Higher-Order Functional Reactive Programming without Spacetime Leaks

Neelakantan R. Krishnaswami

<neelk@mpi-sws.org>

July 18, 2013

1 Definitions

List of Figures

1	Syntax
2	Expression Semantics
3	Tick Semantics
4	Hypotheses, Contexts and Operations on Them
5	Typing
6	Definition of Store-supportedness
7	Definition of Worlds
8	The Logical Relation
9	Operations on Environments
-	· · · · · · · · · · · · · · · · · · ·
2 P	roperties
	1
Lict	of Theorems
LIST	of Theorems
1	Lemma (Extension)
2	Lemma (Uniformity)
3	Lemma (Permutability)
4	
_	Lemma (Supportedness)
5	Lemma (Quasi-determinacy)
6	Lemma (Order Permutation)
7	Lemma (Heap Renaming)
8	Lemma (Kripke Monotoncity)
9	Lemma (Renaming)
10	Lemma (Supportedness of the Logical Relation)
11	Lemma (Weakening)
12	Lemma (Type Substitution)
13	Lemma (Value Inclusion)
14	Lemma (Kripke Monotoncity for Environments)
15	Lemma (Renaming for Environments)
16	Lemma (Environment Shift)
17	Lemma (Stability)

```
Types A ::= b \mid A \times B \mid A + B \mid A \rightarrow B \mid \bullet A \mid \hat{\mu}\alpha. A \mid \Box A \mid SA \mid \text{alloc}

Terms e ::= \text{fst } e \mid \text{snd } e \mid (e,e')
\mid \text{inl } e \mid \text{inr } e \mid \text{case}(e,\text{inl } x \rightarrow e',\text{inr } y \rightarrow e'')
\mid \lambda x. \ e \mid e \ e'
\mid \delta_{e'}(e) \mid \text{let } \delta(x) = e \text{ in } e'
\mid \text{into } e \mid \text{out } e
\mid \text{stable}(e) \mid \text{let stable}(x) = e \text{ in } e'
\mid \text{cons}(e,e') \mid \text{let cons}(x,xs) = e \text{ in } e'
\mid \text{fix } x. \ e \mid x \mid \text{promote}(e)
\mid l \mid !l \mid \diamond

Values v ::= (v,v') \mid \text{inl } v \mid \text{inr } v' \mid \lambda x. \ e \mid l \mid \text{into } v \mid \text{stable}(v) \mid \text{cons}(v,v') \mid \diamond

Stores \sigma ::= \cdot \mid \sigma, l : v \text{ now } \mid \sigma, l : e \text{ later } \mid \sigma, l : \text{null}
```

Figure 1: Syntax

1	Theorem (Fundamental Property)	8
1	Lemma (Extension)	8
2	Lemma (Uniformity)	10
3	Lemma (Permutability)	12
4	Lemma (Supportedness)	16
5	Lemma (Quasi-determinacy)	16
6	Lemma (Order Permutation)	20
7	Lemma (Heap Renaming)	20
8	Lemma (Kripke Monotoncity)	21
9	Lemma (Renaming)	23
10	Lemma (Supportedness of the Logical Relation)	26
11	Lemma (Weakening)	27
12	Lemma (Type Substitution)	31
13	Lemma (Value Inclusion)	36
14	Lemma (Kripke Monotoncity for Environments)	36
15	Lemma (Renaming for Environments)	37
16	Lemma (Environment Shift)	38
17	Lemma (Stability)	39
1	Theorem (Fundamental Property)	40

2.1 Operational Properties

Lemma 1 (Extension). *If* $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$, then there exists σ'' such that $\sigma' = \sigma \cdot \sigma''$.

Lemma 2 (Uniformity). *If* $\langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle$, then $\langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle$.

Lemma 3 (Permutability). We have that:

- 1. If $\pi \in \text{Perm and } \langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle \text{ then } \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle$.
- 2. If $\pi \in \text{Perm and } \sigma \Longrightarrow \sigma' \text{ then } \pi(\sigma) \Longrightarrow \pi(\sigma')$.

Lemma 4 (Supportedness). We have that:

$$\frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle}{\langle \sigma; v \rangle} = \frac{\langle \sigma; e_1 \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; (e_1, e_2) \rangle \Downarrow \langle \sigma''; v_2 \rangle} \times \frac{\langle \sigma; e_2 \rangle \Downarrow \langle \sigma''; v_2 \rangle}{\langle \sigma; fst e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; (v_1, v_2) \rangle}{\langle \sigma; fst e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; (v_1, v_2) \rangle}{\langle \sigma; snd e \rangle \Downarrow \langle \sigma'; v_2 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; fst e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_2 \rangle}{\langle \sigma; snd e \rangle \Downarrow \langle \sigma'; v_2 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; fst e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; fin v \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; case(e, inl x \rightarrow e', inr y \rightarrow e'') \rangle \Downarrow \langle \sigma''; v'' \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; inr v \rangle}{\langle \sigma; case(e, inl x \rightarrow e', inr y \rightarrow e'') \rangle \Downarrow \langle \sigma''; v'' \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; case(e, inl x \rightarrow e', inr y \rightarrow e'') \rangle \Downarrow \langle \sigma''; v'' \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma''; v_2 \rangle}{\langle \sigma; e \rangle \Downarrow \langle \sigma''; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma''; v_2 \rangle}{\langle \sigma; e \rangle \Downarrow \langle \sigma''; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma''; v_1 \rangle}{\langle \sigma; e \rangle \Downarrow \langle \sigma''; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{1 : v \text{ now } \in \sigma}{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{1 : v \text{ now } \in \sigma}{\langle \sigma; e \rangle \Downarrow \langle \sigma; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e \rangle \Downarrow \langle \sigma'; v_1 \rangle} \times \frac{\langle \sigma; e \rangle \Downarrow \langle \sigma'; v_1 \rangle}{\langle \sigma; out e$$

Figure 2: Expression Semantics

Figure 3: Tick Semantics

Figure 4: Hypotheses, Contexts and Operations on Them

```
1. If e \sqsubseteq \sigma and \sigma' \leq \sigma then e \sqsubseteq \sigma'.
```

- 2. If $e \sqsubseteq \sigma$ and $e' \sqsubseteq \sigma$ then $[e/x]e' \sqsubseteq \sigma$.
- 3. If σ supported and $e \sqsubseteq \sigma$ and $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle$ then $\nu \sqsubseteq \sigma'$ and σ' supported.
- 4. If σ supported and $\sigma \Longrightarrow \sigma'$ then σ' supported.

Lemma 5 (Quasi-determinacy). We have that:

- 1. If $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu' \rangle$ and $\langle \sigma; e \rangle \Downarrow \langle \sigma''; \nu'' \rangle$ and σ supported and $e \sqsubseteq \sigma$, then there is a $\pi \in \text{Perm such that } \pi'(\sigma') = \sigma''$ and $\pi(\sigma) = \sigma$.
- 2. If $\sigma \Longrightarrow \sigma'$ and $\sigma \Longrightarrow \sigma''$ and σ supported, then there is a $\pi \in \text{Perm such that } \pi(\sigma') = \sigma''$ and $\pi(\sigma) = \sigma$.

2.2 Semantic Properties

Lemma 6 (Order Permutation). *If* $\sigma' \leq \sigma$ *and* $\pi \in \text{Perm then } \pi(\sigma') \leq \pi(\sigma)$.

Lemma 7 (Heap Renaming). *For all* $\pi \in \text{Perm } and \ \sigma \in \text{Heap}_{\pi}, \ \pi(\sigma) \in \text{Heap}_{\pi}$.

Lemma 8 (Kripke Monotoncity). *If* ρ *is a monotone environment and* $w' \leq w$, then $\mathcal{V} \llbracket A \rrbracket \rho \ w' \supseteq \mathcal{V} \llbracket A \rrbracket \rho \ w$.

Lemma 9 (Renaming). We have that:

- 1. If ρ is a permutable environment and $\pi \in \text{Perm}$ and $\nu \in \mathcal{V} \llbracket A \rrbracket \rho$ w then $\pi(\nu) \in \mathcal{V} \llbracket A \rrbracket \rho$ $\pi(w)$.
- 2. If ρ is a permutable environment and $\pi \in \text{Perm}$ and $e \in \mathcal{E} \llbracket A \rrbracket \rho$ w then $\pi(e) \in \mathcal{E} \llbracket A \rrbracket \rho$ $\pi(w)$.
- 3. If ρ is a permutable environment and $\pi \in \text{Perm}$ and $e \in \mathcal{L} \llbracket A \rrbracket \rho$ w then $\pi(e) \in \mathcal{L} \llbracket A \rrbracket \rho$ $\pi(w)$.

Lemma 10 (Supportedness of the Logical Relation). *If* ρ *is a supported environment and* $v \in V$ $[\![A]\!]$ ρ *w then* $v \subseteq w.\sigma$.

Lemma 11 (Weakening). Assuming ρ is a type environment, we have that:

- 1. If $FV(A) \subseteq dom(\rho)$ then $V \llbracket A \rrbracket \rho w = V \llbracket A \rrbracket (\rho, \rho') w$.
- 2. If $FV(A) \subseteq dom(\rho)$ then $\mathcal{E} [A] \rho w = \mathcal{E} [A] (\rho, \rho') w$.

Figure 5: Typing

Figure 6: Definition of Store-supportedness

$$\begin{array}{lll} \operatorname{Heap}_{0} & = & \{\sigma \in \operatorname{Store} \mid \sigma \operatorname{supported} \} \\ \operatorname{Heap}_{n+1} & = & \{\sigma \in \operatorname{Store} \mid \sigma \operatorname{supported} \land \exists \sigma'. \ \sigma \Longrightarrow \sigma' \land \sigma' \in \operatorname{Heap}_{n} \} \\ \sigma' \leq \sigma & \Longleftrightarrow & \exists \sigma_{0}. \ \sigma \cdot \sigma_{0} = \sigma' \\ \operatorname{Cap} & = & \{\top, \bot\} \\ \alpha' \leq a & \Longleftrightarrow & a = a' \lor (a' = \bot \land a = \top) \\ \operatorname{World} & = & \{(n, \sigma, a) \mid n \in \mathbb{N} \land \sigma \in \operatorname{Heap}_{n} \land a \in \operatorname{Cap} \} \\ (n', \sigma', a') \leq (n, \sigma, a) & \Longleftrightarrow & n' \leq n \land \sigma' \leq \sigma \land a' \leq a \\ \\ \operatorname{Type} & = & \left\{ X \in \operatorname{World} \to \mathcal{P}(\operatorname{Value}) \middle| \begin{array}{l} \forall w, w'. \ w' \leq w \Longrightarrow X \ w' \supseteq X \ w \land \\ \forall w, v \in X \ w. \ v \sqsubseteq w. \sigma \end{array} \right. \right\} \\ \forall w, v \in X \ w. \ v \sqsubseteq w. \sigma \end{array}$$

