Internalizing Relational Parametricity
in the Extensional Calculus of Constructions
(Technical Appendix)

Neelakantan R. Krishnaswami
Derek Dreyer

April 2013

Contents
1 Type System and Operational Semantics

2 Model
2.1 Quasi-PERs e

3 Semantics
3.1 Contexts e e e
3.2 Kinds . . . e
3.3 Type Constructors o
3.4 Other Judgements

4 Examples
4.1 Empty Type . . . o o o e e e e
4.2 Coproducts e
4.3 Natural Numbers
4.4 Dependent Records
4.5 Induction for Natural Numbers oo
4.6 Existential Types o e
4.7 Quotient Types e

5 Soundness
5.1 Structural Properties L

6 Proofs

List of Figures

1 SYNLax o e e e
2 Summary of Judgments

10
10
11
11
12

12
12
14
15
16
18
19
21

22
23

25

© 00 N O O W

10
11
12
13

List

0 O T W N~

== 00 1 O U = W N
B 0o

B>~ =N -

Context and Kind Well-formedness 5

Kinding for Type Constructors 6
Expression Typing e 6
Kind and Type Equality 7
Expression Equality 8
Operational Semantics 8
Quasi-PER e 10
Environment Semantics L L 12
Notation o e 13
Kind Semantics L L 13
Type Constructor Semantics L 14

of Theorems

Definition o 9
Lemma o e 12
Lemma o 14
Lemma o e 15
Lemma e 15
Lemma e 15
Lemma 16
Lemma o 16
Lemma 17
Lemma oL 17
Lemma o 19
Lemma oL 19
Lemma o e 20
Lemma (Kind Pre-interpretations Ignore Term Substitutions) 23
Lemma (Kind Pre-interpretations Ignore Type Substitutions) 23
Theorem (Kind Coherence) 23
Theorem (Well-Definedness) 23
Theorem (Coherence of Types and Kinds) 23
Corollary (Coherence of Environment Interpretation) 23
Theorem (Weakening of Kinds and Types) 23
Theorem (Substitution for Pre-Contexts), 24
Theorem (Substitution of Terms) Lo 24
Theorem (Substitution of Types) 24
Theorem (Fundamental Property) 24
Lemma (Kind Pre-interpretations Ignore Term Substitutions) 25
Lemma (Kind Pre-interpretations Ignore Type Substitutions) 25
Theorem (Kind Coherence) 26
Theorem (Well-Definedness) 26
Theorem (Coherence of Types and Kinds), 29
Corollary (Coherence of Environment Interpretation) 32
Theorem (Weakening of Kinds and Types), 32

5 Theorem (Substitution for Pre-Contexts) 36
6 Theorem (Substitution of Terms) 37
7 Theorem (Substitution of Types) L 43
8 Theorem (Fundamental Property) 49

1 Type System and Operational Semantics

Our overall system is an explicitly-typed version of the calculus of constructions, extended with an
identity type and an elimination rule for equality based on equality reflection.

In Figure 1, we give the syntactic categories of our type system. We present our system with
distinct syntactic categories for kinds (ranged over by metavariables k), types (ranged over by
metavariables X, Y, A, B, C, and type variables «,) and terms (ranged over by metavariables e,
and term variables x,y,z). We typically adopt the convention of using A, B, and C for type
constructors of arbitrary kind, and X and Y for type constructors of base kind.

The kinds include the base kind of types *, the kind of term-indexed types Ilx : X. k, and the
kind of type-indexed types Ila : k. k. Our base type constructors include universal quantification
Ila : k. X, the dependent function space Iz : X. Y, and the identity type e; =x e2. On top of
this, we permit abstracting over both term variables Az : X. A and type variables A« : k. A, with
corresponding applications A e and A B. Of course, we can also refer to type variables « in type
expressions.

The syntax of terms is also explicitly typed, with both explicitly-typed term Az : X. e and
type Ao : k. e lambda-abstractions, and corresponding applications e ¢/ and e A. The witness
for equality proofs is the reflexivity term refl. There is no elimination form for this type, since
we make use of the equality reflection principle [Martin-L6f(1984)], and therefore do not need an
explicit eliminator for equality. We identify a subclass of terms v as values, which we take to be
the lambda-terms Az : X. e and A« : k. e, as well as the equality proof term refl.

As an aside, we present a system with distinct syntactic levels rather than as a pure type
system [Barendregt(1991)]. Having different syntactic categories and judgements simplifies some
theorem statements, but comes at the price of doubling the number of substitution lemmas, since
we have to prove substitution properties once each for terms and types.

In Figure 2, we catalog the judgements we use in our system.

We have the judgement I' ok, which asserts that a context (consisting of term and type variables)
is well-formed, and the judgement I' - x : kind, which describes when a kind is well-formed. Both
of these judgements are given in Figure 3. Note that the base case of the well-kinding judgement
— I' % : kind does not require that the context be well-formed.

This illustrates a general principle in our choice of typing rules. We avoid making a context well-
formedness requirement part of the derivations of our system. Instead, we state the well-formedness
condition as a precondition to the theorems of our metatheory, and add sufficient premises to ensure
that the context well-formedness condition can be derived as needed. For example, the rule for
pi-kinds ' - Iz : X. & : kind has a premise that I' = X : %, which lets us derive the well-formedness
of the extended context I',;x : X. One further convention that we follow is that our rules have
implicit validity premises — if we have a rule ending in I' - A : k, then there is an implicit premise
that I' - & : kind (and similarly for other judgements). This simplifies the soundness proof, but
since these premises add clutter to the rules we omit them in the display.

In Figure 4, we give the well-kinding judgement I"' - A : k, which asserts that the type con-
structor A has the kind . The rules here are unsurprising: we have type variables «, abstractions
over terms Az : X. A and types Aa : k. A, as well as the corresponding applications A e and A B.
We also have a few basic rules for forming types (of kind %) — polymorphic functions o : k. X,
dependent functions Ilz : X. Y, and the identity type e; =x es. Finally, we have a conversion rule
which says that if A has the kind x, and k = «/, then A also has the kind «'.

In Figure 5 we give the typing rules for expressions. Variables are looked up in the environment,
and we have the expected rules for abstractions and applications over types and terms. There is
also a conversion rule for typing terms, and finally we have the rule for equality, which asserts that
if e; and ey are convertible, then refl is a proof of inhabitation of the identity type e; =x es.

The conversion rules for kinds and types are given in Figure 6. Equivalence of kinds is basically
structural — if two kinds have the same shape, and equal type and term components, then they
are equal. We model this by giving a substitution principle that says if we substitute equal terms
or types into a kind, then the two resulting kinds are equal. Then, we close up under reflexivity,
symmetry, and transitivity.

The equality judgement for type constructors is similar. As with kinds, we express the fact that
equality is a congruence by giving rules which assert that substituting equal types and terms into a
type yields equal results, and we also close up under reflexivity, symmetry, and transitivity. Since
kinds have their own notion of equality, we also say that an equality proved at one kind is valid
at any equal kind. Then, we add the 8 and n-rules of the lambda-calculus for the type and term
abstractions in the language.

Similarly, we give the equality judgement for expressions in Figure 7. As with kinds and types,
we use substitution of equal terms to express that the relation is a congruence, have reflexivity,
transitivity, and symmetry rules, and a rule asserting that an equality at one type is also an equality
at any equal type. Then, we have the 8 and n rules for type and term abstractions.

Identity types support a proof-irrelevance principle, called Axiom K [Hofmann and Streicher(1998)],
which asserts all proofs of equalities are equal. Furthermore, term equality also contains the equal-
ity reflection rule. If ' e, : e =x €/, then T' e = ¢’ : X. Note that this rule makes typechecking
undecidable, since a well-typing derivation may need to invent equality proofs out of thin air.

In Figure 8, we give the operational semantics of our programming language. This is a stan-
dard small-step, call-by-name semantics, with no surprises to it. The reason that we give an
operational semantics, rather than (say) a -convertibility relation, is that full-5 does not have to
terminate. Since we support the equality reflection principle, we can prove the well-typedness of
the Y-combinator in open contexts — so the arbitrary S-reduction of well-typed open terms is not
necessarily guaranteed to terminate. However, since the system is (as we will prove) consistent,
this means that all closed terms do reduce to values. This problem, and our approach to resolving
it, are both quite familiar from Nuprl.

Another point worth noting is that our definitional equality is just the grn-theory of the lambda
calculus (plus axiom K for identity types). We have not yet included any parametricity properties
in our rules for equality. This choice is made for expository purposes.

2 Model

In this section, we describe the model construction we use to interpret the calculus of constructions.
Our overall semantics is a realizability model, in which types are interpreted as relations between

K = x| z: X.k | Ha: k. K Kinds

X,A = Ha:k X | Hx: X.Y | e=x e Types
| X:X.A | Ae |
| Xa:k.A| AB | «

e w= x| Adx:X.e| |ee Terms
| Aa:k.e | eA | refl

v n= Ar:X.e | Aa:k.e | refl Values

r w= - | Dye: X | Ta:k Contexts

Figure 1: Syntax

I" ok Context Well-formedness

I'F & : kind Kind Well-formedness

'HA:k Well-kinding for Type Constructors

I'Fe: X Well-typing of Expressions

'k =«':kind Definitional Equality for Kinds
I'A=A":xk Definitional Equality for Kinds
Fe=¢€:X Definitional Equality for Kinds

/

er—e Operational Semantics
Figure 2: Summary of Judgments
- ok
I' ok ' X:x I" ok I'F & : kind
I',x: X ok I'a: kok
I'+ & : kind
' X :x Ix: X Fk:kind 'k : kind I'a:rkF«":kind
I' % : kind I'Ilz: X. s : kind I'FTo: k. & - kind

Figure 3: Context and Kind Well-formedness

I'F k: kind lMNa:xkFY %
F'rlla:k. Y @ %

' X:x Tz: XFY % I'Fe: X ke :X

Iz : X.Y : % F'Fe=xe€:x
a:k el ' X:x I'e: XFA:k I'+ & : kind IFa:kkA: K
'Fa:k THFX: X. A:llz: X. k& T'Fla:k A:Ta: k. K
THA:TIz: X. & T'kFe: X 'FA:Ta: k. & Ak
'FAe:le/x]r L=AA:[A)a)r

THA:K I'k=x:kind
'FA:k

Figure 4: Kinding for Type Constructors

z:Xel I'kFe:Y I'FX=Y:x
I'Fx: X kFe: X
I'F k: kind lNa:kkFe:Y l'Fe:Mla: k. Y 'HFA:k
F'FXa:k.e:lla: kY F'FeA:[A/a]Y
INz: XFe:Y I'Fe:Tllx: X. Y e : X
FFXx:X.e:llz: X.Y I'kee :[e/z]Y
T'Fei=ey: X

Fl—refl:el =X €2

Figure 5: Expression Typing

Tk k =k kind]

Fe=é€:X Iz : X F & :kind
[+ [e/x]k = [¢//x]k : kind

Fl—ﬁlzmllzkind I’,a:ml—ngzﬁézkind

r-A=4":% I'a:kF« :kind
I'[A/als’ = [A'/a]k : kind

'-X=X:x Iz:XFr=x:kind

I'F1Tla: ky. ke = Mo k). kS 2 kind

F'FIz: X.k=Mz: X'. k' : kind

'+ k1 = k9 : kind I'+ ko = k3 : kind
I'+ k1 = k3 : kind

A/ZK,‘

'k : kind I'Fx=k:kind

'k =k:kind 'k =k:kind
‘F}—AE

F'Fe=¢€:X Ne: XFA:k

Lk [e/z]A=[e/z]A: [e/z]r

A=A :x Ia:xk+B:K
' [A/a]B =[A"/a|B: [A/alx

I'x=k:kind

THFA=A": ¥

I'FA=
T'FA: & THFA=A:k
T'FA=A:k THA =A:«k

'k =&«":kind Ma:kEFX=X":x
IF'FTa: k. X =Ha: k. X' :x

'k =«":kind Ia:k+-B=DB":x"
F'Fla:k.B=Xa: k. B :la: k. &’

r-c=C":la: k. K TrFA=A":k
r-CA=C"4A":[A/a)C

F'FXr: X A:llx: X. Kk I'Fe: X
F'F(Ax:X. A)e=le/x]A:e/x]r

Ne:X+FAz=Az:k

TFA:Tlz: X. K

Ak

Fl—AlEAQZK} FFAQEAgiKZ
T'FA =A3: K

' X = X’":kind Fz: XFY=Y:x
THFIz: X.Y=Iz: XY :x

F'-X=X:x Iz:X+FB=B:k
F'FXe:X.B=Xx: X" B :lz: X. &k

r-c=C":Mz: X. s l'te=¢€:X
F'ECe=C"é:[e/a]r

T'FXa:k. A:Ta: k. K THA K
' Aa:k A) A =[A"/a]A: [A)alK

A :Tx: X. s

THA=A":Tlz: X. k

INa:kFAa=A a: K

THFA:Tla: k. &

' A :Ta: k. K

A=A :Ta: k. &

Figure 6: Kind and Type Equality

I'Feg=ey: X

I’l—ep:ezxe/ Fe=¢€:Y 'EX=Y:x
l'Fe=¢ée:X l'Fe=¢ée:X
Fhey=ey:Y I'z:Yhke: X r-A=4:% INa:kke: X
' [eg/x]e = [ey/x]e : [eo/x] X [+ [A/ale=[A"/ale: [A/a]X
I'Fe: X 'Fe=¢€:X I'Feg=ey: X I'Fey=e3: X
I'Fe=e: X e =e: X I'Fei=e3: X
I'A:x

F'FAa:k.e:lla: k. X
' (Aa:k.e)A=[A/ale: [A/a]X

e :Ma:k. Y

INa:kkFea=éd a:Y FFe:Mla:k. Y
F'Fe=é¢:Ma:k Y

P'FXx:X. e:llz: X.Y 'ke:X

F'F(x:X.e)e =[/z]e: [e/z]Y
e :lx: XY

lz:XkFexz=ez:Y lFe:llz: X.Y
FFe=¢é:Mlz: X.Y

I'Fe:eg=x es I'ke:ep=x ey

F'Fe=¢é:e;=x ey

Nz:XFe=e€:Y

I'-x=x":kind Ila:kke=e€:Y '-X=X:x

T'Fla:k.e=da: k. Ma: k. Ma: k. Y F'FXxx:X.e=Xx: X e :llx: X.Y

I'te=¢ :Mla:k Y TrHFA=A":k FHt=¢t :Mzx: X.Y Te=¢€:X
IF'kte=tée:[e/a]Y

F'FeA=¢e A :[A/a]Y

Figure 7: Expression Equality

e e
eX—e X

(Aa:k.e) X — [X/ale

61'—>€/1

e1 ea — €] ea Mz :X.e)e — [¢/z]e

Figure 8: Operational Semantics

closed expressions e. However, since the syntactic types appearing within expressions are computa-
tionally irrelevant, we simplify matters by working with relations over Exp, the set of equivalence
classes of closed expressions modulo differences in syntactic types. That is, in the model, we con-
sider \x: X.e=Xx:Y.e, da:k.e=Xa:kK.e and e A =e¢ B, for arbitrary X, Y, , ', A, B.
This is analogous to building the model with type-erased terms, and we will sometimes write _ in
place of an irrelevant type annotation/argument.

First, we describe what quasi-PERs are, and then we describe how we interpret each of the
judgements of our type theory — contexts, kinds, types, terms, and equalities.

2.1 Quasi-PERs

A quasi-PER (also known as a “difunctional relation”, or “zig-zag complete relation”), is a relax-
ation of the concept of a partial equivalence relation to the asymmetric case. Formally, they are
defined as follows:

Definition 1. (Quasi-PER) Given sets A and B, a quasi-PER R C A x B is a relation such that
for all a,a’ € A and b,V € B, if (a,b) € R and (a/,0') € R and (a/,b) € R, then (a,’) € R.

In Figure 9, we give a diagram of the quasi-PER, condition, which should illustrate why they are
also called “zig-zag complete relations” — if there is a “zig” between two pairs of related points,
then there must also be a “zag”.

For our purposes, quasi-PERs are interesting because their asymmetry lets us prove represen-
tation independence results (i.e., we can relate different representations of a datatype), without
losing the possibility of using the logical relation to define equality of datatypes.

To understand why, suppose that we have a type X, which is interpreted by a relation R C Ax B.
Furthermore, suppose that we have three terms of type X, e1, es and e3, with the property that
e1 = eg and ey = eg according to the equational theory of the language.

To show transitivity, we will need the following two properties. First, we will need a version of
the fundamental theorem of logical relations, to tell us that each e; is interpreted by (a;, b;) € R.
Secondly, we will need the soundness of the equality rules to tell us that e; = e3 means (a1,b2) € R
and that es = e3 means that (ag,b3) € R. Then, the fact that R is a quasi-PER implies that (a1, b3)
is also in R. Below, we illustrate how the zig-zag condition implies (a1,b3) € R, by doubling the
three lines that we use to reach the conclusion.

@

N

®—®

Just as with ordinary PERs, quasi-PERs are closed under arbitrary intersections, but also like
PERs they are not closed under unions. However, since the intersection equips quasi-PERs with
a complete semilattice structure, we can define the join of a set of quasi-PERs as the least quasi-
PER containing the union. We can also define the join directly, as the “zig-zag” closure, where
we add the pairs necessary to ensure that the zig-zag condition holds. The construction closely
resembles the join on partial equivalence relations, and just as with PERs, existential or union
types defined using the join only support a weak (unpack-style) elimination form, rather than a
projective elimination.

%
Figure 9: Quasi-PER

Notation If Q is a quasi-PER, then we will write & € @ to denote a pair (e, €¢’) € Q. For (a,b) € Q
and (¢/,b") € Q, we will write (a,b) ~q (a/,) if (a,b') € Q and/or (a/,b) € Q. (We say “and/or”
because “and” is equivalent to “or” here thanks to zig-zag completeness). We will also suppress
the subscript and write 1 ~ e3 when @ is obvious from context.

3 Semantics

We interpret relations with a set of mutually-recursive semantic interpretation functions, which
we describe below. Given the high degree of mutual recursion, there is unfortunately no way to
describe the interpretations without some degree of forward reference.

In order to minimize the number of forward references, we introduce some auxilliary semantic
objects that will let us prove some basic structural theorems without having to do a simultaneous
induction with the soundness of the whole semantics.

3.1 Contexts

The interpretation of the I' ok judgement is the set of grounding parallel substitutions which satisfy
it. We give the interpretation in Figure 10.

The interpretation of an empty context is just an empty substitution, and the interpretation
of the context I,z : X ok is an element of [I" ok], together with a pair & of closed terms from the
interpretation of I' F X : x. The interpretation of the context I',« : k ok is an element of [I" ok],
together with a triple (A, A’, R). Here, A and A’ are closed syntactic types, and R is the semantic
interpretation of the type. Note that there are no well-formedness constraints on the types: we do
not need them, since the operational semantics never examines a type constructor, and the relation
R carries all the necessary semantic constraints.

In Figure 10, we also define a notion of equivalence v ~r 7/ on contexts. This relation says
that the relation part of type variables must be equal (ignoring the syntactic type constructors),
and that pairs of terms €7/z and €3/ must lie in the same equivalence class of the relation. This
definition does form a quasi-PER, but actually proving that fact can only be done after the proof
of soundness of the interpretation of types and kinds. This is due to the fact that the definition
is “biased” — note that the choice of quasi-PER to interpret types and kinds comes from the
left-hand side. By construction, this choice will not matter, since all of our semantic functions will
be invariant under this equivalence, but we cannot show that yet.

In Figure 11, we give some notations on contexts that we will use in the sequel. An element ~
contains left- and right-bindings for each of the variables in it, and 7; is the left projection of the

10

environment, and 7y, is the right projection of the environment. We write «y(e) to indicate the pair
of terms we get from the left and right substitutions of + applied to e.

3.2 Kinds

We give the interpretation of derivations of the kind judgement in Figure 12. We begin by giving a
“pre-interpretation”, which interprets kinds less precisely than we will ultimately want, but whose
presence simplifies our well-definedness arguments since ||x|| is defined without reference to the
context.

The full interpretation of kind [I' F & : kind], on the other hand, is relative to a context -.
The interpretation of the base kind I' - * : kind is a slight restriction of the set of quasi-PERs on
expressions,

V(er,e2) € R, (e}, eh) € Exp?. e) ¢3* €| Aeg <" ey = (€], ¢h) € R

Namely, we restrict ourselves to quasi-PERSs over terminating expressions (or more precisely, equiv-
alence classes of such expressions modulo differences in syntactic types), and further require that
quasi-PERs be closed under expansion and reduction.

The interpretation of the higher kind I' - Il : . ' : kind is morally a currying of the interpre-
tation I', o : k F &' : kind. In particular, it is the set of functions ||k|| — ||«'||, such that (1) we ignore
the syntactic part of an argument triple (X, R), and (2) on any argument R € [+ & : kind] 7,
the result is in [[, o : k - & : kind] (7, (A, R)/a). On anything outside the dependent domain, we
require the result to be a fixed element of the pre-interpretation.

Similarly, the interpretation of the higher kind I' - Iz : X. ' : kind is a subset of the currying
of the interpretation I', z : X F &’ : kind. However, in this case, we require that the type constructor
return the same answer for all equivalent & ~x ¢’.

3.3 Type Constructors

In Figure 13, we give the interpretation of the type constructors of our language, as a function that
takes a derivation and returns an element of the appropriate semantic kind. The first line of the
definition says that the interpretation of a derivation I' - « : k proceeds by looking up « in the
environment argument 7, and returning the relation component of the triple.

The interpretation of a lambda-abstraction A« : k. A is just a function that takes an argument
in k, and returns the result of interpreting A in an extended environment. Likewise, a type con-
structor application A B takes the meaning of A, and passes it the syntax and semantics of B.
Similarly, a term abstraction Az : X. A just returns a function which takes a pair e, and returns the
interpretation of A in an extended environment, and the application A e passes the substitution
instance of y(e) to the interpretation of A.

When an equality rule is used, we simply interpret the subderivation and return that as our
answer. The presence of equalities is why we interpret full typing derivations. As a result, however,
we will need to do a coherence proof on our semantic interpretations, though the fact that the
equality rules do nothing interesting means the coherence proof is easy.

Next, we give the interpretations of types. The kinding interpretation requires that each type
be a candidate relation, and so we define each type as a relation on expressions. The interpretation
of the function type Iz : X. Y is the set of expressions that take related pairs of arguments in

11

[ok] =
I0,z: X ok] = %(é/)\ e[[Fok]]/\ée[[FFX £] 7}

[T,a:kok] = J(A,R)/a) | v € [T ok] A (A, R) € (Type x Type) x [I' & : kind] ~}
() ~. () <= always
(71, €1/z) ~ (D,z:X) (72, €2/x) = 71~ V2N el ~[DFX]y €2

(1, (AlaRl)/Oé) Ty (12, (A2, R2) /@) <=~ ~r 72 AR =Ry
Figure 10: Environment Semantics

X to related pairs of expressions in the relation for Y, in the context extended by the argument
pair. This is basically the same as the usual rule for function types in logical relations, minimally
adjusted to support dependency. Likewise, the interpretation of the polymorphic type Ila : k. X
says that a pair of terms is in the relation, if for every relation R in the kind x, the bodies are
related at the expression relation for X, in the environment augmented with R for a.

The interpretation for the identity type e; =x e2 is of a pair of terms reducing to {(refl, refl)}
when e; and ey are related, and is the empty set otherwise. Observe that refl is a proof only when
the equality holds, and that because the identity type is interpreted by a relation containing at
most one pair, our model ensures it satisfies axiom K.

