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2.1 Operational Properties
Lemma 1 (Extension). If (o;e) | (0';v), then there exists ¢” such that ' = o - ¢”.
Lemma 2 (Uniformity). If (:;e) { (;Vv), then (o;e) | (o;Vv).
Lemma 3 (Permutability). We have that:
1. If m € Perm and (o;e) | (o';v) then (n(c);7t(e)) I (m(o’);7t(v)).
2. If t € Perm and 0 = o’ then n(o) = m(0’).

Lemma 4 (Supportedness). We have that:



(o;e) | {o’;V)

(o) I (o3v)
(g5e1) U {o’sv1)  (ose2) I (0";v2) (7€) 4 {075 (v1,v2)) (7€) 4 (075 (v1,v2))
(03 (er,€2)) U (0”5 (v1,V2)) (osfste) 4 (o'5v1) (o;snde) || (0';v2)
(o5€) 4 (05v) (o05€) 4 {0”5v)
(o;inle) |} (o’5inlv) (o;inre) | (o’;inrv)

(o;e) I (o';inlv) (o’;[v/xle’y I (a”;v") (o;e) |l (o';inrv) (o’;v/yle”y I (a”;v")
(o;case(e,inlx — e’ inry — e”)) | (¢”;v") (o;case(e,inlx — e’,inry — e”)) | (¢”;v")
(o;e1) I (0';Ax. e}) (0’;e2) I (0”;v2) (0" vz /xler) I (a”;v)

(e e2) I (0";v)

(o;e’) | (0';0) 1 ¢ dom(o”’) (o;e) b (o';1) (o;[1/xle") I (a”;v) l:vnow € o
(0;6¢/(e)) b ((0',1: e later);1) (o;letd(x) =eine’) | (o”;v) (o311 I (o3 v)

(oye) I (a'v) (o;e) |l (o';intov)
(o;intoe) | (o';intov) (o;oute) | (o';v)
(oye) | (o3v) (o7e) I (o';stable(v))  (o';lv/xle’) | (o";v")
(o; stable(e)) | (o; stable(v)) (o;let stable(x) =eine’) | (¢”;v")

(o;e) I (o';v) (o’;e’y I (a”;v") (o;e) |l (o’;cons(v, 1)) (0';[v/x,1/xsle’) I (a”;v")

{(o;cons(e,e’)) | (¢”;cons(v,v’)) (o;let cons(x,xs) =eine’) | (c”;v")
(0; fixx. e/x]e) I (o';v) (oye) I (0';v)
(o;fixx. e) | (o’;v) (o;promote(e)) | (o’;stable(v))

Figure 2: Expression Semantics

/

c=0
o= o’ 1 & dom(c”) o= o’ 1 ¢ dom(o”)
= o,l:vnow = o’,1:null o,l:null = ¢’,1: null

c=0  (o%e) | (c";v) 1¢&dom(c")
o,l:elater = ¢”,1:v now

Figure 3: Tick Semantics



Qualifiers q now | stable | later

Contexts TI' == - | [x:Aq
(1)° = -
(hx: A later)® = T*x:Anow
(x: A stable)®* = T° x:A stable
(Lx: A now)® = T°
()° =
(Nx: A stable)” = T x:A stable
([x:A Iater)D = U
(Tx:Anow)® = 0

Figure 4: Hypotheses, Contexts and Operations on Them

1. IfeCoand o’ < otheneC o’
2. IfeC oande’ C o then [e/x]e’ C o.
3. If o supported and e C o and (o;e) | (o/;v) then v C o’ and o’ supported.
4. If o supported and 0 = o’ then o’ supported.
Lemma 5 (Quasi-determinacy). We have that:

1. If (oye) | (0’;v") and (o;e) |} (o”;v") and o supported and e C o, then there is a m € Perm such that
n'(0’) = 0" and (o) = o.

2. If 0o = o’ and 0 = ¢" and o supported, then there is a m € Perm such that n(c’) = ¢ and n(c) = o.

2.2 Semantic Properties
Lemma 6 (Order Permutation). If 6’ < o and ©w € Perm then 7t(c’) < 7t(0).
Lemma 7 (Heap Renaming). For all m € Perm and o € Heap,, (o) € Heap,,.
Lemma 8 (Kripke Monotoncity). If p is a monotone environment and w’ < w, then V [A] p w’ D V[A] p w.
Lemma 9 (Renaming). We have that:
1. If p is a permutable environment and 7t € Perm and v € V [A] p w then mt(v) € V [A] p 7t(w).
2. If p is a permutable environment and m € Perm and e € £ [A] p w then 7t(e) € € [A] p 7t(w).
3. If p is a permutable environment and 7t € Permand e € L [A] p w then mi(e) € L [A] p m(w).

Lemma 10 (Supportedness of the Logical Relation). If p is a supported environment and v € V [A] p w then
v L w.o.

Lemma 11 (Weakening). Assuming p is a type environment, we have that:
1. IfFV(A) C dom(p) then V[A] pw =V [A] (p,p’) w.
2. IfFV(A) C dom(p) then E[A] pw = E[A] (p,p') W.



I'Fe:Anow I'e’:Bnow I 'Fe:A xBnow LE I'Fe:A xBnow
Ik (e,e’): A xBnow % I fste: A now FFsnde:Bnow
I'ke:Anow I'He:Bnow
. +1I - +RI
linle: A+ B now I'inre: A+ B now
I'ke:A+Bnow Ix:Anowk e’ :Cnow NLy:Bnowte”:Cnow .
' case(e,inlx — e’ inry — e”) : C now *
Ix:Anowt e: B now ; l'e:A — Bnow I'ke':Anow
FFAx.c:A - Bnow M-ee :Bnow -
Mke:A later Ik e’ :alloc now Ik e:eA now Ix:A later-e’: C now
[ ) ]
IS/ (e): @A now F'Fletd(x) =eine’: C now
I'te:[o(ftee. A)/a]A now : I'e:fix. A NOW .
'intoe: fix. A now " 't oute: [e(fix. A)/x]A now H
I e: A stable - Ik e:0A now I‘,x:/\stablel—e’:CnowDE
I' - stable(e) : JA now ' let stable(x) =eine’: C now
I'-e:Anow I“}—e’:o(SA)nowSI
'+ cons(e,e’) : SA now
l'Fe:SAnow Ix:Anow,xs:e(SA)nowk e’ :C now SE
'k let cons(x,xs) =eine’: C now
x:A € {now, stable
q q¢€{now, }HYP
I'Ex:A now
'Y x: A later e : A now l'-e:Anow A stable
- Fix PROMOTE
't fixx. e: A now ' promote(e) : JA now
'~k e: A now M Fe:Anow
—— — TSTABLE —— - TLATER
'+ e: A stable I'te:A later
A stable
A stable B stable A stable B stable
A x B stable A + B stable CJA stable

Figure 5: Typing
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Figure 6: Definition of Store-supportedness
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q\
IN
Q
E Il

dog. 009 =0’

{T, 1}
a=a' V(@ =1LNa=T)

Q\
IN
o
ﬂ I

{(n,0,a) [ n e NA o € Heap, A ac Cap}
n<nAo’' <ocAa"<a

2
q\
Q\
IA
B
Q
e
][ [

Ywaw/ . w' <w = Xw DXwA
Type = X € World — P(Value) | Vrt € Perm,w. t(X w) = X (7t(w)) A
Yw,v € Xw.vCw.o

Figure 7: Definition of Worlds



V] pw = paw

V[fix. A] pw = {intov|ve V[A] (p,V[e(ficc. A)] p w/ex) W}
V[A+B]pw = {inlv|ve V[A]pwlU{inrv|v e V[B]pw}
VIAxB]pw = {(vi,v2) Ivi e V[A]pwAv, € V[B]pw}

A B N Ax.e Ew.o A
VIA—BJow o { X € V7t € Perm,w’ <w, e’ € £[A] p t(w’). [e’/x]nt(e) € € [B] p mt(w’ }
V[eA] p w = {l|w.oc=(00,l:elater,01) AVm € Perm,w’ < (w.n, oo, w.a). 7t(e) € L[A] p t(w’)}
V[SA]pw = {cons(v,v') |[ve V[A]pwAV € V[eSA]pw}
V[OA]pw = {stable(v) |ve V[A]p (wn,- T)}
V [alloc] p w = {o|lw.aa=1}

eC o
EJA]p (n,0,a) = e| Vo' <o.30" <o',veV[A]p (n,0" a).
(o) L (oW Ala=T = o” = o)

L[A]p (0,0,a) = {e€Expr|eC o}
LI[A]p (m+1,0,a) = {ecExprieCoNo= o' AVw < (n,0';a).ec E[A]pw'}
EnV( ) w = {0}

Env([[x: A now) w = {(v,e/x) |y € Env(I) wAYW <w.ee€EJA]- (W)}

Env(lix: Astable)w = {(y,e/x) |y € Env(l) wAYW <w.ee€[A]: (w.mn,,T)}
Env(ix:Alater)w = {(yv,e/x) |y € Env(l) wAYW <w.e e L[A]- (W)}

Figure 8: The Logical Relation
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Figure 9: Operations on Environments



3. IfFV(A) C dom(p) then L[A] pw = L[A] (p,p’) W.
Lemma 12 (Type Substitution). We have that:
1. For all type environments p and w, V [B] (p, V[A] p /o) w = V [[A/«IB] p w.
2. For all type environments p and w, € [B] (p, V[A] p /o) w = E [[A/aIB] p w.
3. For all type environments p and w, L [B] (p, V [A] p /x) w = L [[A/«IB] p w.
Lemma 13 (Value Inclusion). Ifv e V[A]pwthenv € E[A] p w.
Lemma 14 (Kripke Monotoncity for Environments). If w’ < w, then Env(I") w’ D Env(T") w.
Lemma 15 (Renaming for Environments). If m € Perm and vy € Env(A) w then ni(y) € Env(A) mt(w).
Lemma 16 (Environment Shift). Supposey € Env(T") w. Then:
1. YF € Env(I™) (w.n,-, T).
2. Ifw=n+1,0,a) and 0 = o', then y}. € Env(I'*) (n,0’, a).
Lemma 17 (Stability). If A stable andv € V[A] pw, thenv € V[A]p (wn,-, T).
Theorem 1 (Fundamental Property). The following properties hold:
1. IfTFe: Alaterandy € Env(I") w, then y(e) € L]A] - w.
2. IfT+e:Astableand y € Env(I') w, theny(e) € E[A] - (wn, -, T).
3. IfT+e:Anowandy € Env(l') w, then y(e) € E[A] - w.

3 Proofs

3.1 Operational Properties
Lemma 1 (Extension). If (o;e) || (c';Vv), then there exists 6" such that ¢’ = o - o
Proof. This follows by induction on the evaluation derivation.

e Case (o;v) |} (o;v):
Take the existential witness to be -.

e Case (0;e1 e2) | (o";v):

By inversion, (o;e1) | (o/;Ax. e7) and (0’;ez) | (¢”;v2) and (c”;[v2/xle’) | (¢";V).
By induction, ¢’ = o - 0p.

By induction, 6” = ¢’ - 07.

By induction, 0"’ = ¢” - 05.

Hence 6"’ =0 - 0p - 07 - 03.

Take the existential witness to be o - 07 - 03.

e Case (0p;cons(e,ez)) I (o2;c0ns(vi,v2)):
By inversion, (oo;e1) | (o1;v1) and (o7;e2) I (02;v2).
By induction, o1 = 09 - 0}.
By induction, 0, = o7 - 07.
Hence 0, = 0 - 0} - 07.
Take the existential witness to be o}, - 07.



Case (0p;let cons(x,xs) =eine’) | (o2;Vv'):

By inversion, (oo;e) | (o1;cons(v, 1)) and (o1; [v/x,1/xsle’) || (o2;v).
By induction, o1 = 0y - 0}.

By induction, 0, = o7 - 07.

Take the existential witness to be o}y - o7.

Case (058 (e)) | (0’,1: e later;1):

By inversion, (o;e’) |} (0’;0).

By induction, ¢’ =0 - 0.

Take the existential witness to be 0”1 : e later.

Case (0p;let §(x) =eine’) | (o2;v):

By inversion, (oo;e) | (o1;1) and (o7; [Il/x]e’) I (o2;V).
By induction, o1 = 0y - 0}.

By induction, 02 = 07 - 07.

Take the existential witness to be o}, - 07.

Case (o;!1) |} (o;v):
Take the existential witness to be -.

Case (o;stable(e)) | (o; stable(v)):
Take the existential witness to be -.

Case (0p; let stable(x) = eine’) || (o2;v'):

By inversion, (oo;e) | (o7;stable(v)) and (o1; [v/x]e’) | (o2;v’).
By induction, o1 = 09 - 0}.

By induction, 02 = 07 - 07.

Take the existential witness to be o}, - 07.

Case (o;fixx. e) I (o’;v):

By inversion, (o; [fixx. e/xle) | (a’;Vv).
By induction, ¢’ = o - 0.

Take the existential witness to be o”.

Case (o;promote(e)) | (o’;stable(v)):
By inversion, (o;e) | (o/;v).

By induction, ¢’ =0 - 0”.

Take the existential witness to be o”.

Case (o;inle) | (a’5inlv):
By inversion, (o;e) | (o’;v). By induction, ¢’ =0 - ¢”.
Take the existential witness to be o”.

Case (oyinre) |} (o’5inrv):
By inversion, (o;e) | (o’;v). By induction, ¢’ =0 - ¢”.
Take the existential witness to be o”.

Case (o;intoe) || (o’;intov):
By inversion, (o;e) | (¢’;v). By induction, ¢’ =0 - ¢”.
Take the existential witness to be o”.

Case (o;oute) || (o’;v):
By inversion, (o;e) | (o’;intov). By induction, 0’ = o - 0”.
Take the existential witness to be o”.



e Case (o;case(e,inlx — e’ inry — e”)) | (o”;v’):
By inversion,
either (o;e) || (o’;inlv) and (o’;[v/x]le’) || (c”;v’) or (o5e) I (o’;inlv) and (c’;[v/yle”) |} (¢”;v’).
Suppose (o;e) | (o’;inlv) and (o’; [v/x]e’) I (c”;v’).
Then by induction, 0’ = o - 0p.
Then by induction, ¢” = ¢’ - 07.
Take the existential witness to be oy - 07. Suppose (o;¢e) | (¢’;inrv) and (o’;[v/yle”) | (¢”;v’).
Then by induction, 0’ = o - 0p.
Then by induction, 6” = ¢’ - 07.
Take the existential witness to be 0y - 07, so that 0" = o (0 - 07).

e Case (05 (e, e2)) | (0" (vi,v2)):
By inversion, (o;e1) | (o’;v1) and (0’;e2) I (c”;v2).
By induction, 6’ = ¢ - 0.
Then by induction, 6” = ¢’ - 07.
Then by induction, 6” = ¢’ - 07.
Take the existential witness to be 0y - 07, so that 0" = o - (0 - 07).

e Case (o;fste) || (o/;Vv):
By inversion, (o;e) | (o/; (v,v’)).
By induction, ¢’ =0 - 0”.
Take the existential witness to be o”.

e Case (o;snde) | (o’;v'):
By inversion, (o;e) | <(r', v, v')).
By induction, 0’ = o - ¢”
Take the existential witness tobe o”.