Figure 7: Definition of Worlds

```
\mathcal{V} \llbracket \alpha \rrbracket \rho w
\mathcal{V} [\![\hat{\mu}\alpha, A]\!] \rho w
                                                             = \{ \mathsf{into} \, \nu \, | \, \nu \in \mathcal{V} \, \llbracket \mathsf{A} \rrbracket \, (\rho, \mathcal{V} \, \llbracket \bullet (\widehat{\mu} \alpha. \, \mathsf{A}) \rrbracket \, \rho \, w / \alpha) \, w \}
ν [μα. Α] ρ w
ν [[A + B]] ρ w
                                                                    = \{\operatorname{inl} v \mid v \in \mathcal{V} \llbracket A \rrbracket \rho w\} \cup \{\operatorname{inr} v \mid v \in \mathcal{V} \llbracket B \rrbracket \rho w\}
                                                                    = \{(v_1, v_2) \mid v_1 \in \mathcal{V} \llbracket A \rrbracket \rho \ w \land v_2 \in \mathcal{V} \llbracket B \rrbracket \rho \ w\}
\mathcal{V} [\![ A \times B ]\!] \rho w
                                                                   = \left\{ \lambda x. \ e \ \middle| \ \begin{array}{l} \lambda x. \ e \sqsubseteq w.\sigma \land \\ \forall \pi \in \operatorname{Perm}, w' \leq w, e' \in \mathcal{E} \ \llbracket A \rrbracket \ \rho \ \pi(w'). \ [e'/x] \pi(e) \in \mathcal{E} \ \llbracket B \rrbracket \ \rho \ \pi(w') \end{array} \right\}
\mathcal{V} \llbracket A \to B \rrbracket \rho w
                                                                    = \{l \mid w.\sigma = (\sigma_0, l : e | \text{later}, \sigma_1) \land \forall \pi \in \text{Perm}, w' \leq (w.n, \sigma_0, w.a). \ \pi(e) \in \mathcal{L} [A] \ \rho \ \pi(w')\}
\mathcal{V}\left[\!\left[ \bullet A\right]\!\right] \rho \ w
                                                                    = \{ \mathsf{cons}(v, v') \mid v \in \mathcal{V} \, [\![ A ]\!] \, \rho \, w \wedge v' \in \mathcal{V} \, [\![ \bullet S \, A ]\!] \, \rho \, w \}
V \llbracket S A \rrbracket \rho w
\mathcal{V} \llbracket \Box A \rrbracket \rho w
                                                                    = \{ stable(v) \mid v \in V [A] \rho (w.n, \cdot, \top) \}
\mathcal{V} [alloc] \rho w
                                                                    = \{ \diamond \mid w.a = \bot \}
                                                                   = \left. \left\{ e \;\middle|\; \begin{array}{l} e \sqsubseteq \sigma \land \\ \forall \sigma' \leq \sigma. \; \exists \sigma'' \leq \sigma', \nu \in \mathcal{V} \, \llbracket A \rrbracket \, \rho \; (n, \sigma'', \alpha). \\ \langle \sigma'; e \rangle \Downarrow \langle \sigma''; \nu \rangle \land (\alpha = \top \implies \sigma'' = \sigma') \end{array} \right\}
\mathcal{E} [\![A]\!] \rho (n, \sigma, a)
\mathcal{L} [\![A]\!] \rho (0, \sigma, \alpha)
                                                                    = \{e \in \operatorname{Expr} \mid e \sqsubseteq \sigma\}
                                                                    = \{e \in \operatorname{Expr} \mid e \sqsubseteq \sigma \wedge \sigma \Longrightarrow \sigma' \wedge \forall w' \leq (n, \sigma', a). \ e \in \mathcal{E} [\![A]\!] \rho w'\}
\mathcal{L} [\![A]\!] \rho (n+1, \sigma, a)
Env(\cdot) w
                                                                    = \{(\gamma, e/x) \mid \gamma \in \operatorname{Env}(\Gamma) \ w \land \forall w' \leq w. \ e \in \mathcal{E} \ [\![A]\!] \cdot (w')\}
\operatorname{Env}(\Gamma, x : A \text{ now}) w
\operatorname{Env}(\Gamma, x : A \text{ stable}) w = \{(\gamma, e/x) \mid \gamma \in \operatorname{Env}(\Gamma) w \wedge \forall w' \leq w. e \in \mathcal{E}[A] \cdot (w'.n, \cdot, \top)\}
\operatorname{Env}(\Gamma, x : A \text{ later}) w
                                                                   = \{(\gamma, e/x) \mid \gamma \in \operatorname{Env}(\Gamma) \ w \land \forall w' \leq w. \ e \in \mathcal{L} \ [\![A]\!] \cdot (w')\}
```

Figure 8: The Logical Relation

$$()^{\bullet} = ()$$

$$(\gamma, e/x)^{\bullet}_{\Gamma,x:A \text{ stable}} = \gamma^{\bullet}_{\Gamma}, e/x$$

$$(\gamma, e/x)^{\bullet}_{\Gamma,x:A \text{ now}} = \gamma^{\bullet}_{\Gamma}$$

$$(\gamma, e/x)^{\bullet}_{\Gamma,x:A \text{ later}} = \gamma^{\bullet}_{\Gamma}, e/x$$

$$()^{\square} = ()$$

$$(\gamma, e/x)^{\square}_{\Gamma,x:A \text{ stable}} = \gamma^{\square}_{\Gamma}, e/x$$

$$(\gamma, e/x)^{\square}_{\Gamma,x:A \text{ now}} = \gamma^{\square}_{\Gamma}$$

$$(\gamma, e/x)^{\square}_{\Gamma,x:A \text{ later}} = \gamma^{\square}_{\Gamma}$$

Figure 9: Operations on Environments

3. If $FV(A) \subseteq dom(\rho)$ then $\mathcal{L} \llbracket A \rrbracket \rho w = \mathcal{L} \llbracket A \rrbracket (\rho, \rho') w$.

Lemma 12 (Type Substitution). *We have that:*

- 1. For all type environments ρ and w, $\mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w = \mathcal{V} \llbracket [A/\alpha]B \rrbracket \rho w$.
- 2. For all type environments ρ and w, $\mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w = \mathcal{E} \llbracket [A/\alpha] B \rrbracket \rho w$.
- 3. For all type environments ρ and w, $\mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w = \mathcal{L} \llbracket [A/\alpha] B \rrbracket \rho w$.

Lemma 13 (Value Inclusion). *If* $v \in V \llbracket A \rrbracket \rho w$ *then* $v \in \mathcal{E} \llbracket A \rrbracket \rho w$.

Lemma 14 (Kripke Monotoncity for Environments). *If* $w' \le w$, then $\text{Env}(\Gamma)$ $w' \supseteq \text{Env}(\Gamma)$ w.

Lemma 15 (Renaming for Environments). *If* $\pi \in \text{Perm } and \gamma \in \text{Env}(A)$ *w then* $\pi(\gamma) \in \text{Env}(A)$ $\pi(w)$.

Lemma 16 (Environment Shift). *Suppose* $\gamma \in \text{Env}(\Gamma)$ *w. Then:*

- 1. $\gamma_{\Gamma}^{\square} \in \text{Env}(\Gamma^{\square}) \ (w.n, \cdot, \top).$
- 2. If $w = (n + 1, \sigma, \alpha)$ and $\sigma \Longrightarrow \sigma'$, then $\gamma_{\Gamma}^{\bullet} \in \text{Env}(\Gamma^{\bullet})$ (n, σ', α) .

Lemma 17 (Stability). *If* A stable and $v \in V [\![A]\!] \rho w$, then $v \in V [\![A]\!] \rho (w.n, \cdot, \top)$.

Theorem 1 (Fundamental Property). *The following properties hold:*

- 1. If $\Gamma \vdash e : A \text{ later } and \ \gamma \in \text{Env}(\Gamma) \ w, \ then \ \gamma(e) \in \mathcal{L} \ [\![A]\!] \cdot w$.
- 2. If $\Gamma \vdash e : A$ stable and $\gamma \in \text{Env}(\Gamma)$ w, then $\gamma(e) \in \mathcal{E} [\![A]\!] \cdot (w.n, \cdot, \top)$.
- 3. If $\Gamma \vdash e : A \text{ now } and \gamma \in \text{Env}(\Gamma) \text{ } w \text{, then } \gamma(e) \in \mathcal{E} \llbracket A \rrbracket \cdot w \text{.}$

3 Proofs

3.1 Operational Properties

Lemma 1 (Extension). *If* $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$, then there exists σ'' such that $\sigma' = \sigma \cdot \sigma''$.

Proof. This follows by induction on the evaluation derivation.

- Case $\langle \sigma; \nu \rangle \Downarrow \langle \sigma; \nu \rangle$: Take the existential witness to be \cdot .
- Case $\langle \sigma; e_1 e_2 \rangle \Downarrow \langle \sigma'''; v \rangle$:

By inversion, $\langle \sigma; e_1 \rangle \Downarrow \langle \sigma'; \lambda x. e_1' \rangle$ and $\langle \sigma'; e_2 \rangle \Downarrow \langle \sigma''; \nu_2 \rangle$ and $\langle \sigma''; [\nu_2/x]e' \rangle \Downarrow \langle \sigma'''; \nu \rangle$.

By induction, $\sigma' = \sigma \cdot \sigma_0$.

By induction, $\sigma'' = \sigma' \cdot \sigma_1$.

By induction, $\sigma''' = \sigma'' \cdot \sigma_2$.

Hence $\sigma''' = \sigma \cdot \sigma_0 \cdot \sigma_1 \cdot \sigma_2$.

Take the existential witness to be $\sigma_0 \cdot \sigma_1 \cdot \sigma_2$.

- Case $\langle \sigma_0; \mathsf{cons}(e_1, e_2) \rangle \Downarrow \langle \sigma_2; \mathsf{cons}(v_1, v_2) \rangle$:
 - By inversion, $\langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1; v_1 \rangle$ and $\langle \sigma_1; e_2 \rangle \Downarrow \langle \sigma_2; v_2 \rangle$.

By induction, $\sigma_1 = \sigma_0 \cdot \sigma'_0$.

By induction, $\sigma_2 = \sigma_1 \cdot \sigma_1'$.

Hence $\sigma_2 = \sigma_0 \cdot \sigma_0' \cdot \sigma_1'$.

Take the existential witness to be $\sigma'_0 \cdot \sigma'_1$.