3.4 Other Judgements

Since we are building a term model, we do not need to give an explicit interpretation of the
expression typing or equality derivations. We will establish that we got these rules right as part
of the proof of the soundness theorem, when we prove the fundamental lemma of logical relations
and show that the syntactic equality judgement is sound with respect to the semantic expression
relation.

As a result, at this point in the paper, we have not yet established that our definition is
actually well-defined. The reason is that the structure of a dependent type theory means that the
well-definedness of our semantics is mutually inductive with the actual soundness property for the
type theory.

4 Examples

In the following, we assume that the context I' is well-formed, and that any context v € [I" ok], so
that we can appeal to the fundamental property. Also, given a QPER @, we define QT to be its
closure under reduction and expansions.

4.1 Empty Type
Define 0 £ T : *. .

Lemma 1. (Uninhabitation of 0) [Tt 0: %] v is not inhabited.

12

(O = ()
(v: (e1, e2) /2 = m,el/z
(’77((A17A2)7R)/a)1 = 717A1/a
()2 =
(7, (e1, €2) /)2 = 72,62/T
(’77((A17A2)7R)/a)2 = 727142/04
(e) = (m(e),72(e))
V(A) = (m(A),72(4))
V(k) = (m(k),72(k))
Figure 11: Notation
IE| = Rel(Exp, Exp)
T k. w'| = (Type? x [|&[l) — |[#']
Iz : X. k|| = (Exp x Exp) — ||&|
L =0
!Hm:X. K = XeckE p2. !H
!Ha:n. K/ =)\(74) S TypeQ X HKZH !n’
[Tt = : kind] ~ = CAND
VA,B,R € |k||. T(A,R) =T(B,R) A
] P _) | VA R € [T+ & :kind] 7.
[T'FHa: k. & kind] v = (T € |la: k. K| T(AR) €T, a: st : kind] (v, (A R)/a) A
VA,R¢ [T+ k:kind] 7. T(A,R) = !,
[[F1z: X k:kind] v = let X =[[FX:%] yin - -
Ve,el e X.e~gy el = Re=Re N
Re|lz: X. k||| VeeX. Ree[[z: X bFrk:kind] (v,e/x) A
Ved X.Re =1,

Figure 12: Kind Semantics

13

IT,a:kT'Fa:k] (v,(4,R)/a,y) = R

[CFAa:k A:Ta: s & 4 _)\(BR){[[Fa kEA: K] (v,(B,R)/a) 1fR€[[I‘I—;<:kmd]]7
Vs otherwise
[THAB:[B/aJK] v = [PFA:Ta: k. K] v ((B),[LFB:x] 7)
[TFXe: X.A:Tlx: X.R] v = Je. [C,z: X+ Az s] (v./2) 1fe€['I’I—X:*]]fy
le otherwise
[T'HAe:[e/x]k] v = [I'FA:IIz: X. K] v~(e)
[T+ A:k] v = [CFA:K] v (when T+ k =& : kind)

[Tz : X. Y : %] v=

{(e e’)‘ ety Nep LA }
151 V(ez,e5) € [I'H X %] 7. (e1 e2,€j €h) € [T,z : X FY %] (v, (e2,€})/x)
[TFTa:k X %] v=

, el Ne LA
(e, €) VA, A Re [T Fk: kind] 7.(c A A) e [T,a: kb X :+] (v, (4, A, R)/a)

[[Fl—elzxegz*]] Y=
{(e;e/) | e —>*refl A& =" refl A (y1(e1),72(e2)) € [T F X : %] ~}

Figure 13: Type Constructor Semantics

Proof. Assume (e,e’) € [I'F0:%] ~. Now, consider (e 0,¢ 0), instantiated with the empty
relation. Hence (e 0,¢’ 0) € [I,a:*F a: %] (v,(0,0)/a) = 0. This is a contradiction. Hence
(e,€’) cannot be in [I'F 0 : %] ~. O

4.2 Coproducts

Define A+ B £ Tla: *. (A — a) = (B — a) — a. Define inl : A = A+ B = \a. A, l,7. [a, and
define inr: A — A+ B = \b. Aa, l,r. 1 b.

Lemma 2. (Reducing eta-expanded Church sums) If (e,e’) € [T+ A+ B : x| ~, then either e (A+
B) inl inr shares a reduct with inl t for some t and ¢’ (A+ B) inl inr shares a reduct with inl t' for
some t', or e (A+ B) inl inr shares a reduct with inr t for some t and ¢’ (A + B) inl inr shares a
reduct with inr t' for some t'.

Proof. Assume (e,e’) € [T+ A+ B: %] ~.

Now, note that inl(e) and inr(e’) are not S-equivalent for any e and €', and hence do not share
any reducts. Furthermore, note that inl(e) — Aa, k1, ke. k1 e and inr(e) — A, k1, ka. ko e. Define
inl(e) as Aa, k1, k2. k1 e and inr() as Aa, k1, k. ko e. Hence the relation:

inl(e’) ‘(e,e’)E[[FI—A:*]] fy}T

{inte).i

@xﬁeﬂkB:ﬁyy

is a candidate relation. O

14

Now, apply A + B to e and €' choosing the relation R, so that (e (A + B),e’ (A+ B)) €
(A= R) - (B— R) - R, where A= [+FA:%] yand B = [['F B: %] v. Now, note that
(inl,inl) € A — R and (inr,inr) € B — R.

Hence (e (A+ B) inlinr,e¢’ (A+ B) inlinr) € R. Hence the conclusion follows.

Lemma 3. (Eta-expanding sums) If (e,e’) € [T A+ B: %] ~, then (e (A + B) inlinr,e (A +
B) inlinr) ~ (e, €).

Proof. Assume we have C, R, [€ A— R,and 7 € B — R. It suffices to show that (eClre (A+
B)inlinr C'I' ') € R. Now, consider the QPER:

S={t)| @t C'Ur)eR}

That S is a reduction-closed QPER follows from the fact that R is itself a reduction-closed QPER.

Now, we will try to show that (e C' Il r,e’ (A+ B) inlinr) € S. Since (e,€’) € [[' - A+ B : %] ~,
we can apply (C, A+ B) and S to it, to get: (e C,e/ (A+ B)) € (A—S) = (B—S)— 5. So we
need to show that (I,inl) € A — S and (r,inr) € B — S.

To show (,inl) € A — S, we need to show that for all (a,a’) € A, (I a,l' a’) € S. So it suffices
to show that (I a,inl C' I #' @’) € A — R. By reduction, we know that the right-hand-side reduces
to I a’. So it suffices to show that (I a,!’ a/) € R. Since by assumption (I,I') € A — R and
(a,a’) € A, we know that (I a,l' d’) € R.

Symmetrically, (r,inr) € B — S. O

4.3 Natural Numbers
Define N2 Tla: . a — (0 = a) » o, 2: N2 A, i, f. i, and s : N = N = M. Ao, i, f. f(nai f).

Lemma 4. (Normal forms of eta-ezpanded Church numerals) If (n,n’) € [N],
then n' N z s <+* s¥(2) <+* n' N z s for some k.

Proof. Assume (n,n’) € [N]. Next, note that s*(z) <* s/(z) iff j = k. So if k is the S-normal
I T
form of s¥(2), then the relation R = {(kz7 k) ‘ ke N} is a QPER, since the union of QPERs with

no overlaps is a QPER. Hence (n N,n’ N) € R — (R — R) — R. Note that (z,z) € R, and that
(s,8) € R — R. Hence (n N z s,n' N z 5) € R. Hence (n N z 5,1’ N 2z 5) ~g (s¥(2), s%(2)) for some
k. O

Lemma 5. (FEta-expanding Church numerals) If (n,n’) € [N], then (n,n’) ~ (n Nz s,n' N z s).

Proof. Assume (n,n’) € [N]. It follows immediately that (n N z s,n’ N z s) € [N]. So it suffices to
show that (n,n' N z s) € [N].
Assume we have A, R, i € Rand f € R — R. We want (n Ai f,n’ Nzs A" i f') € R. Now,
consider the QPER
S={(e,)| (e,e’ Ai' f') € R}

Again, as with coproducts, that the comprehension is a reduction-closed QPER follows from the
fact that R is a reduction-closed QPER.

Now, we want to (n,n’) with A and S, and then show (n A4 f,n’ N z s) € S. Hence we have
to show that (i,z) € S and (f,s) € S = S.

15

To show that (i,z) € S, we need to show that (i,z A’ i f’) € R. But by reduction, we know
that z A" 7' f reduces to i’, and so it suffices to show that (i,4") € R, which we have by hypothesis.
Next, we want to show that (f,s) € S — S. Assume that we have (e,e’) € S. So now we want
to show that (f e,s €’) € S. So, it suffices to show that (f e,s ¢ A" i f') € R. By reduction, it
suffices to show that (f e, f'(e/ A" ¢' f')) € R. We know that (f, f') € R — R, and since (e,€’) € S,

we know that (e,e’ A"4' f') € R, and so the conclusion follows. O

4.4 Dependent Records
e Define ¥z : X. YV £la:x (Ilz: X. Y = a) — a.
e Define pair: Iz : X. Y -3 X. Y= x: X,y:Y. A,k kzy

Define fst : (Zz: X.Y) = X =Ap.p X (A\z. \y. x)

Define snd : Ilp: (Xz: X.Y). [fstp/z]Y = Ap. p (Bz : X. Y) pair ([fstp/z]Y) (Az. Ay. y)
Note that snd is not syntactically well-typed!

Lemma 6. (Reducing eta-expanded pairs) If (p,p’) € [T+ 3z : X. Y : %] ~, then
(p [Xx: X. Y] pair,p/ [Xz: X. Y] pair) <* (pair u t,pair v’ t') where (u,uv’) € [T F X : %] v and
(t,t)ye[D,x: XY %] (v, (u,u)/x).

Proof. Assume (p,p’) € [[' - Xz : X.Y : %] v. Now, consider the relation:

GeLFX:«] yA

T
A . . ! 4
S—{()\a.*,k.kut,)\a.*,k.ku) Pe[lz: XFY 4] (v,1/2) }

This is evidently a reduction-closed QPER.

So(p(Bx: X.YV),p Bx: X. V) e[la:«FMz: X.Y = a) > a:«] (v,(y(Zx: X.Y),S)/a).
Now we will show that (pair, pair) € [[,a:xF Iz : X.Y = a: %] (v, (y(Zz: X.Y),5)/a).
Assume we have u € [T F X : «] yand t € [T,z : X FY : %] (y,u/x).

Now we want to show that (pair u t, pair v’ t') € S.

However, note that pair v ¢t reduces to A\, k. k u t and pair v/ ¢’ reduces to Ao, k. kv’ .

Hence (pair u t, pair u’ t') € S.

Hence (pair, pair) € [[La:xFx: X. Y —» a: %] (v,(y(Zz: X.Y),9)/a).

Hence (p [z : X. Y] pair,p’ [Xz : X. Y] pair) € S.

Hence there are u € [['F X : %] yand t € [,z : X Y : %] (v,u/z) such that p [Xz : X. Y] pair
is convertible with pair u ¢.

O]

Lemma 7. (Eta for pairs)
If (p,p) €T FXx: X.Y : %] v, then (p,p') ~ (p Bz : X.Y) pair,p’ (Xx: X.Y) pair).

Proof. Assume (p,p/) € [[F Xz : X. Y : %] ~.

It suffices to show that (p,p’ (Xz: X.Y) pair) € [[F Xz : X.Y : %] 4.
Assume A, R, f € [T,a:+Fz: X.Y = a: %] (v,(4,R)/a).
Consider the relation

SE{(e,€)]| (e,e A f') € R}

16

This is a reduction-closed QPER because R is.

Hence (p A,p/ (Fz: X.Y)) e [D,a:xF(Ilz: X.Y - o) > a:x] (v, ((4,3z Y), S)/a).
Now we need to show that (f,pair) € [[La:xFzx: X. Y — a: %] (v,((4,3z: X.Y),S)/a).
Assume u € [a:x - X : %] (v, ((4,3z: X.Y),5)/a)

andt € [l a:xz: XFY %] (v,((A,3z: X.Y),S)/a,u/x).

So we need to show that (f u t,pairu’ t') € S.

So we need to show that (f u ¢, pairu’ t' A" f') € R.

Note pair v’ t' A’ f/ reduces to f/ u' t'.

So we need to show that (f ut, f'«' t') € R.

Note that w € [T F X : %] yand t € [T,z : X F Y : %] (v,u/z).

Hence u € [T, a:* F X : 4] (v, (A, R)/a)

and t € [T a:x2: XY 4] (v,(4 R)/a,0/x).

Since f € [T,a:x Tz : X. Y — a: %] (v,(4, R)/a), it follows that (f ut, f v’ t') € R.
Therefore (f wt,pairu’ t' A" f') € R.

Therefore (f u t,pairu’ t') € S.

Therefore (f,pair) € [[La:xFzx: X. Y — a: %] (7,((4,3z: X.Y),S)/a).

Therefore (p A f,p' (3z: X.Y) pair) € S.

Therefore (p A f,p' (3x: X.Y) pair A’ f') € R.

Hence (p,p/ (Zx: X.Y) pair) € [T FXz: X.Y : %] ~. O

Lemma 8. (Semantic well-typedness for snd) (snd,snd) € [I' F1lg: (Xz: X.Y). [fstq/z]Y : %] ~.

Proof. Assume p= (p,p/) € [T F Xz : X. Y : %] ~.
By Lemma 6, there exist (u,u') € [['F X : %] v and (t,¢') € [[,2: X FY : %] (v, (u,u’)/x) such
that (p — pair,p’ _ pair) «+* (pair u t, pair v/ t') and by the eta-rule (p,p’) ~ (pair u t, pair v’ t').
Therefore:
(sndp,sndp’) —* (p_ pair - (Azy.y),p — pair — (Azy. y))
<" ((pairut) - (Azy.y), (pair v’ t') — (Azy. y))
= (1)

Hence it suffices to show that (¢,¢) € [[',q: Xx: X. Y F [fstq/z]Y : %] (v,p/q).

Let ' =~,u/x,t/y.

Consider the set [[',q: ¥z : X. Y + [fstq/z]Y : %] (v,p/q).

By stability, this equals [I',q: Xz : X. Y F [fstq/z]Y : %] (v, pair u t/q).

By weakening, this equals [I',z : X,y :Y,q: Xz : X. Y I [fstq/z]Y : %] (v, pair u t/q).

This equals [,z : X,y :Y,q: Xz : X. Y F [fstq/x]Y : %] (+/,+/(pair z y)/q).

By substitution, this is [[',z : X,y : Y I [fst (pair z y)/z]Y : «] 7.

Since the logical relation respects S-equivalence, this is [I',z : X F Y :] (v, u/x).

But we know (t,t') € [[',z: X FY : %] (v,a/x), so we are done. O

Lemma 9. (Projective eta for S-types) If (p,p’) € [[F Xx: X.Y : %] 7,
then (p,p’) ~ (pair (fstp) (snd p), pair (fstp’) (sndp’)).

Proof. Tt suffices to show (p, pair (fstp’) (sndp)) € [T F Xz : X. Y : %] ~.
We have (u,v') € ['F X : x] v and (¢,¢') € [T,z : X FY : %] (v, (u,u)/x)
such that (p,p’) ~ (pair u t, pair v’ t').

By the semantic well-typing of fst and snd, we know that

17

1. (fstp,fstp’) ~ (fst (pair u t), fst (pair v’ t'))

2. (sndp,sndp’) ~ (snd (pair u t),snd (pair u’ t'))

Note that fst (pair u t) reduces to u and fst (pair u’ ') reduces to u’.
Note that snd (pair u t) reduces to ¢t and snd (pair v’ t') reduces to t'.
Hence by closure under reduction (fst p, fstp’) ~ (u,u’).

Hence by closure under reduction (snd p,snd p’) ~ (¢,t').

Therefore (pair u t, pair u’ t') ~ (pair (fstp) (snd p), pair (fstp’) (snd p')).
Therefore (p,p') ~ (pair (fstp) (snd p), pair (fstp’) (sndp’)).

4.5 Induction for Natural Numbers

Projective records make it convenient to support the induction principle for natural numbers. That
is, we want to show that the type

IIP:N — . P(z) = (Iln: N. P(n) — P(sn)) — IIn: N. P(n)

is inhabited, where N is the Church encoding of the naturals, and z and s are the Church zero and
successor. To demonstrate this, we will show that the term ind

iter = AP,i, f,n.n (Sz : N. P(x)) (pair z i) (Ap. pair (s (fstp)) (f (fstp) (sndp)))
ind 2 \P,i, f,n. snd (iter Pi f n)
is related to itself at this type.

Proof. First, note that iter : IIP : N — . P(z) — (Iln: N. P(n) — P(sn)) - N — Xz : N. P(z).
Now, we’ll show that for any predicate @, and i € [P:N—*+ P(2): %] ((-,Q)/P), and

fe[P:N—=xFIz:N. P(x) = P(sz): %] ((,Q)/P), and i € [N], where @1 are both the same

Church numeral, we have that iter _ i fn~pairnt e [P:N—xFXz:N. P(x):«] ((-,Q)/P)

for some ¢ € Q(n). We proceed by induction on the structure of the Church numerals:

e Case n =2z = Aa,b,7. b.

In this case, we know that iter _ ¢ f n reduces to (z,7). Since relations are closed under
reduction, the conclusion follows.

o Case n=s(k) =" Aa,b,r.r(kabr).

In this case, we know that iter _ i fn

=5 (A, byr.r(kabr)) - (z,4) (Ap. pair (s (fstp)) (f (fstp) (sndp)))

—~* (. pair (s (stp) (7 (Fstp) (5ndp))) (k — (=.1) (. pair (s (Fstp)) (7 (Fstp) (sndp))))
~ (Ap. pair (s (fstp)) (f (fstp) (sndp))) (pair k t) for some t € Q(k)

—* pair (s (fst (pair k t))) (f (fst(pair k t)) (snd (pair k t)))

~ pairn (fkt)

On the third line, we (a) appeal to induction, and (b) make use of the fact that

Ap. pair (s (fstp)) (f (fstp) (sndp)) € [(Xz: N. P(x)) — (Xz : N. P(x))] ((-,Q)/P), and so
applying it to related pairs of arguments yields a related pair of results. This fact follows by

18

a straightforward congruence argument given the semantic well-typedness of f, pair, fst, and
snd. The last line follows from the semantic well-typing of pair and f and ¢, which yields that
f kte@(n), together with basic reasoning about S-reduction.

Since every pair 7 € [N] is itself equivalent to a Church numeral paired with itself, it follows
that for arbitrary n, there are t € Q(n) such that iter _ i f n ~ pair n t.

Then we know that ind _ i fn

—* snd (iter _ i fn)
~ snd(pair n t)
—* 1

On the second line, we know that ¢ € Q(72), which is the semantic type we need.

4.6 Existential Types
Define:

e da:k. X 2B :* (Ma:k X = B) = B.
e pack: Il : k. X - da: k. X = da,z. \G, k. kax

Lemma 10. (Normal forms of eta-expanded existentials) If (e,e’) € [['F 3o : k. X : %] ~,
then e _ pack <+* pack _ t and €’ _ pack <+* pack _ t for some t and t'.

Proof. Assume (e,€’) € [I'F Ja: k. X : %] 4.
Now, consider the following QPER:

R={(a,k. k_t, A,k b _)| T}

The comprehension is clearly a QPER on values, and so the closure is a reduction-closed QPER.

Hence (e _,¢’ _) e [I,f:+«F (Ha: k. X — 8) = B:%] (v,(—,R)/B).

Now, we want to show that (pack, pack) € [I',8: xFIla: k. X — %] (v,(=,R)/S).

Assume T € I, 8 : x bk : kind] (v, (=, R)/B),

andt e [I,8:*x,a:kEX %] (7,(=,R)/B,(=,T) /).

Then pack _ t —* Ao, k. k _ t and pack _ ¢/ —* \a, k. k _ 1.

Hence (pack _ t¢,pack _ t') € R.

Hence (pack,pack) € [[',8:xFTla: k. X — B: %] (v,(—,R)/fB).

Hence (e _ pack,e’ _ pack) € R.

Hence by construction of R, there must exist some ¢ and ¢ such that

e _ pack <+* pack _ t and €’ _ pack ++* pack _ t'. O

Lemma 11. (Eta-rule for existentials) If (e,e’) € [T+ 3a: k. X : %] ~, then
(e,e') ~ (e — pack,e’ _ pack).

19

Proof. Assume (e,¢’) € [T'F Ja: k. X : %] ~.
It suffices to show (e, e’ _ pack) € [['F 3a: k. X : %] 7.
Assume R € [I'F «: kind] v and (k, k') € [I,B:xFTa: k. X = B: %] (v,(=,R)/B).
It remains to show that (e _ k,e’ _ pack _ k') € R.
Consider the relation:
s={@
Again, this is a reduction-closed QPER because R is.
Instantiating the original assumption, we obtain
(e ¢) e, Bisr (a:n X) - 8] (1.(,5))/B).
Now we’ll show (k,pack) € [[,8: xFTa: k. X = B: %] (v,(-,5))/8),
which will give us that (e — k,e’ _ pack) € S, from which the goal follows.
Assume T € I, 8 : x b+ k : kind] (v, (-,S5)/B)
and (t,t') € [[, 0 :x,a: kb X %] (v,(=,9)/58,(=,T)/a).
It suffices to show (k _ t,pack _ t') € S.
So it suffices to show (k _ ¢, pack— t'_k") € R.
By reduction, it suffices to show (k _ t, k' _ t') € R.
Since B € FV(k), weakening ensures that
Te[Tkk:kind] y=[I,8:*F x:kind] (v,(_,R)/5).
Similarly, since 5 € FV(X), weakening ensures that
(tt) € Dok X 5] (7, (-, T)fa) = [1,B: %0 5+ X 1 5] (1, (<, R)/B, (=, T)/ar).
Thus, since (k, k') € [[,B8:xFHa: k. X — B:%] (v,(—,R)/fB),
it follows that (k _ ¢,k _ t') € R.

(6,¢ _ k) e R}

Lemma 12. (Ezistential equality) If (e,e’) € [T'F 3o : k. X :]| ~, then there exist
1. A, A’ € Type,
2. Re[I'F k:kind] v
3. (tt)e[D,a:wt X %] (v,((AA),R)/a)

such that (e,e') ~[r-3a:. x:4] v (Pack A t, pack A" ').

Proof. First consider the pair (e,€’), and the application (e _, ¢ _). Starting from (e,e’) €
[T'FJa: k. X : %] v, we instantiate the type abstraction on both sides and choose the relational
interpretation of the abstract type to be the following, defined by a QPER join:

S = |_| {)\B,k.k:Ae‘EGType2/\é€[[I‘,oz:/£|—X:*]] (%(ZLR)/@)}T
Re[x] v

For each R € [k] 7, it is clear that the comprehension is a QPER on values. Hence the reduction-
closure for each QPER yields a new QPER. Then the join of QPERs is also a QPER, and the join
of reduction-closed QPERs is obviously itself reduction-closed.

Hence (e _,¢’ _) e[, :xF (lla: k. X = B) = B:%] (v,(=,5)/P).

Now we will show that (pack,pack) € [[',8: «xFIla: k. X — B: %] (v,(—,5)/5).
Assume A € Type?, R € [T, 8 : * F w : kind] (v, (=, S)/B),

20

R)/a).

andt € [[,B:xa:xk X %] (v,(-,59)/8, (4,
tel,a:kk X %] (v,(4,R)/a).

By weakening, since 5 ¢ FV(X), we have
By construction of S, then, pack At € S.
So (pack,pack) € [I',8:xFTla: k. X = B: %] (v,(=,S5)/0).