Lemma 2 (Uniformity). If (:;e) | (;Vv), then (o;e) | (o;Vv).
Proof. This follows by induction on the evaluation derivation.

e Case (;v) | (;v):
By rule, (o;v) | (o;V).

o Case (eq e2) | (5v):
By inversion, (;er) |} (o/;Ax. ¢’) and (0';e2) | (¢”;v2) and (c”;[va/xle’) | (:;v).
By uniformity, we know that - extends o, hence ¢” =
By uniformity, we know that 0" extends o', hence ¢’ = -.
By induction, (o;e1) | (o;Ax. e’).
By induction, (o;ez) { (o;v2).
By induction, (o; [v2/xle’) | (o;Vv).
By rule (o; e; ez> 4 {(oyV).

e Case (-;cons(e,ez)) | (;;cons(vy,va)):
By inversion (-;e1) I (o/;Ax. e’) and (0';e2) I (;v2).
By uniformity, we know - extends o’, and so ¢’ = -.
By induction, (o;e1) { (o;v1).
By induction, (o;e2) { (o;v2).
By rule, (o;cons(ey,ez)) |} (o;cons(vy,va)).

e Case (-;letcons(x,xs) =eine’) | (;v'):
By inversion, (-;e) | (o’;cons(v,1)) and (o’; [v/x,1/xsle’) I (;v’).

10



By uniformity, we know - extends o’, and so ¢/ =
By induction, (o;e) | (o;cons(v,1)).

By induction, (o; [v/x,1/xsle’) |} (o;v').

By rule, (o;let cons(x,xs) =eine’) | (o;Vv).

Case (;;8¢/(e)) 4 (5 1):

This case is impossible, since the returned store cannot be empty.

Case (;let §(x) =eine’) | {;v):

By inversion, (-;e) | (¢’;1) and (o’ ['l/x] e) | < v >
By uniformity, we know - extends o’, and so ¢/ =
By induction, (o;e) | (o;cons(v,1)).

By induction, (o; [!11/x]e’) | (o;v’).

By rule, (o;let 6(x) =eine’) | (o;v).

Case (;!1) 4 (;v):

This case is impossible, since the input store cannot be empty.

Case (-;stable(e)) |} (-;stable(v)):

By inversion, (-;e) | (-;Vv).

By induction, (o;e) | (o;v).

By rule, (o;stable(e)) | (0 stable(v)).

Case (-;let stable(x) =eine’) | (;v'):

By inversion, (-;e) | (o’;stable(v)) and (o’ v/x e ) 4 v
By uniformity, we know - extends ¢’, and so ¢’ =

By induction, (o;e) | (o;stable(v)).

By induction, (o; [v/x]e’) | (o;Vv’).

By rule, (o;let stable(x) = eine’) | (o;v).

Case (;fixx. e) | (;v):

By inversion, (-; [fixx. e/xle) | (V).
By induction, (o; [fixx. e/x]e) |} {(o;V).
By rule, (o;fix x. e) U (o;v).

Case (-;promote(e)) | (-;stable(v)):

By inversion, (-;e) | (-;Vv).

By induction, (o;e) | (o;V).

By rule, (o;promote(e)) | (o; stable(v)).

Case (-;inle) | (;inlv):

By inversion, (-;e) | (-;v).
By induction, (o3 e) | (o;V).
By rule (o;inle) | (o;inlv).

Case (-;inre) J (-;inrv):

By inversion, (-;e) | (-;Vv).
By induction,(o;e) | (o;V).
By rule (o;inre) | (o;inrv).

Case (-;case(e,inlx — e’;inry — e”)) | (;v'):

By inversion, either (-;e) | (;inlv) and (-;[v/xle’) || (-;v’) or (;;e) 4 (;inlv) and (-;[v/yle”) | (V).
Suppose (;e) | (;inlv) and (-;[v/x]e’) | {-;v7).

By induction, (o;e) | {(o;inlv).

11



By induction, (o; [v/x]e’) | {o;Vv’).

By rule (o;case(e,inlx — e’;inry — e”)) |} (o;Vv’).
Suppose (;e) | (;inrv) and (-;[v/yle”) J (;v7).
By induction, (o;e) | (o;inlv).

By induction, (o; [v/yle”) { (o;v’).

By rule (o;case(e,inlx — e’,inry — e”)) |} (o;v’).

L4 Case< (61362» <,(V1,V2)>
By inversion, (- e1) | (-;vi) and (-;e2) I (;;v2).

By induction (o;e1) | (o;v1).
By induction (o;e2) || (o;v2).
By rule, (o3 (e1,e2)) I (o (vi,v2)).

o Case (;fste) | (;v):
By inversion, (5 e) | (-; (v, )>
By induction, (o;e) | (o; (v,v')).
By rule, (o;fste) || (o;v).

e Case (;snde) | (;v'):
By inversion, (-;e) | (-; (v,v’)).
By induction, (o;e) || <0 (V v')).
By rule, (o;snde) | (o;v’).

e Case (;intoe) | (;intov):
By inversion, (-;e) | (-;v).
By induction, (o3 e) | (o;V).
By rule (o;inle) |} (o;inlv).

e Case (;oute) || (;v):
By inversion, (-;e) { (-;intov).
By induction,(o;e) | (o;intov).
By rule (o;inle) | (o;V).

Lemma 3 (Permutability). We have that:
1. If © € Perm and (o;e) |} (o’;v) then (n(o);m(e)) | (m(a’);7t(v)).
2. If m € Perm and 0 = o' then n(o) = m(0”’).

Proof. 1. We proceed by induction on the evaluation relation.

e Case (o;v) |} (o;v):
Assume we have 7t € Perm.
Then by rule (nt(0);t(v)) I (7t(0); (V).
e Case (0;e1 e2) | (o”;v):
By inversion, (o;e1) | (o/;Ax. e7) and (0”;e2) I (o”;v2) and (0”; [v2/x]e’) | (¢"";v).
Assume we have 7t € Perm
By induction, (nt(c); 7 > (m(o’);m(Mx. ef))
and (n(0”);(e2)) u< (o e(v2))
and (n(0”); m([v2/xle")) b (n(o"); m(v)).
Note that 7t(eq e2) = 7t(er) 7t(e2).
Note that t(Ax. e’) = )\x m(e’).
Note that 7t([v2/xle’) = [r(v2)/x]I7(e”).
Hence by rule, (t(0);7t(eq e2)) | (m(c”);7t(v)).
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e Case (0p;cons(er,ez)) | (o2;c0ns(vi,v2)):
By inversion, (oo;er) | (o1;v1) and (o7;e2) I (02;v2).
Assume we have 7t € Perm.

By induction, (nt(oo);7(er)) | (m(o1);7t(v1)).

By induction, (nt(o);7(ez)) | (m(02);7t(v2)).

Note that 7t(cons(e, ez)) = cons(mt(eq), (e2)).

Note that 7t(cons(vi,v2)) = cons(mt(vq), t(v2 ))

Hence by rule (7t(0o);t(cons(er, ez))) | (m(o2);(cons(vi,vz))).

)
e Case (0p;let cons(x,xs) =eine’) | {(oz;Vv’
)

v
By inversion, (0¢;e) |} (o1;cons(v,1)) and
Assume we have 7t € Perm.

By induction, <7‘C(O’];Tlf(€)> I (n(o ),n(con (v, ))).
By induction, (7t(o);7t([v/x, /xsle’)) I (r(a2);7(v")).
Note that T[(COI"IS(V 1)) = cons( (v), mt(1)).
Note that 7t([v/x, 1/xsle’) = [t(v)/x, 7t(1) /xs]mt(e’).
Note that 7t(let cons(x,xs) = e in e’) = let cons(x, xs) = mt(e) in 7t(e’).
Hence by rule (7t(0o); 7t(let cons(x,xs) = eine’)) | (n(o2);(v')).
e Case (0;0./(e)) |} (o/,1: e later;1):
By inversion, (o;e’) | (0/;0) and 1 ¢ dom(o”’).
Assume we have 7t € Perm.
By induction, (nt(c);7t(e’)) I (7(c”;0).
By properties of permutations, if | ¢ dom(c’), then (1) ¢ dom(7n(c”)).
Note that 7(d¢/(€)) = S (ery(7t(e)).
Note that t(o’,1: e later) = 7t(o’), (1) : t(e) later.
Hence by rule, (nt(o); (8¢ (e))) { (m(o’,1: e later); (1)).
e Case (0p;let 6(x) =eine’) || (o2;v):
By inversion, (oo;e) | (o1;1) and (o7;[Il/x]e’) I (o2;Vv).
Assume we have 7t € Perm.
By induction, (nt(oo);7(e)) | (m(o);7(1)).
By induction, (nt(o); ([!11/x]e’)) | (m(02);7t(v)).
Note that 7t([!1/x]e’) = [lzt(1)/x]7t(e’).
Note that 7t(let 5(x) = e in e’) equals let é(x) (e ) in Tt( .
Hence by rule, (t(op); t(let 5(x) = e ine’)) | (m(o2); (v)).
e Case (o;!1) | (oyV):
By inversion, we know that 1: v now € o.
Assume we have 7t € Perm.
Note that 7t(1) : 7t(v) now € 7t(0o).
Note that 7t(!1) = !7t(1).
Hence by rule, (nt(o); (1)) | (r(0); 7t(v)).

e Case (o;stable(e)) |} (o;stable(v)):

By inversion, we know that (o;e) | (o;V).

Assume we have 7t € Perm.

By induction, (nt(c);7t(e)) | (m(o);7t(v)).

Note that 7t(stable(e)) = stable( (e)) and 7t(stable(v)) = stable(mt(v)).
Hence by rule, (nt(o); t(stable(e))) |} (rt(o); mt(stable(v))).

e Case (0y;let stable(x) =eine’) | (o2; v’)
By inversion, (oo;e) | (o1;stable(v)) and
Assume we have 7T € Perm.

By induction, (1t(0o);7t(e)) |} (mt(o1); t(stable(v))).
By induction, (nt(o4);7t([v/x]le)) I (mt(o2);(v')).

):
(o1;v/x, 1/xsle’) | (o2;V").

(o1;v/xle’) I (o2;v').
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Note that 7t(stable(v)) = stable(mt(v)).

Note that 7t([v/x]e’) = [rt(v)/x]mt(e’).

Note that 7(let stable(x) = e in e’) equals let stable(x) = 7t(e) in t(e’).
Hence by rule, (rt(0y); t(let stable(x) = eine’)) | (m(o2);m(v’)).

Case (o;fixx. e) || {(o/;v):

By inversion, (o; [fixx. e/x]e) |} {(o’;v).

Assume we have 7t € Perm.

By induction, (rt(o); 7t([fixx. e/xle)) | (m(o”); 7t(v)).
Note that 7t(fix x. e) = fix x. 7t(e).

Note that 7t([fix x. e/x]e) = [fixx. 7t(e)/x]7t(e).
Hence by rule, (nt(o); nt(fixx. e)) § (n(c”’); (v)).

Case (o;promote(e)) | (o’;stable(v)):

By inversion, (o;e) | (o';V).

Assume we have 7t € Perm.

By induction, (r(0);7(e)) I ((o”);m(v)).

Note that 7t(promote(e)) = promote(n(e) and ﬂ(promote( )) = promote(v).
Hence by rule, (t(o); (promote(e))) | (r(o’); 7t(stable(v))).
Case (ojinle) |} (o’;inlv):

By inversion, (o;e) | (o';V).

Assume we have 7t € Perm.

By induction, (nt(0);7t(e)) | ( n(o’);m (v)>

By rule, we have (ni(o);inrmt(e)) | (m(a’);inrt(v)).

By definition, (nt(o);mt(inre)) | (n(c’ ), (Inrv))

Case (o;inre) | (o’;inrv):

By inversion, (o;e) | (o’;V).

Assume we have 7t € Perm

By induction, (nt(c);7t(e)) | (mt(o’); (V).

By rule, we have (nt ( ) mln(e)) ( nt(a’);inlt(v)).
By definition, (7t(o);7t(inle)) I (m(c’);7t(inlv)).

Case (o;case(e,inlx — e’jinry — e”)) | (c”;v'):
By inversion, either (o;e) | (o’;inlv) and (o’;[v/x]le’) | (o”;v’) or (o;e) I (o’;inlv) and
(0" v/yle”) L ("),

Suppose (o;e) | (o/;inlv) and (o’; [v/x]le) I (a”;v’).

By induction, (n(o),n(e Y 4 (m(o”); m(inlv)).

By definition, (rt(o);7t(e)) | (rt(c’);inl 7t(v)).

By induction, (n(o’);t([v/x]e’)) | (m(c”);m(v')).

By definition, (nt(c”); [rt(v)/xInt(e’))) | (r(c”); 71(\)’)).

By rule, (n(0);case(n(e),inlx — mt(e’), Inry — m(e”))) | (o”;m(v')).
7

By definition, (7t(c);t(case(e,inlx — e’,inry — e”))) I (¢”;7(v')).

Suppose (o;e) | (o’;inrv) and (o’;[v/yle”) I (a”;v’).
Suppose (o;e) | (o'; |nrv> nd (o’; [v/xle’) | (a”;Vv').
By induction, (nt(c); 7 > (n(o’);m |nrv)>
By definition, (rt(o);7t(e)) | (rt(o’);inrm ))
By induction, (rt(c”); 7 (v/y e”)) | (n(o’ ( v)).
By definition, (7t(¢’); [7t(v)/ylm(e”)) iL( a); (v’)).
By rule, (n(0);case(m(e),inlx — mt(e’),

m

lnfy—HT( ) 4 (o’ »ﬂ(V’)%
U (o .

By definition, (7t(c);t(case(e,inlx — e’,inry — e”)))
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e Case <0—; (61 ) 62)> 2 <0J (V1 ,V2)>
By inversion, (o;e1) | (0 V1) and (o'5e2) 4 (a”;v2).
By induction, (r(0o);7( e 1))-
By induction, (n(o”); 7 > 4 <7‘[(G”);7’[(V2)>.

By rule, (re(); (m(e1), (ez))> (o™ (m(v1 ), 7(v2))).
By definition, (7t(0); (e, e2)) | (mt(a”);7(

e Case (o;fste) || (o/;v):
(

By inversion, (o;e) { (o’; (v,v')).
By induction, (nt(c);7t(e)) | (m(a’); (v, v")).
By definition, (7t(c);7t(e)) | (r(0’); (m(v), (v)))
By rule, (n(0);fstm(e)) | (m(o’);7t(v)).
By definition, (rt(o);mt(fste)) | (m(o’);7t(v))
e Case (o;snde) || (o’;v'):
By inversion, (o;e) | (o’;(v,v'))
By induction, (nt(c);7t(e)) | (m(o’);m(v,v")).
By definition, (nt(o);7t(e)) | ((c”); (m(v), (v')))
By rule, (n(0);sndn(e)) | (m(c’);(v’)).
By definition, (nt(0); t(fste)) | (m(a’);7t(v')).

e
e Case (o;intoe) || (o’;intov):
By inversion, (o;e) | (o/;v).
Assume we have 7t € Perm.
By induction, (nt(c);7t(e)) | (7'[(0’);71(\))).
By rule, we have (n(0);into rt(e)) (ao");
By definition, (rt(o);t(intoe)) | (n(o’ ),n(lntov)>

7(

e Case (o;oute) | (o';v):

By inversion, (o;e) | (o/;intov).

Assume we have m € Perm.
(e

7i(

7(

By induction, (nt(c);7t(e)) | (m(o’);m(intov)).
By definition, (nt(o);7t(e)) I (n(o ’ ); ntOTC (v)).
By rule, we have ( ( J;outmt(e)) I (m(o’);mt(v)).
By definition, (7t(c);t(oute)) | (mt(o’);7t(v)).

2. Assume we have 7 € Perm. Now we proceed by induction on the derivation of 0 = o”.

o Case — -
Immediate, since 7t(-) =

e Case o,1:v now = o’/,1: null:
By inversion, 0 = o’.
By induction, 7t(0) = m(o”).
Note that 7t(o,1: v now) = t(0), 7t(1) : t(v) now and 7t(o, L : null) = 7(o), 7t(1) : null.
Hence by rule, nt(o,1: v now) = m(o’).
e Case o,1: null = ¢’,1: null:
By inversion, 0 = o’.
By induction, 7t(0) = m(o’).
Note that 7t(o, 1 : null) = (o), 7t(1) : null.
Hence by rule, (o, 1: v now) = 7t(0’).
e Caseo,l:elater= o":
By inversion, 0 = o’ and (0’;e) | (¢”;v) and 1 ¢ dom(c”).
By induction, 7t(0) = m(c”).
By expression permutation lemma, (nt(c”); 7t(e)) | (mt(0”); t(v)).
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By properties of permutations, 7t(1) € dom(m(c”)).
Hence by rule, nt(o,1: e later) = n(o”).