- Case $\langle \sigma_0$; let $\mathsf{cons}(x,xs) = e$ in $e' \rangle \Downarrow \langle \sigma_2; \nu' \rangle$: By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{cons}(\nu, l) \rangle$ and $\langle \sigma_1; [\nu/x, l/xs] e' \rangle \Downarrow \langle \sigma_2; \nu' \rangle$. By induction, $\sigma_1 = \sigma_0 \cdot \sigma'_0$. By induction, $\sigma_2 = \sigma_1 \cdot \sigma'_1$. Take the existential witness to be $\sigma'_0 \cdot \sigma'_1$.
- Case $\langle \sigma; \delta_{e'}(e) \rangle \Downarrow \langle \sigma', l : e | \text{later}; l \rangle$: By inversion, $\langle \sigma; e' \rangle \Downarrow \langle \sigma'; \diamond \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be $\sigma'', l : e | \text{later}$.
- Case $\langle \sigma_0; \text{let } \delta(x) = e \text{ in } e' \rangle \Downarrow \langle \sigma_2; \nu \rangle$: By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; l \rangle$ and $\langle \sigma_1; [!l/x]e' \rangle \Downarrow \langle \sigma_2; \nu \rangle$. By induction, $\sigma_1 = \sigma_0 \cdot \sigma_0'$. By induction, $\sigma_2 = \sigma_1 \cdot \sigma_1'$. Take the existential witness to be $\sigma_0' \cdot \sigma_1'$.
- Case $\langle \sigma; !l \rangle \Downarrow \langle \sigma; \nu \rangle$: Take the existential witness to be \cdot .
- Case $\langle \sigma; stable(e) \rangle \Downarrow \langle \sigma; stable(v) \rangle$: Take the existential witness to be \cdot .
- Case $\langle \sigma_0$; let stable(x) = e in $e' \rangle \Downarrow \langle \sigma_2; \nu' \rangle$: By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \text{stable}(\nu) \rangle$ and $\langle \sigma_1; [\nu/x] e' \rangle \Downarrow \langle \sigma_2; \nu' \rangle$. By induction, $\sigma_1 = \sigma_0 \cdot \sigma_0'$. By induction, $\sigma_2 = \sigma_1 \cdot \sigma_1'$. Take the existential witness to be $\sigma_0' \cdot \sigma_1'$.
- Case $\langle \sigma; \operatorname{fix} x. e \rangle \Downarrow \langle \sigma'; \nu \rangle$: By inversion, $\langle \sigma; [\operatorname{fix} x. e/x] e \rangle \Downarrow \langle \sigma'; \nu \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be σ'' .
- Case $\langle \sigma; \mathsf{promote}(e) \rangle \Downarrow \langle \sigma'; \mathsf{stable}(\nu) \rangle$: By inversion, $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be σ'' .
- Case $\langle \sigma; \text{inl } e \rangle \Downarrow \langle \sigma'; \text{inl } \nu \rangle$: By inversion, $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be σ'' .
- Case $\langle \sigma; \operatorname{inr} e \rangle \Downarrow \langle \sigma'; \operatorname{inr} \nu \rangle$: By inversion, $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be σ'' .
- Case $\langle \sigma; \text{into } e \rangle \Downarrow \langle \sigma'; \text{into } v \rangle$: By inversion, $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be σ'' .
- Case $\langle \sigma; \text{out } e \rangle \Downarrow \langle \sigma'; \nu \rangle$: By inversion, $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \text{into } \nu \rangle$. By induction, $\sigma' = \sigma \cdot \sigma''$. Take the existential witness to be σ'' .

```
• Case \langle \sigma; \mathsf{case}(e, \mathsf{inl}\, x \to e', \mathsf{inr}\, y \to e'') \rangle \Downarrow \langle \sigma''; \nu' \rangle:
             By inversion,
             either \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \nu \rangle and \langle \sigma'; [\nu/x]e' \rangle \Downarrow \langle \sigma''; \nu' \rangle or \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \nu \rangle and \langle \sigma'; [\nu/y]e'' \rangle \Downarrow \langle \sigma''; \nu' \rangle.
             Suppose \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \, \nu \rangle and \langle \sigma'; [\nu/x] e' \rangle \Downarrow \langle \sigma''; \nu' \rangle.
             Then by induction, \sigma' = \sigma \cdot \sigma_0.
             Then by induction, \sigma'' = \sigma' \cdot \sigma_1.
             Take the existential witness to be \sigma_0 \cdot \sigma_1. Suppose \langle \sigma; e \rangle \Downarrow \langle \sigma'; \text{inr } v \rangle and \langle \sigma'; [v/y]e'' \rangle \Downarrow \langle \sigma''; v' \rangle.
             Then by induction, \sigma' = \sigma \cdot \sigma_0.
             Then by induction, \sigma'' = \sigma' \cdot \sigma_1.
             Take the existential witness to be \sigma_0 \cdot \sigma_1, so that \sigma'' = \sigma \cdot (\sigma_0 \cdot \sigma_1).
       • Case \langle \sigma; (e_1, e_2) \rangle \Downarrow \langle \sigma''; (v_1, v_2) \rangle:
             By inversion, \langle \sigma; e_1 \rangle \Downarrow \langle \sigma'; v_1 \rangle and \langle \sigma'; e_2 \rangle \Downarrow \langle \sigma''; v_2 \rangle.
             By induction, \sigma' = \sigma \cdot \sigma_0.
             Then by induction, \sigma'' = \sigma' \cdot \sigma_1.
             Then by induction, \sigma'' = \sigma' \cdot \sigma_1.
             Take the existential witness to be \sigma_0 \cdot \sigma_1, so that \sigma'' = \sigma \cdot (\sigma_0 \cdot \sigma_1).
       • Case \langle \sigma; \mathsf{fst} \, e \rangle \Downarrow \langle \sigma'; \nu \rangle:
             By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; (\nu, \nu') \rangle.
             By induction, \sigma' = \sigma \cdot \sigma''.
             Take the existential witness to be \sigma''.
       • Case \langle \sigma; \mathsf{snd} \, e \rangle \Downarrow \langle \sigma'; \nu' \rangle:
             By inversion, \langle \sigma; e \rangle \downarrow \langle \sigma'; (v, v') \rangle.
             By induction, \sigma' = \sigma \cdot \sigma''.
             Take the existential witness to be \sigma''.
                                                                                                                                                                                                                                                  Lemma 2 (Uniformity). If \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle, then \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
Proof. This follows by induction on the evaluation derivation.
       • Case \langle \cdot; \nu \rangle \Downarrow \langle \cdot; \nu \rangle:
             By rule, \langle \sigma; \nu \rangle \Downarrow \langle \sigma; \nu \rangle.
       • Case \langle \cdot; e_1 e_2 \rangle \Downarrow \langle \cdot; \nu \rangle:
             By inversion, \langle \cdot; e_1 \rangle \Downarrow \langle \sigma'; \lambda x. e' \rangle and \langle \sigma'; e_2 \rangle \Downarrow \langle \sigma''; \nu_2 \rangle and \langle \sigma''; [\nu_2/x]e' \rangle \Downarrow \langle \cdot; \nu \rangle.
             By uniformity, we know that \cdot extends \sigma'', hence \sigma'' = \cdot.
             By uniformity, we know that \sigma'' extends \sigma', hence \sigma' = \cdot.
             By induction, \langle \sigma; e_1 \rangle \Downarrow \langle \sigma; \lambda x. e' \rangle.
             By induction, \langle \sigma; e_2 \rangle \Downarrow \langle \sigma; v_2 \rangle.
             By induction, \langle \sigma; [v_2/x]e' \rangle \downarrow \langle \sigma; v \rangle.
             By rule \langle \sigma; e_1 e_2 \rangle \Downarrow \langle \sigma; \nu \rangle.
       • Case \langle \cdot; \mathsf{cons}(e_1, e_2) \rangle \Downarrow \langle \cdot; \mathsf{cons}(v_1, v_2) \rangle:
             By inversion \langle \cdot; e_1 \rangle \Downarrow \langle \sigma'; \lambda x. e' \rangle and \langle \sigma'; e_2 \rangle \Downarrow \langle \cdot; v_2 \rangle.
             By uniformity, we know \cdot extends \sigma', and so \sigma' = \cdot.
             By induction, \langle \sigma; e_1 \rangle \Downarrow \langle \sigma; v_1 \rangle.
             By induction, \langle \sigma; e_2 \rangle \Downarrow \langle \sigma; v_2 \rangle.
             By rule, \langle \sigma; \mathsf{cons}(e_1, e_2) \rangle \Downarrow \langle \sigma; \mathsf{cons}(v_1, v_2) \rangle.
```

• Case $\langle \cdot; \text{let cons}(x, xs) = e \text{ in } e' \rangle \Downarrow \langle \cdot; v' \rangle$:

By inversion, $\langle \cdot; e \rangle \Downarrow \langle \sigma'; \mathsf{cons}(v, l) \rangle$ and $\langle \sigma'; [v/x, l/xs]e' \rangle \Downarrow \langle \cdot; v' \rangle$.

```
By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; \mathsf{cons}(v, l) \rangle.
      By induction, \langle \sigma; [v/x, l/xs]e' \rangle \downarrow \langle \sigma; v' \rangle.
      By rule, \langle \sigma; \text{let cons}(x, xs) = e \text{ in } e' \rangle \Downarrow \langle \sigma; v' \rangle.
• Case \langle \cdot; \delta_{e'}(e) \rangle \Downarrow \langle \cdot; l \rangle:
      This case is impossible, since the returned store cannot be empty.
• Case \langle \cdot; \text{let } \delta(x) = e \text{ in } e' \rangle \Downarrow \langle \cdot; v \rangle:
      By inversion, \langle \cdot; e \rangle \Downarrow \langle \sigma'; l \rangle and \langle \sigma'; [!l/x]e' \rangle \Downarrow \langle \cdot; v' \rangle.
      By uniformity, we know \cdot extends \sigma', and so \sigma' = \cdot.
      By induction, \langle \sigma; e \rangle \downarrow \langle \sigma; cons(v, l) \rangle.
      By induction, \langle \sigma; [!l/x]e' \rangle \Downarrow \langle \sigma; v' \rangle.
      By rule, \langle \sigma; \text{let } \delta(x) = e \text{ in } e' \rangle \Downarrow \langle \sigma; \nu \rangle.
• Case \langle \cdot; !l \rangle \Downarrow \langle \cdot; \nu \rangle:
      This case is impossible, since the input store cannot be empty.
• Case \langle \cdot; stable(e) \rangle \Downarrow \langle \cdot; stable(v) \rangle:
      By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle.
      By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
      By rule, \langle \sigma; \mathsf{stable}(e) \rangle \Downarrow \langle \sigma; \mathsf{stable}(v) \rangle.
• Case \langle \cdot ; let stable(x) = e in e' \rangle \Downarrow \langle \cdot ; v' \rangle:
      By inversion, \langle \cdot; e \rangle \Downarrow \langle \sigma'; \mathsf{stable}(v) \rangle and \langle \sigma'; [v/x]e' \rangle \Downarrow \langle \cdot; v' \rangle.
      By uniformity, we know \cdot extends \sigma', and so \sigma' = \cdot.
      By induction, \langle \sigma; e \rangle \downarrow \langle \sigma; stable(v) \rangle.
      By induction, \langle \sigma; [\nu/x]e' \rangle \Downarrow \langle \sigma; \nu' \rangle.
      By rule, \langle \sigma ; let stable(x) = e in e' \rangle \downarrow \langle \sigma ; v \rangle.
• Case \langle \cdot; \text{fix } x. e \rangle \Downarrow \langle \cdot; v \rangle:
      By inversion, \langle \cdot; [fix x. e/x]e \rangle \downarrow \langle \cdot; v \rangle.
      By induction, \langle \sigma; [fix x. e/x]e \rangle \downarrow \langle \sigma; v \rangle.
      By rule, \langle \sigma; \text{fix } x. \ e \rangle \Downarrow \langle \sigma; v \rangle.
• Case \langle \cdot ; \mathsf{promote}(e) \rangle \Downarrow \langle \cdot ; \mathsf{stable}(v) \rangle:
      By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle.
      By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
      By rule, \langle \sigma; \mathsf{promote}(e) \rangle \Downarrow \langle \sigma; \mathsf{stable}(v) \rangle.
• Case \langle \cdot; \mathsf{inl} \, e \rangle \Downarrow \langle \cdot; \mathsf{inl} \, v \rangle:
      By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle.
      By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
      By rule \langle \sigma; \mathsf{inl} \, e \rangle \Downarrow \langle \sigma; \mathsf{inl} \, \nu \rangle.
• Case \langle \cdot; \operatorname{inr} e \rangle \Downarrow \langle \cdot; \operatorname{inr} v \rangle:
      By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle.
      By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
      By rule \langle \sigma; \operatorname{inr} e \rangle \Downarrow \langle \sigma; \operatorname{inr} v \rangle.
• Case \langle \cdot; \mathsf{case}(e, \mathsf{inl}\, x \to e', \mathsf{inr}\, y \to e'') \rangle \Downarrow \langle \cdot; v' \rangle:
      By inversion, either \langle \cdot; e \rangle \Downarrow \langle \cdot; \text{inl} \, \nu \rangle and \langle \cdot; [\nu/x] \, e' \rangle \Downarrow \langle \cdot; \nu' \rangle or \langle \cdot; e \rangle \Downarrow \langle \cdot; \text{inl} \, \nu \rangle and \langle \cdot; [\nu/y] \, e'' \rangle \Downarrow \langle \cdot; \nu' \rangle.
      Suppose \langle \cdot; e \rangle \Downarrow \langle \cdot; \text{inl } \nu \rangle and \langle \cdot; [\nu/x]e' \rangle \Downarrow \langle \cdot; \nu' \rangle.
      By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; \mathsf{inl} \nu \rangle.
```