(A
€l

Hence (e _ pack, ¢/ _ pack) € S.
By Lemma 10, they must be interconvertible with (pack _ ¢, pack _ t') for some ¢ and #/,
and thus (pack _ t,pack _ t') € S.

Ideally, we would like to use the fact that (pack _ ¢, pack _ t') € S to conclude that there is an
R such that (¢,t') € [T,a: s X : %] (v, (=, R)/«a). However, the QPER~join adds elements that
are not in the union, so this does not immediately follow.

We will show that if pack — ¢ € S, then there is a pack — s ~ pack _ ¢ such that there is a
relation R € [I'F & : kind] v and 5 such that 5 € [['a: k= X : %] (7,(=, R)/a).

e If pack_ t € Sy:
The result is immediate; we choose pack _ t.

o If pack_ t € Siy1:
There are pack _ s, pack _ s’ such that
1. (pack — t,pack _ s') € Sk
2. (pack _ s,pack _ t') € Sk
3. (pack _ s,pack _ s') € Si
By induction on (pack _ s, pack _ §') € Sk, we know
there is a pack_ r € [[a: k= X :] (v,(~,R)/a)
such that pack _ r ~ pack _ s.
Since pack _ t ~ pack _ s, we know pack _ ¢ ~ pack _ r.

Because we know pack _ t € S, we know there is an n such that pack _ ¢t € S,.

Hence we can use the lemma to derive R and 3 such that s € [I',a:kF X : %] (v,(-,R)/a) and
R e [I'F &k : kind] v and pack _ ¢t ~ pack _ s. So e _ pack ~ pack _ s.

Now, implicitly here we have been reasoning about ~g, but a standard representation independence
argument shows that S C [I' - Ja: k. X : %]y, and thus that e _ pack ~rp34:4. x4y PaCk — 5.
Thus, by Lemma 11, we can conclude that (e, €’) ~rr-3a.x. x4y (Pack _ s, pack _). O

4.7 Quotient Types

While not an application of parametricity in the sense of theorems for free [Wadler(1989)], we can
also show the realizability of quotient types [Hofmann(1995)] in our semantics. Quotient types, like
their name suggests, are a way of defining new types by taking an existing type, and quotienting
it by an equivalence relation.

To do this, we first define the auxilliary predicate Eqy, which formalizes the notion of an
equivalence relation. This is a predicate on relations of kind X — X — %, defined as follows:

Eqx(R) & Mz:X.Rzx X
e: X,y: X.Rxy+ Ryx X
Iz : X,y: X,2: X.Rxy—Ryz— Rz z

21

Next, we can show the realizability of the following datatype:

X/R & 3B:x,

Yinj : X — B.

Yapp Iy : . IIf : X — ~.
(Ma : X,d : X.
Rad — fa=yfd)
= (B =)

IMa: X,d : X. Rad — inj(a) =5 inj(a') x

. ILf,pf,x. app v f pf (inj x) =, f x

What we are doing is defining an existential type, such that if X is a type and R is an equivalence
relation on it, we return a new type 3 and two operations inj and app.

The inj is the injection into the quotient type. It takes an X, and returns a 5, with the property
that if a and o’ are related by R, then inj a = inj a’. The app function then lifts any function
f from X — v into one on 8 — ~, provided that f respects the equivalence relation R. The last
two lines give the equational theory of the quotient type. First, if a and o’ are related by R, then
inj a = inj a’. Second, if we lift a function f to operate on quotients, and we pass it the argument
inj x, then the application of the lifted function should equal f x.

Proof. (Sketch) The proof of the soundness of the axiom is quite easy. Essentially, we just need to
define the following relation:

EIU/UU%Q'
S =< (vi,05) (v1,v]) € X A (v2,0h) € X A
q € R (v1,v1) (v2,v5)

Now, we can define the operators inj=Ax: X. zandapp=Ay: . Af: X = v,pf:...,x: X. f x.
Given these, we can then show the realizability of the term:

pack X pair inj (pair app (pair (Aa, a’, r. refl) (\y. Af,pf, . refl)))

paired with itself at the witness relation S. Note that this term is not well-typed in the syntactic
system, but that it does inhabit the appropriate semantic type. O

In terms of the operational semantics of the underlying realizers, quotienting is a no-op. Just
as an ML programmer might expect, we do not need to perform any changes of representation to
protect the invariant of the quotient type — data abstraction is enough.

5 Soundness

Our main theorem is a consistency proof of our semantics. By an induction over derivations, we
show that every well-typed expression lies in the expression relation. As a result, we know that
the system is consistent: every closed term reduces to a value, and hence empty types are not
inhabited.

22

5.1 Structural Properties

Note that this interpretation is defined purely on the syntax of kinds, and makes no use of the
context. So we can then define the pre-interpretation of contexts, which we call the set of pre-
contexts:

-] = {0}

IDa:X| = {(¢/2)|vellll Az e Exp?}
IDa:rll = {(n(AR)a)|[ve T AAEType AR E]}

Since the pre-interpretation is defined solely on syntax, we can prove the following two lemmas
about it:

Lemma 13 (Kind Pre-interpretations Ignore Term Substitutions). For all kind k and terms e,

1]l = [lfe/=]~l|-

Lemma 14 (Kind Pre-interpretations Ignore Type Substitutions). For all kind x and types A,
l]] = 1A/]|

This implies the following trivial coherence property.
Theorem 1 (Kind Coherence). If '+ k = &' : kind, then ||s| = ||£']].

Once we have this property in place, we can prove the following well-formedness conditions on
the context, kind, and type judgements.

Theorem 2 (Well-Definedness).
1. If D :: T ok, then [D :: T ok] € P(||T|).
2. If D:: T+ k:kind, then [D : Tk k : kind] € ||| = P(||&])-
3. IfD=TkFA:k, then[D:=TFA:&] €|l — k-

Now that we know that we have a well-formed definition, we can prove coherence property for
kinds and types.

Theorem 3 (Coherence of Types and Kinds).
1. If D=:TFk:kind and D' :: T+ & : kind and v € ||T'||, then [D] v = [D'] ~.
2.IfD:THA:kand D' =T+ A:k and~ € ||, then [D] v=[D'] .
This immediately implies the following corollary:

Corollary 1 (Coherence of Environment Interpretation). If D :: T' ok and D' :: T ok, then
[D::T ok] =[D:: T ok].

Now, we can prove weakening.
Theorem 4 (Weakening of Kinds and Types). We have that:
1. If D :: Ty, To F K : kind then there exists D' :: Ty, T'1,Ty - & : kind such that for all (vo,72) €
|To, To|| and 1 such that (v0,71,72) € [|To,T'1,T2ll, [D] (v0,72) = [D'] (0,71,72)-

23

2. If D :: Ty,To - A : k then there exists D' :: To,T'1,T'o = A : k such that for all (v9,72) €
ITo, T2l and 1 such that (y0,71,72) € [[To,T'1,T2ll, [D] (v0,72) = [D'T (70,71572)-

Theorem 5 (Substitution for Pre-Contexts). We have that:
1. IfTFe: X, and (v,7(e)/z, ") € [T,z : X, T[], then (v,7') € ||T, [e/z]T"]|.
2. IfTE Ak, and (v, (v(A), R)/a,y) € Tz 5, 17]|, then (v,7) € [T, [A/a]T"]].

Theorem 6 (Substitution of Terms). Suppose that I' e : X and (v,v(e)/z,v) € [T,z : X,T7|.
Then:

1. For oall D :: Tyx : X,T" F ko : kind, there exists D' :: T',[e/z|T" F [e/x]ko : kind such that
[D] (v,v(e)/z,7") = [D] (v,7")-

2. For all D :: T,z : X,T" = C : kKo, there exists D' :: T, [e/z]T" F [e/z]C : [e/x]ko such that
[D] (v.v(e)/z,y") = [DT (v.7)-

Theorem 7 (Substitution of Types). Suppose that T' = A : k and (v, (v(A),[D1] 7)/a,v') €
IT, o : &, T7||. Then:

1. For all D :: T, : k,I" F kg : kind, there exists D' :: T',[A/a]T” = [A/a]ko : kind such that
[D] (v, (v(A), [D1])/, y) = [DT (7).

2. For all D :: T,a: k, IV F C : ko, there exists D' :: T',[A/a|l" + [A/a]C : [A/alko such that
[D] (v, (v(A), [D1] 7)/a. ') = [D] (7,7).

Theorem 8 (Fundamental Property). We have that:
1. If D :: T+ k: kind, then for all v, € [Dg :: T ok] such that v ~~', [D] v=[D] «'.
2. If DTk A:k, then for all v, € [Dg :: T ok] such that v ~~', [D] v=[D] ~'.

3. If DT Fe: X then for all Dy :: T'F X : x and v,y € [Dg :: T ok] such that v ~ +/,
v(€) ~[p,] 4 7' (€).

4. If D 2T+ A: K, then for ally € [Do :: T ok], [D] v € [D1 :: T F & : kind] ~.

5. If D :: T+ k=« :kind, then for ally € [Dg :: T ok], Dy :: T'F & : kind and Dy :: T' - & : kind,
[D1] v = [D2] -

6. If D :TFA=A":k, then for ally € [Dy::T ok, D1 : T+ A:k and Dy : T+ A : k,
[D1] v = [D2] ~-

7. IfD:Thke =ex: X, then for ally € [Do :: T ok], D1 = T'F X 1%, y(e1) ~[p,+ V(€2)-

24

6 Proofs

Lemma 13 (Kind Pre-interpretations Ignore Term Substitutions). For all kind k and terms e,

1]l = llle/=]xl|-
Proof. This follows by induction on k.

o Case Kk = *:
Immediate.

e Case k =1ly: Y. Kk1:
By definition, [e/z|Ily : Y. k1 =11y : [e/z]Y . [e/x]k1.
By definition, ||[IIy : Y. k1] = (Exp x Exp) — ||k1]-
By definition, ||Ily : [e/z]Y. [e/x]r1|| = (Exp X Exp) — ||[e/x]r1]|.
By induction, we know that ||k1| = ||[e/x]r1].
Hence ||Ily : Y. k1| = ||y : [e/z]Y. [e/x]r1]|.

e Case k =1IIf : k1. Ko:
By definition, [e/x]IIf : k1. ke = 118 : [e/x]k2. [e/x]K2.

By definition, [|IIS : k1. ka|| = ||k1]| = ||k2]|-

By definition, ||II5 : [e/x]|k1. [e/x]re|| = ||[e/x]r1|| = ||[e/x]r2]|.
By induction, we know that ||k1| = ||[e/x]r1].

By induction, we know that ||x2| = ||[e/z]k2]|.

Hence ||II5 : k1. kol = ||y : [e/z]Y . [e/x]k2]|.
O

Lemma 14 (Kind Pre-interpretations Ignore Type Substitutions). For all kind x and types A,
5]l = l[[A/alx]-

Proof. This follows by induction on k.

e Case Kk = *:
Immediate.

e Case k =1ly : Y. K1:
By definition, [A/a|lly : Y. k1 =1y : [A/a]Y. [A/a]k;.
By definition, ||[IIy : Y. k1] = (Exp x Exp) — ||s1]-
By definition, ||Ily : [A/a]Y. [A/a]k1]| = (Exp x Exp) — ||[[A/a]k1]|.
By induction, we know that ||k1|| = ||[4/a]k1]|
Hence ||IIy : Y. k1| = |Hy : [A/a]Y. [A/a]k1]|.

e Case k =113 : k1. Ko:
By definition, [A/a|lIF : k1. ke =115 : [A/a]ke. [A/a]ka.
By definition, HHB P R1- HQH = H/ﬂH — HHQH
By definition, ||II5 : [A/a]k1. [A/a]ks|| = [|[[A/a]k1|| = [|[A/a]ke]|.
By induction, we know that ||k1|| = ||[4/a]k1]|
By induction, we know that ||ka|| = [|[A/a]k]|.
Hence ||II5 : k1. k2| = ||y : [A/a]Y. [A/a]k2]|.

25

Theorem 1 (Kind Coherence). If '+ k = & : kind, then ||s| = ||']].

Proof. This proof is by induction on the equality derivation.

Case I' - [e/z]k = [¢//z]k : kind: (term substitution)
This follows from the fact that kind pre-interpretations ignore term substitutions.

Case I'+ [A/a]k = [A’/a]k : kind: (type substitution)
This follows from the fact that kind pre-interpretations ignore type substitutions.

Case I' F k = Kk : kind: (reflexivity):
This follows since ||| = ||&]||.

Case ' F k = £’ : kind: (symmetry):
By inversion, we know I' - k' = & : kind.
Hence by induction, ||'|| = |||, which we sought.

Case I' F k = k" : kind: (transitivity):
By inversion, we know I' = k = &’ : kind.
By inversion, we know I' - ' = " : kind.

By induction, ||| = |||
By induction, ||<'|| = ||&"||.
Hence ||&| = [|&".

Theorem 2 (Well-Definedness).

1.

2.

3.

If D :: T ok, then [D :: T ok] € P(||T|]).
If D : Tt k:kind, then [D :: T+ & : kind] € ||| = P(||&]).
If D:THFA:k, then[D:THFA:k] €|l —|&]-

Proof. We proceed by induction on the relevant derivations.

1.

e Case - ok:
[T ok] = {O}-
I = {03
Hence {()} € P{{})-
e CaseI',z : X ok:
By inversion, we know I' ok and I' = X : .
By induction, [I" ok] € P(||IT]]).
By induction, [I'F X : %] € ||T|| — |||
By definition, [I',z : X ok] = {(v,e/x) |y € [T ok] Ae e [I'F X : %] ~}.
By definition, |T,z : X|| = ||T| x Exp?.
So we want to show [T,z : X ok] C ||T|| x Exp?.
Assume (y,e/x) such that v € [ok] Ae € [I'F X :] ~.

26

From induction hypothesis, we know we know v € ||T|.
Hence from ||T'F X : x| v € P(||*]]).

Hence || X : *|| v € Exp®.

Hence & € Exp?.

Hence [T,z : X ok] C ||T'|| x Exp®.

Case I', a : k ok:

By inversion, we know I' ok and I" - & : kind.

By induction, [T ok] € P(||T|).

By induction, [I' F & : kind] € ||T']| = P(||x||)-

By definition, [I', a : 5 ok] = {(v, (A, R)/a) | v € [[ok] A A € Type* AR € [I' F x : kind] ~}.
By definition, ||T, : &[] = ||T|| x (Type? x ||&]]).

So we want to show [I',« : ok] C ||T|| x (Type? x ||&]|).

Assume (v, (A, R)/a) such that v € [T ok] A A € Type* A R € [T & : kind] 7.
From induction hypothesis, we know we know [I" ok] C ||T'[|.

Hence v € ||T']|.

By induction, we know [I' F & : kind] v C |||

Hence R € ||&|.

Hence (v, (4, R)/a) € T, a: &

Hence [T, : & ok] C ||T]| x (Type? x [|])).

Case I' F * : kind:

By definition, [I" % : kind] = A\y. CAND.

We want to show this is in ||T'|| — P(||*]]).

Assume v € ||T|.

Hence [F « : kind] v = CAND.

We want to show CAND € P(|||) = P(Rel(Exp, Exp)).
This is equivalent to showing CAND C Rel(Exp, Exp).
Assume R € CAND.

By definition, R € QPER(Exp, Exp).

Hence R € Rel(Exp, Exp).

Hence CAND C Rel(Exp, Exp).

Case D = T'F1Ilx : X. K : kind:

We want to show [D :: T+ 1lz : X. s : kind] € ||T|| = P(||llz : X. &|).
Assume we have v € ||T||.

By definition, [D] v C |[IIz : X. &||.

Case D :: I'F1Ila : k1. K9 : kind:

We want to show [D :: T'F Ila : k1. ko : kind] € ||T'|| = P(|Ila : k1. K2).
Assume we have v € ||T||.

By definition, [D] v C |l : 1. k2|

Case D= T'Fa: ke

Assume we have v € [|T||.

Then [D =T+ a: k] v=7(«a).

By inversion, we know that o : k € I
Hence v(a) € |5

27

e Case D::T'F A a: k1. A: o : k1. Ka:
By inversion, we have D' :: T, : k1 F A @ Ka.
By induction, for all (v, (4, R)/a) € [T, a : k1], [D'] (7, (A, R)/a) € ||&]|.
Assume we have v € [|T||.

We want to show [D] v € ||lla : k1. k2|
Equivalently, [D] € (Type? x ||s1]]) — |x2].
Assume (A, R) € Type? x ||x1]|.
Then (v, (A, R)/a) € ||T,a : k1]
Now consider whether R € [I" - k1 : kind] ~.
— M Re[TEk :kind] -
Then [D] 7 (A, R) = [D'] (v, (4, B)/a).
By induction, this is in ||ka]|.
— If R¢ [I'F kq 2 kind] ~:
Then [D] v (A, R) =!,,.
So this is in [|ka]|.
Hence [D] v € ||k1]| = [|K2]|.
Hence [D] v € [[Ha : k1. ko|l.

e Case D::T'F B A:[A/a]ka:
By inversion, Dy : I'F B : Il : k1. ko and Dy : T'F A @ K.
By induction, for all v € |||, [D1] v € |Ie : k1. k2|
By induction, for all v € |||, [D2] v € ||k1]l-
Assume we have v € [|T||.
Then [D] v = [D1] v (v(A), [D2] 7).
Note ||He : k1. k2|l = (Type? x ||k1]]) = ||s2]|-
Hence [D] ~ € ||k2]l-
Since kind pre-interpretations ignore type substitutions, ||[4/a]kz2| = ||k2]|-
Hence [D] v € ||[A/a]k2]|.
e Case DuT'FAr: X . A:llx: X. kt
By inversion, we have D' : T,z : X + A : k.
By induction, for all (v,e/x) € [T,z : X||, [D'] (v,&/x) € ||k]|.
Assume we have v € ||T||.
We want to show [D] v € ||z : X. &||.
Equivalently, [D] v € Exp? — ||x]|.
Assume e € Exp?.
Then (v,e/z) € [T,z : X]||.
Now consider whether e € [I' - X : %] ~:
—Ifee[I'FX:%]
Then [D] ve=[D'] (v,e/x).
By induction, this is in ||&]|.
—Ifeg ' X :x]
Then [D] v e =l,.
But this is in ||&]|.

28

Hence [D] v € Exp® — ||s||.
Hence [D] v € |[IIz : X. K]
e Case DT+ Ae:e/x]k:
By inversion, we have D1 : I'F A:Illx: X.kand ' e: X and ' F X : *.
Assume we have v € [|T|.
By induction, we know that [D;] v € |[IIz : X. &]|.
Hence [D1] v € Exp? — ||«
Hence we know that [D1] v ~(e) € |||
Since kind pre-interpretations ignore term substitutions, ||[e/z]s|| = |||
Hence [D1] v y(e) € [|[e/]x]|.
By definition, [D] v = [D1] v ~(e).
Hence [D] ~ € ||[e/z]k]|.
e Case DuT'FIlz: X. Y : %
Assume we have v € ||T||.
By definition, we know that [D] 7 is a subset of Exp?.
Hence [D] v € Rel(Exp, Exp).
Hence [D] v € |||
e Case DuT'FIla: k. Y @ %
Assume we have v € ||T||.
By definition, we know that [D] 7 is a subset of Exp?.
Hence [D] ~ € Rel(Exp, Exp).
Hence [D] ~ € [|*]|.
e Case DuT'Fe=x¢€ :*.
Assume we have v € ||T'|.
By definition, we know that [D] 7 is a subset of Exp?.
Hence [D] ~ € Rel(Exp, Exp).
Hence [D] ~ € [|*]].
e Case D ::T'F A: k. (Equality case)
By inversion, we have Dy :: ' A : k’ and Dy :: '+ & : x’kind.
Assume we have v € ||T||.
By induction, we have [D] v € |||
By coherence of kind equality, we know that ||| = ||’
Hence [D] ~ € ||5]-

Theorem 3 (Coherence of Types and Kinds).
1. If D:=:TF k:kind and D' :: T & : kind and v € ||T'||, then [D] v = [D'] ~.
2.IfD:THA:kand D' :T+ A: k' and vy € |||, then [D] v=[D] ~.

Proof. We proceed by simultaneous mutual induction on the derivations of well-formedness of kind
and well-kindedness of type constructors.

29

1. e Case D:T't*:kindand D' :: T F x : kind.

Since there is only one rule for I' i * : kind, we know D = D’.
Hence for all v € |||, [D] v = [D'] ~-

e Case D:TFIlz: X.k:kindand D' :: T FIIz : X. & : kind.
By inversion on D, we get D1 : ' X :xand Dy :: ',z : X F K : kind.
By inversion on D', we get D} : 'k X :x and DS : T 2 : X & : kind.
By mutual induction on Dy and D}, we get [D1] = [D]].
By induction on Dy and Dj, we get [Da] = [D5].
Then by inspection of the kind semantics (Figure 12), [D] = [D’].

e Case D :I'F1Ila : k1. ko : kind and D' :: T' - Il : k1. Ko : kind.
By inversion on D, we get D1 :: ' k1 : kind and Dy :: T', v : k1 F Ko @ kind.
By inversion on D', we get D] :: T'F k1 : kind and D) :: T',av : k1 b K2 : kind.
By induction on D; and D}, we get [D1] = [D]].
By induction on Dy and Dj, we get [Da] = [D5].
Then by inspection of the kind semantics (Figure 12), [D] = [D’].

2. In this proof, we first consider whether D or D’ ends in the use of an equality rule.

e D:T'F A:k and ends in an equality rule.
By inversion, we have D1 : I'F A: k1 and Dy : I'F K : k1.
Then, by induction on D; and D', we know that [D;] = [D’].
But by definition, [D] = [D1].
Hence [D] = [D'].

e D'::TF A:k and ends in an equality rule.
By inversion, we have D] :T'F A : ky and Db : T K @ Ky.
Then, by induction on D; and D', we know that [D] = [D]].
But by definition, [D'] = [D]].
Hence [D] = [D'].

Now, we can consider the cases where neither D and D’ ends in an equality rule.

e Case D::T'Fa:xkand D' =T Fa:k:
Assume v € [T
By definition, [D] v = [D'] v = v(«).
e Case DuTHFAa:k1. A:Tla: k1. kg and D' i T'F At k. Az T Ky, KY:
By inversion, Dy :: I',a : k1 F A : ka.
By inversion, D} :: T av: k1 + A @ k).
Assume v € ||T|.
By definition,
B 9 [Di] (v,(B,R)/a) if Re[I'F k1 : kind] ~
[P v =A(B, R) € Type x [kl { ! otherwise

K2
By definition,

mo B 2 [Di] (v, (B,R)/a) if R € [T Ky : kind] v
[2] +=AB.7) € Ty x . { 1F iR el

30

By induction, [D;] = [D]]-

Hence [D] v = [D'] ~.

Hence [D] = [D'].

Case D:ThHM:X. A:llz: X. kpand D' : T Az : X, A:Ilw - X. K5
By inversion, Dy = ',z : X F A : Ko.

By inversion, D} =T,z : X + A: k).

Assume « € ||T|.