O
Lemma 4 (Supportedness). We have that:
1. IfeCoand o' < otheneC o’
2. IfeC oand e’ C o then [e/x]e’ C o.
3. If o supported and e C o and (o;e) | (o’;v) then v C o’ and o’ supported.
4. If o supported and 0 = o’ then o’ supported.
Proof. We proceed as follows:
1. This follows from an induction on the syntax of e.
2. This follows from an induction on the syntax of e’.
3. This can be proven by induction on the derivation of (o;e) || (¢’;v). The two interesting cases are:
o Casee =d.,(er):
By hypothesis, we know that (038, (e1)) I (o/,1: ey later;1).
By inversion, we know that (o;e2) |} (0’;¢) and | € dom(c”).
By inversion on &, (e1) C o, we know thate; C cand e; T o.
By induction on (o; e;) | (¢/;0), we know o’ supported.
Since ¢’ < oand e; C o, we know thate; C ¢”’.
Hence we know that (0/,1: e; later) supported.
Note that 1 € dom(o’,1: e later).
o Casee=!l
By hypothesis, we know that o = 0,1 : v now, oy.
Since o supported, we know that v C oy.
Since ¢ < 0g, we know thatv C o.
By assumption o supported.
4. This follows by induction on the derivation of 0 = ¢”.
O

Lemma 5 (Quasi-determinacy). We have that:

1. If (oye) | (0’;v") and (o;e) |} (o”;v") and o supported and e C o, then there is a m € Perm such that
n'(0’) = 0" and (o) = 0.

2. Ifo = o’ and 0 = 0" and o supported, then there is a © € Perm such that t(c’) = 0" and n(0) = o.
Proof. 1. We proceed by induction on the evaluation relation of (o;e) | (c';Vv).

e Case (o;v) | (o;v):
In this case, we have also have (r(0);7t(v)) | (7t(0); (V).
Hence the permutation 7’ is 7.
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e Case (0¢;e1 e2) | (03;V5):
By inversion, (oo;er) | (o1;Ax. €1) and (o7;e2) | (02;v2) and (o2; [v2/x1&1) | (03;v3).
By inversion, (oo;er) | (07;Ax. 1) and (07;e2) | (05;v5) and (o5; [v5/x1€7) I (o3;v5).
By induction, we have a 7y such that 7ty (07) = o7 and 7 (0g) = 0.
Note that 711 (ez) = ey, since 11 (eg e2) = eq es.
By permutability, (711 (07);e2) | (711 (02); 711 (v2)).
By induction, we get 7, such that 71, (717 (02)) = 04 and 712 (711 (v2)) = v} and 712 (711 (071)) = 711 (071).
We need to show that 7, (717 ([v2/x]€1)) = [v}/x]é]
Note that 7, (711 (v2)) = V5.
Note that 71 (€1) = €7, and that €] is supported by o7.
Hence 7tz (71 (€71)) = 71 (€1).
Hence 7tz (711 ([v2/x]€1)) = vy /x]é]
Hence by permutability, (72 (71 (02)); 72 (7r1 (v2/x1€1))) I (2 (71 (03)); 72 (111 (v3))).
Hence by induction, there is a 713 such that o} = m3(m; (77 (02))) and v§ = 73 (72 (711 (v2))).
We take 713 o 7, o 717 as our permutation witness.
Since 73 is safe with respect to o2, and 7, is safe with respect to o7,
both are safe with respect to 0.
Hence 713 o 71 o 711 (0p) = 0o.
e Case (0p;cons(er, ez)) | (o2;c0ns(vy,v2)):
By inversion, (oo;e1) | (o1;v1) and (o71;e2) | (o2;12).
By inversion, (oo;er) |} (of;vy) and (o7;e2) | (o5;15).
By induction, we have a 7y such that 71y (07) = o7 and 711 (0p) = 0o and 77 (v1) = vj.
Note that 711 (e2) = ez, since 717 (cons(eq, e2)) = cons(eq, ez).
By permutability, (711 (071);e2) 4 (mr1(02); 71 (v2)).
Hence by induction, we have a 71, such that 71, (71 (02)) = 05 and 7, (71 (v2)) = v5.
We take 7, o 717 as our permutation witness.

e Case (0p;let cons(x,xs) =eine’) | (o2;v2):
By inversion, (oo;e) | (o1;cons(v,1)) and (o1; [v/x,1/xsle’) | (02;v2).
By inversion, (0o;e) | (o7;cons(v’,1")) and (o7; [v'/x, 1" /xsle’) |} (o5;v5).
By induction, we have m; such that 71y (07) = of and 71 (v) =v’ and (1) =/ and 711 (00) = 0p.
Note that t(e’) = €/, since it is supported by O'o
Hence 71 ([v/x, 1/xle’) = v/ /x, U /x]my(e/) = v/ /x, 1" /x]e’
Hence by permutability, (7t; (o1 ); 71 ([v/x, 1/xs]le’)) 4 (m (Gz);m (v2)).
By induction, we get 71, such that 71, (711 (02)) = ¢” and 7, (77 (v2)) = vj5 and m,(07) = 0F.
We take 7, o 717 as the permutation witness.

e Case (0p;0./(e)) I (o7,1: elater;1):
By inversion, (oo;e’) |} (01;¢) and | € dom(o7).
By inversion, (oo;e’) |} (07;¢) and U’ ¢ dom(o7).
By induction, we get 7ty such that 7ty (07) = o} and 7 (0) = 0.
Note 1l ¢ dom(o) and I’ ¢ dom(o7).
We can take our permutation witness to be 7t/ £ 7o (1 1').
Since e’ is supported by oy, it follows that 7/(oq,1: e’ later) = 07,1’ : e’ later.
By definition 7t/ (1) = 1".
Hence there is a 71’ such that (0¢; 8./ (e)) |} (01,1 : e later;1) and {0¢; 0./ (e)) I (m'(07,1: e later);'(1)):
Obviously 7'(0g) = 0y, since | € dom(oy).

e Case (0p;let §(x) =eine’) | (o2;v):

By inversion, (oo;e) | (o1;1) and (o7;[Il/x]e’) I (o2;Vv).
By inversion, (oo;e) | (o7;1’) and (o7; [!IV'/x]le”) | (o5;v).
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By induction, there is a 7t such that 711 (07) = 7t} and 717 (1) = 1" and 71 (00) = 0o.

Note that 7 (e’) = e’, since e’ is supported by 00

Note that 711 ([!'1/x]e’) = [IU//x]m (e’) = [IU/x]e

Hence (71 (01); [!'V/x]e’) I (m1(02); 711 (V).

By induction, we have 7, such that 7, (77 (01)) = 05 and 7, (717 (v)) = v/ and 7, (7 ( )] (o )
Hence (op;let 8(x) =eine’) | (02;v) and (op;let 5(x) = eine’) | (ma(mi(02));m2(m1(v))). Wi
take 7, o 717 as our permutation witness.

Case (o;!1) |} (o;V):

By inversion, we know that 1: v now € o.

By inversion, we know that1:v now € o.

We take the identity permutation as our permutation witness.

Case (0p; stable(e)) | (o7;stable(v)):

By inversion, we know that (oo;e) |} (o7;V).

By inversion, we know that (oo;e) |} (o];Vv’).

By induction, we know that there is a 71y such that 7ty (07) = o7 and m; (v) =V'.
Note that 7t; (stable(v)) = stable(v’).

Hence we can take 711 as our permutation witness.

Case (0p;let stable(x) = eine’) || (o2;v2):

By inversion, (oo;e) | (o1;stable(vy)) and (o1; [vi/xle’) | (o2;v2).
By inversion, (0o;e) | (o7;stable(v])) and (G{ vi/xle’) | (o é vi).
By induction, we get T such that 7ty (01) = o} and 7y (vq) = v; and 7 (0p) = 0p.

Note that 711 (e’) = e’ since e’ is supported by 0.

Hence m; ([vq1/x]e’) = [v{/xle’. By permutability, (o}; [v]/xle’) I (71 (02); 71 (v2)).

By induction, we get 7, such that 7 (77 (02)) = 04 and 71, (711 (v2)) = vj.

Hence (0y; let stable(x) = e in e’) || (02;v’) and (op;let stable(x) = ein e’y || (2 (71 (02)); 72 (711 (v2))).
We can take 71, o 717 as our permutation witness.

Case (oo;fixx. e) || (o7;V):

By inversion, (oo; [fixx. e/xle) | (o1;V).

By inversion, (oo; [fixx. e/xle) | (o};v’).

By induction, we get 7t; such that 7ty (07) = 07 and 71y (v) = v/ and m; (0p) = 0.
We can take 7 to be our permutation witness.

Case (op; promote(e)) | (oq;stable(v)):

By inversion, we know that (oo;e) |} (o7;V).

By inversion, we know that (oo;e) |} (o];Vv’).

By induction, we know that there is a 71y such that 7ty (07) = o7 and m; (v) =v'.
Note that 7t (stable(v)) = stable(v’).

Hence we can take 711 as our permutation witness.

Case (0p;inle) | (o7;inlv):

The other derivation must be of the form (oo;inle) J (o7;inlv’).
By inversion, (oo;€) | (o1;V).

By inversion, (oo;e) | (o7;Vv’).

By induction, we have a 7ty such that 7ty (01) = 07 and 7t(0p) = 0o and 7y (v) = V',
Note that 7t (inlv) = inl 7ty (v) = inlv’.

Hence we can take 71 as our permutation witness.

Case (0g;inre) |} {(oq;inrv):

The other derivation must be of the form (oo;inre) |} (of;inrv’).

By inversion, (oo;e) | (o1;V).

By inversion, (oo;e) | (o7;Vv’).

By induction, we have a 7y such that 7 (07) = 07 and 7t(0p) = 0o and 7 (v) = V.
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Note that 7t; (inrv) = inrm; (v) = inrv’.
Hence we can take 711 as our permutation witness.

Case (0p;case(e,inlx — er,inry — ez)) | (o2;v):

By inversion, either (op;e) |} (o7;inlvy) and (o7;[vi/xle’) | (o2;Vv) or (op;e) | (o7;inrv,) and
(o1;va/ylea) I (o2;v).

By inversion, either (oo;e) || (o7;inlv]) and (o7; [vi/xler) I (o%;v’) or (oo;e) I (o1;inrv;) and
(o1; v2/ylez) I (o2;v").

Suppose (oo;e) | (o1;inlvy) and (o7; [vi/xler) I (o2;V).
Suppose (oo;e) | (o7;inrvy) and (o7; [v5/yles) I (o5;v').
Then by induction there is a 7 such that 7t(inlvy) = inrvj, which is impossible.

Suppose (oo;e) | (o1;inlvy) and (o7; [v2/xlez) I (o2;V).
Suppose (oo;e) | (o7;inrvy) and (o7; [vi/yler) I (o5;v').
Then by induction there is a 7 such that nt(inrv;) = inlv{, which is impossible.

Suppose (oo;e) | (o1;inlvy) and (o7; [vi/xler) I (o2;V).
Suppose (og;e) | (o7;inlvy) and (o}; [vi/xler) 4 (o5;v’
By induction, we have 7y such that 7 (07) = 0

Since 0o C e, we know 711 (eq) = ey.

Hence 711 ([v1/xleq) = [rt1 (v1)/x]m (e1) = [vi/x]es.
Hence by renaming, (o7; [vi/xle1) 4 (1 (02); 1 (v)).
By induction, we have 7, such that 7, (711 (02)) = o4 and m, (711 (v)) = v’ and m(07) = o7.
So we can take 71, o 711 as our permutation witness.

/).

and 7 (v1) = v} and 711 (00) = 0p.

Suppose (oo;e) | (o1;inrvz) and (o7; [v2/xlez) I (o2;Vv).
Suppose (og;e) | (o7;inrv}) and (o7; [v5/xlez) I (o5;v’
By induction, we have m; such that 7 (07) = 07 a

Since 0y C ez, we know 711 (e3) = es.

Hence 711 ([v2/xle2) = [ty (v2)/x]m (e2) = [vj/x]ea.
Hence by renaming, (o7; [v2/xlez) I (11 (02); 1 (v)).

By induction, we have 7, such that 7, (711 (02)) = o4 and (711 (v)) = v’ and mz(07) = 07.
So we can take 71, o 717 as our permutation witness.

Case (00; (e1,e2)) I (02; (v1,Vv2)):

By inversion, (oo;er) | (o1;v1) and (o7;e2) I (02;v2).

By inversion, (oo;er) | (o7;vq) and (o7;e2) I (05;v5).

By induction, there is a 717 such that 717 (01) = 0} and 71 (v1) = v; and m (0g) = 0.

Since 0y C e;, we know that 711 (ez) = e5.

Hence by renaming, we know (o7;e2) | (71 (02);711(v2)).

By induction, we have 7, such that 7, (711 (02)) = 02 and 7, (711 (v2)) = V5 and m (o) = o7.
Since 07 C vj, we know that 7, (vi) = vy.

Hence we know that 7tz (711 (v, v2)) = (m2(m1 (v1)), 2 (711 (v2))) = (v7,v3).
Hence we can take 7, o 717 as our permutation witness.

Case (op;fste) | (o71;v1):

By inversion, (oo;e) | (o1; (v1,v2)) and (oo; e) | (o7; (v],v5)).

By induction, there is a 7ty such that 711 (07) = o and 717 ((v1,v2)) = (v],v5).
Hence m; (vi) = v and 711 (v2) = vj.

Hence we can take 717 as our permutation witness.

Case (o;snde) || (a’;v'):

By inversion, (oo;e) | (o1; (v1,v2)) and (oo; e) | (o7; (v}, v5)).

v').

and 7'[1( 2) :Vé and 7 (Go) = 0p.
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By induction, there is a 7ty such that 7ty (07) = o7 and 711 ((v1,v2)) = (v],v5).
Hence m; (vi) = v and 711 (v2) = vj.
Hence we can take 717 as our permutation witness.

e Case (op;intoe) || (o7;intov):
The other derivation must be of the form (oo;intoe) |} (o};intov’).
By inversion, (oo;e) | (o1;V).
By inversion, (oo;e) | (o7;v’).
By induction, we have a 7 such that 71 (07) = 07 and 7t(0p) = 0o and 7 (v) =Vv'.
Note that 7t (intov) = into 7t; (v) = intov’.
Hence we can take 717 as our permutation witness.

e Case (op;oute) | (o1;v):
By inversion, (op;oute) | (o7;intov).
By inversion, (oo;oute) | (o7;intov’).
By induction, we have a 7y such that 7ty (01) = o7 and nt(0p) = 0¢ and 7; (intov) = intov’.
Hence note that 7t; (v) =v'.
Hence we can take 711 as our permutation witness.

2. We have derivations of 0 = ¢’ and 0 = o¢”:

o Case - = =
We know ¢/ = 0" = -.
We can take the identity permutation as our permutation witness.

e Case 0g,l:vnow = o07:
By inversion, we know 0y = o7.
By inversion, we know 0y = 0}.
By induction, we have a 7y such that nt(0¢) = ¢’ and n(0p) = 0p.
We can take 7; as our permutation witness.

e Case 0yp,1: e later = o2,1:v now:
By inversion, we have 0p = 07 and (o7;¢e) | (o2;Vv).
By inversion, we have 0o = o} and (o};e) | (o5;v).
By induction, we have a 7; such that 1y (07) = o7 and m;(0p) = 0.
Since o is supported, the free locations of e are within the locations of oy.
Hence e is supported by o7.
Hence 11 (e) = e.
Hence (71 (01);€) I (1 (02); 711 (V).
By induction, there is 7, such that 7, (711 (02)) = 05 and 7 (1 (v)) = Vv'.
We can take 7, o 717 as our permutation witness.