By uniformity, we know \cdot extends σ' , and so $\sigma' = \cdot$.

```
By induction, \langle \sigma; [\nu/x]e' \rangle \Downarrow \langle \sigma; \nu' \rangle.
              By rule \langle \sigma; \mathsf{case}(e, \mathsf{inl}\, x \to e', \mathsf{inr}\, y \to e'') \rangle \Downarrow \langle \sigma; \nu' \rangle.
              Suppose \langle \cdot; e \rangle \Downarrow \langle \cdot; \text{inr } v \rangle and \langle \cdot; [v/y]e'' \rangle \Downarrow \langle \cdot; v' \rangle.
              By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; \mathsf{inl} \nu \rangle.
              By induction, \langle \sigma; [v/y]e'' \rangle \Downarrow \langle \sigma; v' \rangle.
              By rule \langle \sigma; \mathsf{case}(e, \mathsf{inl}\, x \to e', \mathsf{inr}\, y \to e'') \rangle \Downarrow \langle \sigma; \nu' \rangle.
        • Case \langle \cdot; (e_1, e_2) \rangle \Downarrow \langle \cdot; (v_1, v_2) \rangle:
              By inversion, \langle \cdot; e_1 \rangle \Downarrow \langle \cdot; v_1 \rangle and \langle \cdot; e_2 \rangle \Downarrow \langle \cdot; v_2 \rangle.
              By induction \langle \sigma; e_1 \rangle \Downarrow \langle \sigma; v_1 \rangle.
              By induction \langle \sigma; e_2 \rangle \Downarrow \langle \sigma; v_2 \rangle.
              By rule, \langle \sigma; (e_1, e_2) \rangle \Downarrow \langle \sigma; (v_1, v_2) \rangle.
        • Case \langle \cdot; \mathsf{fst} \, e \rangle \Downarrow \langle \cdot; \nu \rangle:
              By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; (\nu, \nu') \rangle.
              By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; (\nu, \nu') \rangle.
              By rule, \langle \sigma; \mathsf{fst} \, e \rangle \Downarrow \langle \sigma; \nu \rangle.
        • Case \langle \cdot; \mathsf{snd} \, e \rangle \Downarrow \langle \cdot; v' \rangle:
              By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; (v, v') \rangle.
              By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; (\nu, \nu') \rangle.
              By rule, \langle \sigma; \mathsf{snd} \, e \rangle \Downarrow \langle \sigma; v' \rangle.
        • Case \langle \cdot; \text{into } e \rangle \Downarrow \langle \cdot; \text{into } v \rangle:
              By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle.
              By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
              By rule \langle \sigma; \mathsf{inl} \, e \rangle \Downarrow \langle \sigma; \mathsf{inl} \, \nu \rangle.
        • Case \langle \cdot; \text{out } e \rangle \Downarrow \langle \cdot; v \rangle:
              By inversion, \langle \cdot; e \rangle \Downarrow \langle \cdot; \text{into } v \rangle.
              By induction, \langle \sigma; e \rangle \Downarrow \langle \sigma; \text{into } \nu \rangle.
              By rule \langle \sigma; \mathsf{inl} \, e \rangle \Downarrow \langle \sigma; \nu \rangle.
Lemma 3 (Permutability). We have that:
       1. If \pi \in \text{Perm and } \langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle \text{ then } \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
       2. If \pi \in \text{Perm and } \sigma \Longrightarrow \sigma' \text{ then } \pi(\sigma) \Longrightarrow \pi(\sigma').
Proof.
                        1. We proceed by induction on the evaluation relation.
                     • Case \langle \sigma; \nu \rangle \Downarrow \langle \sigma; \nu \rangle:
                            Assume we have \pi \in \text{Perm}.
                            Then by rule \langle \pi(\sigma); \pi(\nu) \rangle \Downarrow \langle \pi(\sigma); \pi(\nu) \rangle.
                      • Case \langle \sigma; e_1 e_2 \rangle \Downarrow \langle \sigma'''; v \rangle:
                            By inversion, \langle \sigma; e_1 \rangle \Downarrow \langle \sigma'; \lambda x. \ e_1' \rangle and \langle \sigma'; e_2 \rangle \Downarrow \langle \sigma''; \nu_2 \rangle and \langle \sigma''; [\nu_2/x]e' \rangle \Downarrow \langle \sigma'''; \nu \rangle.
                            Assume we have \pi \in \text{Perm}.
                            By induction, \langle \pi(\sigma); \pi(e_1) \rangle \Downarrow \langle \pi(\sigma'); \pi(\lambda x. e_1') \rangle
                            and \langle \pi(\sigma'); \pi(e_2) \rangle \downarrow \langle \pi(\sigma''); \pi(v_2) \rangle
                            and \langle \pi(\sigma''); \pi([\nu_2/x]e') \rangle \Downarrow \langle \pi(\sigma'''); \pi(\nu) \rangle.
                            Note that \pi(e_1 \ e_2) = \pi(e_1) \ \pi(e_2).
                            Note that \pi(\lambda x. e') = \lambda x. \pi(e').
                            Note that \pi([v_2/x]e') = [\pi(v_2)/x]\pi(e').
                            Hence by rule, \langle \pi(\sigma); \pi(e_1 \ e_2) \rangle \Downarrow \langle \pi(\sigma'''); \pi(\nu) \rangle.
```

```
• Case \langle \sigma_0; \mathsf{cons}(e_1, e_2) \rangle \Downarrow \langle \sigma_2; \mathsf{cons}(v_1, v_2) \rangle:
    By inversion, \langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1; v_1 \rangle and \langle \sigma_1; e_2 \rangle \Downarrow \langle \sigma_2; v_2 \rangle.
    Assume we have \pi \in \text{Perm}.
    By induction, \langle \pi(\sigma_0); \pi(e_1) \rangle \Downarrow \langle \pi(\sigma_1); \pi(v_1) \rangle.
    By induction, \langle \pi(\sigma_1); \pi(e_2) \rangle \Downarrow \langle \pi(\sigma_2); \pi(v_2) \rangle.
    Note that \pi(\mathsf{cons}(e_1, e_2)) = \mathsf{cons}(\pi(e_1), \pi(e_2)).
    Note that \pi(cons(v_1, v_2)) = cons(\pi(v_1), \pi(v_2)).
    Hence by rule \langle \pi(\sigma_0); \pi(\mathsf{cons}(e_1, e_2)) \rangle \Downarrow \langle \pi(\sigma_2); \pi(\mathsf{cons}(v_1, v_2)) \rangle.
• Case \langle \sigma_0; let cons(x, xs) = e in e' \rangle \downarrow \langle \sigma_2; v' \rangle:
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{cons}(v, l) \rangle and \langle \sigma_1; [v/x, l/xs]e' \rangle \Downarrow \langle \sigma_2; v' \rangle.
    Assume we have \pi \in \text{Perm}.
    By induction, \langle \pi(\sigma_1; \pi(e)) \rangle \Downarrow \langle \pi(\sigma_1); \pi(\mathsf{cons}(v, l)) \rangle.
    By induction, \langle \pi(\sigma_1; \pi([\nu/x, l/xs]e')) \rangle \Downarrow \langle \pi(\sigma_2); \pi(\nu') \rangle.
    Note that \pi(cons(v, l)) = cons(\pi(v), \pi(l)).
    Note that \pi([\nu/x, l/xs]e') = [\pi(\nu)/x, \pi(l)/xs]\pi(e').
    Note that \pi(\text{let cons}(x, xs) = e \text{ in } e') = \text{let cons}(x, xs) = \pi(e) \text{ in } \pi(e').
    Hence by rule \langle \pi(\sigma_0); \pi(\text{let cons}(x, xs) = e \text{ in } e') \rangle \Downarrow \langle \pi(\sigma_2); \pi(v') \rangle.
• Case \langle \sigma; \delta_{e'}(e) \rangle \Downarrow \langle \sigma', l : e | \text{later}; l \rangle:
    By inversion, \langle \sigma; e' \rangle \Downarrow \langle \sigma'; \diamond \rangle and l \notin dom(\sigma').
    Assume we have \pi \in \text{Perm}.
    By induction, \langle \pi(\sigma); \pi(e') \rangle \Downarrow \langle \pi(\sigma'; \diamond) \rangle.
    By properties of permutations, if l \notin dom(\sigma'), then \pi(l) \notin dom(\pi(\sigma')).
    Note that \pi(\delta_{e'}(e)) = \delta_{\pi(e')}(\pi(e)).
    Note that \pi(\sigma', l : e | ater) = \pi(\sigma'), \pi(l) : \pi(e) | ater.
    Hence by rule, \langle \pi(\sigma); \pi(\delta_{e'}(e)) \rangle \Downarrow \langle \pi(\sigma', 1 : e | ater); \pi(1) \rangle.
• Case \langle \sigma_0; let \delta(x) = e in e' \rangle \Downarrow \langle \sigma_2; \nu \rangle:
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; l \rangle and \langle \sigma_1; [!l/x]e' \rangle \Downarrow \langle \sigma_2; \nu \rangle.
    Assume we have \pi \in \text{Perm}.
    By induction, \langle \pi(\sigma_0); \pi(e) \rangle \Downarrow \langle \pi(\sigma_1); \pi(l) \rangle.
    By induction, \langle \pi(\sigma_1); \pi([!l/x]e') \rangle \downarrow \langle \pi(\sigma_2); \pi(v) \rangle.
    Note that \pi([!l/x]e') = [!\pi(l)/x]\pi(e').
    Note that \pi(\text{let }\delta(x) = e \text{ in } e') equals let \delta(x) = \pi(e) \text{ in } \pi(e').
    Hence by rule, \langle \pi(\sigma_0); \pi(\text{let } \delta(x) = e \text{ in } e') \rangle \Downarrow \langle \pi(\sigma_2); \pi(v) \rangle.
• Case \langle \sigma; !l \rangle \Downarrow \langle \sigma; \nu \rangle:
    By inversion, we know that l : v \text{ now } \in \sigma.
    Assume we have \pi \in \text{Perm}.
    Note that \pi(1) : \pi(v) \text{ now } \in \pi(\sigma).
    Note that \pi(!l) = !\pi(l).
    Hence by rule, \langle \pi(\sigma); \pi(!l) \rangle \Downarrow \langle \pi(\sigma); \pi(\nu) \rangle.
• Case \langle \sigma; stable(e) \rangle \Downarrow \langle \sigma; stable(v) \rangle:
    By inversion, we know that \langle \sigma; e \rangle \Downarrow \langle \sigma; v \rangle.
    Assume we have \pi \in \text{Perm}.
    By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma); \pi(v) \rangle.
    Note that \pi(\mathsf{stable}(e)) = \mathsf{stable}(\pi(e)) and \pi(\mathsf{stable}(v)) = \mathsf{stable}(\pi(v)).
    Hence by rule, \langle \pi(\sigma); \pi(\mathsf{stable}(e)) \rangle \Downarrow \langle \pi(\sigma); \pi(\mathsf{stable}(v)) \rangle.
• Case \langle \sigma_0; let stable(x) = e in e' \rangle \downarrow \langle \sigma_2; v' \rangle:
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{stable}(v) \rangle and \langle \sigma_1; [v/x]e' \rangle \Downarrow \langle \sigma_2; v' \rangle.
    Assume we have \pi \in \text{Perm}.
    By induction, \langle \pi(\sigma_0); \pi(e) \rangle \Downarrow \langle \pi(\sigma_1); \pi(\mathsf{stable}(v)) \rangle.
    By induction, \langle \pi(\sigma_1); \pi([\nu/x]e') \rangle \Downarrow \langle \pi(\sigma_2); \pi(\nu') \rangle.
```

```
Note that \pi(\mathsf{stable}(v)) = \mathsf{stable}(\pi(v)).
     Note that \pi([\nu/x]e') = [\pi(\nu)/x]\pi(e').
     Note that \pi(\text{let stable}(x) = e \text{ in } e') equals let \text{stable}(x) = \pi(e) \text{ in } \pi(e').
     Hence by rule, \langle \pi(\sigma_0); \pi(\text{let stable}(x) = e \text{ in } e') \rangle \Downarrow \langle \pi(\sigma_2); \pi(v') \rangle.
• Case \langle \sigma; \text{fix } x. e \rangle \Downarrow \langle \sigma'; v \rangle:
     By inversion, \langle \sigma; [fix x. e/x]e \rangle \Downarrow \langle \sigma'; v \rangle.
     Assume we have \pi \in \text{Perm}.
     By induction, \langle \pi(\sigma); \pi([fix x. e/x]e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
     Note that \pi(\text{fix } x. e) = \text{fix } x. \pi(e).
     Note that \pi([\operatorname{fix} x. e/x]e) = [\operatorname{fix} x. \pi(e)/x]\pi(e).
     Hence by rule, \langle \pi(\sigma); \pi(\text{fix } x. e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\nu) \rangle.
• Case \langle \sigma; \mathsf{promote}(e) \rangle \Downarrow \langle \sigma'; \mathsf{stable}(v) \rangle:
     By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle.
     Assume we have \pi \in \text{Perm}.
     By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
     Note that \pi(\mathsf{promote}(e)) = \mathsf{promote}(\pi(e)) and \pi(\mathsf{promote}(v)) = \mathsf{promote}(v).
     Hence by rule, \langle \pi(\sigma); \pi(\mathsf{promote}(e)) \rangle \Downarrow \langle \pi(\sigma'); \pi(\mathsf{stable}(v)) \rangle.
• Case \langle \sigma; \mathsf{inl} \, e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \, v \rangle:
     By inversion, \langle \sigma; e \rangle \downarrow \langle \sigma'; v \rangle.
     Assume we have \pi \in \text{Perm}.
     By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
     By rule, we have \langle \pi(\sigma); \operatorname{inr} \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \operatorname{inr} \pi(\nu) \rangle.
     By definition, \langle \pi(\sigma); \pi(\mathsf{inr}\,e) \rangle \downarrow \langle \pi(\sigma'); \pi(\mathsf{inr}\,v) \rangle.
• Case \langle \sigma; \mathsf{inr} \, e \rangle \Downarrow \langle \sigma'; \mathsf{inr} \, v \rangle:
     By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle.
     Assume we have \pi \in \text{Perm}.
     By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
     By rule, we have \langle \pi(\sigma); \mathsf{inl}\,\pi(e) \rangle \Downarrow \langle \pi(\sigma'); \mathsf{inl}\,\pi(\nu) \rangle.
     By definition, \langle \pi(\sigma); \pi(\mathsf{inl}\,e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\mathsf{inl}\,\nu) \rangle.
• Case \langle \sigma; \mathsf{case}(e, \mathsf{inl}\, x \to e', \mathsf{inr}\, y \to e'') \rangle \Downarrow \langle \sigma''; \nu' \rangle:
     By inversion, either \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \nu \rangle and \langle \sigma'; [\nu/x] e' \rangle \Downarrow \langle \sigma''; \nu' \rangle or \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \nu \rangle and
     \langle \sigma'; [\nu/y]e'' \rangle \Downarrow \langle \sigma''; \nu' \rangle.
     Suppose \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inl} \nu \rangle and \langle \sigma'; [\nu/x] e' \rangle \Downarrow \langle \sigma''; \nu' \rangle.
     By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\mathsf{inl}\, \nu) \rangle.
     By definition, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \mathsf{inl} \pi(v) \rangle.
     By induction, \langle \pi(\sigma'); \pi([\nu/x]e') \rangle \Downarrow \langle \pi(\sigma''); \pi(\nu') \rangle.
     By definition, \langle \pi(\sigma'); [\pi(\nu)/x]\pi(e') \rangle \Downarrow \langle \pi(\sigma''); \pi(\nu') \rangle.
     By rule, \langle \pi(\sigma); \mathsf{case}(\pi(e), \mathsf{inl}\, x \to \pi(e'), \mathsf{inr}\, y \to \pi(e'')) \rangle \Downarrow \langle \sigma''; \pi(v') \rangle.
     By definition, \langle \pi(\sigma); \pi(\mathsf{case}(e,\mathsf{inl}\,x \to e',\mathsf{inr}\,y \to e'')) \rangle \Downarrow \langle \sigma''; \pi(\nu') \rangle.
     Suppose \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inr} \nu \rangle and \langle \sigma'; [\nu/y] e'' \rangle \Downarrow \langle \sigma''; \nu' \rangle.
     Suppose \langle \sigma; e \rangle \Downarrow \langle \sigma'; \mathsf{inr} \nu \rangle and \langle \sigma'; [\nu/x]e' \rangle \Downarrow \langle \sigma''; \nu' \rangle.
     By induction, \langle \pi(\sigma); \pi(e) \rangle \downarrow \langle \pi(\sigma'); \pi(\mathsf{inr} \nu) \rangle.
     By definition, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \operatorname{inr} \pi(\nu) \rangle.
     By induction, \langle \pi(\sigma'); \pi([\nu/y]e'') \rangle \Downarrow \langle \pi(\sigma''); \pi(\nu') \rangle.
     By definition, \langle \pi(\sigma'); [\pi(\nu)/y]\pi(e'') \rangle \Downarrow \langle \pi(\sigma''); \pi(\nu') \rangle.
     By rule, \langle \pi(\sigma); \mathsf{case}(\pi(e), \mathsf{inl}\, x \to \pi(e'), \mathsf{inr}\, y \to \pi(e'')) \rangle \Downarrow \langle \sigma''; \pi(v') \rangle.
     By definition, \langle \pi(\sigma); \pi(\mathsf{case}(e,\mathsf{inl}\,x \to e',\mathsf{inr}\,y \to e'')) \rangle \Downarrow \langle \sigma''; \pi(\nu') \rangle.
```

```
• Case \langle \sigma; (e_1, e_2) \rangle \Downarrow \langle \sigma'; (v_1, v_2) \rangle:
                  By inversion, \langle \sigma; e_1 \rangle \Downarrow \langle \sigma'; v_1 \rangle and \langle \sigma'; e_2 \rangle \Downarrow \langle \sigma''; v_2 \rangle.
                  By induction, \langle \pi(\sigma); \pi(e_1) \rangle \Downarrow \langle \pi(\sigma'); \pi(v_1) \rangle.
                  By induction, \langle \pi(\sigma'); \pi(e_2) \rangle \Downarrow \langle \pi(\sigma''); \pi(\nu_2) \rangle.
                  By rule, \langle \pi(\sigma); (\pi(e_1), \pi(e_2)) \rangle \Downarrow \langle \pi(\sigma''); (\pi(v_1), \pi(v_2)) \rangle.
                  By definition, \langle \pi(\sigma); \pi(e_1, e_2) \rangle \Downarrow \langle \pi(\sigma''); \pi(\nu_1, \nu_2) \rangle.
            • Case \langle \sigma; \mathsf{fst} \, e \rangle \Downarrow \langle \sigma'; \nu \rangle:
                  By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; (v, v') \rangle.
                  By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\nu, \nu') \rangle.
                  By definition, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); (\pi(v), \pi(v')) \rangle.
                  By rule, \langle \pi(\sigma); \mathsf{fst} \, \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
                  By definition, \langle \pi(\sigma); \pi(\mathsf{fst}\,e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\nu) \rangle.
            • Case \langle \sigma; \mathsf{snd} \, e \rangle \Downarrow \langle \sigma'; \nu' \rangle:
                  By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; (\nu, \nu') \rangle.
                  By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\nu, \nu') \rangle.
                  By definition, \langle \pi(\sigma); \pi(e) \rangle \downarrow \langle \pi(\sigma'); (\pi(v), \pi(v')) \rangle.
                  By rule, \langle \pi(\sigma); \operatorname{snd} \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v') \rangle.
                  By definition, \langle \pi(\sigma); \pi(\mathsf{fst}\,e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\nu') \rangle.
             • Case \langle \sigma; into e \rangle \Downarrow \langle \sigma'; into v \rangle:
                  By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle.
                  Assume we have \pi \in \text{Perm}.
                  By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
                  By rule, we have \langle \pi(\sigma); \text{into } \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \text{into } \pi(v) \rangle.
                  By definition, \langle \pi(\sigma); \pi(\mathsf{into}\,e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\mathsf{into}\,v) \rangle.
            • Case \langle \sigma; \text{out } e \rangle \Downarrow \langle \sigma'; \nu \rangle:
                  By inversion, \langle \sigma; e \rangle \Downarrow \langle \sigma'; \text{into } v \rangle.
                  Assume we have \pi \in \text{Perm}.
                  By induction, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\mathsf{into}\, \nu) \rangle.
                  By definition, \langle \pi(\sigma); \pi(e) \rangle \Downarrow \langle \pi(\sigma'); \text{into } \pi(v) \rangle.
                  By rule, we have \langle \pi(\sigma); \mathsf{out}\,\pi(e) \rangle \Downarrow \langle \pi(\sigma'); \pi(\nu) \rangle.
                  By definition, \langle \pi(\sigma); \pi(\text{out } e) \rangle \Downarrow \langle \pi(\sigma'); \pi(v) \rangle.
2. Assume we have \pi \in \text{Perm}. Now we proceed by induction on the derivation of \sigma \Longrightarrow \sigma'.
             • Case \cdot \Longrightarrow \cdot:
                  Immediate, since \pi(\cdot) = \cdot.
             • Case \sigma, l: v \text{ now} \Longrightarrow \sigma', l: \text{null}:
                  By inversion, \sigma \Longrightarrow \sigma'.
                  By induction, \pi(\sigma) \Longrightarrow \pi(\sigma').
                  Note that \pi(\sigma, l : v \text{ now}) = \pi(\sigma), \pi(l) : \pi(v) \text{ now and } \pi(\sigma, l : \text{null}) = \pi(\sigma), \pi(l) : \text{null}.
                  Hence by rule, \pi(\sigma, l : \nu \text{ now}) \Longrightarrow \pi(\sigma').
             • Case \sigma, l: null \Longrightarrow \sigma', l: null:
                  By inversion, \sigma \Longrightarrow \sigma'.
                  By induction, \pi(\sigma) \Longrightarrow \pi(\sigma').
                  Note that \pi(\sigma, l : \text{null}) = \pi(\sigma), \pi(l) : \text{null}.
                  Hence by rule, \pi(\sigma, l : \nu \text{ now}) \Longrightarrow \pi(\sigma').
             • Case \sigma, l:e later \Longrightarrow \sigma'':
                  By inversion, \sigma \Longrightarrow \sigma' and \langle \sigma'; e \rangle \Downarrow \langle \sigma''; v \rangle and l \notin \text{dom}(\sigma'').
                  By induction, \pi(\sigma) \Longrightarrow \pi(\sigma').
                  By expression permutation lemma, \langle \pi(\sigma'); \pi(e) \rangle \Downarrow \langle \pi(\sigma''); \pi(v) \rangle.
```

```
By properties of permutations, \pi(1) \notin \text{dom}(\pi(\sigma'')).
Hence by rule, \pi(\sigma, l : e | ater) \Longrightarrow \pi(\sigma'').
```