By definition,

o o [[Di] e/z) ifee X« vy
[D] v = Xe € Exp~. { s otherwise

By definition,

Mo - o [[Di] e/x) ifee[I'FX:x] vy
[D] 7 = 2e € Exp®. { Lo otherwise
By induction, [D1] = [D}]-
Hence [D] v = [D’] ~.
Hence [D] = [D'].
Case D :THFBA:[A/aJky and D' : T F B A: [A/a]k):
By inversion, D1 : I'F B : Il : k1. kg and Do :: T'F A @ Kq.
By inversion, D} :: T'F B : Il : k). k5 and D} = T'F A :).
By induction, [D1] = [D}]-
By induction, [Ds] = [D5].
Assume v € ||T.
By definition, [D] v = [D1] v (v(A),[D2] 7).
By definition, [D'] v = [Di] v (v(4), [D3] 7).
Hence [D] v = [D'] ~.
Case D ::T'F Be:le/X]ky and D' :: T F Be: [e/X]x):
By inversion, D; = I'F B:IIX : X. ko and Dy : T'Fe: X and D3 :: ' X : %,
By inversion, D} = T'F B : 11X : k}. kb and Dy =Tk e: s} and Dy : T F X : %,
By induction, [D1] = [D}]-
Assume v € ||T|.
By definition, [D] v = [D1] v ~(e).
By definition, [D'] v = [D}] v ~(e).
Hence [D] v = [D'] ~.
Case D uTHFIz: X.YV:xand D/ T HIlz: X. Y :
By inversion, D; = I'F X :xand Dy =Tz : X Y : %
By inversion, D} :T'kF X i« and D) =T,z : X FY : %,
By induction, [D1] = [D}]-
By induction, [Ds] = [D5].
Then by inspection of the type semantics (Figure 13), [D] = [D’].

Case DuTHFIHa: k.Y :xand D' =T FIa: k. Y : *:
By inversion, D; : I'F Kk :kind and Dy : T a: sk FY @ %,

31

By inversion, D} :: T'F s : kind and D} =T a: kY : %
By mutual induction, [D1] = [Dj].
By induction, [Ds] = [D5].
Then by inspection of the type semantics (Figure 13), [D] = [D’].
e Case DuT'Fe=xeée:xand D' =T Fe=xe:x*
By inversion, Dy = T'F X :xand Dy :T'Fe: X and D3 :T'Fe' : X.
By inversion, D} = I'F X :xand D) :T'Fe: X and D =Tk ¢ : X.
By induction, [D1] = [Dj].
Then by inspection of the type semantics (Figure 13), [D] = [D'].

Corollary 1 (Coherence of Environment Interpretation). If D :: T' ok and D' :: T ok, then
[D::T ok] =[D"::T ok].

Proof. This follows by simultaneous induction on the derivations of D and D’.

e Case D ::-ok and D’ :: - ok.
In this case [D] = [D'] = {()}.

e Case D::T,x: X okand D' :: T,z : X ok.
By inversion, we have D; :: T'ok and Do :: T'F X : *.
By inversion, we have D] :: T'ok and D} :: T'F X : %
By induction, we know [D;] = [D}].
By well-definedness, we know [D;] C ||[T'[|.
Hence for each vy € [D1], we know v € ||I'||.
By type coherence, for each v € [D1], it follows that [D2] v = [D5] ~.
Hence by inspection of the semantics of environment (Figure 10), [D] = [D'].

e Case D ::T,a:rkokand D' :: T, : k ok.
By inversion, we have D; :: I' ok and Dg :: T' - & : kind.
By inversion, we have D} :: T ok and D) :: T+ & : kind.
By induction, we know [D;] = [D}].
By well-definedness, we know [D;] C ||T']|.
Hence for each vy € [D1], we know v € ||I'||.
By kind coherence, for each v € [D1], it follows that [D2] v = [D5] ~.
Hence by inspection of the semantics of environment (Figure 10), [D] = [D'].

Theorem 4 (Weakening of Kinds and Types). We have that:

1. If D ::Ty,T9 b k : kind then there exists D' :: Ty, T'1,Ta b & : kind such that for all (vo,72) €
ITo, P2l and v1 such that (y0,71,72) € [To, T, Tall, [D] (0,72) = [D'T (0,71, 72)-

2. If D :: Ty,To - A : k then there exists D' :: To,T'1,T'y = A : Kk such that for all (v9,7v2) €
ITo, T2|| and y1 such that (v0,71,72) € IITo, 1, T2ll, [D] (v0,72) = [D'T (70,71, 72)-

Proof. We prove this by mutual induction on the derivations of kinds and types.

32

1.

e Case I' b x : kind:
Assume 70,71, 72 such that (y0,72) € ||T'o, I2|| and (70, 71,72) € [|To, 1, Ta |-
Now, note that [Tg, T2 F * : kind] (7y0,72) = Rel(Exp, Exp).
By rule, we have D’ :: T'g,I'1,I's F = : kind.
By definition, [D’ :: To,T'1,Ty F x : kind] (70,71,72) = Rel(Exp, Exp).
Hence [D] (v0,72) = [D'] (70,71, 72)-
e Case D :: ' 1Ilz : X. ko : kind:
By inversion, we have D :: T'g,I's - X : % and Dy :: T'g, 'y, x : X F k9 : kind.

By mutual induction, we have D} :: T'o,I'1,I's - X : * such that

for all Y0, V1,72 such that (70)72) € ||F0aF2|| and (70771772) € ”F07F17F2H7
[D1] (v0,72) = [D1] (0,715 72)-

By induction, we have D} :: T'y,T'1,T'2,2 : X F ko : kind such that
for all 70771775 such that (707’7&) € ”F(]a (F27x : X)H and (’707717'75) € ”F07F1?F27$: X”’
[[-Dl]] (70775) = [[Dllﬂ (7077177&)'

Assume 0,71, 72 such that (y0,72) € ||To, T2 and (v0,71,72) € |To, T'1, T2
By inspection of the kind semantics, [D] (y0,72) = [D'] (70,71,72)-

e Case D :: '+ Ila : k1. K9 : kind:
By inversion, we have D1 :: I'g,I's = X : % and Dy :: T'g,'s, a0 : k1 F K9 : kind.

By induction, we have D] :: Ty,T'1,T'2 F X : % such that

for all Y0571, Y2 such that (’70772) € HF07F2H and (707717’72) € HP07F17F2H7
[D1] (v0,72) = [D1] (70,71572)-

By induction, we have D) :: T'y,T'1,T'2, v : k1 I & : kind such that
for all 707717/75 such that (VO)’Yé) € ||F07 (FQ,O[: H1)” and (’Y()a’Yl,’Yé) € ||F07F17F27a : ’{'1H7
[D1] (v0,72) = [D1] (0,71, 72)-

Assume 70,71, 72 such that (10,72) € [T, Tal| and (79,71,7) € [To, Tt Ta].
By inspection of the kind semantics, [D] (70,72) = [D'] (70,71, 72)-

o Case D ::Tg, 'y - A : k: (equality rule)
By inversion, we know D; :: Tg,I'os = A : k" and D :: T, T's - k = &’ : kind.
By syntactic weakening, D} :: T'g,I'1,T'a - k = &/ : kind.

By induction, we have D] :: T'o,T'1,I'2 = A : k’ such that
for all v, 71,72 such that (y0,72) € [|To, I'2|| and (y0,71,72) € ||To,I'1, T2]|,
[D1] (v0,72) = [D1] (0,71, 72)-

By equality rule with D}, we have D" :: T5,T'1,To - A : k.

Assume 0, 71,72 such that (y0,72) € ||To, T2 and (v0,71,72) € |To, T'1, T2|.
By semantics, [D] (v0,72) = [D1] (70,72)-

33

By semantics, [D'] (v0,71,72) = [Di] (h0,71,72)-

Hence [D] (70,72) = [D'T (v0,71572)-

Case D :: I'g,I's -« : Kt

By inversion, we know that « : k € T'g, I's.

By rule, we know D' :: T, I'1, s F « : k.

Assume 79, 71,72 such that (v9,72) € ||To, 2|l and (y0,7v1,72) € ||To, T'1, T2l
By definition, [D] (70,72) = (70, 72) ().

By definition, [D'] (y0,71,72) = (70,71, 72) ().

Since a € I'1, (70,71, 72) () = (70, 72) ().

So [D] (v0,72) = [D'T (v0,71,72)-

Case D ::Tg,'s - B A: [A/alka:

By inversion, Dy :: I'g,I'o b B : lla : k1. ko and Do :: T'g, I's = A @ K.

By induction, we have D} :: Ty, I'1,T'o - B : Ilav : k1. kg such that
for all v, 71,72 such that (y0,72) € [|To, [2| and (y0,71,72) € [[To,T'1, T2l
[D1] (v0,72) = [D1] (705715 72)-

By induction, we have D) :: T'g,I';,T's = A : k1 such that
for all v, 71, v2 such that (y0,72) € [|To, I2|| and (v0,71,72) € ||To,I'1, 2|,
[D2] (70,72) = [Da] (v0,71,72)-

Hence by rule on D} and D), we have D' :: T T'1,T's F B A : [A/a]ke.
Assume 0, 71,72 such that (y0,72) € ||To, I'2 and (v0,71,72) € [|To, I'1, T2
By definition, [D] (70,72) = [D1] (70.72) ((70,72)(A), [D2] (70,72))-
Hence [D] (v0,72) = [D1] (70,71,72) (0, 72)(A), [D5] (0,71, 72))-

Since FV(A4) Ndom(T'1) = 0, we know (79, v2)(A) = (70,71, 72)(4).

Hence [D] (v0,72) = [Di] (70,71,72) (0, 71:72)(A), [D5] (0,71, 72))-
From the definition, [D] (y0,72) = [D'] (70,71,72)-

Case D ::Tg, 'y - B e: [e/x]ka:

By inversion, D :: T'g,T'os = B : llx : X. ko and Dy :: Ty, T2 Fe: X

and D3 :: g, I'o H X : %

By induction, we have D} :: T¢,I'1,I's = B : Ilz : X. ko such that

for all 70,7172 such that (70772) € HF07F2H and (70771)’)/2) € HF07F17F2H7
[D1] (v0,72) = [D1] (0,71572)-

By syntactic weakening, we have D) :: T, T'1,To Fe: X.

By syntactic weakening, we have Dj :: T'g, ', 'y - X : %,

Hence by rule on D}, D5 and Dj, we have D' : T'T',I's - B e : [e/x]ra.
Assume 70,71, 72 such that (y0,72) € ||T'o, I2|| and (70, 71,72) € [[To, 1, Ta |-
By definition, [D] (y0,72) = [D1] (70,72) (70.72)(e)-

Hence [D] (v0,72) = [D1] (v0,71,72) (70,72)(€)-

Since FV(e) Ndom(T'y) = 0, we know (y0,7v2)(€) = (70,71, 72)(€)-

Hence [D] (70,72) = [D1] (70,71,72) (70,71, 72)(€)-
From the definition, [D] (y0,72) = [D'] (70,71,72)-

34

e Case I'g, o F A : k1. A : Tlav : K1. Ka:
By inversion, we know that Dy :: I'g,I'o F k1 : kind and Ds :: T'g, ', : kK1 F A @ Ko.

By induction, we have D} :: T'o,I'1,I's - k1 : kind such that
for all 70,7172 such that (70772) € HF()aFQH and (70771)’)/2) € HF07F17F2H7
[D1] (h0,72) = [D1] (70571, 72)-

By induction, we have D} :: I'g,I'1, T2, : k1 F A : kg such that
for all 70, 71, ¥4 such that (y0,73) € ||To, (2, e k1) and (70,71,73) € [[To, ', T2, v 2 ia]
[D1] (v0,72) = [D1] (0,71, 72)-

Now by rule on D} and D), we construct D" :: T9,T'1, T2 F A : k1. A : Tl : Kq. Ko.
Assume Y0571, 72 such that (70772) € ”P07FQ|| and (’Y()?/Ylv’YQ) € HF07P17F2”'
By inspection of the semantics, [D] (v0,72) = [D'] (h0,71,72)-
e CaseI'g,IoF Az : X. A:1lz: X. Kka:
By inversion, we know that Dy :: T'g,I's = X : % and Dy :: I'g, 2,2 : X F A : Ko.

By induction, we have D] :: Ty,T'1,T's = X : % such that

for all 0,71, 72 such that (707’)/2) € ||F0’F2H and (70771572) € |’F07F17F2||5
[D1] (v0,72) = [D1] (0. 71,72)-

By induction, we have D) :: T'g,I'1,I'y, 2 : X b A : k2 such that
for all 79, y1, 74 such that (70,7%) € |[To, (T2, 2 : X)|| and (y0,71,75) € ||[To, 1, T2, 2 : X,
[D1] (v0,72) = [D1] (0 v1572)-

Now by rule on D} and D), we construct D' :: T'g,I'1,To - Az : X. A : Iz : X. ko.
Assume 70, 71,72 such that (y0,72) € [|[To, T2 and (70,71,72) € [[To, ', T2
By inspection of the semantics, [D] (v0,72) = [D'] (70,71,72)-

e Case I'g, o FIlz : X. Y : %
By inversion, we know that Dy :: I'g,I'o - X : x and Do :: I'g, o,z : X F Y : %,

By induction, we have D] :: T'9,T'1,T'2 = X : % such that

for all 49, v1, 72 such that (y0,72) € [|To, 2| and (v0,71,72) € |To, 1, 2|,
[D1] (v0,72) = [D1] (0571, 72)-

By induction, we have D) :: T'g,I';,T'g,z : X FY : % such that
for all v, 71, 74 such that (y0,7%) € [|ITo, (T2, 2 : X)|| and (70, 71,7%) € [|[T0,T'1, T2, 2 : X||,
[D1] (v0,72) = [D1] (0,71, 72)-

Now by rule on D} and D), we construct D" :: Tg,T'1,To F Tz : X. Y : %,
Assume Y0571, 72 such that (’YO?’Y?) € ”F07F2|| and (707'71772) S HF07F17F2”'
By inspection of the semantics, [D] (v0,72) = [D'] (h0,71,72)-
e Case I'g,I'o FIla: k1. Y @ %
By inversion, we know that D :: T'g,I'o F k1 : kind and Ds :: T'g, T2, v : k1 F Y %,

35

By induction, we have D} :: T'g,I';, T’y - k7 : kind such that
for all Y0, Y1, 72 such that (70772) S ||F0aF2|| and (70771572) S ”F07F1’F2||5
[D1] (v0,72) = [D1] (05715 72)-

By induction, we have D) :: T'g,I'1,T'a, v : k1 F Y : % such that
for all 70, v1, 75 such that (y0,75) € [|[To, (I'2, « : k1) and (y0,71,75) € [T, T'1, T2, = s],
[D1] (v0,72) = [D1] (0,71, 72)-

Now by rule on D} and D), we construct D" :: Ty, I'1,To F Mo : k1. Y @ .
Assume 70, 71,72 such that (y0,72) € [[To, 2] and (70,71,72) € [[To, I'1, 2.
By inspection of the semantics, [D] (v0,72) = [D'] (h0,71,72)-

o Case I'g,I's Fe=x¢€': %
By inversion, we know D; :: I'g,T's = X : x and Dy :: T'g,I'a - e : X and D3 :: Ty, 'y -
e X.

By induction, we have D] :: T'9,T'1,T'2 = X : * such that

for all 70,7172 such that (70)72) € HF()aFQH and (70771)72) € HFO>F17F2H7
[D1] (v0,72) = [D1] (0,71572)-

By syntactic weakening, D :: Tg,I'1,T'o e : X and Df :: Ty, T, To F €' : X.
Furthermore, we know FV(e) Ndom(I';) = FV(e’) N dom(T'y) = 0.

Hence (v0,71,72)(€) = (70,72)(e).

Hence (70,71,72)(€’) = (70, 72)(€')-

By rule, we have D' :: Ty, "1, o Fe =x €’ : *.

Assume 70,71, 72 such that (y0,72) € ||T'o, I2|| and (70, 71,72) € [|To, I'1, Ta |-

Now, assume (eg,e1) € [D] (70,72)-
Then eg —* refl and e; —* refl and (v, 72)(e, ') € [D1] (70, 72)-
Hence we know that (v, 72)(e,€') € [D{] (70,71,72)-

Hence we know that (7o, 71,72)(e,€’) € [D1] (70,71,72)-
Hence we know that [D] (v0,72) € [D'] (70,71,72)-

Now, assume (eg,e1) € [D'] (70,71,72)-

Then ey —* refl and e; —* refl and (y0,71,72)(e, €’) € [Di] (h0,71,72)-
Hence we know that (v0,71,72)(e,€') € [D1] (70,72)-

Hence we know that (y9,72)(e, ') € [D{] (70, 71,72)-

Hence we know that [D'] (y0,72) € [D] (70,72)-

Hence [D] (v0,72) = [D'] (70,71, 72)-

Theorem 5 (Substitution for Pre-Contexts). We have that:

36

1. IfTFe: X, and (v,7(e)/z,7") € [T,z : X, T[], then (v,7') € ||T', [e/z]I"]|.
2. IfT'E Az g, and (v, (v(A), R)/e,?') € [T, a: 5, T, then (v,7) € T, [A/a]l"|.
Proof. In each case, we proceed by induction on I".

1. o IV =
Hence ' = -.
Since [e/z](-) = -, it is immediately the case that (v,-) € ||T, [e/z]-]|.
o IV=T"9y:Y:
Hence 7/ = (7", € /y).
By induction, (v,7") € [T, [e/z]I"|].
By definition (v,v”,¢'/y) € |T, [e/z]T",y : [e/z]Y]].
o I"=T" 8:kq:
Hence +' = (", (B, R)/5).
By induction, (y,7") € ||T, [e/x]T”|.
Since kind pre-interpretations ignore term substitutions, R € ||[e/z]rq]|.
Hence by definition (v,~”, (B, R)/B) € |, [e/z]T", B : [e/x]ro]|-

2. o [V=1:
Hence ' = -.
Since [e/z](-) = -, it is immediately the case that (v,-) € ||T, [e/z]-]|.
o IV=T"9y:Y:

Hence ' = (', /y).
By induction, (v,~") € ||T, [e/z]T"|.
By definition (.7, & /y) € [T, [A/a]T",y : [A/a]Y |
o I"=T"8": ko:
Hence 7' = (7", (B, R)/B).
By induction, (v,7”) € ||T, [e/x]T”||.
Since kind pre-interpretations ignore type substitutions, R € [|[A/a]xol|.
Hence by definition (v,~”, (B, R)/8) € |I,[A/a|I", 8 : [A/a]ko]|-

O]

Theorem 6 (Substitution of Terms). Suppose that I'F e : X and (y,v(e)/z,7') € T,z : X, TV].
Then:

1. For all D :: T,z : X,T" ko : kind, there exists D' :: T, [e/x]T” I [e/x]ko : kind such that
[D] (v,v(e)/z,7) = [DT (v.7)-

2. For all D :: T,x: X,T" F C : ko, there exists D' :: T',[e/x]I" F [e/x]C : |e/x]ko such that
[D] (v.y(e)/z,y) = [DT (v,7")

Proof. Assume I'+e: X.
We proceed by mutual induction on the kinding and typing derivations.

1. We proceed by case analysis of the derivation D :: ',z : X, IV kg : kind.

37

e Case D ::I',z : X,IV I % : kind:
Assume (v,v(e)/z,y") € T,z : X, T7|.
By rule, we have D' :: T, [e/z|T" I « : kind.
Note that [e/z]* = %, and so D' :: ', [e/z]I" - [e/x]* : kind.
By definition [D] (vy,~(e)/z,v") = [D'] (v,7") = CAND.
e Case DT,z : X, I"F1Ily: Y. ko : kind:
By inversion, we have Dy :: T,z : X, I+ Y :xand Dy =T,z : X, I,y : Y F kg : kind.

By induction, we know there is a Dj :: T, [e/x]T" = [e/2]Y : [e/x]*
such that for all (v,v(e)/z,7',¢//y) € Iz : X, ",y : Y|,
we know [Do] (v,v(e)/z,v',€¢'/y) = [Dg] (v,7',€'/).

By induction, we know there is a D =: T, [e/z]T",y : [e/x]Y F [e/z]k2 : kind
such that for all (v,v(e)/z,7',¢//y) € Iz : X,T",y : Y|,
we know [D1] (v,7(e)/z,7',¢'/y) = [Di] (7.7, € /).

By rule on D and D}, we get D' :: T, [e/z|I" 1y : [e/z]Y. [e/x]r2 : kind.
By definition of substitution, D" :: T, [e/z]I” b [e/x](Ily : Y. ka) : kind.

Assume (v,7(e)/z,7') € [T,z : X, T7|.
By inspection of the definition of [D] (v,~(e)/x,~"), we see
it equals [D'] (v,7).

e Case D ::T',x: X, IV F1IB : k1. ko : kind:
By inversion, we have Dy :: ',z : X, IV F k1 : kind and Dy :: T,z : X, IV, B : k1 b Ko :
kind.

By induction, we know there is a D{ :: ', [e/z|I" F [e/z]k1 : [e/x]kind
such that for all (vy,y(e)/x,v', (B, R)/B) € T,z : X,T’, B : k1l

we know [Do] (v,v(e)/z,7", (B, R)/B) = [Dy] (v,7',(B,R)/B).

By induction, we know there is a D] : T, [e/z|I”, 8 : [e/x]r1 b [e/x]k2 : kind
such that for all (7,7(6)/3},7’,7(3,}3)/6) €lz: X, TV, Bk,
we know [D1] (v,7(e)/=,7", (B, R)/B) = [D1] (7,7, (B, R)/B).

By rule on Djy and D}, we get D' :: T, [e/z|I" - 113 : [e/z]k1. [e/x]r2 : kind.
By definition of substitution, D’ :: T, [e/z|I" F [e/x](I1f : k1. k2) : kind.

Assume (v,7(e)/z,7') € [T,z : X, TV|.
By inspection of the definition of [D] (v,v(e)/x,~"), we see
it equals [D'] (v,7).
2. We proceed by case analysis of the derivation D :: T,z : X, IV = C' : k.
e Case Iz : X, IV 3 : Ko:

By inversion, we know that 8: ko € I, : ,I".

38

Since z is a term variable, we know either 3 € I or 8 € I".
Therefore, it follows that (+, (v(A), [T] 7)/a,7')(8) = (v,7)(8).

If 8 €T, then by rule we have D’ :: T, [e/z]]T" F S : Ko.
Since the = & FV(ko), we know D" :: T, [e/z][T" I 3 : [e/x]]ko.
If 8 € I, then by rule we have D' :: ') [e/z]|]T" F B : [e/z]]ko.

Assume (v, (v(A), [T] v)/a,7') € [T, a = &, T7].

In either case, [D'] (v,7") = (v,7)(B).

Hence [D] (v, (v(A), [T] 7)/e,y') = [D'] (v.7")-

Case DT z: X,T'FXy:Y.C:1ly:Y. ko:

By inversion, Do : ',z : X,I"FY :xand Dy =T,z : X, TV, y: Y - C : ks.

By induction, we know there is a Dj) =: I', [e/z]I" I [e/z]Y @ «
such that for all (v,v(e)/z,7',¢//y) € [Tz : X,T",y : Y|,
we know [Do] (v,7(e)/z,v', € /y) = [Dg] (v.7',€'/y).

By induction, we know there is a D : T, [e/z]T",y : [e/x]Y I [e/z]C : [e/x]k2
such that for all (v,v(e)/z,7',¢//y) € Iz : X,T",y : Y|,
we know [Di] (v,v(e)/z,v',¢'/y) = [Di] (v,7'.€'/y).

Assume (7,71(e)/z,) € [T,z : X, T'|.
By inspection of the definition of [D] (v,~v(e)/x,v"), we see

it equals [D'] (v,7).

Case D T,z : X, TVF A3 : k1. C: 118 : k1. ka:

By inversion, Do :: ',z : X, IV k1 :kind and Dy : T,z : X, IV, B: k1 = C : Ko.

By induction, we know there is a D{ :: T, [e/z|I" F [e/z]k; : kind
such that for all (v,7(e)/z,7',(B,R)/B) € T,z : X,T", 8 : s,
we know [Do] (v,7(e)/z,7', (B, R)/B) = [Do] (7,7, (B, R)/B).