3.2 Soundness
Lemma 6 (Order Permutation). If 0’ < o and 7 € Perm then nt(o’) < 7t(0).

Proof. Assume ¢’ < 0.

Then there is a 0 such that o/ = o - 0y.

So t(0’) = (0 - 0p).

So mt(o’) = (o) - 7(0p).

Taking mt(0p) as the witness, there is a 07 such that 7t(¢’) = 7t(0) - 07.
Hence nt(0’) < 7t(0).

Lemma 7 (Heap Renaming). For all t € Perm and o € Heap , mt(o) € Heap,,.
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Proof. We prove this by induction on n.

e Casen =0:
Immediate, since all heaps are in Heap,,.

e Casen=k+1:
By induction hypothesis, for all T € Perm and o € Heap,, (o) € Heap, .
Assume 7 € Perm and o € Heap, _ ;.
Then we know that 0 = ¢’ and o’ € Heap, .
By permutation, 7t(0) = m(c”).
By induction, o’ € Heap, .
Hence (o) € Heap, , ;.

O
Lemma 8 (Kripke Monotoncity). If p is a monotone environment and w’ < w, then V [A] p w’ D V [A] p w.

Proof. This proof is by induction on the type A.
Assume w’ < w, and proceed by case analysis of A:

e Case o
Assume p is a monotone environment.
Then we know p(«) is monotone, and so p(«) w’ D p(a) w.

Hence if v € p(a) wthenv € p(a) w'.

e Case flo. A:
Assume p is a monotone environment.
Assume intov € V[fio. A] p w.
Hencev € V[A] (p, V[e(fix. A)] p w/x) w.

To apply the induction hypothesis, we need to know that V [e({ix. A)] p w is monotone.
Assume we have w and w’ such that w’ < w.

Assume 1 € V [ofix. A] p w.

Hence w.o = 0p, 1 : e later, o7 such that YVt € Perm, w” < (w.n, 0g,w.a). nt(e) € L [flx. A p t(w”).
We want to show 1 € V [efix. A] p w'.

So we want to show that w’.c = o{,1: e later, o}

such that YVt € Perm,w” < (w'.n, og,w’.a). ni(e) € £ [fix. A] p (w").

Since w’ < w, we know w’.0c < w.o, and so w’.0c = 0y, : e later, o7, 03.

So we can take o) = 0p.

Since w’ < w, we know V7t € Perm, w” < (w'.n, 0o, w’.a). 7t(e) € L [fice. A] p T(w”).
Hencel € V [ofix. A] p w'.

Hence V [e(ficc. A)Jpw C V[o(fix. A)]pw'.

Hence V [e({ix. A)] p w is monotone.

By induction, v € V[A] (p, V [o(fice. A)] p w/axt) w'.
Hence intov € V [fioe. A] p w.

o Case A +B:
Assume p is a monotone environment.
Assumev € V[A + B] p w.
Suppose v = inlv’ where v’ € V[A] p w.
By induction, v € V[A] p w'.
Hence inlv/ e V[A+B]pw'.
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Suppose v = inrv’ where v’ € V [B] p w.
By induction, v € V[B] p w'.
Henceinrv' € V[A +B]pw'.

Case A x B:

Assume p is a monotone environment.

Assume (v1,v2) € V[A x B] p w.

Hence vy € V[A]pwand v, € V[B] p w.

By induction, vi € V[A]pw’and v, € V[B] p w'.
Hence (vi,v2) € V[A x B]pw'.

Case A — B:

Assume p is a monotone environment.

Assume Ax. e € V[A — B] p w.

We want to show Ax. e € V[A — B]pw'.

Assume 7 € Perm and w” <w’,and e’ € £ [A] p t(w”).
By transitivity, w”’ < w.

Hence by hypothesis, we know [e’/x]n(e) € £ [B] p m(w”).
Hence Ax. e € V[A — B]pw'.

Case oA:

Assume p is a monotone environment.

Assume l € V [eA] p w.

Hence w.o = 0y, 1: e later, o7 such that Vt € Perm, w” < (w.n, 09, w.a). mt(e) € L[A] p t(w”).
We want to show L € V [eA] p w'.

So we want to show that w’.c = o, 1: e later, 0}

such that YV € Perm, w” < (w'.n, og,w’.a). n(e) € L]A] p (w").

Since w’ < w, we know w’.0 < w.o, and so w’.0 = 0y, 1 : e later, o7, 0>.

So we can take o) = 0p.

Since w’ < w, we know V7t € Perm,w” < (w'.n, 0o,w’.a). mt(e) € L[A] p t(w”).
Hencel € V[eA] p w'.

Case LA:

Assume p is a monotone environment.

Assume stable(v) € V[OA] p w.

Hence we know thatv € V[A] p (w.n,-, T).

Since w’ < w, it follows that (w/.n,-, T) < (w.n, -, T).
Hence by induction, v € V[A] p (W'.n,-, T).

Hence stable(v) € V[OA] p w'.

Case SA:

Assume p is a monotone environment.

Assume cons(v,1) € V[SA] p w.

Hence we know thatv e V[AJpwandl € V[e(SA)]p w.

Note that Vit € Perm,w” < (w.n, oo, w.a). 7t(e) € L[A] p t(w”).

By induction, we know v € V[A] p w’.

Now we want to show 1 € V[eSA] p w'.

So we want to show that w’.oc = o, 1: e later, 0}

such that Vr € Perm, w” < (w’.n, o5, w’.a). m(e) € L[S A] p (w").
Since w’ < w, we know w’.0 < w.o, and so w’.0 = 0y, 1 : e later, o7, 05.
So we can take o) = 0p.

Since w’ < w, we know Vit € Perm,w” < (w'.n, op,w’.a). n(e) € L[A] p n(w”).
Hencel e V[eSA]pw'.
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Hence cons(v,1) e V[SA] p w'.

e Case alloc:
Assume p is a monotone environment.
Assume ¢ € V [alloc] p w.
Then w.a = L.
Since w’ <w, it follows w’.a = L.
Hence ¢ € V [alloc] p w’'.

Lemma 9 (Renaming). We have that:
1. If p is a permutable environment and m € Perm and v € V [A] p w then nt(v) € V [A] p t(w).
2. If p is a permutable environment and @ € Perm and e € E [A] p w then m(e) € & [A] p t(w).
3. If p is a permutable environment and 7 € Perm and e € L [A] p w then mi(e) € L [A] p 7t(w).
Proof. We do these proofs by induction on the type.
1. Assume we have 7t € Perm. Now we proceed by induction on types:

e Case «:
Assume p is a permutable environment.
Assume v € p(a) w.
Hence 7t(v) € mt(p(o) w).
Since that p(«) is permutable, mt(p(x) world) = p(a) (7t(w)).
Hence 7t(v) € p(a) mt(w).

e Case flo. A:
Assume p is a permutable environment.
Assume intov € V [fioe. A] p w.
Hencev € V[A] (p, V [e(ficc. A)] p w/ex) w.

To apply the induction hypothesis, we need to show V [e(fix. A)] p w is permutable.

Assume l € V [efice. A] p w.

Hencew.o = 0o, 1: e later, 0y and V"’ € Perm, w” < (w.n, 0g,w.a), " (e) € L [fix. A] p "' (w").
We want to show 7t(1) € V [efix. A] p 7t(w).

Note t(w.0) = 7t(0g), 7t(1) : 7t(e) later, 7t(oq).

It remains to show Vrt’ € Perm,w’ < (w.n,7t(0o),w.a), ' (7t(e)) € L [fix. A] p 7/ (w').

Assume 1’ € Perm and w’ < (w.n, (o), w.a).

Note that 7' (w’) < (w.n, oo, w.a).

Instantiate v/ with 71’ o rand w” with 7w (w’).

Then we know that (7’ o 7t)(e) € £L[(x. A] p (7’ o 7t) (7 (w')).

Hence 7t'(7t(e)) € L [fta. A] p 7w/ (w).

Hence Vn' € Perm,w’ < (w.n,m(0o),w.a), m’(n(e)) € L[ftx. A]p 7'(w’). Hence (1) €
V [efix. A] p t(w).

By induction, 7t(v) € V[A] (p, V [e(fix. A)] p w/cx) t(w).

Therefore intort(v) € V [fiee. A] p t(w).

Since into 7t(v) = m(intov), we know 7t(intov) € V [fiee. A p mt(w).
e Case A + B:

Assume p is a permutable environment.

Assume w € World and v € V[A + B] p w.
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Suppose v = inlv/ where v/ € V[A] p w.
By induction, nt(v’) € V[A] p mt(w).
Hence inlt(v’) € V[A + B] p mt(w).

Bur inlt(v’') = n(inlv’).

So m(inlv’) € V[A + B] p mt(w).
Suppose v = inrv’ where v’ € V [B] p w.
By induction, 7t(v’) € V[B] p 7t(w).
Hence inrt(v') € V[A + B] p 7t(w).
Burinrmt(v’) = mt(inrv’).

So n(inrv’) € V[A + B] p mt(w).

Case A x B:

Assume p is a permutable environment.

Assume w € World and (v,v’) € V[A x B] p w.

Hencev e V[A]pwand v’ € V[B] p w.

By induction nt(v) € V[A] p t(w) and 7t(v') € V [B] p m(w’).
Hence (nt(v),7t(v')) € V[A x B] p mt(w).

Bur (nt(v), 7t(v')) = nt(v,v’), so m(v,v') € V[A x B] p t(w).

Case A — B:
Assume p is a permutable environment.

Assume w € World and Ax. e € V[A — B] p w.

Hence for all 1”7 € Perm and w” < w, ife’ € E[A] p w’(w"), then [/ /x| (e) € £ [B] p "' (W").
We want to show that (Ax. e) € V[A — B] p 7t(w).

Note that 7t(Ax. e) = Ax. 7t(e).

Hence we want to show Ax. t(e) € V [A — B] p t(w).

Assume 7’ € Perm and w’ < 7t(w) and e’ € £ [A] p ' (W').

Since w’ < 7(w), we know that ' (w’) < w.

Instantiate 7t”” with 7t/ o 7t and w” with = (w’).

Then 7"’ (w") = 7/ (n(m~ " (W) = ' (w').

Soe’ € E[A]p " (w").

Therefore we know that [e’/x]7t" (e
Note that "’ (e) = 7/(nt(e)) and "’
Hence [e'/x]nt/(t(e)) € E[B] p 7'(
Hence Ax. 7t(e) € V[A — B] p t(w

Case oA:

Assume p is a permutable environment.

Assume w € World and 1 € V [eA] p w.

Hence w.o = 0y, 1: e later, o7 and V"’ € Perm,w” < (w.n, oo, w.a), t”(e) € L[A] p ' (W").
We want to show 7t(1) € V [eA] p 7t(w).

Note t(w.o) = mt(0g), 7t(1) : (e) later, t(oq).

It remains to show Vi’ € Perm,w’ < (w.n,7t(0o),w.a), '(m(e)) € L]A] p ' (W).
Assume 1’ € Perm and w’ < (w.n, (o), w.a).

Note that 7' (w’) < (w.n, oo, w.a).

Instantiate v/ with 71’ o rand w” with 7w (w’).

Then we know that (7’ o t)(e) € L[A] p (7’ o 7t) (7 (W')).

Hence 7/ (7t(e)) € L[A] p ' (W).

Hence Vrt’ € Perm,w’ < (w.n, (o), w.a), n”(7t(e)) € L [A] p '(w').

Hence 7t(1) € V [eA] p t(w).

Case DA:
Assume p is a permutable environment.
Assume w € World and stable(v) € V [OA] p w.
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Hencev € V[A] p (W.n, -, w.a).

By induction, 7t(v) € V[A] p t(w.n, -, w.a).
Note that t(w.n,-,w.a) = (m(w).n, -, 7(w).a).
Hence nt(v) € V[A] p (t(w).n, -, t(w).a).
Hence stable(nt(v)) € V[OA] p 7t(w).

Hence 7t(stable(v)) € V [OA] p 7t(w).

e Case SA:
Assume p is a permutable environment.
Assume w € World and cons(v,1) € V[SA] p w.
Henceve V[A]pwandle V[eSA]p w.
By induction, 7t(v) € V [A] p m(w).
Since l € V [eS A] p w, we know that:
1. w.o = oo, L: e later, o7.
2.vn” € Perm,w” < (w.n, og,w.a), ©’(e) € L[SA] p " (w").
We want to show 7t(1) € V [eS A] p 7t(w).
Note t(w.o) = 7t(0g), 7t(1) : 7t(e) later, 7t(oq).
It remains to show Vi’ € Perm,w’ < (w.n,m(0o),w.a), 7’(n(e)) € LIS A] p 7' (w).
Assume 1’ € Perm and w’ < (w.n, t(0p), w.a).
Note that 7' (w') < (w.n, oo, w.a).
Instantiate 7t/ with 7t/ o 7t and w” with 7t (w’).
Then we know that (7’ o )(e) € L[S A] p (7' o ) (" (w')).
Hence 7/ (7t(e)) € L[S A] p 7/ (w').
Hence Vrt’ € Perm,w’ < (w.n,7mt(0p), w.a), " (7t(e)) € L[S A] p t'(w’).
Hence 7t(1) € V [eS A] p 7t(w).
Hence cons(mt(v), (1)) € V[SA] p mt(w).
Hence 7t(cons(v, 1)) € V[S A] p t(w).

e Case alloc:
Assume p is a permutable environment.
Assume w € World and ¢ € V [alloc] p w.
Hence we know thatw.a = T.
Note that 7t(0) = <.
Note that t(w).a =w.a =T.
Hence 7t(¢) € V [alloc] p 7t(w).

2. Assume p is a permutable environment.
Assume we have 7 € Perm, and e € £ [A] p w.

For all 6/ < w.o, there is 0" < ¢’ and v such that (¢’;e) || (c”;v) andv € V[A] p (Wn,c”,w.a).
Note that t(w) = (w.n, t(w.o), w.a).

Assume o7 < t(w.0o).

Then ' (o7) < w.o.

So thereisa 0, < 7 '(07) and v such that (' (07); ) | (02;v)

andv € V[A]p (wn,0oz2,w.a)andw.a=T = o, =7 '(07).

We know that 7t(0;) < 01 < t(w.o).

We know that w.a =T = m(02) = 03.

By permutation, we know that (o1;7t(e)) |} (7(02);7t(Vv)).

By renaming for values, we know that t(v) € V[A] p (w.n, nt(02), w.a).
Hence 7t(e) € E[A] p (Wwn,7t(w.0), w.a).

Hence 7t(e) € £ [A] p (w).

3. Assume p is a permutable environment.

25



Assume we have m € Perm and e € L [A] p w.
Assume e € L[A] p w.
We have two cases:

e Casew.n =0:
In this case 7t(e) € L [A] p t(w) by definition.

e Casewmn=k+1:
In this case, we know that w.c = ¢’ and e € £ [A] p (k, 0/, w.a).
By renaming, we know that nt(e) € £ [A] p (k,7t(0’),w.a).
By permutation, we know that 7t(w.0) = 7t(0”).
Hence 7t(e) € L [A] p 7t(w).

O

Lemma 10 (Supportedness of the Logical Relation). If p is a supported environment and v € V [A] p w then
vEw.o.

Proof. This proof is by induction on the type. Assume we have a world w.

e Case «:
Assume we have a supported environment p.
Then V[«] p w = p(a) w.
Since p(«) w is supported, if v € p(a) w, thenv C w.c.

e Case flo. A:
Assume we have a supported environment p.
Assume intov € V [fix. A] p w.
Hencev € V[A] (p, V[e(ficx. A)] p w/x) w.