Lemma 4 (Supportedness). We have that:

- 1. If $e \sqsubseteq \sigma$ and $\sigma' \leq \sigma$ then $e \sqsubseteq \sigma'$.
- 2. If $e \sqsubseteq \sigma$ and $e' \sqsubseteq \sigma$ then $[e/x]e' \sqsubseteq \sigma$.
- 3. If σ supported and $e \sqsubseteq \sigma$ and $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$ then $v \sqsubseteq \sigma'$ and σ' supported.
- 4. If σ supported and $\sigma \Longrightarrow \sigma'$ then σ' supported.

Proof. We proceed as follows:

- 1. This follows from an induction on the syntax of e.
- 2. This follows from an induction on the syntax of e'.
- 3. This can be proven by induction on the derivation of $\langle \sigma; e \rangle \downarrow \langle \sigma'; \nu \rangle$. The two interesting cases are:
 - Case $e = \delta_{e_2}(e_1)$: By hypothesis, we know that $\langle \sigma; \delta_{e_2}(e_1) \rangle \Downarrow \langle \sigma', l : e_1 | \text{later}; l \rangle$. By inversion, we know that $\langle \sigma; e_2 \rangle \Downarrow \langle \sigma'; \diamond \rangle$ and $l \notin dom(\sigma')$. By inversion on $\delta_{e_2}(e_1) \sqsubseteq \sigma$, we know that $e_1 \sqsubseteq \sigma$ and $e_2 \sqsubseteq \sigma$.

By induction on $\langle \sigma; e_2 \rangle \Downarrow \langle \sigma'; \diamond \rangle$, we know σ' supported.

Since $\sigma' \leq \sigma$ and $e_1 \sqsubseteq \sigma$, we know that $e_1 \sqsubseteq \sigma'$.

Hence we know that $(\sigma', l : e_1 \text{ later})$ supported.

Note that $l \in dom(\sigma', l : e | later)$.

• Case e = !l:

By hypothesis, we know that $\sigma = \sigma_0, l : v \text{ now}, \sigma_1$.

Since σ supported, we know that $v \sqsubseteq \sigma_0$.

Since $\sigma \leq \sigma_0$, we know that $\nu \sqsubseteq \sigma$.

By assumption σ supported.

4. This follows by induction on the derivation of $\sigma \Longrightarrow \sigma'$.

Lemma 5 (Quasi-determinacy). We have that:

- 1. If $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v' \rangle$ and $\langle \sigma; e \rangle \Downarrow \langle \sigma''; v'' \rangle$ and σ supported and $e \sqsubseteq \sigma$, then there is a $\pi \in \text{Perm } such \text{ that }$ $\pi'(\sigma') = \sigma''$ and $\pi(\sigma) = \sigma$.
- 2. If $\sigma \Longrightarrow \sigma'$ and $\sigma \Longrightarrow \sigma''$ and σ supported, then there is a $\pi \in \text{Perm such that } \pi(\sigma') = \sigma''$ and $\pi(\sigma) = \sigma$.

Proof. 1. We proceed by induction on the evaluation relation of $\langle \sigma; e \rangle \downarrow \langle \sigma'; v \rangle$.