By induction, we know there is a D} :: T, [e/z]I”, B : [e/x]r1 = [e/z]C : [e/x]kra
such that for all (7,7(6)/:6,7’,7(173,1%)/5) €l z: X, T, k),
we know [Di] (v,7(e)/z,7', (B, R)/B) = [Di] (7,7, (B, R)/B).

Assume (v,v(e)/z,y") € T,z : X, T7|.

By inspection of the definition of [D] (v,v(e)/x,~"), we see
it equals [D'] (v,7).

Case D =T,z : X,T"+ C B : [B/B]ka:

By inversion, Dy :: ',z : X, IV F C : I3 : k1. Ka.

By inversion, Dy :: ',z : X, IV - B : k.

By induction, we know there is a D{, :: ', [e/z]I" & [e/z]C : TIS : [e/x]k1. Ko
s.t. for all (v,7(e)/z,7") € IT, 2 : X, TV[l, [Do] (v, v(e)/2,7") = [Do]l (v,7")-

39

By induction, we know there is a D] : [e/x]F’ [e/:z:] : [e/x]ky
st forall (v,7(e)/z,7) € IT, 2 : X F’H [Do] (v:v(e)/z:7") = [Do] (7:7")-

Via application rule on D} and D}, get D' :: T, [e/z|I" I [e/z]C [e/z]|B : [[e/x|B/S]k2
By properties of equality, this is D' :: T, [e/z|T" I [e/z](C B) : [e/x]([B/S]k2).

Assume (v,7(e)/z,7') € [T,z : X,T|.
Note (v,7") € [T, [e/=]T”||.
We know:

[D] (v;v(e)/2,7") =[Do]l (v, v(e)/z,7") (v, v(e)/z,4")(e)(B) (ID1] (v, v(e)/x,7"))

By induction hypotheses, we know

[D] (v.v(e)/=.7') = [Do] (,y(e)/2,7)(B) ([D1]
By definition of substitution, we know (()/x YVY(B) = (v,7)(le/x]B).
Hence

[D] (v,~(e)/z,7") = [Dy] (7,7")(B) ([D1]

Hence [D] (v,7(e)/z,7") = [D'] (v.7")-
Case D =T,z : X,T'F C ¢ : [¢/y]ra:

By inversion, Do = ',z : X,I"F C : Iy : Y. ka.
By inversion, Dy : ',z : X, I ¢ : Y.

By inversion, Do :: T,z : X, TV Y : .

By induction, we know there is a D :: ', [e/z]I" & [e/z]C : Ty : [e/z]Y . ko
st for all (y,y(e)/z,7') € [T,z : X, T'|l, [Do] (v,7(e)/2,7") = [Do] (v:7)-

By syntactic substitution, we have D} :: T, [e/z]T" F [e/x]e : [e/z]Y
By syntactic substitution, we have D) :: T, [e/z]T" F [e/z]Y : x.

Via application rule on Dj), D} and Dj, get D' :: T, [e/z|I" +- [e/z]C [e/x]€’ : [[e/x]€e’ [y]ka
By substitution properties, this is D' :: T, [e/z|T" I [e/z](C €') : [e/x]([€/ /y]r2).

Assume (v,7(e)/z,7) € |,z : X, I"|.
Note (v,7) € [T, [e/z]T"]].
We know:
[D] (v,v(e)/z,v") = [Do] (v,v(e)/z,~) (v,v(e)/z,~')(€)

By induction hypothesis, we know

[D] (v,~(e)/z,7") = [Dy] (v, v(e)/z,7") ()

By properties of substitution, (v,~y(e)/x,~y)(e) = (’y, ¥ ([le/x]e).
Hence

[D] (v,v(e)/z,7") = [Dg] (v,7") (v,7")([e/]e’)
Hence [D] (v,v(e)/z,7') = [D'] (v,7").

40

e Case DT,z : X, IVFIly:Y.Z:x:
By inversion, Dy : I,z : X, IVFY :xand Dy =T,z : X,TV,y : Y = Z : .

By induction, there is D{, :: T, [e/z|T" I [e/z]Y : *

st for all (v,7(e)/z,7) € IT,2 : X, ||, [Do] (v,7(e)/x,7") = [Do]l (7:7):
By induction, there is D} : T, [e/x]I",y : [e/z|Y [e/x]Z : *

s.t. for all (y,v(e)/z,~,¢'/y) € T,z : X, T,y : Y|,

[Di] (vov(e)/z,y' €' fy) = [DA] (4,75 €/ /).

By pi-rule on D}, and D}, we have D" :: T, [e/x] F 1y : [e/z]Y. [e/x]Z : *.
By properties of substitution, we have D’ :: T'|[e/x] - [e/x](Ily : Y. Z) : .

Assume (v,7(e)/x,7') € [T,z : X, T
We want to show [D] (v,7(e)/z,7") = [D'] (v,7").

Assume (f, f') € [D] (v,7(e)/, 7).

Then f | and f’ | and

for all (¢,') € [Do] (v,7v(e)/x,7'), we know (f t, f"t') € [D1] (v,v(e)/x, 7, (t,t)/y)-
Assume (t,t") € [Dj] (v,7)-

Then we know by induction that (¢,¢') € [Do] (v,7(e)/x,7).

Hence we know that (f ¢, f' t') € [D1] (v,v(e)/z, ', (t,t))/y).

By induction hypothesis, we know (f ¢, f' t') € [Di] (v,7/, (¢, t')/y).

Hence (f, /") € [D'] (1~

Then f | and f’ | and

for all (¢,t') € [D]] (7,7), we know (f ¢, f'¢') € [D1] (7,7, (t,t)/y).
Assume (t,t") € [Do] (v,7).

Then we know by induction that (¢,t") € [D{] (v,7).

Hence we know that (f ¢, f' ') € [D] (7,7, (t,t")/y).

By induction hypothesis, we know (f ¢, f' t') € [D1] (v,v(e)/z,~, (t,t')/y).
Hence (£, /') € [D] (1,7(€)/,7").

Hence (f, f') € [D] (v,y(e)/z, ") it (f, f") € [D] (v.7)-
Hence [D] (v,v(e)/z,7") = [D'] (v,7")
e Case DT, x: X, I'FIIB : k1. Z : %
By inversion, Do :: T,z : X, IV k1 :kindand Dy : T,z : X, TV, B: k1 - Z : .

By induction, there is D{, :: T, [e/z|I" F [e/x]r1 : *

s.t. for all (v,7(e)/z,7") € I,z : X, T'[[, [Do] (v, v(e)/2,7") = [Doll (7,7")-
By induction, there is D} = T,z : X, TV, : k1 - Z : %

s.t. for all (v,v(e)/z,v,(B,R)/B) € |,z : X,I",y: Y],

[D1] (v.v(e)/z,+', (B, R)/B) = [Di] (v,7',(B,R)/B).

41

By all-rule on Djj and D, we have D' :: ', [e/z| - I1y : [e/z]Y. [e/z]Z : *.
By properties of substitution, we have D" :: T, [e/z] F [e/x](Ily : Y. Z) : *

Assume (v,v(e)/z,7') € T,z : X, T”||.
We want to show [D] (v,7v(e)/z,~) =[D'] (v,7).

Assume (f, f') € [D] (v,7(e)/z, 7).
Then f | and f’ | and

for all (B, B') € Type?, R € [Do] (v,7(e)
we know (f A, f' A') € [Di] (v,7v(e)/z,/,
Assume (B, B') € Type? and R € [D}] (7,)
Then we know by induction that R € [[DO]] (7,
Hence we know that (f B, f’ B') € [D1] (v,7(e
By induction hypothesis, we know (f B, f' B’)

Hence (f, f') € [D'] (v,7).

L~

Assume (f, f') € [D'] (v,7")-

Then f | and f’ | and

for all (¢,t") € [Dg]l (7v.7), we know (f ¢, f'¢') € [D1] (7.7, (¢,) /y).
Assume B € Type? and R € [Do] (v,7').

Then we know by induction that R € [Dj] (v,7').
Hence we know that (f B, f' B') € [D}] (7,7, (B, R)/8).

By induction hypothesis, we know (f B, f' B') € [D1] (v,~v(e)/z,7, (B, R)/f).
Hence (f, f') € [D] (v;~(e)/2,7").

Hence (f, f') € [D] (v,y(e)/x, ") iff (f, f') € [D] (v.7)-

Hence [D] (v,7(e)/2.7) = [D'] (3,7).

Case D =T,z : X,T"F el =y ey : %

By inversion, we have Dy :: ',z : X, IV Y :

and D; =z : X, IVFe:Yand Dy sz : X, TV Fey: Y.

By induction, there is D{, :: T, [e/z]I" F [e/z]Y :

st for all (v,7(e)/z,7) € [T,z : X, ||, [Do] (v,7(e)/x,7) = [Do]l (7:7)-
By syntactic substitution, we have D :: T, [e/z|T" - [e/z]e1 : [e/z]Y

By syntactic substitution, we have D) :: T, [e/z]I" I [e/x]es : [e/z]Y

By rule, we have D' :: T', [e/z]I" - [e/x]er =[c gy [e/T]e2 @ *.

Assume (v,7(e)/z,7') € [T,z : X, T|.
We want to show [D] (v,v(e)/x,7") = [D'] (v,7).

Assume (p,p') € [D] (v,7(e)/@, 7).
Then p —* refl and p’ —* refl and (v,~v(e)/x,v)(e1, e2) € [Do] (v,v(e)/x,7).
By properties of substitution, (v,7")([e/z]e1, [e/x]e2) € [Do] (v,v(e)/z,~").

By induction, (v,7")([e/z]e, [e/:z:]eg) e Dyl (v.9)-
Hence (p,p') € [D'] (v.7").

42

Assume (p, /) € [D'] (v,7).

Then p —* refl and p’ —* refl and (v,')([e/x]e1, [e/z]e2) € [DG] (v,7).
By properties of substitution, (v,v(e)/z,v")(e1,e2) € [D] (v,7).

By induction, (y,y(e)/z,7")(e1, e2) € [Do] (v,7(e)/, 7).

Hence (p,p) € [D] (v,7(e)/2,7").

Hence (p,p') € [D] (v,7(e)/z,v") iff (p,p’) € [D'] (7,7)-
Hence [D] (v,7(e)/x,7") = [D'] (v,7").

e Case DT,z : X, IV Y : kkind.
By inversion, Dy :: ',z : X, IV FY : kg and Dy :: T,z : X, IV - k = K¢ : kind.

By induction, there is D{, :: T, [e/z|I" F [e/z]Y : Ko

s.t. for all (v,9(e)/z,7") € I,z : X, T'[l, [Do] (v, v(e)/2,7") = [Doll (7,7")-
By syntactic substitution, D} :: T, [e/z]I" F [e/x]x = [e/x]ko : kind.

By rule, we have D' :: ', [e/z|I" | [e/x]k : kind.

We want to show [D] (v,7v(e)/z,v) = [D'] (v,7)-
By definition, [D] (v,7v(e)/x,7") = [Do] (v,7v(e)/x, 7).
By induction, [D] (v,~(e)/z,v") = [Dy] (v,7')-
By definition, [D] (v,7v(e)/z,7") = [D'] (v,7).
O

Theorem 7 (Substitution of Types). Suppose that T' b A : k and (v, (v(A),[Di] v)/a,v') €
IT, o : &, T7||. Then:

1. For all D :: T, : k,I" F kg : kind, there exists D' :: T',[A/a]l” = [A/a]ko : kind such that
[P (v, (v(A), [D1])/, 7) = D] (7. 7).

2. For all D :: T,a: k, I F C : ko, there exists D' :: T',[A/a|l" - [A/a]C : [A/alko such that
[D] (v, (v(A), [D1] 7)/a. ') = [D] (v,7).

Proof. Assume T ::T'F A : k.
We proceed by mutual induction on the kinding and typing derivations.

1. We proceed by case analysis of the derivation D :: ', : 5, IV I kg : kind.

e Case D :: ', : k, IV I % : kind:
Assume (v, (v(A), [T] v)/a,7') € [T, a = &, T7].
By rule, we have D' :: T, [A/a]I" F x : kind.
Note that [A/a]x = x, and so D’ :: T, [A/a]I” F [A/a]* : kind.
By definition [D] (7, (v(A), [T] 7)/a,7') = [D'] (v,7') = CaND.
e Case D ::T',a: k,I"F1Iy : Y. ko : kind:
By inversion, we have Dy : T',a : k,I"FY :xand Dy =T, o : 5, IV, y : Y I kg : kind.

43

By induction, we know there is a D{ : T', [A/a]I" - [A/a]Y : [A/a]x
such that for all (v, (v(4), [T] 7)/a7,&/y) € IIT,a s 5, T,y : Y|,
we know [Do] (v, (v(A), [T] 7)/e,'s¢'/y) = [Do] (7:7',¢'/y)-

By induction, we know there is a D} =: T',[A/a|T",y : [A/a]Y I [A/a]ksg : kind
such that for all (v, (7(A), [T] 1)/, 7,&/y) € |T,a: 5, Ty Y|
we know [D1] (v, (v(A), [T] 7)/e. v €' /y) = [D1] (4.7, €' /y)-

By rule on Dy and D}, we get D' :: ', [A/a|I" F 11y : [A/a]Y. [A/a]ks : kind.
By definition of substitution, D" :: T, [A/a|T" = [A/a](Ily : Y. k2) : kind.

Assume (v, (1(A), [T] 7)/e) € [T w,T].
By inspection of the definition of [D] (v, (v(A), [T] v)/a,v'), we see
it equals [D'] (v,7).
e Case DT, : k, IV FTIB : k1. Ko : kind:
By inversion, we have Do :: I', o : 6,1V F k1 : kind and Dy : T, o : 5,17, B : k1 F Ko : kind.

By induction, we know there is a Dj) :: ', [A/a]I" I [A/a]k1 : [A/alkind
such that for all (v, (v(A), [T] ’y)/a’y (B,R)/B) € |l /il—‘,ﬁ k1,
we know [Do] (v, (v(A), [T] 7)/e.v', (B, R)/B) = [Dg] (7,7, (B, R)/B).

By induction, we know there is a D} :: I', [A/a]I", B : [A/a]ky = [A/a]kz : kind
such that for all (v, (v(A), [T] *y)/a,fy (B, R)/p) el a: kI, B ki,
we know [D1] (v, (v(A), [T])/, (B, R)/B) = [Di] (7.7, (B, R)/B).

By rule on D) and D}, we get D' :: ', [A/a]I” F 115 : [A/a]k1. [A/a]ke : kind.
By definition of substitution, D’ :: T, [A/a|T" F [A/a](IIB : k1. k2) : kind.

Assume (v, (v(A), [T] 7)/a) € [T, 5,7,
By inspection of the definition of [D] (v, (v(A), [T] v)/a,v"), we see
it equals [D'] (v,7).

2. We proceed by case analysis of the derivation D :: T, : 5,1V = C' : k.

o Case I',a: v, I F B : Ko
By inversion, we know that 8: ko € ', : ,I".
Since « is a type variable, we know either 3 € ' or a = B or § € I".
—Ifa=p3:
By weakening on T' we get a D' :: T, [A/a]T" F A : kg
such that [D'] (v,v) =[] -
Note [D] (v, (v(A), [T] ~)/e) = [T7] -
Hence [D] (v, (v(4), [T] 7)/a) = [D'] (v,7).
— Otherwise:
x If B €T, then by rule we have D' :: T, [A/a]I" F B : ko.
Since the o € FV(kg), we know D' :: T, [A/a]T" F 8 : [A/a]ko

44

« If € I', then by rule we have D’ :: T',[A/a]I" & 5 : [A/a]ko
Assume (v, (1(A), [T] 7)/e,7) € [Ty A, T
In either case, [D'] (v,7) = (v,7)(B).

Hence [D] (v, (v(A), [T] 7)/a.”') = [DT (v.7).
Case D :T,a:k,I"FXy:Y.C:Ily: Y. ko:
By inversion, Dy : I',a: k, IV FY :xand Dy =T, a: kI, y: Y = C : ko.

By induction, we know there is a Dj :: T', [A/a]T" - [A/a]Y :
suh that for all (v, (7(A), [T] 7)/a7,&/y) € [T, a : . T,y Y,
we know [Do] (v, (v(A), [T v)/a,v ¢ /y) = [Dgl (7,7, €/y)-

By induction, we know there is a D} =: T',[A/a|T",y : [A/a]Y I [A/a]C : [A/a]ky
such that for all (v, (+(A), [T] 1)/a+,2/y) € [T, m, Ty - V],
we know [D1] (v, (v(A), [T]) /e, €'/y) = [Di] (.7, €' /y).

Assume (v, (v(A), [T] 1)/) € [T 5,7,

By inspection of the definition of [D] (v, (v(A), [T] v)/a,v"), we see

it equals [D'] (v,7).

Case D =T, a: k, IV FAB: k1. C: 118 : K. Ka:

By inversion, Do :: I',a: 6, IV F kq : kind and Dy «: T, : 5,17, B: k1 F C : ko.

By induction, we know there is a D{ :: T', [A/a]I" - [A/a]k; : kind
such that for all (v, (v(A), [T] v)/a, v (E R)/B) € T, « : K, F/LB sk,
we know [Do] (7, (+(A), IT])/ 7/, (B, R)/8) = [Dol (.7, (B, R)/B).

By induction, we know there is a D} :: I', [A/a]I", B : [A/a]k1 F [A/a]C : [A/a]k2
such that for all (v, (v(A), [T] 7)/(1 ", (B, R)/ﬂ) €|l a:k, F’,B K1l
we know [D1] (v, (v(A), [T] v)/a.v', (B, R)/B) = [D1] (7.7, (B, R)/B).

Assume (v, (v(4), [T] 1)/,) € [T,
By inspection of the definition of [D] (v, (v(A), [T] v)/a,v'), we see
it equals [D'] (v,7).

Case D =T a:k,I"FC B:[B/Bke:
By inversion, Dy : I',a: 5, IV = C : 113 : k1. Ka.
By inversion, Dy :: T, a: 5, IV = B : k1.

By induction, we know there is a D{, : I', [A/a]I" F [A/a|C : 1IS : [A/a]k1. K2
s.t. for all (v, (v(A), [T] 7)/a,”) € [T,a: 5T, [Do] (v, (V(A), [T] 7)/e,7")
[D6] (7).

By induction, we know there is a D} : ', [A/a]I" F [A/a]B : [A/a]k1
s.t. for all (v,(v(A),[T] 7)/e,?) € T,z s, [Do] (v, (v(A),[T] 7)/e,v)

45

[Dol (v:7)-

Via application rule on Dj and D}, get D" :: T', [A/a|I" - [A/a]C [A/a]B : [[A/a]B/B]ks.
By properties of equality, this is D' :: T, [A/a]TI” F [A/a](C B) : [A/a)([B/B]k2).

Assume (7, (v(A), [T])/, 7') € Ty s 5, Tl
Note (v,7) € [T, [A/a]I"].
We know:

[D] (v, (v(A),[T] v)/a,”') = [Do] (v, (v(A), [TT v)/a,”') (v, (v(A), [T]) /e, ') (e)(B) (ID1] (v,

By induction hypotheses, we know

[D] (v, (v(A), [T])/ee.v') = [Dg] ((V(A), [TT 1)/, v)(B) ([DL] (v,
Ey definition of substitution, we know (7,((), IT] v)/a,¥)(B) = (v,7)([A/a] B).
[D] (v, (v(A), [T] 7)/e.) = [Do] (B (2] (v

Hence [D] (v, (v(A), [T] 7)/e,y)— [D] (%7)-
Case D T a: k,I'FCé€:[e/y|ka:

By inversion, Dy :: T, : 5, I = C : Iy : Y. ko.
By inversion, Dy : T, : 5, I € : Y.

By inversion, Dy :: T, o : 5, IV E Y @ %,

By induction, we know there is a D : T, [A/a]I" F [A/a]C : Ty : [A/a]Y . kg
st. for all (v,(y(A),[T] 7)/a,7") € [T a: s, T, [Dol (v, (v(A), [T] 7)/e,7") =
[Do] (v, 7")

By syntactic substitution, we have D} :: T',[A/a]I" F [A/a)e’ : [A/a]Y.
By syntactic substitution, we have D) :: T', [A/a]I” F [A/a]Y : *.

Via application rule on Djy, D] and Dj, get D' :: T, [A/a|I" F [A/a]C [A/ale’ : [[A/ale /y]ka.
By properties of equality, this is D’ :: T, [A/a|I" F [A/a](C €') : [A/a]([e’ /y]ka).

Assume (7, (v(A), [T] 7)/a. ') € [T,a s 1,17
Note (v,7) € [|T', [A/a]I"].
We know:

[D] (v, ((A), [T v)/a,”') = [Do]l (v, (v(A), [TT v)/a, ') (v, (v(A), [T])/, v)(€)

By induction hypothesis, we know

[D1 (v, (v(A), [T] 7) /e vy = [Do] (v(A), [T] 1)/, 7)(€)
By properties of substitution, (v, (v(A), [T] fy)/a,)() = (v,7)([A/ale).

Hence
[D] (v, (v(A), [T] 7) /e, ') = [Do] (v:7") (7,7)([A/ale’)
Hence [D] (v, (v(A),[TT v)/ey") = [D'] (7,7')-

46

e Case DuT,a:kI"FIly:Y. Z: x
By inversion, Dy :: ', : 5, I+ Y :xand Dy = T,a: 5, I,y : Y E Z : %,

By induction, there is D :: T', [A/a]T" I [A/a]Y : *

st for all (v, (y(A), [T] ~)/e”) € [T ez s, T [Do] (v, (v(A), [T] 7)/e.n) =
[Dol (v,7")-

By induction, there is D} =: T, [A/a]I",y : [A/a]Y F [A/a]Z : x

s.t. for all (v, (v(A), [T] 7)/e, ' €'/y) € [T, 5,1,y 1 Y,

(D] (3, (A, IT])y, @ /) = [DA] (v, 1)

By pi-rule on D} and D}, we have D" :: T, [A/a| F Iy : [A/a]Y. [A/a]Z : .
By properties of substitution, we have D" :: T',[A/a] F [A/a](lly : Y. Z) : *.

Assume (v, (v(A), [T] v)/e,") € I0,a: &, T
We want to show [D] (v, (v(A),[TT v)/ea,v") = [D'] (v,7)-

Assume (f, f) € [D] (v, (v(A), [TT)/, 7).

Then f | and f' | and

forall (t,#) € [Do] (v, (v(4), [T] 4)/a,"), we know (t, f') € [Dr] (v, (x(A), [T] 1)/ (1))
Assume (¢,t") € [D{] (7v,7).

Then we know by induction that (t,t') € [Do] (v, (v(A), [T] v)/a, 7).

Hence we know that (f ¢, f' t') € [D1] (v, (v(A),[T] 7))/, 7, (£,) /y).

By induction hypothesis, we know (f ¢, f' t') € [Di] (7,7, (t,t")/y).

Hence (f, £/ € [D'] (7,7).

Assume (f, f') € [D'] (v,7")-

Then f | and f’ | and

for all (¢,t') € [Do] (v,7), we know (f ¢, f"t') € [D1] (7.7, (£, 1)/y).

Assume (¢,t") € [Do] (v,7).

Then we know by induction that (¢,¢') € [D{] (v,7').

Hence we know that (f ¢, ' t') € [D}] (v,7, (t,t')/y).

By induction hypothesis, we know (f ¢, f' t') € [D1] (v, (v(A),[T])/, ', (t, 1) /y).
Hence (/. f) € [D] (1 (+(A), [T] 7)/e).

