation of recursive functions
The most technical part of our approach is the details of how re-
cursive functions are translated. In what follows, we expand on the
gcd example given in Section 3.4 and explain our use of induction
and eq in more detail.

gcd m n = if 0 < n then gcd n (m mod n) else m

As was already mentioned, when such a function is to be trans-
lated, we perform the bottom-up traversal (Section 5) for the right-
hand side of the definition. When doing so we encounter the recur-
sive call to gcd for which we need an Eval theorem. In this theorem
we need to make explicit with what values we make the recursive
call. For this purpose we use the eq combinator

eq a x = λy v. (x = y) ∧ a y v

which when used together with → restricts the universal quantifier
that is hidden inside the → function combinator. One can infor-
mally read, refinement invariant int → . . . as saying “for any int
input, . . . ”. Similarly, eq int i → . . . can be read as “for any int
input equal to i, . . . ”, which is the same as “for int input i, . . . ”.

We state the assumption we make at call sites as follows:

Eval env bgcdc ((eq int m → eq int n → int) gcd) (10)



For the rest of this example we abbreviate (10) as P m n. In order
to derive an Eval theorem for the expression gcd n (m mod n), we
first derive an Eval theorem argument n

Eval env bnc (int n) =⇒
Eval env bnc (int n)

and an Eval theorem argument m mod n

Eval env bmc (int m) ∧
Eval env bnc (int n) ∧ n 6= 0 =⇒
Eval env bm mod nc (int (m mod n))

Next, we use the following rule to introduce eq combinators to the
above theorems

∀a x m. Eval env m (a x) =⇒ Eval env m ((eq a x) x)

and then we apply to Closure application rule from Section 6.5 to
get an Eval theorem for gcd n (m mod n).

Eval env bmc (int m) ∧ P n (m mod n) ∧
Eval env bnc (int n) ∧ n 6= 0 =⇒
Eval env bgcd n (m mod n)c (int (gcd n (m mod n)))

By then continuing the bottom-up traversal as usual and pack-
aging up the right-hand side following the description in Section 5,
we arrive at the following theorem where our abbreviation P ap-
pears both as an assumption and as the conclusion.

env "gcd" = Recclosure . . . bif 0 < n . . .c =⇒
∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n

(11)

Note that the shape of the right-hand side of the implication
matches the left-hand side of the following induction which HOL
provides as a side product of proving totality of the gcd function.

∀P. (∀m n. (0 < n =⇒ P n (m mod n)) =⇒ P m n)
=⇒ (∀m n. P m n)

(12)

By one application of modus ponens of (11) and (12), we arrive
at a theorem with a right-hand side: ∀m n. P m n. By expanding
the abbreviation P and some simplification to remove eq (explained
in the next section), we arrive at the desired certificate theorem for
the gcd function:

env "gcd" = Recclosure . . . bif 0 < n . . .c =⇒
Eval env bgcdc ((int → int → int) gcd)

The gcd function is a very simple function. However, the tech-
nique above is exactly the same even for functions with nested re-
cursion (e.g. as in McCarthy’s 91 function) and mutual recursion
(in such cases the induction has two conclusions). We always use
the eq combinator to record input values, then apply the induction
arising from the function’s totality proof to discharge these assump-
tions and finally rewrite away the remaining eq combinators as de-
scribed in the next section.

6.8 Simplification of eq

Our gcd example in Section 3.4 glossed over how eq combinators
are removed. In this section, we expand on that detail.

When translating recursive functions, we use the eq combinator
to ‘record’ what values we instantiate the inductive hypothesis
with. Once the induction has been applied, we are left with an
Eval-theorem which is cluttered with these eq combinators. The
theorems have this shape:

∀x1 x2 . . . xn.
Eval env code

((eq a1 x1 → eq a2 x2 → . . . → eq an xn → b) func)

Next, we show how these eq combinators can be removed by
rewriting. First, we need two new combinators. The examples be-

low will illustrate their use.
A a y v = ∀x. a x y v
E a y v = ∃x. a x y v

We use these combinators to push the external ∀ inwards. The
following rewrite theorem shows how we can turn an external ∀
into an application of the A combinator. Here (Ax. p x) is an
abbreviation for A (λx. p x).

(∀x. Eval env code ((p x) f)) =
Eval env code ((Ax. p x) f)

(13)

Once we have introduced A, we can push it through → using the
following two rewrite theorems.

Ax. (a → p x) = (a → (Ax. p x)) (14)

Ax. (p x → a) = ((Ex. p x) → a) (15)

These rewrites push the quantifiers all the way to the eq combina-
tors. We arrive at a situation where each eq combinator has an E
quantifier surrounding it. Such occurrences of E and eq cancel out

Ex. eq a x = a

leaving us with a theorem where all of the eq, A and E combinators
have been removed:

Eval env code ((a1 → a2 → . . . → an → b) func)

The proofs of (13) and (14) require that the underlying big-
step operational semantics is deterministic. This requirement arises
from the fact that these lemmas boil down to an equation where an
existential quantifier is moved across a universal quantifier.

∀x. ∃v. 〈env , code〉 ⇓ v ∧ . . . =
∃v. 〈env , code〉 ⇓ v ∧ ∀x. . . .

Such equations can be proved if we assume that ⇓ is deterministic
since then there is only one v that can be chosen by the existential
quantifier. Note that the definition of Eval in Section 6.4 would not
have had its intended meaning if the operational semantics had been
genuinely non-deterministic.