> • Case $\langle \sigma; \nu \rangle \Downarrow \langle \sigma; \nu \rangle$: In this case, we have also have $\langle \pi(\sigma); \pi(\nu) \rangle \Downarrow \langle \pi(\sigma); \pi(\nu) \rangle$. Hence the permutation π' is π .

```
• Case \langle \sigma_0; e_1 e_2 \rangle \downarrow \langle \sigma_3; v_3' \rangle:
    By inversion, \langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1; \lambda x. \ \hat{e}_1 \rangle and \langle \sigma_1; e_2 \rangle \Downarrow \langle \sigma_2; v_2 \rangle and \langle \sigma_2; [v_2/x] \hat{e}_1 \rangle \Downarrow \langle \sigma_3; v_3 \rangle.
    By inversion, \langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1'; \lambda x. \ \hat{e}_1' \rangle and \langle \sigma_1'; e_2 \rangle \Downarrow \langle \sigma_2'; \nu_2' \rangle and \langle \sigma_2'; [\nu_2'/x] \hat{e}_1' \rangle \Downarrow \langle \sigma_3; \nu_3' \rangle.
    By induction, we have a \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1(\sigma_0) = \sigma_0.
    Note that \pi_1(e_2) = e_2, since \pi_1(e_1 \ e_2) = e_1 \ e_2.
    By permutability, \langle \pi_1(\sigma_1); e_2 \rangle \downarrow \langle \pi_1(\sigma_2); \pi_1(\nu_2) \rangle.
    By induction, we get \pi_2 such that \pi_2(\pi_1(\sigma_2)) = \sigma_2' and \pi_2(\pi_1(\nu_2)) = \nu_2' and \pi_2(\pi_1(\sigma_1)) = \pi_1(\sigma_1).
    We need to show that \pi_2(\pi_1([v_2/x]\hat{e}_1)) = [v_2'/x]\hat{e}_1'.
    Note that \pi_2(\pi_1(v_2)) = v_2'.
    Note that \pi_1(\hat{e}_1) = \hat{e}'_1, and that \hat{e}'_1 is supported by \sigma'_1.
    Hence \pi_2(\pi_1(\hat{e}_1)) = \pi_1(\hat{e}_1).
    Hence \pi_2(\pi_1([v_2/x]\hat{e}_1)) = [v_2'/x]\hat{e}_1'.
    Hence by permutability, \langle \pi_2(\pi_1(\sigma_2)); \pi_2(\pi_1([\nu_2/x]\hat{e}_1)) \rangle \Downarrow \langle \pi_2(\pi_1(\sigma_3)); \pi_2(\pi_1(\nu_3)) \rangle.
    Hence by induction, there is a \pi_3 such that \sigma_3' = \pi_3(\pi_2(\pi_1(\sigma_2))) and \nu_3' = \pi_3(\pi_2(\pi_1(\nu_2))).
    We take \pi_3 \circ \pi_2 \circ \pi_1 as our permutation witness.
    Since \pi_3 is safe with respect to \sigma_2, and \pi_2 is safe with respect to \sigma_1,
    both are safe with respect to \sigma_0.
    Hence \pi_3 \circ \pi_2 \circ \pi_1(\sigma_0) = \sigma_0.
• Case \langle \sigma_0; \mathsf{cons}(e_1, e_2) \rangle \Downarrow \langle \sigma_2; \mathsf{cons}(v_1, v_2) \rangle:
    By inversion, \langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1; v_1 \rangle and \langle \sigma_1; e_2 \rangle \Downarrow \langle \sigma_2; l_2 \rangle.
    By inversion, \langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1'; v_1' \rangle and \langle \sigma_1'; e_2 \rangle \Downarrow \langle \sigma_2'; l_2' \rangle.
    By induction, we have a \pi_1 such that \pi_1(\sigma_1) = \overline{\sigma_1} and \pi_1(\sigma_0) = \sigma_0 and \pi_1(\nu_1) = \nu_1'.
    Note that \pi_1(e_2) = e_2, since \pi_1(cons(e_1, e_2)) = cons(e_1, e_2).
    By permutability, \langle \pi_1(\sigma_1); e_2 \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(\nu_2) \rangle.
    Hence by induction, we have a \pi_2 such that \pi_2(\pi_1(\sigma_2)) = \sigma_2' and \pi_2(\pi_1(\nu_2)) = \nu_2'.
    We take \pi_2 \circ \pi_1 as our permutation witness.
• Case \langle \sigma_0; let cons(x, xs) = e in e' \rangle \Downarrow \langle \sigma_2; v_2 \rangle:
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; cons(v, l) \rangle and \langle \sigma_1; [v/x, l/xs]e' \rangle \Downarrow \langle \sigma_2; v_2 \rangle.
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1'; cons(v', l') \rangle and \langle \sigma_1'; [v'/x, l'/xs]e' \rangle \Downarrow \langle \sigma_2'; v_2' \rangle.
    By induction, we have \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1(v) = v' and \pi_1(l) = l' and \pi_1(\sigma_0) = \sigma_0.
    Note that \pi(e') = e', since it is supported by \sigma_0.
    Hence \pi_1([\nu/x, l/x]e') = [\nu'/x, l'/x]\pi_1(e') = [\nu'/x, l'/x]e'.
    Hence by permutability, \langle \pi_1(\sigma_1); \pi_1([\nu/x, l/xs]e') \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(\nu_2) \rangle.
    By induction, we get \pi_2 such that \pi_2(\pi_1(\sigma_2)) = \sigma'' and \pi_2(\pi_1(\nu_2)) = \nu_2' and \pi_2(\sigma_1') = \sigma_1'.
    We take \pi_2 \circ \pi_1 as the permutation witness.
• Case \langle \sigma_0; \delta_{e'}(e) \rangle \Downarrow \langle \sigma_1, l : e | \text{later}; l \rangle:
    By inversion, \langle \sigma_0; e' \rangle \Downarrow \langle \sigma_1; \diamond \rangle and l \notin dom(\sigma_1).
    By inversion, \langle \sigma_0; e' \rangle \Downarrow \langle \sigma_1'; \diamond \rangle and l' \notin \text{dom}(\sigma_1').
    By induction, we get \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1(\sigma) = \sigma.
    Note l \notin dom(\sigma_1) and l' \notin dom(\sigma'_1).
    We can take our permutation witness to be \pi' \triangleq \pi \circ (l \ l').
    Since e' is supported by \sigma_0, it follows that \pi'(\sigma_1, l : e' | ater) = \sigma'_1, l' : e' | ater.
    By definition \pi'(l) = l'.
    Hence there is a \pi' such that \langle \sigma_0; \delta_{e'}(e) \rangle \downarrow \langle \sigma_1, l : e | \text{later}; l \rangle and \langle \sigma_0; \delta_{e'}(e) \rangle \downarrow \langle \pi'(\sigma_1, l : e | \text{later}); \pi'(l) \rangle:
    Obviously \pi'(\sigma_0) = \sigma_0, since l \notin dom(\sigma_0).
• Case \langle \sigma_0; let \delta(x) = e in e' \rangle \downarrow \langle \sigma_2; \nu \rangle:
```

By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; l \rangle$ and $\langle \sigma_1; [!l/x]e' \rangle \Downarrow \langle \sigma_2; \nu \rangle$. By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma'_1; l' \rangle$ and $\langle \sigma'_1; [!l'/x]e' \rangle \Downarrow \langle \sigma'_2; \nu' \rangle$.

```
By induction, there is a \pi_1 such that \pi_1(\sigma_1) = \pi'_1 and \pi_1(l) = l' and \pi_1(\sigma_0) = \sigma_0.
    Note that \pi_1(e') = e', since e' is supported by \sigma_0.
    Note that \pi_1([!l/x]e') = [!l'/x]\pi_1(e') = [!l'/x]e'.
    Hence \langle \pi_1(\sigma_1); [!l'/x]e' \rangle \downarrow \langle \pi_1(\sigma_2); \pi_1(v) \rangle.
    By induction, we have \pi_2 such that \pi_2(\pi_1(\sigma_1)) = \sigma_2' and \pi_2(\pi_1(v)) = v' and \pi_2(\pi_1(\sigma_2)) = \pi_1(\sigma_1).
    Hence \langle \sigma_0; let \delta(x) = e in e' \rangle \Downarrow \langle \sigma_2; v \rangle and \langle \sigma_0; let \delta(x) = e in e' \rangle \Downarrow \langle \pi_2(\pi_1(\sigma_2)); \pi_2(\pi_1(v)) \rangle. We
    take \pi_2 \circ \pi_1 as our permutation witness.
• Case \langle \sigma; !l \rangle \Downarrow \langle \sigma; \nu \rangle:
    By inversion, we know that l: v \text{ now } \in \sigma.
    By inversion, we know that l : v \text{ now } \in \sigma.
    We take the identity permutation as our permutation witness.
• Case \langle \sigma_0; stable(e)\rangle \downarrow \langle \sigma_1; stable(v)\rangle:
    By inversion, we know that \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; v \rangle.
    By inversion, we know that \langle \sigma_0; e \rangle \downarrow \langle \sigma'_1; v' \rangle.
    By induction, we know that there is a \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1(\nu) = \nu'.
    Note that \pi_1(\mathsf{stable}(v)) = \mathsf{stable}(v').
    Hence we can take \pi_1 as our permutation witness.
• Case \langle \sigma_0; let stable(x) = e in e' \rangle \Downarrow \langle \sigma_2; \nu_2 \rangle:
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; stable(v_1) \rangle and \langle \sigma_1; [v_1/x]e' \rangle \Downarrow \langle \sigma_2; v_2 \rangle.
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1'; stable(v_1') \rangle and \langle \sigma_1'; [v_1'/x]e' \rangle \Downarrow \langle \sigma_2'; v_2' \rangle.
    By induction, we get \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1(v_1) = v_1' and \pi_1(\sigma_0) = \sigma_0.
    Note that \pi_1(e') = e' since e' is supported by \sigma_0.
    Hence \pi_1([v_1/x]e') = [v_1'/x]e'. By permutability, \langle \sigma_1'; [v_1'/x]e' \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(v_2) \rangle.
    By induction, we get \pi_2 such that \pi_2(\pi_1(\sigma_2)) = \sigma_2' and \pi_2(\pi_1(\nu_2)) = \nu_2'.
    Hence \langle \sigma_0; let stable(x) = e in e' \rangle \Downarrow \langle \sigma_2; v' \rangle and \langle \sigma_0; let stable(x) = e in e' \rangle \Downarrow \langle \pi_2(\pi_1(\sigma_2)); \pi_2(\pi_1(v_2)) \rangle.
    We can take \pi_2 \circ \pi_1 as our permutation witness.
• Case \langle \sigma_0; \text{fix } x. e \rangle \Downarrow \langle \sigma_1; v \rangle:
    By inversion, \langle \sigma_0; [fix x. e/x]e \rangle \Downarrow \langle \sigma_1; \nu \rangle.
    By inversion, \langle \sigma_0; [fix x. e/x]e \rangle \Downarrow \langle \sigma'_1; v' \rangle.
    By induction, we get \pi_1 such that \pi_1(\sigma_1) = \sigma_1 and \pi_1(\nu) = \nu' and \pi_1(\sigma_0) = \sigma_0.
    We can take \pi_1 to be our permutation witness.
• Case \langle \sigma_0; \mathsf{promote}(e) \rangle \Downarrow \langle \sigma_1; \mathsf{stable}(v) \rangle:
    By inversion, we know that \langle \sigma_0; e \rangle \downarrow \langle \sigma_1; v \rangle.
    By inversion, we know that \langle \sigma_0; e \rangle \downarrow \langle \sigma'_1; v' \rangle.
    By induction, we know that there is a \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1(\nu) = \nu'.
    Note that \pi_1(\mathsf{stable}(v)) = \mathsf{stable}(v').
    Hence we can take \pi_1 as our permutation witness.
• Case \langle \sigma_0; \mathsf{inl} \, e \rangle \Downarrow \langle \sigma_1; \mathsf{inl} \, v \rangle:
    The other derivation must be of the form \langle \sigma_0; \mathsf{inl} \, e \rangle \Downarrow \langle \sigma_1'; \mathsf{inl} \, v' \rangle.
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \nu \rangle.
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1'; \nu' \rangle.
    By induction, we have a \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi(\sigma_0) = \sigma_0 and \pi_1(\nu) = \nu'.
    Note that \pi_1(\operatorname{inl} \nu) = \operatorname{inl} \pi_1(\nu) = \operatorname{inl} \nu'.
    Hence we can take \pi_1 as our permutation witness.
• Case \langle \sigma_0; \operatorname{inr} e \rangle \Downarrow \langle \sigma_1; \operatorname{inr} v \rangle:
    The other derivation must be of the form \langle \sigma_0; \mathsf{inr} \, e \rangle \Downarrow \langle \sigma_1'; \mathsf{inr} \, v' \rangle.
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; v \rangle.
    By inversion, \langle \sigma_0; e \rangle \Downarrow \langle \sigma_1'; v' \rangle.
```

By induction, we have a π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi(\sigma_0) = \sigma_0$ and $\pi_1(v) = v'$.