Hence (f, f') € [D] (v, (v(A), [T] v)/e,y") HE (f,) € [D'] (7,7
Hence [D] (v, (v(A), [T] 7)/a.”') = [D] (v.7).
e Case DT, : k, IV FTIB : k1. Z : %
By inversion, Dy :: I',a: k, IV k1 : kind and Dy = T, : 5, I, : k1 B Z 2 .

By induction, there is D{, :: T', [A/a]T" - [A/a]k; : *

s.t. for all (v, (y(A), [T] v)/a,y) € [T a:w T, [Do] (v, (v(A), [T] 7)/e,7") =
[D6] (7).

By induction, there is D} = T o : k, IV, : k1 B Z : %

s.t. for all (v, (v(A), [T] 7)/a,7', (B, R)/B) € |T,a: 5, T,y : Y,

47

[D1] (v, (v(A), [T]) /e, (B, R)/B) = [Di] (v.7'+ (B, R)/B).

By all-rule on D{ and D, we have D’ : T, [A/a] F Iy : [A/a]Y. [A/a]Z
By properties of substitution, we have D" :: T',[A/a] - [A/a](lly : Y. Z) : *.

Assume (7, (7(A), [T] 7)/a,”') € |0, a : 5, T
We want to show [D] (v, (v(A),[T])/, v') = [D'] (7,7").

Assume (f, f) € [D] (v, (v(A), [T])/, 7).
Then f | and f’ | and

for all (B, B') € Type?, R € [Do] (v, (v(A4),[T])
we know (f A, f* A') € [D1] (v, (v(A), [T])/e, 7,
Assume (B, B') € Type? and R € [D}] (v,7).
Then we know by induction that R € [Do] (v, (v(A4), [T] v)/a,7").

Hence we know that (f B, f' B') € [D1] (v, (v(4),[T] ’y)/oz " (B,R)/p).
By induction hypothesis, we know (f B, f’ B') € [Di] (v,7/,(B,R)/B).
Hence (f, /') € [D'] (1,7).

(

)
B, R)/B).

Assume (f, f') € [D'] (v,7).

Then f | and f' | and

for all (¢,t') € [Dg]l (v,7), we know (f ¢, f'¢') € [D1] (7.7, (¢, ") /y).

Assume B € Type? and R € [Do] (7,7).

Then we know by induction that R € [D{] (v,7').

Hence we know that (f B, f' B') € [D}] (v, (E,R)/B)

By induction hypothesis, we know (f B, f’ B') € [D1] (v, (v(A4),[T] ~)/a,~', (B, R)/B).

Hence (f, f) € [D] (7, (1(A), [T] 7)/a,7).

Hence (f, f') € [D] (v, (v(A), [T] v)/a,y") iff (f, f) € [D] (7,7")-
Hence [D] (v, (v(A), [T] 7)/a.') = [D] (v.7).

Case D =T, a: k1" Fel =y eg: *:

By inversion, we have Dy :: T, : 5, IV F Y @ %

and Dy = T,a:kT"Fe:Yand Dy =T, a: kT Fey: Y.

By induction, there is D{, : I', [A/a]I" I [A/a]Y : *

st. for all (v, (v(A),[T] 7)/e,7) € [ez s Tl [Dol (v, (v(A), [T] 7)/en") =
[Do] (v,7)-

By syntactic substitution, we have D] :: F, [A/a|T" - [A/aley : [A/a]Y.
By syntactic substitution, we have D) :: ', [A/a]I” F [A/ales : [A/a]Y .
By rule, we have D' :: T', [A/a]I" I [A/oz]el (a/a)y [A/ales : *.

Assume (v, (7(A), [TT 7)/e, ') € [T, o : &, T
We want to show [D] (v, (v(A), [T] v)/c.v) = [D'] (v,7).

Assume (p, p') € [D] (v, (v(A), [T] ~)/a, 7).

Then p —* refl and p’ —* refl and (v, (Y(A), [T] v)/a,7")(e1,e2) € [Do] (v, (v(A), [T] v)/«,

48

7).

By properties of substitution, (v,v")([A/ale1, [A/ales) € [Do] (v, (v(A), [T] v)/c, 7).
By induction, (v,7')([A/ale1, [A/ale2) € [Di] (v,7)-

Hence (p,p’) € [D'] (v.7).

Assume (p,p') € [D'] (v,7).

Then p —* refl and p’ —* refl and (v,v')([4/aler, [A/alea) € [Di] (v,7).

By properties of substitution, (v, (v(A), [T] v)/a,v)(e1,e2) € [Dy] (v,7')-

By induction, (v, (v(A), [T] 7)/e,7')(e1,e2) € [Do] (v, (v(A), [T] v)/c. 7).

Hence (p, /) € [D] (v, (v(4), [T] 7)/a0).

Hence (p,p') € [D] (v, (v(A),[T] 7)/a.7') iff (p,p) € [D] (v,7).
Hence [[D]] (3 (WA, IT]) /a,7) = D] (3,7).

e Case D ::T',a: k,I"+ B : k1.
By inversion, Dy :: I',a: K, I F B : kg and Dy :: T, : k, IV F kg = K1 : kind.

By induction, there is D{, :: T, [A/a]T" - [A/a]B : ko

s.t. for all (v, (v(A),[T] 7)/a,y) € T a: kI, [Do] (v, (v(A), [T] 7)/e.') =
[Do] (v, 7")-

By syntactic substitution, D} :: T, [A/a|I" F [A/a]k = [A/a]ko : kind.

By rule, we have D' :: T', [A/a|I" - [A/a]k; : kind.

We want to show [D] (v, (v(A), [TT v)/e.v") =[D'] (v,
By definition, [D] (v, (v(A), [T] v)/e, ') = [Do] (v, (v(A) [[T]] 7)), v).
By induction, [D] (v, (v(A), [T] v)/e. ') = [Do]l (v,7')-
By definition, [D] (v, (v(A), [T] v)/a,7") = [D'T (7,7

Theorem 8 (Fundamental Property). We have that:

1.

2.
3.

If D :: Tk k: kind, then for all v,4" € [Dg :: T ok] such that v ~~', [D] v=[D] «'.
If D:TF A:k, then for all v,7" € [Dy :: T ok] such that v ~~', [D] v=[D] +'.

If DTt e: X then for all Dy :: T B X : x and v, € [Dg :: T ok] such that v ~ «/,
v(e) ~[piy~ Y (e)-

. IfD T HF A:k, then for ally € [Dg :: T ok], [D] v € [D1 :: T F & : kind] ~.

If D :: T+ k=, :kind, then for ally € [Dg :: T ok], Dy :: Tk k : kind and Dy :: T+ & : kind,
[D1] v =[D2] ~-

IfD:THA=A:k, then for ally € [Dg:Tok], Dy =T FHA:k and Dy : T+ A" : K
[D1] v =[D2] -

If D:Tker=ep: X, then for all v € [Do :: T ok], Dy : T'F X %, y(e1) ~p,]~ v(e2)-

49

Proof. 1. Assume D :: ' & : kind. We proceed by induction on D.

e Case D :: 't % : kind.
Assume 7,7 € [Dg :: T ok] such that v ~ 7'
By definition, [D :: T'F * : kind] v = [D :: T % : kind] v/ = CAND.
e Case D :: T F1Ila: /. k" : kind.
By inversion, we have D’ :: T'F ' : kind and D" :: T, : k' F &’ : kind.
(a) By induction, for all v,~" € [Dg :: T ok] such that v ~~', [D'] v =[D'] +'.
(b) By induction, for all v,+" € [Do :: ', : &’ ok] such that v ~~', [D"] v =[D"] +'.
Assume Dy :: T ok and v,v" € [Do] such that v ~ +'.
We want to show [D] v = [D] .

= Assume 7' € [D] ~. We will show T € [D] .

By assumption, we know that:

1. VA,B,R € |||, T(A,R) = T(B, R).

2.VA,Re D' :Tkr & :kind] v, T(A,R) € [D" :: T " : kind]] (v, (4, R)/a).
3. VA RZ[D =T+« :kind] v, T(A, R) =,

We want to show these three properties with +/ for .

By hypothesis (a), we know [D'] v =[D’] v/, so 1. and 3. follow immediately.

To show 2, assume A, R € [D’ :: T+ &’ : kind] +'.

Since we have Dy and D’, we have by rule a Dy :: T', a : £’ ok.

By hypothesis (a), we know that R € [D" :: '+ &’ : kind] ~.

Hence by 2., T(A,R) € [D"] (v,(4,R)/a) € [D"] (v,(A, R)/).

By definition, (v, (4, R)/a) € [D}].

By definition, (v, (4, R)/a) ~ (v, (A, R)/a).

By hypothesis (b), we know that [D"] (v, (A, R)/a) = [D"] (v, (4, R)/).
SoVA,Re [D' =T+ k' :kind] v/, T(A,R) € [D" ::T,a: k' k" : kind] (v, (A, R)/a).

<=: Assume T € [D] +'. We will show T € [D] .

By assumption, we know that:

1. VA,B,R € |||, T(A,R) = T(B, R).

2. VA,Re[D' =:Tr & :kind] o/, T(A,R) € [D" :: T+ " : kind] (7, (4, R)/c).
3. VAR [D =T F & :kind] o, T(A,R) =!,.

We want to show these three properties with ~ for ~'.

By hypothesis (a), we know [D'] ' = [D'] 7, so 1. and 3. follow immediately.

To show 2, assume A, R € [D’ :: T+ & : kind] 7.

Since we have Dy and D', we have by rule a D :: T', o : £’ ok.

By hypothesis (a), we know that R € [D" :: T'F & : kind] 7.
Hence by 2., T(A,R) € [D"] (+/,(A,R)/a) € [D"] (v, (A, R)/c).
By definition, (v, (4, R)/«) € [D}].

By definition, (v, (A, R)/a) ~ (v, (A, R)/a).

50

By hypothesis (b), we know that [D"] (,

y (4,)/04) [[D"ﬂ (7. (4, R)/a).
SoVA,Re [D':: T+ k' :kind] v, T(A,R) € [D’

2 Toa: k' k" kind] (v, (4, R)/a).

e Case D ::T'H 1z : X. k" : kind.
By inversion, D' : T'F X : x and D" : T,z : X F £” : kind.
(a) By mutual induction, for all v,~" € [I" ok] such that v ~~/, [D'] v =[D'] +.
(b) By induction, for all v, 7 € [T,z : X ok] such that v ~+/, [D"] v = [D"] .
Assume Dy :: T ok and v,7 € [[Do]] such that v ~ ~/.
We want to show [D] v = [D] +'.

—: Assume R € [D] ~. We will show R € [D] +'.
Since R € [D] ~, we know:

1. Ve,e' € [D'] v, ife~¢' then Re=Re.

2.Vee [D'] v, Ree[D"] (y,e/x).

3.Ve ¢ [D'] v. Re =y

We need to prove 1,2, and 3 with +/ for .

By (a), 1. and 3. follow immediately. To show 2, assume é € [D'] +'.
Then, by (a) we know that & € [D’] ~.

Hence Re € [D"] (y,e/x).

Using Dy and D', by rule we have Dj :: T,z : X ok.

So (7,2/7) € [D4] and (v/,¢/2) € [D}].

Since v ~ v and e ~ &, we know that (v,e/x) ~ (v, e/x).
Hence by (b), [D"] (v,e/x) = [D"] (+/,e/x).

Hence Re € [D"] (v/,¢e/x).

Sovee [D'] v, Ree[D"] (v,e/x).

<=: Assume R € [D] ~'. We will show R € [D] #.

Since R € [D] «/, we know:

1. Ve,e' € [D'] +/,if e ~ € then Rée = R¢.

2. Vee [D'] v/, Ree[D"] (+,e/x).

3.Veg [D'] /. Re=!y.

We need to prove 1,2, and 3 with « for +/.

By (a), 1. and 3. follow immediately. To show 2, assume e € [D’] ~.
Then, by (a) we know that e € [D'] +'.

Hence Re € [D"] (,e/x).

Using Dy and D', by rule we have Dj :: T,z : X ok.

So (+v,2/2) € [Dy] and (1,¢/) € [Di].

Since 7' ~ +' and e ~ e, we know that (v/,e/z) ~ (v,e/x).
Hence by (b), [D"] (+/,e/z) = [D"] (v.&/x).

Hence Re € [D"] (y,e/x).

So Ve e [D'] v, Re € [D"] (v,e/x).

2. Assume D ::TF A : k.
e Case D::T'Fa: k:

o1

Assume Dy :: T ok and v,v" € [Do] such that v ~ ~'.

Then 7(a) = 7/(a), 50 [D] 7 = [D] +'.

Case D :THC A:[A/alk".

By inversion, D' : T+ C : lla: k. k" and D' : T+ A : K.

By induction, for all 7,7 € [Dg :: T ok] such that v ~ 'y [D'] v=1[D] ~

By induction, for all v,~" € [Dg :: T ok] such that v ~+/, [D"] v = ﬂD”]] Y.
Assume v,7" € [Dg :: T ok] such that v ~ 7.

Note that [D] v = [D'] v (v(A),[D"] 7).

By validity, we know that D} :: T+ Il : /. K : kind.

Hence by mutual induction, we know [D] v € [D] :: T F o : &'. £” : kind] ~.
Hence [D'] 7 (+(4), [D"] 7) = [D'] 7 (+/(4), [D"] 7).

By induction, Hence, [D] v = [D'] v (v'(A),[D"] +).

Hence [D] v =[D] +'.

Case D :TFXa: k. B:lla: k. K’

By inversion, D’ :: T+ &’ : kind and D" :: T, : k' F B : k.

(a) By induction, for all Dy :: T ok and v,~" € [Do] s.t. v ~~', [D'] v=[D'] ~.
(b) By induction, for all Dy :: ', v : k" ok and 7,7’ € [Do] s.t. v ~~', [D"] v=[D"] ~.
Assume Dy :: T ok and v,v" € [Do] s.t. v~ 7.

Note that from D’ and Dy, we have Dj :: T', v : &/ ok.

Assume we have (4, R) € Type? x |||

Now we will compare [D] « (A, R) with [D] +' (4, R).

- Suppose R € [D'] ~:

Then [D] v (@, R) = [D"] (v, (4, R)/a).
Then by (a), we know that R € [D'] +'.
Hence [D] 7' (a, R) = [D"] (v, (4, R)/a).
Hence (v, (4, R)/a) € [Dg] and (v, (4, R)/a) € [Dg.
Note that (v, (A, R)/a) ~ (v, (A E)/a) B
A R)/a) =[D"] (v, (A, R)/a).

Hence by (b), we know [[D”]] (Vs
SO [[D]] v (El,) [[D]] 7 (avR)'

- Suppose R & [D'] ~:

Then [D] 7 (A, R) =,

By (a), we know R & [D'] ~.
Then [D] v (A, R) =!xr.

So [D] 7 (4, R) = [D] 7' (4, R)

Therefore [D] v (A, R) = [D] v (A, R).

Therefore [D] v = [D] .

Case D:TH Az : X.B:Ilz: X. k.

By inversion, D' : T'F X :xand D" : T,z : X+ B : k".

(a) By induction, for all Dy :: ' ok and v,~" € [Do] s.t. v ~~/, [D'] v =[D'] ~.

(b) By induction, for all Do I',z : X ok and ’y v € [Do] s.t. v ~+,[D"] v=[D"] ~.
Assume Dy :: T ok and v,7" € [Do] s.t. v~ 7.

52

Note that from D’ and Dy, we have D :: T', v : &/ ok.
Assume we have & € Exp?.
Now we will compare [D] ~ & with [D] + e.

- Suppose é € [D'] ~:

Then we know [D] v e = [D"] (v,e/z).

By (a), e € [D] +'.

Then we know [D] v =[D"] (v/,e/x).

We know that é ~ e, and so (v,e/x) ~ (v, e/x).
Hence by (b), [D"] (v,e/x) = [D"] (+/,e/x).
Hence [D] ve = [D] +e.

- Suppose & & [D'] ~:
Then [D] v e =!..

By (a), e ¢ [D'] .

Then [D] v & =l
Hence [D] ve = [D] +e.

So for all & € Exp?, [D] vé=[D] +'e.

So [D] v=[D] +"-

Case D =:T'F Ae:[e/x]B:

By inversion, D' :T'Fe: X and D" :TF A:1lz: X. k" and D" : T+ X : %,

(a) By mutual induction, for all Dy :: T ok and Dy :: T'F X : % and 7,7’ € [Do] such
that v ~~/, y(e) ~[p,14 7'(€).

(b) By induction, for all Dy :: T ok and «,+" € [Do] such that v ~ ', [D"] v = [D"] +'.
(¢) By mutual induction, for all Dy :: T ok and Dy :: '+ Tlz : X. £” : kind and ~ € [Dy],
[D"] ~ € [Da] 7.

Assume Dy :: T’ ok and 7,7 € [Dy] such that v ~ +'.

By validity, we know D1 :: I'F X : %.

By validity, we know Do :: I' 1Tz : X. " : kind.

() Hence 7(€) ~[py] » 7' (€):

(b’) Hence [D"] ~v=[D"] +'.

(¢’) Hence [D"] ~ € [D2] ~.

By (c’) and the definition of [Ds] 7, we have a D] :: T F X : * such that for all &, ¢’ s.t.
€ ~[p;] 4 e, [D'] ve=[D'] ve.

By coherence, we know that [Di] v = [Di] ~.

Hence (a’) implies 7(e) ~[i] 7' (e).

So [D'] v ~(e) = [D'] v +'(e)-

By (b’), we know [D'] v ~(e) = [D'] v/ +/(e).

Hence [D] v = [D] +'.

Case D = T'F A:k:

By inversion, we know D' :: T H A : k" and D" :: T+ k = &/ : kind.

(a) By induction, for all Dy :: T' ok and v,~" € [[ok] s.t. v ~~/, [D'] v=[D'] +-
Assume Dy :: T ok and 7,7 € [T ok] s.t. v ~~'.

53

By (a), we know [D'] v =[D'] .

By definition, [D] = [D’], so [D] v=[D] ~'.

Case D =T F1Ilx: X.Y @ .

By inversion, we know D' : ' X :xand D" =T,z : X F Y : %

(a) By induction, for all Dy :: T ok and v,~" € [Do] s.t. v ~~', [D'] v =[D'] +'.

(b) By induction, for all Dj, :: T,z : X ok and v, € [D{] s.t. v ~~', [D"] v =[D"] +.

Assume Dy :: T ok and 7,7 € [I" ok] s.t. v ~ .
Note that from D’ and Dy we have D{ : I,z : X ok.
We want to show that [D] v = [D] +'.

—>: Assume (e, €)) € [D] v. We will show (ey,€}) € [D] «'.
From the hypothesis, we know:

1. e; } and €] {.

2. For all (e2,€ey) € [D'] 7. (e1 e, €} €5) € [D"] (v, (e1,€})/x).
We need to show 1 and 2 with +/ for .

1’. is immediate. To show 2., assume (eq,€}) € [D'] +'.

By (a), we know that [D'] v = [D'] 7/, so (e2,€}) € [D'] ~.
Hence by 2., we know (e eg, ¢} €5) € [D"] (v, (e1,€})/x).
Note that (v, (e1,€})/x) ~ (7, (e1,€})/z).

Hence by (b), [D'] (v, (e1,¢})/2) = [D] (7, (e1,€))/2).
Hence (e eq,¢€) €}) € [D"] (v, (e1,€})/x).

Hence for all (e, eh) € [D'] 7. (e1 ez, €} €}) € [D"] (v, (e1,€})/x).
Hence (e1,€}) € [D] .

<=: Assume (e1,€}) € [D] ~'. We will show (e, €)) € [D] ~.
From the hypothesis, we know:

1. e; } and €] .

2. For all (eg,€e)) € [D'] 7. (e1 ez, €} €5) € [D"] (v, (e1,¢€})/x).
We need to show 1 and 2 with v for +/.

1’. is immediate. To show 2’., assume (eq, e}) € [D'] 7.

By (a), we know that [D'] v = [D] 7, so (ea2,€}) € [D'] .
Hence by 2., we know (e eg, €} €5) € [D"] (v, (e1,€})/x).

Note that (v, (e1,€})/x) ~ (v, (e1,€})/x).

Hence by (b), [D"] (7, (e1, €))/) = [D"] (3 (ex,¢})/).
Hence (e ez, €} €5) € [D"] (v, (e1,€})/x).

Hence for all (eg, e)) € [D'] 7. (e1 ez, €] €5) € [D"] (v, (e1,€))/x).
Hence (e, €}) € [D] .

Case D =T FIla: k. Y : %

By inversion, we have D' : T'F k : kind and D" :: T, a : k Y : %,

(a) By mutual induction, for all Dy :: T ok and ~y,+" € [Do] s.t. v ~+/, [D'] v = [D'] +'.
(b) By induction, for all Dj, :: T', o : k ok and v,~" € [Dg] s.t. v~ ', [D"] v=[D"] ~.
Assume Dy :: I ok and 7,7 € [T ok] s.t. v ~~".

54

Note that from D’ and Dy we have D0 I',« : K ok.
We want to show that [D] v = [D] +'.

= Assume (e, €’) € [D] . We will show (e, €e') € [D] +'.

From the hypothesis, we know:

1. el and € |.

2. VA, A" € Type,R € [D'] ~,(e A,e A") € [D'] (v,((A,A"),R)/a). We want to show
1 and 2 with +/ for ~.

1’. is immediate. To show 2, assume A, A" € Type, R € [D'] +'.

By (a), we know that [D'] v =[D'] +'.

Hence R € [D'] v, and by 2., we know (e A,e A’) € [D'] (v, ((A,A"),R)/«).
Note that (v, ((4,4"), R)/a) ~p, (7', ((A A, R)/).

Hence by (b), [D"] (v, (4, A"), R)/a) = [D"] (. (A, A'), R)/a).

Hence (e A,e A") € [D'] (v, ((4,4"),R)/c).

Hence 2’, VA, A" € Type, R € [D'] +',(e A,e A") € [D'] (v/,((A,A"),R)/a).
So (e,e') € [D] .

<=: Assume (e, €¢’) € [D] /. We will show (e, e’) € [D] ~.

From the hypothesis, we know:

1. el and € |.

2. VA, A" € Type,R € [D'] +/,(e A,e A") € [D'] (+/,((4,A4"),R)/a). We want to show
1 and 2 with v for +/.

1’. is immediate. To show 27, assume A, A" € Type, R € [D'] .

By (a), we know that [D'] ~' = [D'] ~

Hence R € [D'] 7/, and by 2., we know (e A,e A") € [D'] (v, ((4,A4"),R)/«).
Note that (7', ((4,A"), R)/a) ~p; (v, ((A), B)/).

Hence by (b), [D"] (v, (A, A), R)/a) = [D"] (7, (4, A'), R)/a).

Hence (e A,e A") € [D'] (v,((A,A"),R)/«).

Hence 2’, VA, A" € Type,R € [D'] v,(e A,e A") € [D'] (v, ((A, A7), R)/«).

So (e,€') € [D] ~.

Case D ::T'F ey =x eg : *.

By inversion, we get D1 : I'Fej: X, Dy Tk eg: X, D' =T F X @ .

(a) By mutual induction, for all Dy :: T ok, and D" :: T'F X : %, and ~,~" € [Dy] s.t.
v~ v(er) ~pry~ ¥ (er)

(b) By mutual induction, for all Dy :: T' ok, and D’ : T'F X : x, and v,~" € [Dy] s.t.
¥~ v(e2) ~p4 Y (e2).

(¢) By induction, for all Dy :: T ok and ~,~" € [Dg] s.t. v ~+/, [D'] v=[D'] .

Assume Dy :: T ok and 7,7 € [T ok] s.t. v ~~'.
Note that from D’ and Dy we have Do I',a: k ok.
We want to show that [D] v = [D] +'.