To apply the induction hypothesis, we need to show that V [e(fix. A)] p w is supported.
Assumel € V[o(fix. A)] p w.

Hence w.o = oy, 1: e later, ;.

Hence 1 € dom(w.c).

Hence 1l C w.o.

e Case A + B:
Assume we have a supported environment p.
Now assume thatv € V[A + B] p w.
Eitherv=inlv'andv' € V[A]pworv =inrv’ and v’ € V[B] p w.

Suppose v =inlv’ and v/ € V[A] p w.
Then by induction, we know that v/ C w.o.
Hence inlv’ C w.o.

Suppose v =inrv’ and v’ € V[B] p w.
Then by induction, we know that v/ C w.o.
Hence inrv' C w.o.

Hence v C w.o.

e Case A x B:
Assume we have a supported environment p.
Now assume (v,v’) € V[A x B] p w.
Hencev e V[A]pwand v’ € V[B] p w.
By induction, v C w.c and v/ C w.o.
Hence (v,v’) E w.o.
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e Case A — B:
Assume we have a supported environment p.
Now assume Ax. e € V[A — B] p w.
Hence by hypothesis Ax. e C w.c.

o Case oA:
Assume we have a supported environment p.
Now assume 1 € V [eA] p w.
Hence w.o = oy, 1: e later, ;.
Hence 1 € dom(w.c).
Hence 1l C w.o.

e Case SA:
Assume we have a supported environment p.
Assume we have cons(v,1) € V[SA] p w.
Henceve V[A]pwandle V][eSA]pw.

By induction, v C w.o.

Since l € V [eS A] p w, we know w.o = 0y, 1 : e later, 0.
Hence 1 € dom(w.c).

Hence 1l C w.o.

Hence cons(v,1) C w.o.

e Case [JA:
Assume we have a supported environment p.
Assume we have a stable(v) € V [OA] p w.
Hencev e V[A] p (wn, -, T).
By induction, v C -.
Note o0 < -.
By supportedness lemma, v C o.

e Case alloc:
Assume o € V [alloc] p w.
By definition ¢ C o.

Lemma 11 (Weakening). Assuming p is a type environment, we have that:
1. IfFV(A) C dom(p) then V [A] p w =V [A] (p, p’) w.
2. IfFV(A) C dom(p) then E[A] pw = E[A] (p, p’) w.
3. IfFV(A) C dom(p) then L[A] pw = LA] (p, p’) w.
Proof. These follow by a lexicographic induction on the step index w.n, and the structure of A.

1. e Case o
Note that p(«) = (p, p’) ().

e Case flo. A:
First, let’s show that V [e(fix. A)] p w =V [e(fice. A)] (p, p’) W.

Assume that1l € V [e(fix. A)] p w.

Then w.o = 0y, 1: e later, o7 and Yw’ < (w.n, 0p,w.a),t € Perm.7t(e) € L [{ix. A] p t(w’).
We want that Yw’ < (w.n, 09, w.a), ®w € Perm.7t(e) € L [fiee. A] (p,p’) w(w').

Assume w’ < (w.n, 0o, w.a) and 7 € Perm.
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We know that 7t(e) € £ [{ix. A] p m(w’).
By renaming, e € £ [fi. A] p w'.

By mutual induction, e € £ [fie. A] (p,p’) w'. By renaming, 7t(e) € £ [fice. A (p,p’) 7

Assume that1 € V [e(fix. A)] (p, p’) w.

Then w.o = 0y, 1: e later, o7 and YW’ < (w.n, op,w.a), ®w € Perm.7t(e)
We want that Yw’ < (w.n, 0p,w.a), ™ € Perm.7t(e) € L [fie. A] p 7t(w

Assume w < (w.n, 0g,w.a) and 7 € Perm.
Hence 7t(e) € L [{ice. A] (p, p (w’).

By renaming, e € £ [fiox. A] ( p,

By mutual induction, e € £ [{ie. Aﬂ pw'.
By renaming, ni(e) € L [fix. A] p m(w’).

Consider V [A] (p, V [e(fix. A)] p w/x) w
By lemma, this equals V [A] (p, V [e(fic. A)]] p,p') w/a) w
By induction, this equals V [A] (p, p’, V [e(fix. A)] (p, p’) w/oc) w

Now we will show thatintov € V [fie. A] p wiffintov € V [fix. A] (p, p’)

Assume intov € V [fiee. A] p w.

Hencev € V[A] (p, V [e(fice. A)] p w/ex) w
Hencev € V[A] (p,p’, V [o(fix. A)] (p, p) w/ox) W
Hence intov € V [fia. A] (p, p’) W

Assume intov € V [fia. A] (p, p’) w.

Hencev € V[A] (p,p’, V [o(ftex. A)] (p,p") w/ax) w
Hencev € V[A] (p,V [e(fix. A)] p w/x) w

Hence intov € V [{i. A] p w.

Hence V [ioe. Al pw =V [fix. A] (p, p") W

Case A + B:

By induction, we know that V[A] pw =V [A] (p,p’) W
By induction, we know that V [B] p w = V [B] (p,p’) w

/)6 L. A] (pyp")

w.

Now we will show forallv,v € V[A+B]pwiffve V[A+B](p,p') w

Assumev € V[A+ B]pw.

Then either v =inlv’ Av' € V[A]pworv=inrv' Av’ € V[B] p w.

Suppose v = inlv/ Av' € V[A] p w.
Thenv' € V[A] (p,p") W

Hence inlv' € V[A + B] (p,p’) w
Suppose v =inrv/ Av’ € V[B] p w.
Thenv’ € V[B] (p,p’) w

Hence inrv' € V[A + B] (p,p’) w

Assumev € V[A +B] (p,p

Then either v = inlv/ A v’ EV[[A]} p, Jworv=inrv' Av' € V[B] (p,p

Suppose v = inlv' Av' € V[A] (p, p
Thenv’ € V[A + B] p w.

Hence inlv' € V[A] p w.

Suppose v =inrv' Av’ € V[B] (p,p’) w.
Hencev' € V[A +B]pw.

Then inrv’ € V[B] p w.
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e Case A x B:
By induction, we know that V[A] pw =V [A] (p,p’) W
By induction, we know that V [B] p w =V [B] (p, p") W
Now we will show for all (v,v’), (v,v') € V[A + B] p wiff (v,v') € V[A + B] (p,p’) w.

Assume (v,v’) € V[A +B]pw.
Hencev € V[A]pwand v’ € V[B] p w.
Hencev € V[A] (p,p’) w

Hence v’ € V[B] (p,p’) w

Hence (v,v') e V[A x B] (p,p') W

Assume (v,v') €V [[A +B] (p,p

Hencev € V[A] (p,p’) wand v’ E V [B] (p, p
Hencev € V[A] p w.

Hence v’ € V[B] p w.

Hence (v,v') € V[A x B] p w.

e Case A — B:
By induction, we know that for all w’ <w, E[A] pw = E[A] (p,p’) W'.
By induction, we know that for allw’ <w, E[A] pw = E[A] (p,p’) W'.

We want to show Ax. e’ € V[A — B] pwiff Ax. e’ € V[A — B] (p,p’) w

Assume we have Ax. e’ € V[A — B] pw.

We want to show Ax. e’ € V[A — B] (p,p’) w

Assume we have w’ < w and 7t € Perm.

Assume we have e € £ [A] (p, p’) 7t(w’).

Hence we know that e € £ [A] p n(w’).

By renaming, we know that n'(e) e E[A]p w

Hence we know that [~ (e )/x e’ € E[B]p w

Hence we know that [~ (e)/x]e’ 6 5 [B] (p, p ’.

By renaming, we know that [e/x]nt(e’) € £ [[B]] p, N t(w’).
Hence Ax. e’ € V[A — B] (p,p’) w

Assume we have Ax. e’ € V[A — B] (p,p’) w

We want to show Ax. e’ € V[A — B] p w.

Assume we have w’ < w and 7 € Perm.

Assume we have e € £ [A] p t(w').

By renaming, we know 7T*1 (e) e&[A]p w’.

Hence we know that m~ " (e) € £ [[A]} o, P

Hence we know that [t ( )/xle’ € &€ [[Bﬂ p, w'.
Hence we know that [ (e)/x]e’ E & [[Bﬂ pw'.

By renaming, [e/x]mt(e’) € £ [B] p m(w

Hence Ax. e’ € V[A — B]p w.

o Case oA:
We will show 1 € V[eA] pwiff l € V[eA] (p,p') W

Assume that 1 € V [eA] p w.
Then w.o = 0y, 1: e later, oy and Yw’ < (w.n, 0o, w.a), 7t € Perm.mt(e) € L [A] p mt(w
We want that Yw’ < (w.n, 0, w.a), ™ € Perm.7t(e) € L [A] (p, p’) (w').
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Assume w’ < (w.n, 0o, w.a) and 7 € Perm.

We know that rt(e) € L[A] p m(w’).

By mutual induction, n(e) € L [[A]] (p,p') (w).

Assume that 1 € V [eA] (p, p

Then w.o = 0y, L: e later, o4 and Yw’ < (w.n, 0o, w.a), ™ € Perm.7t(e) € L [A] (p, p’) m(w’).
We want that Yw’ < (w.n, 09, w.a), TtePermn( ) € L]A] p mt(w’).
Assume w’ < (w.n, 0g, w.a) and 7t € Perm.

Hence t(e) € LA] (p, p’) (w’).

By renaming, e € L[A] (p,p') W'

By mutual induction, e € £ [A] p w’. By renaming, 7t(e) € L [A] p 7t(w')
Case SA:

We will show cons(v,1) € V[S A] p wiff cons(v,1) € V[SA] (p,p’) w

Assume cons(v,1) € V[SA] p w.

Henceve V[A]Jpwandl e V[e(SA)]pw.

By induction, v € V[A] (p, p’) w

Then w.o = 0y, 1: e later, 07 and Yw' < (w.n, Go,w a),n € Perm. 71 ) € LISA] p t(w)
We want that Yw’ < (w.n, 09, w.a),®w € Perm.7t(e) € L[S A] (p, p’) (w').

Assume w’ < (w.n, 0g,w.a) and 7t € Perm.

We know that rt(e) € L[S A] p m(w')

By renaming e € L[SA]p w'.

By mutual induction, e € L[S A] (p,p’) W'.
By renaming, nt(e) € L[S A] (p, p’) t(w’).
Hencel e V[e(SA)] (p,p’) W.

Hence cons(v,1) e V[SA] (p, p') w

Assume cons(v,1) € V [SA] (p,p

Hencev € V[A] (p, p wandleV[[oSA]]( p’) w.

By induction, v € V[A] p w.

Then w.o = 0y, 1: e later, oy and Yw’ < (w.n, oo, w.a), 7 € Perm.7t(e) € L[S A] (p,p’) t(w’).
We want that Yw’ < (w.n, oo, w.a), ™ € Perm.7t(e) € L[S A] p (W)
Assume w’ < (w. n, 0o, w.a) and 7t € Perm.

We know that rt(e) € L[SA] ( p, (w’).

By renaming e € L[S A] (p, p

By mutual induction, e € £ [S A]] pw.

By renaming, nt(e) € L[S A] p t(w’

Hencel e V[e(SA)]p w.

Hence cons(v,1) € V[SA] p w.

Case LJA:

We will show stable(v) € V [0A] p w iff stable(v) € V [TA] (p, p

Assume stable(v) € V [OA] p w.

Thenv € V[A]p (wm,, T).

By induction, v e V[A] (p,p") (w n,-T).
Hence stable(v) € V[OA] (p, p

Assume stable(v) € V [[DA]] P, P
Thenv € V[A] (p,p’) wn, ,T)

By induction, v ey [[A]] p (wmn,-, T).
Hence stable(v) € V [OA] p w.
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2.

e Case alloc:
Immediate, since V [alloc] p w = V [alloc] p, p’ w ={¢ | w.a = L}

(Note that since we make a recursive call to the value relation, we can only appeal to this case on
subterms or at lower step indexes in the other two mutually-inductive lemmas.)

We will show e € £ [A] pwiff e € E[A] (p, p’) W.

Assume e € E[A] p w.

Then there exists a 0’ < o and v such that (w.c;e) | (c/;v) andv € V[A] p (w.n, o', w.a).
By induction, v € V[A] (p, p’) (w.n, ¢’,w.a).

Hence e € £A] (p, p’) w.

Assume e € E[A] p [(p, p’)w.

Then there exists a ¢’ < o and v such that (w.o;e) |} (¢’;v) andv € V[A] (p,p’) (W.n,o’,w.a).
By induction, v € V[A] p (w.n, o/, w.a).

Hencee € £[A] p w.

. Wewillshow e € L[A] pwiffe e L][A] (p,p’) w.

Consider the value of w.n.
If wan = 0, then the result is immediate.
If wn =k + 1, then we proceed as follows:

Assume e € L]A] pw.

Thenw.c = ¢’ and e € £[A] p (k, o', w.a).
By induction, e € £ [A] p,p’ (k, 0/, w.a).
Hence e € L[A] (p, p’) w.

Assume e € L[A] (p,p’) w.

Thenw.c = o’ and e € £ [A] (p, p’) (k, 0/, w.a).
By induction, e € £ [A] p (k, 0/, w.a).

Hence e € L[A] p w.

Lemma 12 (Type Substitution). We have that:

1.
2.
3.

For all type environments p and w, V [B] (p, V [A] p /&) w = V [[A/a]B] p w.
For all type environments p and w, € [B] (p, V[A] p /&) w = E [[A/xIB] p w.
For all type environments p and w, L [B] (p, V [A] p /&) w = L[A/«B] p w.

Proof. This proof follows by a lexicographic induction on the world index w.n and the structure of B.

1.

e Case f3:
Ifp=u
Note that V [« (p, V[A] p /o) w = (p, V[A] p /&) () w =V [A] p w.
Since [A/x]x = A, this is equal to V [[A/a]a] p w.

If B # o Note that V[B] (p, V[A] p /&) w = p(B).
Since [A/x]p = B, this is equal to V [[A/x]p] p w = p(p).
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e Case {ip. B:
First, we want V [e({if. B)] (p, V[A] p /) wequalsV[[A/oc (iB. B)] p w.
Assumel € V[e({if. B)] (p, V[A] p /) W
Then w.o = 0y, 1: e later, oy
such that Yw’ < (w.n, op,w.a), 7t € Perm, 7t(e) € L [fif. B] ( p,V[[A]] p /oc (w’).
We want Yw’ < (w.n, 09, w.a),n € Perm, nt(e) € L [[A/ad{if. B] p 7t(w
Assume w’ < (w.n, 0g, w.a) and 7t € Perm.
Hence 7t(e) € L[{AB. B] (p, V[A] p /ot) T(w').
By renaming, e € L [{if. B] (p, V [A] p /o) w
By induction, e 6 L [[A/xlfif. B] p w'.
By renaming, i(e) € L [[A/al{ip. B] p 7t(w
Hence l € V[o([A/if3. B)] p w.
Hencel e V[[A/«] e (1. B)]pw

Assumel € V[[A/x] e (. B)] p w.

Hencel € V [o([A/xlfif. B)] p w.

Then w.o = 0y, 1: e later, oy

such that Yw’ < (w.n, 0o, w.a), 7t € Perm, mt(e) € L [[A/«]{if. B] p t(w’)
We want Yw’ < (w.n, 0p,w.a),n € Perm, nt(e) € L[{iR. B] (p, V[A] p /) 7t(w’).
Assume w’ < (w.n, 0g, w.a) and 7t € Perm.

Hence t(e) € L[A/«]{ip. B] p t(w

By renaming, e € L [[A/«]fif. B] p w'.

By induction, e € L[{iB. B] (p, V[A] p /&) W

By renaming, nt(e) € L[fif. B] (p, V[A] p /o) t(w’).