Note that $\pi_1(\operatorname{inr} v) = \operatorname{inr} \pi_1(v) = \operatorname{inr} v'$.

Hence we can take π_1 as our permutation witness.

• Case $\langle \sigma_0; \mathsf{case}(e, \mathsf{inl}\, x \to e_1, \mathsf{inr}\, y \to e_2) \rangle \Downarrow \langle \sigma_2; \nu \rangle$:

By inversion, either $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{inl} \, \nu_1 \rangle$ and $\langle \sigma_1; [\nu_1/x] e' \rangle \Downarrow \langle \sigma_2; \nu \rangle$ or $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{inr} \, \nu_2 \rangle$ and $\langle \sigma_1; [\nu_2/y] e_2 \rangle \Downarrow \langle \sigma_2; \nu \rangle$.

By inversion, either $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1'; \mathsf{inl} \, v_1' \rangle$ and $\langle \sigma_1'; [v_1'/x] e_1 \rangle \Downarrow \langle \sigma_2'; v' \rangle$ or $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{inr} \, v_2 \rangle$ and $\langle \sigma_1; [v_2/y] e_2 \rangle \Downarrow \langle \sigma_2; v' \rangle$.

Suppose $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{inl} \, \nu_1 \rangle$ and $\langle \sigma_1; [\nu_1/x] e_1 \rangle \Downarrow \langle \sigma_2; \nu \rangle$.

Suppose $\langle \sigma_0; e \rangle \Downarrow \langle \sigma'_1; \text{inr } v'_2 \rangle$ and $\langle \sigma'_1; [v'_2/y] e_2 \rangle \Downarrow \langle \sigma'_2; v' \rangle$.

Then by induction there is a π such that $\pi(\operatorname{inl} \nu_1) = \operatorname{inr} \nu_2'$, which is impossible.

Suppose $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{inl} \, \nu_2 \rangle$ and $\langle \sigma_1; [\nu_2/x] e_2 \rangle \Downarrow \langle \sigma_2; \nu \rangle$.

Suppose $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1'; \mathsf{inr} \nu_1' \rangle$ and $\langle \sigma_1'; [\nu_1'/y] e_1 \rangle \Downarrow \langle \sigma_2'; \nu' \rangle$.

Then by induction there is a π such that $\pi(\operatorname{inr} v_2) = \operatorname{inl} v_1'$, which is impossible.

Suppose $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \mathsf{inl} \, \nu_1 \rangle$ and $\langle \sigma_1; [\nu_1/x] e_1 \rangle \Downarrow \langle \sigma_2; \nu \rangle$.

Suppose $\langle \sigma_0'; e \rangle \Downarrow \langle \sigma_1'; \mathsf{inl} \, v_1' \rangle$ and $\langle \sigma_1'; [v_1'/x] e_1 \rangle \Downarrow \langle \sigma_2'; v' \rangle$.

By induction, we have π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi_1(v_1) = v_1'$ and $\pi_1(\sigma_0) = \sigma_0$.

Since $\sigma_0 \sqsubseteq e_1$, we know $\pi_1(e_1) = e_1$.

Hence $\pi_1([v_1/x]e_1) = [\pi_1(v_1)/x]\pi_1(e_1) = [v_1/x]e_1$.

Hence by renaming, $\langle \sigma_1'; [v_1/x]e_1 \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(v) \rangle$.

By induction, we have π_2 such that $\pi_2(\pi_1(\sigma_2)) = \sigma_2'$ and $\pi_2(\pi_1(\nu)) = \nu'$ and $\pi_2(\sigma_1') = \sigma_1'$.

So we can take $\pi_2 \circ \pi_1$ as our permutation witness.

Suppose $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \text{inr } v_2 \rangle$ and $\langle \sigma_1; [v_2/x]e_2 \rangle \Downarrow \langle \sigma_2; v \rangle$.

Suppose $\langle \sigma'_0; e \rangle \Downarrow \langle \sigma'_1; \operatorname{inr} \nu'_2 \rangle$ and $\langle \sigma'_1; [\nu'_2/x] e_2 \rangle \Downarrow \langle \sigma'_2; \nu' \rangle$.

By induction, we have π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi_1(v_2) = v_2'$ and $\pi_1(\sigma_0) = \sigma_0$.

Since $\sigma_0 \sqsubseteq e_2$, we know $\pi_1(e_2) = e_2$.

Hence $\pi_1([v_2/x]e_2) = [\pi_1(v_2)/x]\pi_1(e_2) = [v_2'/x]e_2$.

Hence by renaming, $\langle \sigma_1'; [v_2/x]e_2 \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(v) \rangle$.

By induction, we have π_2 such that $\pi_2(\pi_1(\sigma_2)) = \sigma_2'$ and $\pi_2(\pi_1(\nu)) = \nu'$ and $\pi_2(\sigma_1') = \sigma_1'$.

So we can take $\pi_2 \circ \pi_1$ as our permutation witness.

• Case $\langle \sigma_0; (e_1, e_2) \rangle \downarrow \langle \sigma_2; (v_1, v_2) \rangle$:

By inversion, $\langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1; v_1 \rangle$ and $\langle \sigma_1; e_2 \rangle \Downarrow \langle \sigma_2; v_2 \rangle$.

By inversion, $\langle \sigma_0; e_1 \rangle \Downarrow \langle \sigma_1'; v_1' \rangle$ and $\langle \sigma_1'; e_2 \rangle \Downarrow \langle \sigma_2'; v_2' \rangle$.

By induction, there is a π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi_1(\nu_1) = \nu_1'$ and $\pi_1(\sigma_0) = \sigma_0$.

Since $\sigma_0 \sqsubseteq e_2$, we know that $\pi_1(e_2) = e_2$.

Hence by renaming, we know $\langle \sigma_1'; e_2 \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(\nu_2) \rangle$.

By induction, we have π_2 such that $\pi_2(\pi_1(\sigma_2)) = \sigma_2$ and $\pi_2(\pi_1(\nu_2)) = \nu_2'$ and $\pi_2(\sigma_1') = \sigma_1'$.

Since $\sigma_1' \sqsubseteq v_1'$, we know that $\pi_2(v_1') = v_1'$.

Hence we know that $\pi_2(\pi_1(\nu_1, \nu_2)) = (\pi_2(\pi_1(\nu_1)), \pi_2(\pi_1(\nu_2))) = (\nu'_1, \nu'_2).$

Hence we can take $\pi_2 \circ \pi_1$ as our permutation witness.

• Case $\langle \sigma_0; \mathsf{fst} \, e \rangle \Downarrow \langle \sigma_1; \nu_1 \rangle$:

By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; (\nu_1, \nu_2) \rangle$ and $\langle \sigma_0; e \rangle \Downarrow \langle \sigma'_1; (\nu'_1, \nu'_2) \rangle$.

By induction, there is a π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi_1((v_1, v_2)) = (v_1', v_2')$.

Hence $\pi_1(v_1) = v_1'$ and $\pi_1(v_2) = v_2'$.

Hence we can take π_1 as our permutation witness.

• Case $\langle \sigma; \mathsf{snd} \, e \rangle \downarrow \langle \sigma'; \nu' \rangle$:

By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; (\nu_1, \nu_2) \rangle$ and $\langle \sigma_0; e \rangle \Downarrow \langle \sigma'_1; (\nu'_1, \nu'_2) \rangle$.

```
By induction, there is a \pi_1 such that \pi_1(\sigma_1) = \sigma_1' and \pi_1((\nu_1, \nu_2)) = (\nu_1', \nu_2'). Hence \pi_1(\nu_1) = \nu_1' and \pi_1(\nu_2) = \nu_2'.
```

Hence we can take π_1 as our permutation witness.

• Case $\langle \sigma_0$; into $e \rangle \Downarrow \langle \sigma_1$; into $v \rangle$:

The other derivation must be of the form $\langle \sigma_0; \text{into } e \rangle \Downarrow \langle \sigma_1'; \text{into } \nu' \rangle$.

By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma_1; \nu \rangle$.

By inversion, $\langle \sigma_0; e \rangle \Downarrow \langle \sigma'_1; v' \rangle$.

By induction, we have a π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi(\sigma_0) = \sigma_0$ and $\pi_1(v) = v'$.

Note that $\pi_1(\text{into }\nu) = \text{into }\pi_1(\nu) = \text{into }\nu'$.

Hence we can take π_1 as our permutation witness.

• Case $\langle \sigma_0; \text{out } e \rangle \Downarrow \langle \sigma_1; \nu \rangle$:

By inversion, $\langle \sigma_0; \text{out } e \rangle \Downarrow \langle \sigma_1; \text{into } v \rangle$.

By inversion, $\langle \sigma_0; \text{out } e \rangle \Downarrow \langle \sigma'_1; \text{into } v' \rangle$.

By induction, we have a π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi(\sigma_0) = \sigma_0$ and $\pi_1(\text{into }\nu) = \text{into }\nu'$.

Hence note that $\pi_1(v) = v'$.

Hence we can take π_1 as our permutation witness.

- 2. We have derivations of $\sigma \Longrightarrow \sigma'$ and $\sigma \Longrightarrow \sigma''$:
 - Case $\cdot \Longrightarrow \cdot$:

We know $\sigma' = \sigma'' = \cdot$.

We can take the identity permutation as our permutation witness.

• Case σ_0 , $l: v \text{ now} \Longrightarrow \sigma_1$:

By inversion, we know $\sigma_0 \Longrightarrow \sigma_1$.

By inversion, we know $\sigma_0 \Longrightarrow \sigma'_1$.

By induction, we have a π_1 such that $\pi(\sigma_1) = \sigma'$ and $\pi(\sigma_0) = \sigma_0$.

We can take π_1 as our permutation witness.

• Case σ_0 , l: e later $\Longrightarrow \sigma_2$, l: v now:

By inversion, we have $\sigma_0 \Longrightarrow \sigma_1$ and $\langle \sigma_1; e \rangle \Downarrow \langle \sigma_2; v \rangle$.

By inversion, we have $\sigma_0 \Longrightarrow \sigma_1'$ and $\langle \sigma_1'; e \rangle \Downarrow \langle \sigma_2'; \nu' \rangle$.

By induction, we have a π_1 such that $\pi_1(\sigma_1) = \sigma_1'$ and $\pi_1(\sigma_0) = \sigma_0$.

Since σ is supported, the free locations of e are within the locations of σ_0 .

Hence e is supported by σ_1 .

Hence $\pi_1(e) = e$.

Hence $\langle \pi_1(\sigma_1); e \rangle \Downarrow \langle \pi_1(\sigma_2); \pi_1(v) \rangle$.

By induction, there is π_2 such that $\pi_2(\pi_1(\sigma_2)) = \sigma_2'$ and $\pi_2(\pi_1(\nu)) = \nu'$.

We can take $\pi_2 \circ \pi_1$ as our permutation witness.

3.2 Soundness

Lemma 6 (Order Permutation). *If* $\sigma' \leq \sigma$ *and* $\pi \in \text{Perm then } \pi(\sigma') \leq \pi(\sigma)$.

Proof. Assume $\sigma' \leq \sigma$.

Then there is a σ_0 such that $\sigma' = \sigma \cdot \sigma_0$.

So $\pi(\sigma') = \pi(\sigma \cdot \sigma_0)$.

So $\pi(\sigma') = \pi(\sigma) \cdot \pi(\sigma_0)$.