=—>: Assume (e, €’) € [D] . We will show (e, e’) € [D] «'.
By hypothesis, we know that:

95

1. e =™ refl and ¢/ —* refl.

2. (m1(e1),72(e2)) € [D] -

We want to show 1 and 2 with « for /.

1’. is immediate.

By (a), we know (v;(e1),v3(e1)) € [D'] v and (v1(e1),73(e1)) € [D] 7.
From 2., we know (11(e1), 12(e2)) € [D'] 7, 50 (¥,(e1),12(e2)) € [D'] 7.
By (b), we know (v;(e2), 72(e2)) € [D'] v and (vi(e2),7a(e2)) € [D] -
Hence (y1(e1), 72(62)) € [D] .

By (c), (71(e1),1(e2)) € [D'] v

<—: Assume (e, €’) € [D] /. We will show (e, e’) € [D] ~.

By hypothesis, we know that:

1. e —* refl and €’ —* refl.

2. (v (e1), hle2) € [D'] 7.

We want to show 1 and 2 with o' for ~.

1’. is immediate.

By (a), we know (y1(e1),72(e1)) € [D'] 7" and (v1(e1),72(e1)) € [D] .
From 2., we know (v {(61) L(e2)) € [D'] v, so (y1(er),v4(e2)) € [D'] .
By (b), we know (v1(e2),75(e 2)) € [D'] 7' and (11(e2),72(e2)) € [D] .
Hence (y1(e1),72(e2)) € [D'] -

By (c), (71(e1),12(e2)) € [D'] .

3. Assume D :T'Fe: X.

e CaseI'Fz: X.
Assume Dy ::T' ok and Dy : T'F X : % and 7,7 € [[F ok] s.t. v ~p, .
By the structure of v ~p, 7/, we have I'y and 7,7, such that:
there is a I'y such that I' =T'g,I';
there are 71,7} such that v = 49,71 and 7 = 7{, 71
there is a D) :: T ok.
thereisa D} = ToF X : %
- 70,70 € [[Do]] and Yo ~p; V-
Hence we know that v(x) ~[04] o v ().
By weakening, we have a D} :: T' = X : x such that [D] v = [D{] [D{] ~-
By coherence, [Df] v = [[Dl]] .
Hence () ~[p,] 4 7' (%)
e Case DuT'FAy:Y.e:lly:Y. Z.
By inversion, D' : T'FY :xand D" =T,y :Y Fe: Z.
(a) by mutual induction, for all Dy :: T ok and ~,7y € [Dg] such that v ~ +/,
[D] v=[DT] +"
(b) by induction, for all Dy :: T,y : Y ok and Dy :: T,y : Y F Z : % and v,~ € [D{] such
that v ~ 7', v(e) ~[p,]~ 7' (€)-
Assume Dy :Tok and Dy = T'F1Ily: Y. Z : x and 7,7 € [[ok] s.t. v ~p, 7.
By inversion on D; we have Dy : T'FY :xand D3 =T,y : Y = Z : x.

Gl e

56

By D’ and Dy, we know Dj :: ',y : Y ok.

We want to show y(Ay:Y.e) ~p;j5 7 (Ay:Y.e).

So we need to show that:

L (Ay. m(e), Ay 12(e)) € [D1]

2. (M. 71(e), My. s(e)) € [Da] v

3. (\y. m(e), A\y. y5(e)) € [D1] v

Assume we have t = (t1,t2) € [D2] 7.

By coherence and (a), [D2] v=[D'] v=[D'] v = [D2] .
Hence t € [D'] ~.

Hence (v,t/y) ~p, (v, t/y).

By (b)a we know that (71 t/y)(e) ~IDs] (v,t/v) (’7/7 t/y)(e)
Hence:

L (v, ta/y)(e), (v2, t2/y)(e)) € [Ds] (v,1/y)

2. (v t1/y)(e), (V3. t2/y)(e)) € [Ds] (v.,t/y)

3. ((m,t1/y)(e), (73, tz/y)(e)) € [Ds] (v.,t/y)

Note that (Ay. vi(e)) t; — (i, ti/y)(e) and (Ay. vi(e)) ti = (v, ti/y)(e)-

Hence:

L ((Ay-m(e)) t1, (My- 7a(e)) t2) € [Ds] (v,1/y)

2. (M. 71(e)) tr, (\y- 7a(e)) t2) € [Ds] (v,1/y)

3. (Mg n(e)) tr, (Ay. 73(€)) t2) € [Ds] (,¢/y)

Case D:T'Fet:|t/y|Z

By inversion, D' : Tke:ly:Y. Zand D" : T H¢t:Y.

(a) by induction, for all Dy :: T' ok and Dy = T F Iy : Y. Z : x and 7,+" € [Dy] such

that v ~ ', y(€) ~[p,7~ 7' (€).

(b) by induction, for all Dy :: T" ok and Dy :: T+ Y : x and ~,+" € [Dy] such that v ~ +/,
+(6) ~[pag 2 7' (1).

Assume Dy :: T'ok and Dy = T'F [t/y]Z : % and 7,7 € [I" ok] s.t. v ~p, 7.

We want to show that y(e t) ~[p,j, 7' (e t).

By validity, we have Dy = T'F1ly : Y. Z : .

By inversion on Dy, we get Dy : I'FY :xand Dy = Iy : Y - Z : .

By (a), we have y(e) ~[D1] v 7' (e).

By (b), we have y(t) ~p,1 5 7' (1)

By induction on Djs it follows that y(e) ~[p,] (v,v(t)/y) V' (€ 1)-

By substitution of terms, we have D} :: T' & [t/y|Z : % such that [D}] v = [Ds] (v,v(t)/y).

By coherence [D}] v = [D4] -

Hence y(e t) ~[p,g 4 ¥ (e t).

Case D :T'Fla:k.e:lla: k. Y.

By inversion, we get D' : T'F k:kind and D" :T,a:kFe: Y.

(a) By mutual induction, for all Dy :: T ok and ~,v" € [Dg] such that v ~ +/, we have
[D'] v=[D] .

(b) By induction, for all D} :: T',a: k ok and D3 = I'a:k =Y : x, and 7,7 € [D{]
such that v ~ v/, v(e) ~IDs] v ¥ (e).

Assume Dy :Tok and Dy = T'FIla: k.Y : * and 7,7 € [T ok] s.t. v ~p, 7.

57

By inversion on Dy, we get Dy :: ' k:kindand D3 : ',a: kY : x.
With Dy and Ds, we get D0 T',a: k ok.
We want to show y(Aa : k. €) ~[p,]4 7V (Aa: k. e).
That is, we need to show:
L (Aa :71(K). v1(€), At y2(k). 12(e)) € [D1] v

(A s 7 (k). (), A vé(%)- () € [Di] 4
3. (Aa: (k). 11(e), Aa : 14(0): 2%(e)) € [D] 7

v £ 24 (8) 71 (€). Aa 23(8). 12(6)) € [D1] 7
To show these, note that the termination condition holds trivially.
Assume that we have Ay, A € Type, R € [D2] 7.
By coherence, we know that [Dy] v = [D'] v, and so R € [D'] 7.
Hence (7, (A1, A2), R)/a) ~py (7, (A1, 42), R)/a).
By (b), (7, (A1, A2), B)/0)(©) ~[0a] (a1, rje) (V- (A1, A2), R)J@)(@).
Note that:
1 (hac: (k). (e))
2. (A (k). vi(e))
Therefore:
L ((Aa:
2. (s 74
3. (A :y1(k).
1. (A 34
Hence:
(Ao @y

W=

(Ao :
(Ao =y
(A

Case D :T'FeB:[B/lY

By inversion, D' :T'Fe: I8 : k. Y and D" :: T+ B : k.

(a) By induction, for all Dy :: T ok and Dy :: ' Ta: k. Y : %, and 7,7 € [Do] such
that v ~ ', v(e) ~[p,], 7' (€)-

(b) By mutual induction, for all Dy :: T ok and v,~" € [Dg] such that v ~ 7/, we have
[D"] ~ = [D"] .

(c) By mutual induction, Dy :: I ok and Dy :: I' - & : kind, and v € [Dy], [D"] ~ €
[D2] ~.

Assume Dy :: T ok and Dy : T'F [B/B]Y : % and v,~" € [I" ok] s.t. v ~p, 7.
By validity, we have Dy : ' 115 : k. Y : .

Hence by (a), () ~{py] y 7/ (€).

By inversion on D, we have Dy :: 'k : kind and D3 : T, a: sk FY : %
Hence by (c), [D"] v € [D2] 7.

Furthermore, by (b) we know [D"] v = [D"] «'.

Hence (v, (+(B), [D"] 7)/8) ~py (1 (/(B), [D"] +')/5).

By definition, if (e, e2) € [D1] 7, then:

1’. e1 | and es |.

58

2. For all (A1, Az), R € [D2] v, (e1 A1, ez Ag) € [D3] (v, ((A1, A2), R)/cv).
Note that we know:
L. (71(e),72(e)) € [DA] -

2. (11(e),a(e)) € [Da] -
3. (mle),v(e)) € [D1] .
4. (71(e),12(e)) € [D] 7.
Hence using 2’, we can conclude:

L (y(e) m(B) 2(e) 12(B)) € [Ds] (v, (1(B),72(B), [D"] 7)/8).
2. (71(e) m(B),73(e) %1(B)) € [Ds] (v, (1 (B),y(B),[D"] 7)/B).
3. (m1(e) m(B),75(e) v2(B)) € [Ds] (v, (m(B),v2(B), [D"] v)/B)
4. (71(e) 71(B),12(€e) v2(B)) € [Ds] (v, (71(B),2(B),[D"] 7)/B)

By induction on Ds, all the [Ds] ... in 1-4 here are equal.
By substitution, we know that [Ds] (v, (v(B),[D"] v)/8) = [D4] -
Hence using properties of substitution, we can conclude:
L (m(e B),wle B)) € [Da] 7.
2. (vi(e B),y3(e B)) € [D4] .
3. (11(e B), (e B)) € [D4] -
1. (Yi(e B), (e B)) € [Da] 7.
Hence v(e B) ~[p,g+ 7Y (e B).

(
(
(
1

e Case D :: T'Frefl : e =x es.
By inversion, we have D' : T'F e = eg : X.
(a) by mutual induction, for all Dy :: T ok and D3 = I' = X : % and vy € [I' ok],
(71(e1),72(e2)) € [Ds] ~-

Assume Dy : T ok and E :: T'Fe; =x eg: x and 7,7 € [[ok] s.t. v ~p, 7.

By inversion on F, we get D3 : T'F X :xand D; = T'Fe;: X and Dy : T'F ey : X.
Now, note that ~y(refl) = ~/(refl) = (refl, refl).

Hence, to show 7y(e) ~g] 4 7' (e), it suffices to show (refl, refl) € [E] ~.

By definition, (refl,refl) € [E] v when (v1(e1),v2(e2)) € [Ds] 7.

This follows from (a).

e Case Dul'Fe: X
By inversion, D' : T'Fe:Y and D" :THF X =Y : *.
(a) By induction, for all Dy :: ' ok and Dy :: T' F Y : x, and 7,7 € [Dg] such that
v~ v(€) ~pyy 4 Y (€)-
(b) By mutual induction, for all Dy :: T'ok and Dy : T'H X : x and Ds :: T'F Y : % and
v € [Do], [D1] v = [D2] ~.
Assume Dy :: T ok and Dy :: T'F X : %, and ~,v" € [Dg] such that v ~ ~'.
By validity, we know Dy :: T'FY : x.
Hence we know by (b) that [D1] v = [D2] 7.
By (a), we know 7y(e) ~[p,] 4 7' (€)-
Hence y(e) ~[p,1+ 7' (€)-

4. Assume D : T+ A : k.

59

e Case D : T F a: k.
Assume Dy :: T' ok and D; :: T'F & : kind and v € [I" ok].
By the structure of v € [Dy], we have I'y and - such that:
there is a I'y such that I' = T'g, 'y
there are v, such that v =9, 11
there is a D) :: T ok.
there is a D} = Tg F & : kind
. Y0 € [Dp]. Hence we know that y(a) € [D}] o.
By weakening, we have a DY :: T' F & : kind such that [D}] ~o = [D{] ~-
By coherence, [Df] v = [[D]] .
Hence v(a) € [D] 7.
Hence [D] ~ € [D] 7.

Gl W

e Case D::T'H A B:[B/B|r"
By inversion, we have D' : '+ A : 118 : k. k" and D" :: T+ B : K.
(a) By induction, for all Dy :: T' ok and Dy :: T' F TI8: k. k" : kind and v € [Do],
[D'] 7 € [Di].
(b) By induction, for all Dy :: T ok and Ds :: T' - £’ : kind and v € [Do], [D"] ~ € [D2].
Assume Dg :: T ok and D3 :: T' = [B/p]x" : kind and ~ € [T ok].
Then we know that [D'] v € [D1] v and [D"] v € [D2] 7.
By inversion on Dj, we have Dj :: ' £’ : kind and Df :: T', 8 : &' = £” : kind.
By definition, for all C, R € [D}] ~, we know [D'] v (C, R) € [D4] (v, (C, R)/B).
By coherence, we know that [Do] v = [D5] +'.

Hence [D'] v (v(B), [D"] v) € [Ds] (v, (v(B), [D"] 7)/B).-

By substitution, thereisa D} :: T' - [B/S]«" : kind such that [D{] v = [D5] (v, (v(B),[D"] v)/5)-

By coherence, [D1] v = [D}] -

Hence [D'] v (7(B), [[D”]]) € [D1] ~-
Hence [D] ~v € [D1] 7.

e Case D:T'FMXa:K.B:lla: K. K.
By inversion, we get D' :: T, a: k' = B : k" and D” :: T+ &’ : kind.
By induction, for all D) :: T',«: k' ok and Dy :: T, : k' F £” : kind and +' € [Dj], we
know [D'] ~' € [D1] +'.
Assume Dy :: T'ok and D3 :: '+ Il : &'. £” : kind and ~ € [I" ok].
By inversion on D3, we get Dy : 'k &/ : kind and Dy :: ', : &' = " : kind.
Now, we want to show [D] v € [Ds] ~.
To show this, assume we have A, R € [D1] 7.
Note that from Dy and Dy, we have D{j :: T', « : £’ ok.
Furthermore (v, (A, R)/a) € [D{]-
Hence [D'] (1, (4, R)/a) € [D3] (v, (4, B)/a).
Hence [D] v € [D3] ~.

e Case D :T'+ Ae: [e/x]r
By inversion, we have D' : '+ A:1lz: X. k" and D" :: Tk e: X.
(a) By induction, we know for all Dy :: T' ok and Dy :: '+ Tlz : X. £’ : kind and «y € [Dyo],

60

[D] v € [DA].
(b) By mutual induction, we know for all Dy :: T ok and Dy :: T'+ X : % and ,+" € [Do]

such that v ~p, 7/, v(e) ~[D2] v 7' (e).

Assume Dy :: ' ok and D3 :: I'F [e/x]x’ : kind and « € [I" ok].

By validity we get Dy :: T'F Iz : X. & : kind.

By inversion on Dy, we get Dy : ' X : x and D5 =: ',z : X F &/ : kind.

Hence we know that [D'] v € [D1] 7.

Hence we know that y(e) ~[p,] 4 V(e), and so vy(e) € [D2] 7.

So, by definition we know that [D'] v ~(e) € [D5] (v,7(e)/x).

By subsitution we get D% :: I' - [e/z]|x’ : kind such that [D4] v = [D5] (v,~v(e)/x).
By coherence, [D4] v = [Ds] ~.

Hence [D'] v ~(e) € [Ds] ~.

Hence [D] v € [D3] .

Case DuT'FXzx: X.B:1llx: X. k.

By inversion, we have D' : '+ X :x and D" :: T2 : X+ B : k.

(a) By induction, for all Dfj :: ',z : X ok and Dy : T,z : X F k : kind and +/ € [Dg],
[D"] +" € [D2] +-

Assume Dy :: T'ok and Dy :: T'F Tz : X. k : kind and v € [T ok].
By inversion on Dy, we get Dy :: Tz : X s : kind and Dj = T'F X : .
We want to show [D] v € [Di1] ~.

It suffices to show for all & € [D] v, [D] v e € [D2] (v,e/x).
From Dy and D}, we get D, : T,z : X ok.

Hence (v,e/x) € [D{].

By (a), we know that [D"] (v,e/x) € [D2] (~,e/x).

However, note that [D] v e = [D"] (y,e/z).

Hence [D] v € [D2] (v,e/z).

Hence for all e € [D4]] ~, [D] v e € [D2] (v,e/x).

Hence [D] v € [D1] ~.

Case D :T'FIla: k. X : .

By inversion, we get D' :: 'k : kind and D" : T, a : k F X @ *.
By induction, for all D) :: T',a: k ok and Dy : I, : kK F x : kind and v € [I', v : k 0k],
we have [D"] € [Do].

Assume Dy :: T' ok and D; :: T'F % : kind and « € [I" ok].

Then we have Dfj :: T, a : & ok.

Now we want to show that [D] v € [D;] v = CAND.

So we need to show that:

1. [D] ~ is a QPER.

2. Y(e1,e2) € [D] 7, e1] and ez |.

3. [D] ~ is closed under expansions and reduction.

1. Assume (e, e2) € [D] v and (e}, €,) € [D] v and (e1,€h) € [D] ~.

61

We want (€], e2) € [D] 7.

It suffices to show that for all Ay, Ag, R € [D']] ~, (€] A1,e2 A2) € [D"] (v, ((A1, A2), R)/a).
Assume Ay, Ay, R € [D'] ~.

Then we know that (e; Ay,e2 A2) € [D"] (v, ((A1,A2),R)/a) and (e} Ai, e}, Ag) €
[D"] (7. ((A1, A2), R)/e) and (e1 Ay, €5 Ag) € [D"] (v, ((A1, A2), R)/av).

By induction, we know that [D”] (v, ((41, 42), R)/«a) is a QPER.

Hence (6/1 A1,62 AQ) S [[DH]] (’y, ((A17A2),R)/Oé).

Hence for all Ay, A2, R € [D'] v, (¢} A1,e2 As) € [D"] (v,((A1,A2),R)/).

Hence [D] ~ is a QPER.

2. follows by the definition of [D] .

3. Assume (e1,ez) € [D] v and that e; ++* €] and ey <>* €.

We want to show (€], ¢e)) € [D] 7.

It suffices to show that for all Ay, As, R € [D']] ~, (€} A1,¢e, A2) € [D"] (v, ((A1, A2), R)/«).
Assume Ay, Ay, R € [D'] ~.

By assumption (ey A1, ez A2) € [D"] (7, ((A1, A2), R)/«).

Since eg <»* €], it follows that e; A <>* €] Aj.

Since eg <™ €}, it follows that ey Ag <™ €}, As.

By induction, [D"] (v, ((A41, A2), R)/«a) is closed under expansions and reductions.
Hence (e} A1,€) A2) € [D"] (v, ((A1, A2), R)/«).

Hence for all Ay, A2, R € [D'] v, (¢} A1,e, As) € [D"] (v, ((A1,A2), R)/c).

Hence (€}, €,) € [D] ~.

Case D =:T'F1Ily: Y. X :

By inversion, we get D' = TFY :xand D" = T,y: Y F X : .
By induction, for all Df :: T,y : Y ok and Dy :: T,y : Y F x : kind and v € [I',y : Y ok],
we have [D"] € [D2].

Assume Dy :: T ok and D; :: T'F % : kind and « € [T’ ok].
Then we have D) :: ',y : Y ok.

Now we want to show that [D] v € [D1] v = CAND.

So we need to show that:

1. [D] ~ is a QPER.

2. V(e1,e2) € [D] v, e1 J and ez |.

3. [D] = is closed under expansions and reduction.

1. Assume (e, e2) € [D] v and (e}, €,) € [D] v and (e1,€h) € [D] ~.

We want (¢}, e2) € [D] ~.

It suffices to show that for all ¢ € [D'] ~, (€] t1,ea t2) € [D"] (v,t/y).

Assume ¢ € [D'] 7.

Then we know that (v,t/y) € [D{].

Then we know that (e t1,ea t2) € [D"] (v,t/y) and (€] t1,¢€5 t2) € [D"] (v,t/y) and
(e1 t1, €5 t2) € [D] (v,t/y).

By induction, we know that [D”] (v,t/y) is a QPER.

Hence (€] t1,e2 t2) € [D"] (v,t/y).

62

Hence for all t € [D'] ~, (€] t1,e2 t2) € [D"] (v,t/y).
Hence [D] ~ is a QPER.

2. follows by the definition of [D] .

3. Assume (e1,e2) € [D] v and that e; +>* €} and ey +* €.

We want to show (e}, ¢h) € [D] ~.

It suffices to show that for all ¢ € [D'] ~, (€] t1,€ t2) € [D"] (v,t/y).
Assume t € [D'] 7.

Then we know that (v,%/y) € [D{].

By assumption (ey t1, ez t2) € [D"] (v,t/y).

Since e «>* €], it follows that ey t1 <* €] t1.

Since ey <»* €}, it follows that e ty <>* €} to.

By induction, [D"] (v,t/y) is closed under expansions and reductions.
Hence (€] t1,¢€5 t2) € [D"] (v,t/y).

Hence for all t € [D'] ~, (€] t1,€, t2) € [D"] (v,t/y).

Hence (€}, €,) € [D] ~.

Case D ::T'Feg =x eg : .
Assume Dy :: T ok and D; :: T'F % : kind and « € [I" ok].

We want to show that [D] v € [D1] v = CAND.
So we need to show that:

1. [D] ~ is a QPER.

2. V(e1,e2) € [D] v, e1 } and e2 |.

3. [D] = is closed under expansions and reduction.

1. Assume that (e, e2) € [D] v and (e}, ¢€)) € [D] v and (e1, €h) € [D] .
We want to show (€], e2) € [D] 7.

It suffices to show that €] —* refl and eg —* refl.

Note that e; —* refl and ey —* refl and €] —* refl and ef, —* refl.

So (e}, e2) € [D] 7.

So [D] ~ is a QPER.

2. follows immediately from the definition.

3. Assume that (e1,e2) € [D] v, and that e; ++* €} and ey +* €.

We know that e; —* refl and es —* refl.

Therefore it follows that €] —* refl and e}, —* refl.

Hence (€}, ¢)) € [D] ~.

Case D ::T'H A: k.

By inversion, we have D' :: [+ A : k] and D" :: T+ k = &/ : kind.

(a) By induction, we know for all Dy :: T' ok and D; :: [I' - kind : k] and v € [Do],
[D] v € [Di] ~-

63

(b) By mutual induction, for all D :: " ok and Dy :: [[" F kind : k] and Dy :: [T F £’ : kind],
[D1] v =[D2] 7. Assume Dy :: I' ok and Dy :: I' F & : kind and v € [I" ok].

By validity on D", we know D7 :: T' - &’ : kind.

Therefore by (b), [D1] v = [D2] 7.

From (a), we know [D'] v € [D2] ~.

Hence [D'] v € [D1] .