Hencel € V[e({13. B)] (p, V[A] p /&) W

Now consider V' [B] (0, V [A] p /&, V [o(1iB. B)] (p, V[A] p /o) /B) w

This equals V [B] (p, V[A] p /ot, V [e[A/l(AB. B)] p /B) W

This equals V [B] (p, V [A] (p, V [e[A/a(iB. B)] p /B) W/, V [e[A/({iB. B)] p /B) W
By induction, this equals V [[A/«IB] (p, V [e[A/al(iB. B)] p /B) W

This equals V [[A/a]B] (p, V [¢({iB. [A/x]B])] p /B) W

Now we will show thatintov € V[if3. B] (p, V[A] p /o) wiffintov € V[[A/«l{if. B] p w.
Assume intov € V[{ip. B] (p, V[A] p /o) w.

Thenv € V [B] (0, V [A] p /o, V[s(B. B)] (0, V [A] p /o) /B) w

Thenv € V[IA/«IB] (p, V [o(AB. [A/xIB)] p /B) W

Then intov € V [{iB. [A/x]B] p w.

Then intov € V [[A/alfif. B] p w.

Assume intov € V [[A/«]{iB. B] p w.
Then intov € V[fif. [A/«]B] p w.
Thenv € V[B] (p, V[A] p /o, V [o(fiB. B)] p,V[[A]]p/oc /B)w
Thenv € V[[A/«B] (p, V [e(fif. [A/a]B ﬂ
Then intov € V[{iB. B] (p, V[A] p /x) w
e Case B+ C:
We will show thatv € V[B+ C] (p, V[A] p /) wiffv e V[[A/x](B+ C)] p w.

Assumev e V[B+C] (p, V[A] p /&) W

Then either v = inlv' Av' € V[B] (p, V[A] p /&) worv =inrv' Av' € V[C] (p, V[A] p /ot) W

Suppose v =inlv' and v/ € V[B] (p, V[A] p /o) w
Then by induction v/ € V [[A/a]B] p w.
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Hence inlv' € V[[A/«B + [A/a]C] p w.

Hence inlv’ € V[[A/al(B + C)] p w.

Supposev =inrv’ and v’ € V[C] (p, V[A] p /&) w.
Then by induction v/ € V [[A/a]C] p w.

Hence inrv’ € V[[A/xIB + [A/a]C] p w.
Henceinrv' € V[[A/al(B + C)] p w.

Assumev € V[[A/x](B + C)] p w.

Thenv € V[[A/xB + [A/aC] p w.

Eitherv =inlv/ Av' € V[[A/adB] pworv =inrv Av' € V[[A/adC] p w.
Suppose v =inlv’ and v/ € V[[A/x]|B] p w.

Then by induction, v/ € V [B] (p, V[A] p /o) w.

Hence inlv/ € V[B+ C] (p, V[A] p /ox) w.

Suppose v =inrv’ and v/ € V [[A/x]|C] p w.

Then by induction, v/ € V[C] (p, V[A] p /&) w.

Henceinrv' € V[B+ C] (p, V[A] p /&) w.

Case B x C:

We will show that (v,v') € V[B x C] (p, V[A] p /&) wiff (v,v') € V[IA/xl(B x C)] p w.
Assume (v,v') € V[B x C] (p, V[A] p /x) w.

Thenv e V[B] (p, V[A] p /&) w.

Thenv’' € V[C] (p, V[A] p /&) w.

By induction, v € V [[A/«]B] p w.

By induction, v/ € V [[A/«]C] p w.

Hence (v,v’) € V[[A/«lB x [A/x]C] p w.

Hence (v,v') € V[[A/«(B x C)] p w.

Assume (v,v’) € V[[A/«](B x C)] p w.
Hence (v,v’) € V[[A/aB x [A/«]C] p w.
Hencev € V[[A/alB] p w.

Hence v’ € V[[A/a]C] p w.

By induction, v € V[B] (p, V[A] p /o) w.
By induction, v/ € V[C] (p, V[A] p /o) w.
Hence (v,v') € V[B x C] (p, V[A] p /x) w.

Case B — C:
We will show that Ax. e’ € V[B — C] (p, V[A] p /x) wiff Ax. e’ € V[IA/x](B — C)] p w.

Assume Ax. e’ € V[B — C] (p, V[A] p /) w.

Assume w’ <w, € Permand e € £ [[A/«B] p (w’).
By renaming 7t '(e) € £ [[A/«B] p w'.

By mutual induction, 7w (e) € £ [B] (p, V[A] p W' /) W'.
By renaming, e € £ [B] (p, V [A] p W/ /x) mt(w').

Hence [e/x]mt(e’) € E[C] (p, V[A] p W'/x) Tt(w').

By renaming 7' ([e/xIn(e’)) € £[C] (p, V[A] p W' /x) W'.
By mutual induction, 7t~ ([e/x]nt(e’)) € € [[A/aIC] p W'.
By renaming, [e/x]7t(e’) € £ [[A/x]IC] p m(w').

Hence Ax. e’ € V[[A/adB — [A/alC] p w.

Hence Ax. e’ € V[[A/al(B — C)] p w.

Note V[[A/«](B — C)]p w=V[IA/«]B — [A/«]C] p .
Assume Ax. e’ € V[[A/«](B — C)] p w.
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Assume w’ <w, € Permand e € £ [B] (p,V[A] p /&) t(w’).
By renaming, ' (e) € £ [B] (p, V[A] p /) W'.

By mutual induction, 7w (e) € £ [[A/aIB] p w'.

By renaming, e € £ [[A/a]B] p (w’).

Hence [e/x]t(e’) € E [[A/«]B] p 7t(w’).

By renaming, 7' ([e/x]7t(e’)) € E [[A/«B] p w'.

By mutual induction, 7w~ ([e/x]nt(e’)) € € [B] (p, V[A] p /o) W'.
By renaming, [e/x]7t(e’) € £ [B] (p, V[A] p /&) (w').

Hence Ax. e’ € V[B — C] (p, V[A] p /&) W'.

Case oB:

We will show thatl € V [eB] (p, V[A] p /o) wiff l € V [e[A/IB] p w.

Assumel € V[eB] (p, V[A] p /ox) w.

Thenw.o = 0y, 1: e later, oy and Yw’ < (w.n, 09, w.a),w € Perm, nt(e) € L[B] (p, V[A] p /) Tt(w’).
We want to show that Yw' < (w.n, op, w.a), 7 € Perm, nt(e) € L [[A/xIB] p 7t(w’).

Assume w’ < (w.n, 0g,w.a) and 7t € Perm.

Hence e € L[B] (p, V[A]p /o) W'.

By mutual induction, e € £ [[A/«]B] p w'.

By renaming, nt(e) € L [[A/x]B] p t(w').

Hence Yw' < (w.n, 09, w.a), € Perm, nt(e) € L [[A/x]B] p 7t(w’).

Hencel € V [e[A/x]B] p w.

Assume 1 € V [e[A/x]|B] p w.

Then w.o = 0y, 1: e later, o7 and Yw’ < (w.n, 0g,w.a), 7t € Perm, nt(e) € L [[A/«IB] p mw(w’).
Assume w’ < (w.n, 0o, w.a) and 7 € Perm.

Hence e € L [[A/alB] p w'.

By mutual induction, e € L[B] (p, V[A] p /&) w'.

By renaming, ni(e) € L[B] (p, V[A] p /o) t(w’).

Hence Yw' < (w.n, 0p,w.a), € Perm, 7t(e) € L [B] (p, V [A] p /) t(w').

Hencel e V[eB] (p, V[A] p /&) w.

Case SB:
We will show that cons(v,1) € V [SB] (p, V [A] p /&) wiff cons(v,1) € V[[A/xl(SB)] p w.

Assume cons(v,1) € V[SB] (p, V[A] p /x) w.

Thenv € V[B] (p, V[A] p /&) w.

Thenl e V[eSB] (p, V[A] p /&) w.

By induction, v € V [[A/«lB] p w.

We know that w.o = 0y, 1: e later, 04

and for all w’ < (w.n, 09, w.a) and 7t € Perm, nt(e) € L[S B] (p, V[A] p /&) t(w’).
Assume w’ < (w.n, 0g, w.a) and 7t € Perm.

Then we know e € L[SB] (p, V[A] p /&) w'.

By mutual induction, e € L [[A/xISB] p w'.

By renaming, nt(e) € L [[A/x]SB] p t(w’).

Hence for all w’ < (w.n, 0p,w.a) and 7t € Perm, 7t(e) € L [[A/x]SB] p t(w’).
Hencel € V[o([A/xISB)] p w.

Hencel e V[[A/x]e(SB)] p w.

Hence cons(v,1) € V[[A/«l(SB)] p w.

Assume cons(v,1) € V[[A/«](SB)] p w.
So cons(v,1) € V[S ([A/«IB)] p w.
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SoveV[A/xB]Jpwandle V[eS([A/aB)]p w.

By induction, v € V[B] (p, V[A] p /o) w.

We know w.o = 0y, 1 : e later, o1,

and for all w’ < (w.n, 09, w.a) and 7w € Perm, 7t(e) € L [[A/ad(S B)] p t(w’).
Assume w’ < (w.n, 0o, w.a) and 7t € Perm.

Hence e € L[[A/al(SB)] p w'.

By induction, e € L[SB] (p, V[A] p /ot) W'.

By renaming, ni(e) € L[SB] (p, V[A] p /) t(w’).

Hence for all w’ < (w.n, 0o, w.a) and w € Perm, nt(e) € L[SB] (p, V[A] p /&) t(w’).
Hencel e V[e(SB)] (p, V[A] p /&) w.

Hence cons(v,1) € V[SB] (p, V[A] p /o) w.

e Case [IB:
We will show that stable(v) € V [OB] (p, V [A] p /&) w iff stable(v) € V[[A/«](OB)] p w.

Assume stable(v) € V [OB] (p, V[A] p /) w.

Then we know thatv € V [B] (p, V[A] p /&) (w.n,-, T).
Hence by induction, v € V[[A/«]B] p (w.n,-, T).
Hence stable(v) € V [O([A/«]B)] p w.

So stable(v) € V[[A/«](OB)] p w.

Assume stable(v) € V[[A/al(OB)] p w.

So stable(v) € V [D([A/x]B)] p w.

Then we know thatv € V[[A/xIB] p (w.n,-, T).
By induction, v € V[B] (p, V[A] p /o) w.
Hence stable(v) € V[OB] (p, V[A] p /o) w.

e Case alloc:
V[alloc] (p, V[A]p /x)w = {o|w.a=_1}

= V[alloc] p w
V [[A/cdalloc] p w

2. Note that we have to take the same care as in the weakening lemma.
We will show that e € £ [B] (p, V[A] p /&) wiff e € £ [[A/«IB] p w.

Assume e € £ [B] (p, V[A] p /&) w.
Then e C w.o. Then for all 0 < w.o, thereis a 0’ < o and v such that (o;e) |} {c’;V),
andv € V[B] (p, V[A] p /ox) w.

Assume o < w.o.

Then there is a 0’ < o and v such that (c;e) || (¢/;v),and v € V[B] (p, V[A] p /&) w.

By induction, v € V [[A/«]B] p w.

So for all 0 < w.o, thereisa 0’ < o and v such that (o;e) || (c;v),andv € V[[A/x]B] p w.
Hence e € £ [[A/x]B] p w.

Assume e € E[[A/x]|B] p w.

Then for all 0 < w.g, there is a 0/ < o and v such that (o;e) | (c’;Vv),

andv € V[[A/x]B] p w.

Assume o < w.o.

Then there is a 0’ < o and v such that (o;e) |} (¢/;v), and v € V [[A/«IB] p w.
By inductionv € V[B] (p, V[A] p /ot) w.
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So for all 0 < w.o, thereis a 0/ < 0 and v such that (o;e) || (0’;v),andv € V[(p,V[A] p /)] p Bw.
Hencee € £[(p, V[A] p /x)] p Bw.

3. We will show thate € L[B] (p, V[A] p /x) wiff e € L[[A/x]B] p w.

If w.n = 0, then the result is immediate.
If wn =k + 1, then we proceed as follows.

Assume e € L[B] (p, V[A] p /&) w.

Then e C w.oc and w.oc = o’ and e € £ [B] (p, V[A] p /) (k, 0/, w.qa).
By mutual induction, e € £ [[A/«lB] p (k, 0/, w.a).

Hence e € L [[A/x]|B] p w.

Assume e € L [[A/«]B] p w.

Then e C w.oc and w.c = ¢’ and e € £ [[A/«IB] p (k,0’,w.a).
By induction, e € £[B] (p, V[A] p /o) (k, 0, w.qa).

Hence e € L [B] (p, V[A] p /o) w.

Lemma 13 (Value Inclusion). Ifv e V[A]pwthenv € E[A] p w.

Proof. Assumev € V[A]p w.

We want to show that for all 0/ < w.o, there exists a 0’ such that (¢’;v) || (¢”;v)andv € V[A] p (W.n, 0", w.a).
Assume ¢’ < w.o.

By rule, we know that (¢’;v) | (o’;V).

Take 0 = o’.

Note that (w.n, o’,w.a) < w.

By Kripke monotoncity, v € V [A] p (w.n, o', w.a) O
Lemma 14 (Kripke Monotoncity for Environments). If w’ < w, then Env(I") w’ D Env(T") w.

Proof. We proceed by induction on T
Assume we have w’ < w, and v € Env(T") w.

e Casel' = -
Immediate

e Casel' =T’ /x: A now:
Hencey = (v/,e/x) € Env(T",x : X now) w.
Hence v’ € Env(I'"’) w and V7t € Perm,w” < w. nt(e) € V[A] p t(w").
By induction y’ € Env(I'") w’.
Since w’ < w, it follows V7t € Perm,w” <w’. nt(e) € V[A] p t(w”).
Hence (v',e/x) € Env(T"/,x : X now) w’.

e Casel'=T",x:A later:
Hencey = (vy',e/x) € Env(I"/,x : X later) w.
Hence vy’ € Env(I'') w and V7t € Perm,w” < w. t(e) € L]A] p w(w").
By induction y’ € Env(I'") w’.
Since w’ < w, it follows V7t € Perm,w” <w’. nt(e) € L[A] p n(w”).
Hence (vy',e/x) € Env(I"’,x : X later) w’.
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e Casel' =T’ x: A stable:
Hencey = (v/,e/x) € Env(I"’,x : X stable) w.
Hence v’ € Env(I'') w and V7t € Perm,w"” < w. nt(e) € E[A] p (W, -, T).
By induction y’ € Env(I'") w’.
Since w’ < w, it follows Vit € Perm,w"” < w’. mi(e) € E[A] p m(w" m,-, T).
Hence (v',e/x) € Env(T"/,x : X stable) w’.

Lemma 15 (Renaming for Environments). If m € Perm and vy € Env(A) w then ni(y) € Env(A) mt(w).