7. Related work
There is a long tradition in interactive theorem proving of using log-
ics that look like functional programming languages: notable exam-
ples include LCF [30], the Boyer-Moore prover [3], the Calculus
of Constructions [8], and TFL [19, 39]. The logic of the Boyer-
Moore prover (and it successor, ACL2 [18]) are actual program-
ming languages with standard denotational or operational seman-
tics. However, many other systems, including Coq [7] and various
HOL systems [35] (including Isabelle/HOL [17] and HOL4 [15]),
use a more mathematical logic with model-theoretic or proof-
theoretic semantics that differ from standard programming lan-
guages, e.g. the logics of HOL systems include non-computational
elements. However, because these logics are based on various λ-
calculi, they still resemble functional languages. A contribution of
our work is to make this resemblance concrete by showing how
(computable) functions in these logics can be moved to a language
with a straight-forward operational semantics while provably pre-
serving their meaning.

Slind’s TFL library for HOL [39] and Krauss’ extensions [19]
make HOL’s logic (which is roughly Church’s simple theory of
types) look like a functional language with support for well-
founded general recursive definitions and nested pattern matching.
We rely on TFL to collapse multi-clause definitions and to simplify
pattern matching expressions (Sections 6.6 and 3.5).

Extraction from Coq [22] has two phases. First, purely logical
content (e.g., proofs about the definitions) are removed from the



definitions to be extracted, then the remaining, computational con-
text is printed to a programming language. The first step is theoret-
ically well-justified; the second operates much as in HOL provers
and is what we address in this paper.

ACL2 uses a first-order pure subset of Common Lisp as its
logic, thus there is no semantic mismatch or need to perform ex-
traction; logical terms are directly executable in the theorem prover.
However, a translation technique similar to the one described in this
paper can be of use when verifying the correctness of such theorem
provers (including the correctness of their reflection mechanisms),
as we did in previous work [10] using [32].

Proof producing synthesis has previously been used in HOL for
various low-level targets including hardware [40] and assembly-
like languages [24, 25, 26]. These systems implement verified com-
pilers by term rewriting in the HOL4 logic. They apply a series of
rewriting theorems to a HOL function yielding a proof that it is
equivalent to a second HOL function that uses only features that
have counterparts in the low-level language. Only then do they take
a step relating these “low-level” HOL functions to the low-level
language’s operational semantics. This approach makes it easy to
implement trustworthy compiler front-ends and optimisations, but
significantly complicates the step that moves to the operational set-
ting. In contrast, we move to (MiniML’s) operational semantics im-
mediately, which means that any preconditions we need to gener-
ate are understandable in terms of the original function, and not
phrased in terms of a low-level intermediate language. This is why
we can easily re-use the HOL-generated induction theorems to au-
tomatically prove termination.

In the other direction, proof producing decompilation tech-
niques [23, 34] have addressed the problem of reasoning about low-
level machine code by translating such code into equivalent HOL
functions; however, these functions retain the low-level flavour of
the machine language.

Charguéraud’s characteristic formulae approach also addresses
translation in the other direction, from OCaml to Coq [4], and it can
support imperative features [5]. With his technique, an OCaml pro-
gram is converted into a Coq formula that describes the program’s
behaviour, and verification is then carried out on this formula. His
approach tackles the problem of verifying existing OCaml pro-
grams, which in particular requires the ability to handle partial
functions and side effects. In contrast, this paper is about gener-
ating, from pure functional specifications, MiniML programs that
are correct by construction. Part of our approach was inspired by
Charguéraud’s work, in particular our Eval predicate was inspired
by his AppReturns predicate.

8. Future work
In this paper, we show how to create a verified path from the the-
orem prover to an operational semantics that operates on abstract
syntax trees. We have not attempted to solve the problem of verified
parsing or pretty printing. Ultimately, we want a verified compiler
that will be able to accept abstract syntax as input, avoiding the
problem altogether. However, it would still be useful to verify a
translation from ASTs to concrete syntax strings for use with other
compilers.

We have implemented our technique in HOL4 for translation
to MiniML; however, we believe it would work for other target
languages, so long as they both support ML-like features and can
be given big-step semantics. Haskell support should be straightfor-
ward; laziness poses no problems because we are already proving
termination under a strict semantics. We do rely on determinism of
the big-step semantics for the quantifier shifting used in eq combi-
nator removal (Section 6.8), but most languages that do not define
evaluation order (e.g., Scheme, OCaml) should be able to support
a deterministic semantics for the pure, total subset.

Our technique should also extend to other provers, including
Isabelle/HOL and Coq. For function definitions that are in the ML-
like fragment (i.e., that do not use sophisticated type classes or
dependent types), including most of those in CompCert, it should
be straightforward to implement our technique, although the details
of the automation will vary.

Lastly, because MiniML also has a small step semantics, we
hope to be able to verify complexity theoretic results about, e.g.,
our functional data structure case studies.

9. Conclusion
This paper’s contribution is a step towards making proof assistants
into trustworthy and practical program development platforms. We
have shown how to give automated, verified translations of func-
tions in higher-order logic to programs in functional languages.
This increases the trustworthiness of programs that have been veri-
fied by shallowly embedding them in an interactive theorem prover,
which has become a common verification strategy. We believe this
is the first mechanically verified connection between HOL func-
tions and the operational semantics of a high-level programming
language. Our case studies include sophisticated data structures and
algorithms, and validate the usefulness and scalability of our tech-
nique.
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