5. Assume I' - k = &’ : kind.

e Case D ::T'F Kk = K : kind:

Immediate.

e Case D :: '+ k= &’ : kind:
By inversion, D' :: T' - &’ = & : kind.
(a) By induction, for all Dy :: T ok and Dy :: T' F & : kind and Dy :: T' F &’ : kind and
v € [Do], [D1] v = [D2] ~.
Assume Dg :: T ok and Dy :: T'F k : kind and Dy :: T'+ & : kind and v € [Dy].
By (a), [D2] v = [D1] »-
Hence [D4] v = [D2] 7.

e Case D :T'F k= &" : kind:
By inversion, D’ :: T+ k = &’ : kind and D" :: T+ ' = £ : kind.
(a) By induction, for all Dy :: T ok and Dy :: T' F & : kind and Dy :: T' F &’ : kind and
v € [Dol, [D1] v = [D2] ~.
(b) By induction, for all Dy :: T ok and Ds :: T'F &’ : kind and D3 :: T' + " : kind and
7 € [Dol, [D2] v = [Ds] ~.
Assume Dy :: T ok and Dy :: T'+ k: kind and D3 :: T'F £” : kind and v € [Dy].
By validity on D', we get Dy :: '+ &/ : kind.
By (a), [D1] v =[D2] .
By (b), [D2] v =[Ds] ~.
Hence [D1] v = [Ds] 7.

e Case D ::T'F [e1/z]k = [ea/z]k : kind:
By inversion, D' :: T,z : X F k: kind and D" : T Fe; = e : X.
(a) By mutual induction, for all Dy :: T' ok and D5 :: ' F X : % and v € [Do],
v(er) ~ps] 4 V(e2)-
(b) By mutual induction, for all D, :: ',z : X ok and v,v" € [D{] s.t. v ~p, 7', we have
[D"] + = [D"] +.
Assume Dy :: T' ok and Dy :: I' - [eg /z]k : kind and Dy :: I' - [ea/z]k : kind and v € [Dy].
By validity on D”, we have D3 :T'Fe;: X and Dy :: Tk eg 1 X.
By validity on D3, we get D5 :: I' - X : .
Note that by (a), v(e1) ~[ps] + V(e2)-
Note that by rule on Dy and D5, we have D}, :: T,z : X ok.

Hence (v,7(e1)/x) ~p; (v,7(e2)/x).

64

By (b), [D"] (v,v(e1)/x) = [D"] (v, v(e2)/x).
By substitution and then coherence, [D"] (v,7v(e1)/x) = [D1] 7.
By substitution and then coherence, [D"] (v,7v(e2)/x) = [D2] 7.
Hence [D1] v = [D2] 7.
e Case D :: '+ [A1/alk = [Az/alk : kind:
By inversion, D' :: T, a: k' -k : kind and D" :: T+ Ay = Ay : K.
(a) By mutual induction, for all Dy :: T' ok and D3 :: ' Ay : ' and Dy :: T Ay 1 K/,
and v € [Do], [Ds] v = [Da4] ~-
(b) By mutual induction, for all Df, :: ', : " ok and v,~" € [D{] s.t. ¥ ~p, 7', we have
(D] + = [D"] .
Assume Dy :: ' ok and Dy : ' F [A1/a]k @ kind and Dg :: T' = [Ay/a]k @ kind and
7 € [Do].
By validity on D", we have D3 :: T'F Ay : k" and Dy : T Ag @ K.
By validity on D3, we get D5 :: I' - &’ : kind.
Note that by rule on Dy and D5, we have D, :: T', o : &/ ok.
Note that by (a), [Ds] v = [D4] 7.
Hence (7, (+(A1), [Ds] 1)/) ~py (7, (+(A2), [Da] 7)/a0).

By (b), [D"] (v, (v(A1), [Ds] v)/e) = [D"] (v, (v(A2), [Da] 7)/e).
By substitution and then coherence, [D"] (v,v(41)/«) = [D1] 7.

By substitution and then coherence, [D"] (v,v(A42)/a) = [D2] 7.
Hence [D4] v = [D2] 7.

6. Assume D :THA=A": k.

e Case D ::T'tF [e/x]B = [¢//z]|B : [e/z]k.
By inversion, we have D' :T'Fe=¢: X and D" =:T,2: X+ B : k.
Assume Dy :: T ok, Dy : I'F [e/x]B : [e/x]k and Do :: T' & [¢/ /2| B : [e/z]r and v € [Dy].
By validity, we know D3 :: ' X : x.
Note that v ~p, v, so by mutual induction y(e) ~[p,] Y(€')-
From Dy and D3, we have D[, :: T',z : X ok.
By validity, we have D4 :: ',z : X F £ : kind.
Furthermore, we know (v,7(e)/x) ~p; (v,7(¢’)/z).
Hence by mutual induction, we know that [D"] (v,v(e)/x) = [D"] (v,~(e')/z).
By substitution, we have D] :: T'F [e/x]B : [e/x]x such that [D}] v = [D"] (v,~(e)/z).
By substitution, we have D) :: T' = [¢//x] B : [¢/ /] such that [D] v = [D"] (v,~v(e)/x).
By rule with D" and Dy, we have D5 :: I' b [e/z]k = [¢/ /x]x : kind.
By rule with D), and Ds, we have D} :: T+ [¢//x]B : [e/x]k.
Note that by definition, [DY] v = [D] v =[D"] (v,~(e')/x).
By coherence [D1] v = [D}] 7-
By coherence [Ds] v = [D4] ~.
Hence [D1] v = [D2] 7.

e Case D::TF[A/a]|B=[A"/a]B: [A/a]k.
By inversion, we have D' : T A=A": k" and D" ::T,a: k' + B : k.
Assume Dy :: T' ok, D1 = T'F [A/a]B : [A/a]k and Dy :: T+ [A'/a]B : [A/a]k and

65

7 € [Do].

By validity, we know that D3 = T'F A: k" and D : T'F A’ : /.

By mutual induction, we know that [Ds] v = [D5] .

By validity, we know that D4 :: ' F &’ : kind.

Hence we have D, :: I', a : &/ ok.

By validity, we have D5 :: T, o : ' F & : kind.

Hence (v, (v(A), [Ds] v)/a) ~p; (v, (7(A), [D5] 7)/).

By mutual induction, [D"] (, (4(A), [Ds])/) = [D"] (3, (+(4"), [D4] 7)),

By substitution, we have D} : '+ [A/a]B : [A/a]k s.t. [Di] v =[D"] (v, (v(A4),[Ds] v)/«).
By substitution, we have Dy :: '+ [A"/a|B : [A'/alk s.t. [Ds] v = [D"] (v, (v(A4),[D5] v)/«).
By rule on D’ and Ds, we have Dg :: I' = [A/a]k = [A'/a]k : kind.

By rule on D), and Dg, we have D} :: T+ [A"/a]|B : [A/a]k.

Note that [D5] v = [D5] ~.

By coherence, [D1] v = [Di] ~.

By coherence, [D2] v = [Dj] ~.

Hence [D1] v = [D2] 7.

Case D :THA=A":k.

By inversion, we have D' : THA=A": k" and D" :: T+ k = ' : kind.
Assume Dy ::T ok, D1 :THA:kand Dy :: T H A" : k and v € [Dy].
By validity, we have D} =:T'k A: k" and Dy =T F A’ : /.

By induction on D', we know that [D}] v = [D5] ~.

By rule on D} and D", we have D =T F A : k.

By rule on D), and D", we have D : T+ A’ : k.

Note that by definition, [DY] v = [D}] ~-

Note that by definition, [D5] v = [D5] ~-

By coherence, [D1] v = [Df] ~-

By coherence, [D2] v = [D4] ~-

Hence [D4] v = [D2] 7.

Case D =T H A= A: k. (reflexivity)

By inversion, we have D' :: T'F A : k.

Assume Dy :T'ok, D1 :T'F A:k and Dy : T'F A : k and v € [Do].
By coherence, [D1] v = [D2] 7.

Case D::THA=A": k. (symmetry)

By inversion, we have D' : T'H A" = A : k.

Assume Dy ::T ok, D1 :THA:kand Dy :: T H A" : k and v € [Dy].
By induction, [D1] v = [D2] 7.

Case D ::TH A= A": k. (transitivity)

By inversion, we have D' : TFA=A":kand D" : T+ A" = A" : k.
Assume Dy :T ok, D1 :T'F A:kand Dy :: T A” : k and v € [Dy].
By validity, we have D3 :: '+ A : k.

By induction, we know that [D1] v = [Ds] 7.

66

By induction, we know that [Ds] v = [D2] ~.
Hence [D1] v = [D2] ~.

Case D =:T'F (A\x: X. B) e = [e/z]|B : [e/z]k.

By inversion, D' : T Az : X. B:Ilxz: X. kand D" :TFe: X.

Assume Do :: "ok, Dy = T'F (Ax: X. B) e : [e/z]x and Dy :: T' = [e/z]B : [e/x]r and
7 € [Do].

By validity, D3 :: I' - Iz : X. & : kind.

By validity, Dy : T'F X : x.

By mutual induction, [D’] v € [Ds] ~.

Since v ~p, 7, we know ~y(e) € [D4] ~.

By inversion on Dy, we have D] : T X x: X. B:Ilz: X. kand D} =T Fe: X.

By coherence, we know that [D}] v = [D1] 7.

Hence [D1] v = [D'] v ~(e).

By inversion on D', we have D5 :: T,z : X - B : k.

So we know that [D'] v v(e) = [Ds] (v,v(e)/x).

Note that from Dy and Dy, we have D{j :: T',z : X ok, and (v, ~(e)/z) € [D{].

Hence by substitution, we have D} :: T' & [e/x] B : [e/x]x such that [D}] v = [Ds] (v,7v(e)/x).
By coherence [Ds] ;v = [D5] 7.

Hence [D1] ;v = [D2] ~-

Case D ::TF (Ma: k. B)A=[A/a]B: [A/a]k.

By inversion, D' : TH Az : X. B:lla: k. kand D" : T+ A: k.

Assume Dy :: T ok, Dy :TF (Aa: k. B) A:[A/a]k and Dy :: T+ [A/a]B : [A/alk and
7 € [Do].

By validity, D3 :: T' F Il : £'. & : kind.

By validity, Dy : T'F A : &/

By mutual induction, [D'] v € [Ds] ~.

By mutual induction, [D"] v € [D4] ~.

By inversion on Dj, we have D} = T'kF A a: x/. B:lla: k. sk and DY =T+ A : &'\

By coherence, we know that [D}] v = [Di] ~.

Hence [D1] v = [D'] v (v(4), [D"]).

By inversion on D', we have D5 :: T, : k' = B : k.

So we know that [D'] v (y(A), [D"]) = [Ds] (v, (v(A), [D"])/).

Note that from Dy and Dy, we have Dj :: T', o : £’ ok, and (v, (v(A), [D"] 7v)/c) € [Dg].
Hence by substitution, we have D) :: T' = [A/a]B : [A/a]k such that [Di] ~ =
[Ds] (1, (1(4), [D"] ~)/a).

By coherence [Ds] ;v = [D5] .

Hence [D1] ;v = [D2] 7.

Case D :TFB=B:1lz: X. k.

By inversion, we have D' : T,x: X - Bx = B' 'z : k, D" =: T+ B : Ilx: X. k and
D" :TkFB :lzx: X. k.

Assume Dy :: T ok, D1 :THB:1lx: X.kand Dy : TF B : Tz : X. k and ~ € [Do].
By validity, we know D3 :: ' = 1lx : X. k : kind.

67

By inversion on D3, we get Dy :: ' X : .

From Dy and Dy, we get D{, : T,z : X ok.

By mutual induction, [D”] v € [Ds] ~.

By mutual induction, [D"'] v € [Ds] ~.

By coherence, [D1] v = [D"] v and [Ds] v = [D"] ~.
So [D1] «v and [D2] ~ are in ||Ilz : X. k]|

Assume é € Exp x Exp.

Consider whether e € [Dy4] ~.

— Case e € [D4] 7:
Then (v,e/z) € [D{]-
By weakening and rule on Dy, we get D} :T,z: X+ Bx: k.
By weakening and rule on Dy, we get Dy = T',x: X F Bz : k.
By induction hypothesis, we know that [D]] (v,e/z) = [D5] (v,e/x).
However [D{] (v,e/z) = [D1] v e.
However [D}] (v,e/xz) = [D2] v e.
So [Di] ve=[D:] ve.
— Case e & [D4] 7:
Then [D;] ve =!. =[D2] ve.

Hence [D1] v = [D2] 7.

Case D :TFB=B:1lla: K. k.
By inversion, we have D’ : TI'a:x' - Ba= B a:k, D" : T+ B : Illa: k. k and
D" ::TkFB :la: k. k.
Assume Do :T'ok, Dy :T'F B:lla: k. kand Dy : T'F B’ : Il : k. k and «y € [Dy].
By validity, we know D3 :: ' Il : £/, & : kind.
By inversion on D3, we get Dy :: ' F &/ : kind.
From Dy and Dy, we get Dy :: T', o = &/ ok.
By mutual induction, [D"] v € [Ds] ~.
By mutual induction, [D"] v € [Ds] 7.
By coherence, [D1] v = [D"] v and [D2] v = [D"] ~.
So [D1] v and [D2] v are in ||Ha : &. &|.
Assume (A, R) € (Exp x Exp) x |[Ha : &. &]|.
Consider whether R € [D4] 7.
— Case R € [Dy4] ~:
Then (v, (4, R)/a) € [D}].
By weakening and rule on Dy, we get D} =T a: '+ Ba: k.
By weakening and rule on Dy, we get D} : T, a: k' B o : k.
By induction hypothesis, we know that [D}] (v, (4, R)/a) = [D4] (v, (A, R)/a).
However [Di] (v, (A, R)/a) = [D1] v (4, R).
However [Dy] (v, (4, R)/a) = [D2] v (A, R).
So [D1] v (A, R) = [D2] v (4, R).
— Case R & [D4] :
Then [Di] + (4, B) =l = [Ds] 7 (4, R).
Hence [D4] v = [D2] 7.

68

e Case D :THIa:k. X =la: k. X' : %
By inversion, we know that Fy :: 'k = £’ : kind
By inversion, we know that Fy :: I,a: s+ X = X' :
Assume Dy :: T ok, D] : T 1Tl : k. X @ % and D :: Fl—Ha kX
We want to show [D]]] v = [D5] -
By validity, we know that D; : T FTla: k. X : x and Dy : T F Ila : /. X7
By coherence, it suffices to show [D1] v = [D2] v
By inversion on Dj, we have DX :: Tk : kind and DX : T, a: k- X : %,
By inversion on D1, we have DX :: ' &’ : kind and DY =: T, : k' - X/ : %
By induction, [[D{(ﬂ v = [[Dg(]] v

=>: Assume é € [D;] . We want to show é € [Ds] 7.
Assume A, R € [DE] ~.

By our induction hypothesis, R € [[Df]] .

Hence ¢ A € [D¥] (v, (A, R)/a).

By weakening and substitution, we get D’X Dok B X x,
such that [D{¥] (v, (4, R)/a) = [D] (v,(A,R)/a).

By coherence, [[D/X]] ,(A,R)/a) = [DX] (v,(4,R)/w).
Hence e A € [[DX]] A ,R)/a).

<=: Symmetric.

7. Case DT Fe=¢€:X.

e D:THFe=¢: X (identity reflection).
By inversion, we have D' :T'Fe,:e=x € and D" :TFe=x ¢ : %
Assume we have Dy :: T' ok and Dy :: T'F X : % and v € [Do].
By inversion on D”, Dy ::T'Fe: X and D3 :T'Fée' : X and Dy : T'F X : %
Then since v ~p, 7, it follows that v(ep,) € [D"] ~.
Therefore (y1(e),v2(e")) € [Da4] 7.
Furthermore, by induction we know that (v1(e),y1(e)) € [D4] 7.
Furthermore, by induction we know that (y1(e’),v1(€¢’)) € [D4] 7.
By mutual induction we know that [Dy] is a candidate set, and is hence a QPER.
Therefore y(e1) ~[p,] - v(€2)-
By coherence, [D4] v = [D1] 7.
Hence y(e1) ~[p,] - V(€2)-

e D:uT'Fe=¢€: X (type equality).
By inversion, we know D' :T'Fe=¢ :Yand D" :THFX =Y : x.
Assume we have Dy :: T'ok and Dy :: T'F X : % and v € [Do].
By validity, we get Dy :: I'F Y : .
By mutual induction, [D1] v = [D2] 7.
By induction, y(e) ~pp,] - (€').

69

Hence y(e) ~[p,1 7(€').

DT+ [t/z]le=[t'/z]e: [t/x]Y.

By inversion, we have D' : THt=¢:X and D" :T,z: X Fe: Y.

Assume we have Dy :: I' ok and Dy :: T' = [t/2]Y : % and v € [Do].

By validity, we have Dy : T'Ht: X and D3 =Tt : X and Dy :: T X @ %,
Hence by rule with Dy and Dy, we have D}, :: T,z : X ok.

By validity, we have D5 : T,z : X FY : %,

By induction, we know that v(t) ~p, 4 7(t')

Hence (v,7(t)/x) ~p, (v, 7(t")/).

Hence by mutual induction we know (v,v(t)/x)(€) ~[Ds] (v(t)/z) (V> 7(t')/)(€).
By substitution, we have D} :: T [t/z]Y : % such that [D]] v = [Ds] (v,7(t)/x).
By coherence, [D1] v = [Dj] ~.

Hence (v, 7(t)/2)(€) ~pyy (3, (¢)/2)(e).

Hence 1([t/2]e) ~pug 1 1 /7le).

D:TH[A/ale=[A"/ale: [A/a]Y.

By inversion, we have D' : THFA=A": k" and D" =:T,a: k' Fe:Y.

Assume we have Dy :: T ok and Dy :: T'F [A/a]Y : kind and 7 € [Dy].

By validity, we have Dy : ' A: k" and D3 : T'F A’ : k" and Dy :: T+ & : kind.
Hence by rule with Dy and Dy, we have D}, :: T', o : &/ ok.

By validity, we have D5 :: T a: k' F Y 1 .

By induction, we know that [Ds] v = [Ds] ~.

Hence (v, (v(4), [Da] 7)/a) ~py (7, (1(A"), [Ds] 7)/).

By mutual induction (7, (7(4), [Ds] 7)/0)(€) ~1ps] ¢y (4411520 21/e) (1 (VA [Ds] 7)/a)(e):
By substitution, we have D} :: T'F [A/a]Y : % such that [D]] v = [Ds] (v,7(A4)/«).
By coherence, [D1] v = [Dj] ~.

Hence (v, (v(4), [Da] 7)/a)(€) ~prg~ (1 (1(4), [Ds] 7)/)(e).

Hence ~([4/ale) ~gpr] » 7([A'/ale).

D:TFe=e:X (reflexivity).

By inversion, D' :: Tk e: X.

Assume we have Dy :: T'ok and Dy : '+ X @ % and v € [Do].
Note that v ~p, 7.

By mutual induction vy(e) ~p,] 5 v(e)-

D:TFe=¢: X (symmetry).

By inversion D' : 'k e’ =e: X.

Assume we have Dy :: T'ok and Dy : T'F X : % and v € [Do].
By induction, we know that y(e’) ~p,1~ v(€)-

Hence y(e) ~[p,]+ V(€)-

D:TtFe=e¢": X (transitivity).
By inversion, D' :Tke=¢: X and D" : T+ ¢ : e’ X.

70

Assume we have Dy :: T'ok and Dy :: T'F X : % and v € [Do].
Hence y(e) ~[p,] 4 V(€)-

Hence y(€') ~p,]~ 7(e").

Hence it follows that y(e) ~p,]~ v(e”).

D:TFM\a:k.e) A=[A/ale: [A/a]Y.

By inversion, we have D' : T A a: k. e:lla: k. Y and D" : T+ A : k.
Assume we have Dy :: T' ok and Dy :: T'F [A/a]Y : x and v € [Dy].

By validity, we know Do :: I' 1l : k. Y : x.

By inversion on Dy, we know D3 :: 'k : kind and Dy : T a: kEY @ .
From Dy and D3 we have D, :: ', o : K ok.

By induction, we know that y(Aa : k. €) ~[p,] 4 V(A : k. €).

By induction, we know that [D”] v € [Ds] ~.

Hence it follows that y((Aa : K. €) A) ~[D,] (+,(v(A),[D"] v)/a) V((Aa i K. e) A).
By substitution, we have D} : T'F [A/a]Y : % so [D}] v = [D4] (v, (v(4),[D"] ~v)/).
By coherence [D1] v = [D]] ~-

Hence y((Aa: k. €) A) ~p,15 V(A : k. €) A).

Since types are closed under reduction, y((Aa : k. €) A) ~[p,], V([4/ale).

D:TkHMx:X.e)e =[e/z]e: [¢/x]Y.

By inversion, we have D' : TF Xz : X.e:Ilz: X.Y and D" : Tk e: X.
Assume we have Dy :: ' ok and D; :: T [¢//z]Y : % and v € [Dy].

By validity, we know Do :: ' F1lx : X. Y : x.

By inversion on Dy, we know D3 :T'F X :xand Dy =T,z : X FY : %
From Dy and D3 we have D :: ',z : X ok.

By induction, we know that y(Az : X. e) ~[p,] v 7(Az : X. e).

By induction, we know that y(e') ~[p, 4 7(€').

Hence it follows that v((Az : X. €) €') ~[D,] (vy(e')/z) V(AT : X. €)).

By substitution, we have D} :: T'F [¢//x]Y : % so [D]] v = [D4] (v, (v(¢"),[D"] ~)/x).
By coherence [D1] v = [D]] ~-

Hence y((Az : X. e) €') ~[p,14 7((Az: X. e) €).

Since types are closed under reduction, y((Az : X. e) €') ~p,1, V([¢'/7]e).

D:The=¢€:llz: X.Y.

By inversion, we have D' : T,z : X Fex: ¢ z2Y.

Assume we have Do :: T' ok and Dy :: T'F1Ilz : X. Y : % and v € [Do].
By inversion on Dy, we have Dy : ' X :xand D3 = ',x : X FY : %,
Hence we have D, :: T,z : X ok.

We want to show that y(e) ~p,~ 7(¢').

To show this, assume we have ¢ € [Ds] 7.

We want to show that y(e) & ~[p, (v.i/x) V(€) T-
Now note that (v,t/z) € [D{].

By induction, (v,t/z)(e) ~p,] (vi/2) (7:/2)(€').
Note that x € FV (e,).

Hence this is equivalent to y(e) t ~[p,] (y,i/2) V(€) .

71

Hence y(e) ~[p,1 7(€').

e DuTte=¢ :lla:k.Y.
By inversion, we have D' : T, a:kFea:e aY.
Assume we have Dy :: T'ok and Dy : T'F Il : 6. Y @ % and v € [Do].
By inversion on D, we have Dy :: 'k : kind and D3 : T, a: sk FY : %,
Hence we have D, :: T', v : K ok.
We want to show that y(e) ~p,~ 7(¢').
To show this, assume we have A € Type? and R € [D] v
We want to show that v(e) A ~1Ds] (va(AR) /o) y(e') A.

Now note that (v, (4, R)/a) € [Dg]. B
By induCtionv (77 (A7 R)/a)(e Ck) N[[D:;]] (W,(Z,R)/a) (77 (A7 R)/Oé)(€/ 04).
Note that o € FV(e,¢’).

Hence this is equivalent to v(e) A ~Ds] (v(AR) /o) ~(e")

Hence y(e) ~[p,1~ 7(€')-

N

References

[Barendregt(1991)] H. Barendregt. Introduction to generalized type systems. Journal of functional
programming, 1(2):125-154, 1991.

[Hofmann(1995)] M. Hofmann. A simple model for quotient types. In Typed Lambda Calculi and
Applications, pages 216-234. 1995.

[Hofmann and Streicher(1998)] M. Hofmann and T. Streicher. The groupoid interpretation of type
theory. In Twenty-five Years of Constructive Type Theory. Oxford University Press, 1998.

[Martin-Lo6£(1984)] P. Martin-Lof. Intuitionistic type theory. Bibliopolis Naples, Italy, 1984.

[Wadler(1989)] P. Wadler. Theorems for free! In FPCA 1989, pages 347-359, New York, NY,
USA, 1989. ACM. ISBN 0-89791-328-0.

72