Proof. We proceed by induction on T.
Assume we have 7t € Perm and y € Env(I") w.

o Casel =
Immediate

e Casel'=T",x:A now:
Hencey = (v/,e/x) € Env(I",;x : A now) w.
Soy' € Env(l)wand Vw’ <w.e e E[A]pw'.
By induction, 7t(y’) € Env(T"’) 7t(w).
Assume w" < mt(w).
Then ' (w”) < w.
Hencee € £[A]p ' (w").
By renaming lemma, 7t(e) € £ [A] p me(n~ ! (w")).
Hence t(e) € E[A] p w”.
Hence Yw” < mt(w). mi(e) € E[A] pw”.
Hence (nt(y’), t(e)/x) € Env(I',x : A now) 7t(w).
Hence nt(y) € Env(I") mt(w).

e Casel'=T",x: A later:
Hencey = (v/,e/x) € Env(I",x : A later) w.
Soy' € Env(l)wand VYw’ <w.e e L[A]pw’.
By induction, 7t(y’) € Env(T"’) 7t(w).
Assume w" < mt(w).
Then ' (w”) < w.
Hencee € L[A]p 7' (w”).
By renaming lemma, 7t(e) € £ [A] p 7t( ! (w”)).
Hence 7t(e) € L[A] p w”.
Hence Yw” < mi(w). t(e) € LA] pw".
Hence (nt(y’), t(e)/x) € Env(T/,x : A later) mt(w).
Hence nt(y) € Env(I") mt(w).

e Casel'=T",x: A stable:
Hencey = (v/,e/x) € Env(I";x : A stable) w.
Soy' € Env(lM)wand Vw' <w.e e E[A]p (W', T).
By induction, 7(y’) € Env(T"’) 7t(w).
Assume w” < mt(w).
Then ' (w”) < w.
Hencee € £[A]p (m'(w")m,-, T).
By renaming lemma, nt(e) € £ [A] p (' (w”)n, -, T).
But t(m'(w”)n,-, T) = (w’mn,-, T).
Hence mt(e) € E[A] p (W', -, T).
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Hence Yw” < mt(w). mt(e) € E[A]p (W'm,-, T).
Hence (nt(y’), t(e)/x) € Env(T"’,x : A stable) n(w).
Hence nt(y) € Env(I") t(w).

Lemma 16 (Environment Shift). Supposey € Env(I") w. Then:

1. VP € Env(r'Y) (wm,-, T).

2. Ifw=(n+1,0,a)and 0 = o, then y} € Env(T'*) (n,0’, a).
Proof. We proceed as follows:

1. We prove this by induction on T".
Assume v € Env(T") w.
Now analyse T™:

e Casel' = -
Immediate.

e Casel' =T',x: A now:
Then we know v = (v/,e/x) € Env(T",x : A now) w.
Sovy’ € Env(T") w.
By induction,y’E, € EnV(F’D) (wn,-, T).
By definition (I, x : A now)~ = T"".
By definition (y’, e/x)? = V’E,.
Hence yF € Env(I'Y) (wn, -, T).
e Casel' =T',x:A later:
Then we know vy = (y/,e/x) € Env(I"/,x : A later) w.
Sovy’ € Env(Tl') w.
By induction,y’E, € EnV(F’D) (wn,-, T).
By definition (I, x : A later)” = ",
By definition (y’, e/x)EI = V’E,.
Hence yF € Env(I'Y) (wn, -, T).
e Casel'=T",x: A stable:
Then we know v = (y/,e/x) € Env(I"/,x : A stable) w.
Soy’ € Env(l")wand Yw' <w.e € EJA]p (W', , T).
By induction,y’E, € Env(F’D) (wn, -, T).
Assume w’ < (w.n, -, T).
Note thatif w’ < (w.n,-, T), then (W' .n,w.o,w.a) < w.
Hencee € E[A] p (W', -, T).
Hence Vw' < (wn,-, T). e € E[A] p (W, T).
Hence (V’E/, e/x) € Env(F’D,x : A stable) (w.n, -, T).
By definition (I, x : A stable)” =", x : A stable.
By definition (v, e/X)1 1.a stale = (Y'T» €/%).
Hence yF € Env(I'Y) (wn, -, T).

2. We proceed by induction on T".
Assumew = (n+1,0,a) and 0 = o’. Let w’ = (n, ¢/, a).
Now analyze T'.

e Casel' ==
Immediate.
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e Casel'=Tx:A later:
Theny = (v, e/x) € Env(T") w.
Hence v’/ € Env(l'"') wand Yw” < (n+1,0,a). e € L[A] p w".
By induction, y'}, € Env(I'*) w'.
By instantiation, e € L[A] p (n+1,0,a).
By definition, Yw"” < (n,c’,a). e € E[A] p w".
HenceVw” <w'.ec E[A]pw”.
Hence (y'}/,e/x) € Env(I*,x : A now) w’.
By definition, (I',x : A later)® =T'* x : A now.
By definition, (v, e/X)1/ \.a taer = (Y'T/ €/X)-
Hence y{ € Env(I'*) w'.

e Casel'=Tx:A now:
Thenvy = (v',e/x) € Env(T') w.
Hence vy’ € Env(I'’) wand Yw” < (n+1,0,a). e € L[A] p w".
By induction, v’} € Env(I'*) w'.
By definition, (I';x: A now)* =T"°.
By definition, (v/,e/X)1/ A now = Y'T-
Hence v} € Env(I'*) w'.

e Casel' =T,x: A stable:
Thenvy = (v/,e/x) € Env(T") w.
Hencey’ € Env(I'’) wand Yw” < (n+1,0,a). e € E[A] p (W"n,-, T).
By induction, v’} € Env(I'*) w'.
Assume w” <w'.
Note that (n,0,a) < (n+1,0,a).
Since w” <w’, then (W’ .n,0,a) < (n+1,0,a).
Hencee € E[A] p (W', T).
Hence Yw” <w’. e € E[A]p (W', T).
Hence (y'}/,e/x) € Env(I"*,x : A stable) w’.
By definition, (I'",x : A stable)® =T’° x: A now.
By definition, (v, e/X)1/ . staple = (Y'Ts €/%).
Hence v} € Env(I'*) w'.

Lemma 17 (Stability). If A stableandv € V[A]pw, thenv € V[A] p (wn,-, T).
Proof. This follows from an induction on the derivation of A stable.

e Case A:
Assume stable(v) € V [OA] p w.
Thenv € V[A] p (w.n,-, T).
Hence stable(v) € V[OA] p (w.n,-, T).

e Case A + B:
By inversion, A stable and B stable.
Assumev € V[A + B] p w.
Eitherv =inlv' Av' e V[A]pworv=inrv' Av' € V[B] p w.
Suppose v =inlv’ and v/ € V [A] p w.
By induction, v/ € V[A] p (w.n,-, T).
Hence inlv' € V[A + B] p (wn,-, T).
Suppose v =inrv’ and v/ € V [B] p w.
By induction, v/ € V[B] p (w.n,-, T).
Hence inrv' € V[A +B] p (wn,-, T).
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e Case A x B:
By inversion, A stable and B stable.
Assume (v,v') € V[A x B] p w.
Thenv e V[A]pwand v’ € V[B]p w.
By induction, v € V[A] p (w.n,-, T).
By induction, v/ € V[B] p (w.n,-, T).
Hence (v,v') € V[A x B] p (w.n,-, T).

Theorem 1 (Fundamental Property). The following properties hold:
1. IfT+e: Alaterandy € Env(I') w, then y(e) € L[A]-w
2. IfTke: Astableandy € Env(I") w, then y(e) € E[A] - (wn,-, T).
3. IfTFe:Anowandy € Env(l') w, theny(e) € E[A]-w

Proof. We proceed as follows:

1. Assumel' I e: A laterand vy € Env(I") w.
Now consider what the world is:

w = (0, 0,a).
In this case, y(e) € L[A] - (0, 0, a) by definition of £ [A] - w

e w=(n+1,0,a).
We know o € Heap, _,,s0 0 = o’ such that o’ € Heap,.
Hence w’ £ (n,0’,a) € World.
By inversion, we have I'* - e : A now.
By environment shift, we have y} € Env(I") w’.
Assume w” <w'.
By Kripke monotoncity, v € Env(I') w”
Hence by fundamental theorem, v (e) € 5 [A]-w
But by deﬁnition, y]’-(e) =v(e), so y(e) €& [[A]]
Hence for all w” <w’,wehavevy(e) € E[A]-w
Hencey(e) € L]A]-w

2. Assume T I e: A stable and y € Env(T") w.
By inversion, we know that '™ I e : A now.
By environment shift, we know that y‘,g € Env(r') (wn, -, T).
By the the fundamental property, Y= (e) € E[A] - (wan, -, T).
Note yF(e 1=te)
Hence y(e) € £[A] - (wn, -, T).

3. We proceed by induction on the typing derivation:

e Case HYP:
Assume vy € Env(I") w.
We know I' F x : A now.
By inversion, we know that x : A now € I" or x : A stable.

— Suppose x: A now € I
Then by deﬁnition of Env( Jw, YW <w.y(x) € EJA]-w
Hence y(x) € EJA] - w
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— Suppose x : A stable € T:
Then by definition of Env(T") w, Vw’ <w. y(x) € E[A] - (W'.n,-, T).
Hence (-;e) |} (;v) such thatv € V[A] - (wn, -, T).
Note that w < (w.n,-, T).
We want to show e € £ [A] - w.
Assume ¢’ < w.store.
Note (w.n,o’,w.a) < w.
By uniformity, we know that (c';e) |} (o”;v).
Hence by Kripke monotoncity, v € V[A] - (w.n, o', w.a).
Take the existential witness o to be ¢’ itself.
Vacuously, if w.a =T, then ¢/ = ¢”.
Hencee € E[A] - w.

e Case FIx:

Assume y € Env(T") w.

We know T F fixx. e : A now.

By inversion, we know that '™, x : A later - e : A now.

Now, we know that w = (n, 0, a).

By nested induction, we show forall m < n,w’ < (m,-, T). y(fixx. e) € E[A]-w'.

-m=0:
By Kripke monotonicity, we know thaty € Env(T') (0, o, a).
By environment shift, we know that VP € Env(r'™) (o,-, T).
Assume that w’ < (0,-, T).
By Kripke monotonicity, we know thaty € Env(I") w’.
Assume that w” < (0,-, T).
Note that w”’.n = 0.
Then by definition, y(fixx. e) € L[A]- w".
Hence Yw” <w’, y(fixx. e) € L[A]-w".
Hence we know that (yp,y(fix x. e)/x) € Env(I'Y, x : A later) w’.
By the fundamental lemma, we know (y?,y(fix x. e)/x)(e) € EJA] - w'.
Note that (yP,y(fiXx. e)/x)(e) = (v,v(fixx. e)/x)(e).
Hence thereisv € V[A] - w's.t. (-; (v, v(fixx. e)/x)(e)) | (;;V).
Hence thereisv € V[A] - w' s.t. {;y([fixx. e/xle)) 4 (V).
Hence thereisv € V[A]- w's.t. {;;v(fixx. e)) I (-;v).
Hence y(fixx. e) € E[A] - w'.
Hence Yw’ < (0,-, T). y(fixx. e) € E[A] - w'.
-m=k+1:

By induction, we know that forall i <k, w’ < (i,-,T), y(fixx. e) € E[A] - w'.
Now, we want to show that Vw’ < (k+1,-, T). y(fixx. e) € L]A]- w'.
Assumew’ < (k+1,-,T).
If w/.m = 0, the result is immediate.
If w'.n =j+ 1, then we want to show
there is a 0" such that w’.store = ¢"” and 0" € Heap; and
that for allw” < (j,0”, T). y(fixx. e) € E[A] - w".
Since w'.0 € Heap;  ;, we know there is w'.store = 0" such that ¢”’ € Heap;.
We want to show for all w” < (j,0”, T). y(fixx. e) € E[A] - w".
Assume w” < (j, 0", T).
Note that sincew’.n=j+1 <k+ 1, we know thatj < k.
Hence w” < (j,0”,T) < (3, T).
Hence by the induction hypothesis, y(fixx. e) € £ [A] - w”.
Hence for allw” < (j, 0", T). y(fixx. ) € E[A] - w”.
Hence vw’ < (k+1,-, T). y(fixx. e) € L[A]-w'.
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Since k + 1 < w.n, by Kripke monotonicity, y € Env(I") (k + 1, 0, a).

By environment shift, yP € Env(r9) (k+1,-,T).

By definition, (yP,y(fixx. e)/x) € Env(I' x : A later) (k+1,-, T).

By the fundamental property, (vF,y(fixx. e)/x)(e) € E[A]- (k+ 1, T).

Note (yF,y(fiXx. e)/x)(e) = (v, v(fixx. e)/x)(e).

Hence (v, v(fixx. e)/x)(e) € E[A]- (k+ 1, T).

So for every o, thereisav € V[A]- (k+1,-, T) s.t. (o3 (v, v(fixx. e)/x)(e)) |} (o;v).

Hence it follows that for every o, thereisav € V[A] - (k+1,-, T) s.t. (o;v(fixx. e)) | (o3V).
Hence y(fixx.e) € E[A]- (k+1,,,T)

Therefore we know that y(fixx. e) € £[A] - (n,-, T).

We want to show y(fixx. e) € E[A] - (n, 0, a).

Assume we have 0/ < 0.

Note that o/ < -.

Hence we know that (¢’;y(fixx. e)) |} (0;v) such thatv € V[A]- (n,-, T).
By Kripke monotonicity, we know thatv € V[A] - (n, o’, a).

Take 0" = 0o’.

Hence 0” < ¢/, such that (o/;y(fixx. e)) |} (¢”;v) andv € V[A]- (n, 0", a).
Hence y(fixx. e) € £[A] - (n,0,a).

Case +LI:

Assume y € Env(T") w.

We know I - inle : A 4+ B now.

By inversion, I' - e : A now.

By fundamental lemma, y(e) € £ [A] - w.

Hence there is a v and ¢’ < w.o such that (w.o;e) |} (¢';v) such thatv € V[A] - (w.n, o/, w.a).
Hence inlv € V[A +B] - (w.n, o', w.a).

Note that by rule (w.o;inle) | (o”;inlv).

Henceinle € £[A + B] - w.

Case +RI:

Assumey € Env(I") w.

We know I' - inre : A + B now.

By inversion, I' - e : B now.

By fundamental lemma, y(e) € € [B] - w.

Hence there is a v and ¢’ < w.o such that (w.o;e) |} (¢';v) such thatv € V[B] - (w.n,o’,w.a).
Henceinrv € V[A + B] - (w.n,c’,w.a).

Note that by rule (w.o;inre) || (o’;inrv).

Henceinre € £ [A + B] - w.

Case +E:

Assumey € Env(I") w.

We know that I - case(e,inlx — eq,inry — ez) : C now.

By inversion, '-e: A+ Bnowand [x: Anowt e;: Cnowand [y : B now e, : C now.
By induction, y(e) € £ [A + B] - w.

Hence there isavand ¢’ < w.o such thatv € V[A + B] - (w.n,o’,w.a).

Suppose v =inlv’ and v/ € V[A] - (w.n, o', w.a).

By weakening, we know thaty € Env(I") (w.n, o’,w.a).

By value inclusion, we know thatv’ € £[A] - (w.n, o/, w.a).

Hence (vy,v’/x) € Env(T;x : A now) (w.n,o’,w.a).

By induction, (y,v’/x)e; € £[C] - (w.n, o', w.a).

Note that (y,v'/x)e; = [v//xly(e1), so V' /xly(e1) € E[C] - (w.n, o', w.a).

Therefore thereisav” and 0” < ¢’ such that (o’; v/ /xly(e1)) | (¢”;v"yandv” € V[C] - (w.n, ", w.a).
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Note (w.o;case(y(e),inlx — y(e1),inry — y(e2))) | (a”;v").

Hence case(y(e),inlx — y(eq),inry — y(ez)) € E[C] - w.

Note that case(y(e),inlx — y(ey),inry — y(e2)) =y(case(e,inlx — ey,inry — ez)).
Hence y(case(e,inlx — eq,inry — ez)) € E[C] - w.

Supposev =inrv’ and v/ € V[B] - (w.n,o’,w.a).

By weakening, we know thaty € Env(I") (w.n, o’,w.a).

By value inclusion, we know thatv’ € £ [B] - (w.n, o', w.a).

Hence (y,v'/y) € Env([;x : B now) (w.n,o’,w.a).

By induction, (y,v'/y)e; € £[C]- (w.n,o’,w.a).

Note that (y,v’/y)e; = [v//yly(ez), so v /yly(ez) € E[C]- (w.n,o’,w.a).

Therefore thereisav’” and 0” < o’ such that (¢’; v/ /yly(ez2)) | (¢”;v")andv” € V[C] - (w.n,c”,w.a).
Note (w.o;case(y(e),inlx — y(e1),inry — y(ez2))) | (a”;v").

Hence case(y(e),inlx — y(eq),inry — y(e2)) € E[C] - w.

Note that case(y(e),inlx — y(ey),inry — y(e2)) =v(case(e,inlx — ey, inry — ez)).
Hence y(case(e,inlx — eq,inry — ez)) € E[C] - w.

Case xI:

Assume y € Env(T") w.

We know I' - (e7,e3) : A x B now.

By inversion, we know I' - e; : Anowand I' - e, : B now.

By induction, we know thaty(ey) € E[A] - w.

Hence there is a v and ¢’ < w.o such that (w.o;y(eq)) | (o/;v1) and vi € V[A] - (w.n, o/, w.a).
By weakening, v € Env(I') (w.n, o/, w.a).

By induction, y(e2) € £ [B] - (w.n, o/, w.a).

Hence there is a v, and ¢” < o’ such that (o’;y(ez)) I (0”;v2) and v, € V[B] - (w.n, o”,w.a).
By weakening, vi € V[A] - (w.n, 0", w.a).

Hence (vi,v2) € V[A x B]- (w.n, 0", w.a).

By rule (w.0; (y(er), y(e2)) b (”; (v1,v2)).

Hence (y(e1),v(ez2)) € EJA x B] - w.

Note (v(e1),v(e2)) = v((e1,e2)).

Hence y((e1,e2)) € EJA x B] - w.

Case xLE:

Assume y € Env(T") w.

We know I' I fste : A now.

By inversion, I' - e : A x B now.

By induction, y(e) € £ [A x B]- w.

Hence thereisa (vi,v;) and o’ < osuch that (w.o;e) || (o’; (v1,v2)) and (vi,v2) € V[A x B] - (w.n,o’,w.a).
Hence vy € V[A] - (w.n, o', w.a).

By rule, (w.o;fsty(e)) | (o/;v1).

Hence fsty(e) € E[A] - w.

Note fsty(e) = y(fste).

Hence y(fste) € E[A] - w.

Case xRE:

Assume y € Env(T") w.

We know I' - snd e : B now.

By inversion, I' - e : A x B now.

By induction, y(e) € £ [A x B] - w.

Hence thereisa (vi,v2) and ¢’ < o such that (w.c;e) | (0’; (v1,v2)) and (vi,v2) € V[A x B] - (w.n,0’,w.a).
Hence vi € V[B] - (w.n,o0’,w.a).

By rule, (w.o;sndy(e)) | (o';v1).

Hence sndy(e) € £ [B] - w.

Note sndy(e) =y(snde).
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Hence y(snde) € £ [B] - w.

Case ol:

Assume y € Env(T") w.

We know ' - b,/ (e) : A now.

By inversion, we know I'- e : A laterand " - e’ : alloc now.

By fundamental lemma, we know y(e’) € £ [alloc] - w.

Hence there is a ¢’ < w.o such that (w.c;e’) |} (o’;0) and ¢ € V [alloc] - (w.n,c’,w.a).
Hence we know that w.a = L.

Let w/ = (w.n, 0’,w.a), and note that w’ < w.

Assume 7t € Perm and w” <w’.

By Kripke monotonicity and renaming, 7t(y) € Env(T") t(w"”).

By fundamental lemma, (7t(y))(e) € £ [A] - t(w’).

Since e has no free locations in it, (7t(y))(e) = mt(y(e)).

Hence V7t € Perm and w” < w’, we know 7t(y(e)) € L[A] - m(w").
Choose | € dom(o’) and let 0" =w’.0,1: e later

Now, we will show that 0" € Heap, | .

- Suppose w.n = 0:
Then 0" € Heap, immediately.
— Supposew.n =k+ 1:
Then we know that there is a 6’ such that w’.c = 6’ and 6’ € Heap, .
Due to the permutability and renaming properties, we can assume 1 ¢ dom(6”).
Since y(e) € L[A]- w’, we know (6';v(e)) || (6”;v), with 6" < 6.
Due to the permutability and renaming properties, we can assume 1 ¢ dom(6").
Therefore (6",1: v now) € Heap, .
Note 0" = (6”,1: v now).
So 0" € Heap, _,

: " : " /
Since 0" € Heap,, _, it follows 0" <w'.c.

Letw” = (wmn,c”, L).

Now we will show thatl e V [eA] - w”.

Note that w”.0 = o’,1 : e later, and that (w”.n,o’,w”.a) = w’. Note that YVt € Perm and
w” <w’, we know 7t(y(e)) € L]A]- t(w”).

Hence l € Env(eA) w'.

Hence 6, (c/)(v(e)) € £ [eA] - .

Hence y(5./(e)) € EeA] - w.

Case oE:

Assumey € Env(I") w.

We know I' - let §(x) = ein e’ : C now.

By inversion, I' - e : #A now.

By the fundamental theorem, y(e) € £ [eA] - w.

Hence there is v, 6’ < w.o such that (w.c;e) || (w’.o; 1),

where w' = (w.n,0’/,w.a) <wandl e V[eA] - w.

Therefore 0’ = 0y, 1: eg later, 07 and Yw” < (w.n, oo, w.a). eg € L[A]- w".

Now, we will show that Il € L[A] - w'.

If w.n = 0, then this is immediate.

So supposew.n =k + 1.

Then, we know that 0/ = 6.

Hence oy, 1: e later, 07y = 69,1 : v now, 6,
where 09 = 69 and (6o;e0) | (64;V).
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Since ep € L[A] - (w.n, 0o, w.a), we know that 09 = 6 and ep € £ [A] - (k, G, w.a).
Therefore (6o;e0) | <6’;y> andv € V[A]- (k, 65, w.a).

There is a permutation 7 such that 7t(o) = 0p, and v = 7t(v) and 6} = n(6}).

Hence by renaming v € V [A] - (k, 65, w.a).

Assume w” < (k,6',w.a).

Note that for all 0" < 6}, we have (o”;!1) | (c¢;V).

Hence (w”.0; 1) || (w”.0;v).

By Kripke monotonicity, v € V [A] - w”.

Hence for all w” < (k,8’,w.a), we know !l € E[A] - w”.

Hence !l € LA] - w'.

By Kripke monotonicity, y € Env(T") w'.
Hence (v, !1/x) € Env(T}x : A later) w’.
By fundamental property, (v, !1/x)(e) € E[C] - w’.
Hence we have v/, w” such that (w'.o; (v, !1/x)(e)) | (w”.0;v') and v/ € V[C]- w".
Hence (w.o;y(let 8(x) =eine’))  (w”.o;v') and v/ € V[C]- w".
Hence y(let d(x) = eine’) € E[C] - w.
e Case I:
Assume y € Env(T") w.
We know T F stable(e) : JA now.
By inversion, we know Mk e: A now.
By induction, for all w’,y’ € Env("'Y) w’, we have y'(e) € £ [A] - w'.
By environment shift, we know VP € Env(rY) (wn, -, T).
Hence, thereisav € V[A] - (w.n,-, T) such that (5yF(e)) | (V).
But note that y‘%‘(e) =vy(e).
Note stable(v) € V[OA] - w.
By uniformity, (w.o;v(e)) | (w.o;v).
Hence (o;y(stable(e))) | (o;stable(v)) and stable(v) € V [OA] - w.
Hence y(stable(e)) € £ [ODA] - w.

e Case [E:
Assumey € Env(I") w.
We know T I let stable(x) = e in e’ : C now.
By inversion, we know I' - e : JA now and I} x : A stable e’ : C now.
By induction, we know thaty(e) € £ [HA] - w.
Hence there is a 0’ < w.o s.t. (w.o;v(e)) || (o’;stable(v))
and stable(v) € V[JA] - (w.n,0’,w.a) and ¢’ =w.cifw.a=T
Letw’ = (w.n, o', w.a).
By Kripke monotonicity, y € Env(T") w’.
By definition, v € V[A] - (w'.n,-, T).
Assume w” < w’. Then by Kripke monotonicity, v € V[A] - (w".n,-, T).
Hence (y,v/x) € Env(I;x : A stable) w’.
Hence (y,v/x)(e’) € E]C]- w'.
Therefore 0” < w’.os.t. (W'.o;y(e)) || (w.a”;v")
andv” € V[C]- (w'.n,0”",w'.a)and 0" =w'.cifw.a=T
Note that w'.n = w.nand w'.a = w.a.
Hence we know that ¢’ <w.cand 0” =w.cifw.a=T.
By rule, we know that (w.o;y(let stable(x) = eine’)) |} (o”;v").
Hence y(let stable(x) =eine’) € £[C] - w.

e Case PROMOTE:
Assume y € Env(T") w.
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We know I" - promote(e) : JA now.

By inversion, I' - e A now and A stable.

By induction, y(e) € E[A]-w

Hence there are v, 0’ < w.o such that (w.o;y(e)) | (o/;v)
andv e V[A]- (w.n, o/,w.a)andw.a=T = ¢’ =w.0.
Since A is a stable type,ve V[A]- (wn,-, T).

Hence stable(v) € V[OA] - (w.n, o', w.a).

By rule (w.o;y(promote(e))) | (o’;stable(v)).

Hence y(promote(e)) € £ [HA] - w

Case —1I:

Assume y € Env(T") w.

We know I' - Ax. e: A — B now.

By inversion, I} x : A now }— e : B now.

It suffices to show y(Ax. e) € V[A — B]]

This is equivalent to showmg Ax.y(e) eV [[A — B]]
Assume 7 € Permand w/ <wand ey € E[A]- 7 ’).
Then, by Kripke monotonicity, y € Env(I") w’.

Then, by environment renaming, 7t(y) € Env(T") t(w’).
Then we know (7t(y), eg/x) € Env (T} x : A now) 7t(w’).
By induction, we know (7t(v), eo/x)(e) € € [B] - m(w’)
Since e has no free location variables, [eo/x](7t(y(e)) € £ [B] - m(w’)
Hence Ax. y(e) € V[A — B]-w

Case —E:

Assume y € Env(T") w.

We know I' e e’ : B now.

By inversion, T'+e: A — Bnowand '+ e’ : A now.

By induction, y(e) € £[A — B] - w

Hence there is a ¢’ < w.o such that (w.o;y(e)) |} (o/;Ax. e1)

and Ax. e; € V[A — B]- (w.n,0’,w.a) and w.a = T implies 0/ = w.o0.
Note that w’ £ (w.n, o/, w.a) < w.

By Kripke monotonicity, v € Env(l") w'.
Hencey(e’) € E[A]-w

Hence there is a o < w .0 such that (w’.o;y(e)) I (c”;v)
andv € V[A]- (w'n, o’ ,w’ a) and w'.a = T implies 6” =w
Note that w” £ (w’.n, o” w .a) <w'.

Hence [v/x]le; € E[B]-w

Hence thereisa 0’/ < w”.(f such that (w”.0; (y,v/x)eq) I (v >
andv' € V[B]- w”.n,0"”,w”.a) and w”.a = T implies 6" =w".0.
By rule (w.o;v(e e’)) | <0’” v >

Note that w”’ £ (w” .m,c” ,w".a) <w".

Note that w”’.n = w.n and w”’
Hencey(ee’) € £[B]-w

Case SI:

Assume y € Env(T") w.

We know T - cons(e,e’) : S A now.
By inversion, I' e Anowand T+ e’ : e(SA) now.
By induction, y(e) € E[A]-w

Hence thereisa 0’ < w.o andv s.t. (w.o;v(e)) § (0
andv e V[A]- (wn,o’;w.a)andw.a=T = o’
Note that w’ £ (w.n, o/, w.a) < w.

By Kripke monotonicity, Y € Env(T) w'.

’.0.

/.V

)
= W.O0.
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By induction, y(e’) € E[¢(SA)]- w'.
Hence thereisa ¢’ < w’.cand vs.t. (w'.o;v(e)) | (¢”;1)
andle V[A]- (w'n,0”,w'.a)andw’.a=T = o’ =w’.0.
Hence by rule, (w.o;cons(e,e’)) | (c”;cons(v, 1)).
Note that w” £ (w’.n, o, w’.a) < w’.
Hence w” < w.
Furthermore, w”.n =w.n and w”.a =w.q, and so if w.a = T then 0" = w.o.
Hence y(cons(e,e’)) € E[SA] - w.
e Case SE:
Assume y € Env(T") w.
We know T" | let cons(x, xs) = ein e’ : C now.
By inversion, I't- e: SA now and I x : A now, xs : ¢(SA) now - e’ : C now.
By induction, y(e) € £ [A] - w.
Hence thereis a 0/ < w.o and vs.t. (w.o;v(e)) | (o’;cons(v,1))
and cons(v,1) € V[A]- (wn,0’,w.a)and w.a =T = ¢’ =w.c.
Note that w’ £ (w.n,o’,w.a) < w.
By definition,v € V[A]-w’and 1 € V[o(SA)]- w'.
By Kripke monotonicity, y € Env(T") w’.
Assume w” < w'.
By Kripke monotonicity,v € V[A]-w” and 1 € V[eSA] - w”.
Hencev e EJA]-w”and 1 € E[eSA]- w”.
Hence for allw” <w’,v € £[A]-w".
Hence for all w” <w’, 1 € £[eSA]- w”.
Hence (vy,v/x,1/xs) € Env(T;x : A now, xs : ¢(SA) now) w’.
By induction, (y,v/x,1/xs)(e’) € E[C]-w’.
Hence thereisa ¢’ < w’.cand v’ s.t. (w’.o;y(e)) | (c”;v’)
andv' € V[C]:- wW'n,0”",w'.a)and w'.a=T = o¢” =w.0".
Note that w” £ (w’.n, o, w’.a) < w’.
Hence w” < w.
Furthermore, w”.n =w.n and w”.a =w.q, and so if w.a = T then 0" = w.o.
By rule (w.o;v(let cons(x,xs) =eine’)) | (c”;v’).
Hence y(let cons(x,xs) =eine’) € E[C] - w.
e Case ul:
Assume w and y € Env(T") w.
Assume '+ intoe: fioe. A now.
By inversion, we know I' - e : [e(ficc. A)/a]A now.
By induction, we know thaty(e) € £ [[e(fix. A)/a]A] - w.
Hence for all 0 < w.o, there existsvand 0/ < ¢
such that (o;y(e)) | (o/;v) and v € V[[e(fix. A)/x]A] - w.

Assume o < w.o.

Then there exists v and o’ < o such that (o;y(e)) | (0/;v) and v € V [[e(fix. A)/x]A] - w.
By substitution lemma, v € V[A] (V [e(fix. A)] - w/o) w.

Hence intov € V [fioe. A] p w.

So (o;v(e)) I (o/;v) and intov € V [fix. A] - w.

So for all 0 < w.o, there existsvand ¢’ < o

such that (o;intoy(e)) |} (¢/;v) and intov € V [fix. A - w.

Hence intoy(e) € € [ix. A - w.

Hence y(intoe) € € [fix. A - w.

e Case pE:
Assume w and v € Env(T") w.
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Assume ' - oute: [e(fte. A)/x]A now.

Hence Tt e: fix. A now.

Hence y(e) € &€ [fix. A] - w.

So for all 0 < w.o, there exists v and o’

such that (o;e) |} (o’;intov) and intov € V [fix. A] - w.

We want to show y(oute) € & [[e(fix. A)/x]A] - w.

Assume o < w.o.

So there are v and ¢’ such that (o;e) | (¢’;intov) and intov € V [fix. A] - w.
Hencev € V[A] (V [e(fice. A)]- w/x) w.

By substitutionv € V [[o(fix. A)/a]A] - w.

Hence (o;outy(e)) I (o’;v)andv € V [le(ficc. A)/a]A] - w.

Soouty(e) € £ [lo(ftee. A)/x]A] - w.

Soy(oute) € £ [lo({ice. A)/x]A] - w.
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