Taking $\pi(\sigma_0)$ as the witness, there is a σ_1 such that $\pi(\sigma') = \pi(\sigma) \cdot \sigma_1$.

Hence $\pi(\sigma') \leq \pi(\sigma)$.

Lemma 7 (Heap Renaming). *For all* $\pi \in \text{Perm } and \ \sigma \in \text{Heap}_{n'}, \pi(\sigma) \in \text{Heap}_{n}$.

Proof. We prove this by induction on n.

Case n = 0:
 Immediate, since all heaps are in Heap₀.

• Case n = k + 1:

By induction hypothesis, for all $\pi \in \text{Perm}$ and $\sigma \in \text{Heap}_{k}$, $\pi(\sigma) \in \text{Heap}_{k}$.

Assume $\pi \in \text{Perm}$ and $\sigma \in \text{Heap}_{k+1}$.

Then we know that $\sigma \Longrightarrow \sigma'$ and $\sigma' \in \text{Heap}_k$.

By permutation, $\pi(\sigma) \Longrightarrow \pi(\sigma')$.

By induction, $\sigma' \in \text{Heap}_k$.

Hence $\pi(\sigma) \in \text{Heap}_{k+1}$.

Lemma 8 (Kripke Monotoncity). *If* ρ *is a monotone environment and* $w' \leq w$, then $\mathcal{V} \llbracket A \rrbracket \rho w' \supseteq \mathcal{V} \llbracket A \rrbracket \rho w$.

Proof. This proof is by induction on the type A.

Assume $w' \le w$, and proceed by case analysis of A:

• Case α:

Assume ρ is a monotone environment.

Then we know $\rho(\alpha)$ is monotone, and so $\rho(\alpha)$ $w' \supseteq \rho(\alpha)$ w.

Hence if $v \in \rho(\alpha)$ w then $v \in \rho(\alpha)$ w'.

• Case μ̂α. A:

Assume ρ is a monotone environment.

Assume into $v \in V \llbracket \hat{\mu} \alpha. A \rrbracket \rho w$.

Hence $v \in V [A] (\rho, V [\bullet (\hat{\mu}\alpha. A)] \rho w/\alpha) w$.

To apply the induction hypothesis, we need to know that $\mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket \rho w$ is monotone.

Assume we have w and w' such that $w' \le w$.

Assume $l \in \mathcal{V} \llbracket \bullet \hat{\mu} \alpha$. $A \rrbracket \rho w$.

Hence $w.\sigma = \sigma_0$, l: e later, σ_1 such that $\forall \pi \in \text{Perm}, w'' \leq (w.n, \sigma_0, w.a)$. $\pi(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket \rho \pi(w'')$.

We want to show $l \in \mathcal{V} \llbracket \bullet \hat{\mu} \alpha$. $A \rrbracket \rho w'$.

So we want to show that $w'.\sigma = \sigma'_0, l: e$ later, σ'_1

such that $\forall \pi \in \text{Perm}, w'' \leq (w'.n, \sigma'_0, w'.a). \ \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha. \ A \rrbracket \ \rho \ \pi(w'').$

Since $w' \le w$, we know $w'.\sigma \le w.\sigma$, and so $w'.\sigma = \sigma_0, l : e$ later, σ_1, σ_2 .

So we can take $\sigma'_0 = \sigma_0$.

Since $w' \le w$, we know $\forall \pi \in \text{Perm}, w'' \le (w'.n, \sigma_0, w'.a)$. $\pi(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket \rho \pi(w'')$.

Hence $l \in \mathcal{V} \llbracket \bullet \hat{\mu} \alpha$. $A \rrbracket \rho w'$.

Hence $\mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket \rho w \subseteq \mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket \rho w'$.

Hence $\mathcal{V} \llbracket \bullet (\hat{\mu} \alpha. A) \rrbracket \rho w$ is monotone.

By induction, $v \in V [A] (\rho, V [\bullet (\hat{\mu}\alpha. A)] \rho w/\alpha) w'$.

Hence into $v \in V \llbracket \hat{\mu} \alpha. A \rrbracket \rho w$.

• Case A + B:

Assume ρ is a monotone environment.

Assume $v \in V [A + B] \rho w$.

Suppose $v = \text{inl } v' \text{ where } v' \in V [A] \rho w$.

By induction, $v' \in V [A] \rho w'$.

Hence $\operatorname{inl} v' \in \mathcal{V} [A + B] \rho w'$.

```
Suppose v = \operatorname{inr} v' where v' \in \mathcal{V} \llbracket B \rrbracket \rho w.
By induction, v' \in \mathcal{V} \llbracket B \rrbracket \rho w'.
Hence \operatorname{inr} v' \in \mathcal{V} \llbracket A + B \rrbracket \rho w'.
```

• Case $A \times B$:

Assume ρ is a monotone environment. Assume $(v_1, v_2) \in \mathcal{V} \llbracket A \times B \rrbracket \rho w$. Hence $v_1 \in \mathcal{V} \llbracket A \rrbracket \rho w$ and $v_2 \in \mathcal{V} \llbracket B \rrbracket \rho w$. By induction, $v_1 \in \mathcal{V} \llbracket A \rrbracket \rho w'$ and $v_2 \in \mathcal{V} \llbracket B \rrbracket \rho w'$.

Hence $(v_1, v_2) \in \mathcal{V} \llbracket A \times B \rrbracket \rho w'$.

• Case $A \rightarrow B$:

Assume ρ is a monotone environment.

Assume $\lambda x. e \in \mathcal{V} [\![A \rightarrow B]\!] \rho w.$

We want to show λx . $e \in \mathcal{V} [A \to B] \rho w'$.

Assume $\pi \in \text{Perm and } w'' \leq w'$, and $e' \in \mathcal{E} \llbracket A \rrbracket \rho \pi(w'')$.

By transitivity, $w'' \leq w$.

Hence by hypothesis, we know $[e'/x]\pi(e) \in \mathcal{E} [\![B]\!] \rho \pi(w'')$.

Hence $\lambda x. \ e \in \mathcal{V} [\![A \rightarrow B]\!] \rho w'.$

• Case •A:

Assume ρ is a monotone environment.

Assume $l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w$.

Hence $w.\sigma = \sigma_0$, l:e later, σ_1 such that $\forall \pi \in \text{Perm}$, $w'' \leq (w.n, \sigma_0, w.a)$. $\pi(e) \in \mathcal{L} \llbracket A \rrbracket \rho \pi(w'')$.

We want to show $l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w'$.

So we want to show that $w'.\sigma = \sigma'_0$, l:e later, σ'_1

such that $\forall \pi \in \text{Perm}, w'' \leq (w'.n, \sigma'_0, w'.a). \ \pi(e) \in \mathcal{L} \llbracket A \rrbracket \ \rho \ \pi(w'').$

Since $w' \le w$, we know $w'.\sigma \le w.\sigma$, and so $w'.\sigma = \sigma_0$, l : e later, σ_1, σ_2 .

So we can take $\sigma'_0 = \sigma_0$.

Since $w' \le w$, we know $\forall \pi \in \text{Perm}, w'' \le (w'.n, \sigma_0, w'.a)$. $\pi(e) \in \mathcal{L} \llbracket A \rrbracket \rho \pi(w'')$.

Hence $l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w'$.

• Case □A:

Assume ρ is a monotone environment.

Assume stable(v) $\in \mathcal{V} \llbracket \Box A \rrbracket \rho w$.

Hence we know that $v \in V [\![A]\!] \rho (w.n, \cdot, \top)$.

Since $w' \le w$, it follows that $(w'.n, \cdot, \top) \le (w.n, \cdot, \top)$.

Hence by induction, $v \in V \llbracket A \rrbracket \rho (w'.n, \cdot, \top)$.

Hence $stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket \rho w'$.

• Case S A:

Assume ρ is a monotone environment.

Assume $cons(v, l) \in \mathcal{V} \llbracket S A \rrbracket \rho w$.

Hence we know that $v \in \mathcal{V} \llbracket A \rrbracket \rho w$ and $l \in \mathcal{V} \llbracket \bullet (S A) \rrbracket \rho w$.

Note that $\forall \pi \in \text{Perm}, w'' \leq (w.n, \sigma_0, w.a). \ \pi(e) \in \mathcal{L} [\![A]\!] \rho \ \pi(w'').$

By induction, we know $v \in V [A] \rho w'$.

Now we want to show $l \in \mathcal{V} \llbracket \bullet S A \rrbracket \rho w'$.

So we want to show that $w'. \bar{\sigma} = \sigma_0', l: e$ later, σ_1'

such that $\forall \pi \in \text{Perm}, w'' \leq (w'.n, \sigma'_0, w'.a). \ \pi(e) \in \mathcal{L} \llbracket S A \rrbracket \ \rho \ \pi(w'').$

Since $w' \le w$, we know $w'.\sigma \le w.\sigma$, and so $w'.\sigma = \sigma_0$, l: e later, σ_1, σ_2 .

So we can take $\sigma'_0 = \sigma_0$.

Since $w' \le w$, we know $\forall \pi \in \text{Perm}, w'' \le (w'.n, \sigma_0, w'.a)$. $\pi(e) \in \mathcal{L} \llbracket A \rrbracket \rho \pi(w'')$.

Hence $l \in \mathcal{V} \llbracket \bullet S A \rrbracket \rho w'$.

Hence $cons(v, l) \in \mathcal{V} [SA] \rho w'$.

• Case alloc:

Assume ρ is a monotone environment.

Assume $\diamond \in \mathcal{V}$ [alloc] ρ w.

Then $w.a = \bot$.

Since $w' \le w$, it follows $w' \cdot a = \bot$.

Hence $\diamond \in \mathcal{V}$ [alloc] $\rho w'$.

Lemma 9 (Renaming). We have that:

1. If ρ is a permutable environment and $\pi \in \text{Perm}$ and $\nu \in \mathcal{V} \llbracket A \rrbracket \rho$ w then $\pi(\nu) \in \mathcal{V} \llbracket A \rrbracket \rho$ $\pi(w)$.

- 2. If ρ is a permutable environment and $\pi \in \text{Perm}$ and $e \in \mathcal{E} [\![A]\!] \rho$ w then $\pi(e) \in \mathcal{E} [\![A]\!] \rho$ $\pi(w)$.
- 3. If ρ is a permutable environment and $\pi \in \text{Perm}$ and $e \in \mathcal{L}[A] \rho$ w then $\pi(e) \in \mathcal{L}[A] \rho$ $\pi(w)$.

Proof. We do these proofs by induction on the type.

- 1. Assume we have $\pi \in \text{Perm}$. Now we proceed by induction on types:
 - Case α :

Assume ρ is a permutable environment.

Assume $v \in \rho(\alpha) w$.

Hence $\pi(v) \in \pi(\rho(\alpha) w)$.

Since that $\rho(\alpha)$ is permutable, $\pi(\rho(\alpha) \text{ world}) = \rho(\alpha) (\pi(w))$.

Hence $\pi(v) \in \rho(\alpha) \pi(w)$.

• Case μ̂α. A:

Assume ρ is a permutable environment.

Assume into $v \in V \llbracket \hat{\mu} \alpha$. $A \rrbracket \rho w$.

Hence $v \in V [A] (\rho, V [\bullet (\hat{\mu}\alpha. A)] \rho w/\alpha) w$.

To apply the induction hypothesis, we need to show $\mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket \rho w$ is permutable.

Assume $l \in \mathcal{V} \llbracket \bullet \hat{\mu} \alpha. A \rrbracket \rho w$.

Hence $w.\sigma = \sigma_0$, l:e later, σ_1 and $\forall \pi'' \in \text{Perm}$, $w'' \leq (w.n, \sigma_0, w.a)$, $\pi''(e) \in \mathcal{L}[\hat{\mu}\alpha. A] \rho \pi''(w'')$.

We want to show $\pi(1) \in \mathcal{V} \llbracket \bullet \hat{\mu} \alpha$. $A \llbracket \rho \pi(w)$.

Note $\pi(w.\sigma) = \pi(\sigma_0), \pi(1) : \pi(e)$ later, $\pi(\sigma_1)$.

It remains to show $\forall \pi' \in \text{Perm}, w' \leq (w.n, \pi(\sigma_0), w.a), \pi'(\pi(e)) \in \mathcal{L} [\hat{\mu}\alpha. A] \rho \pi'(w').$

Assume $\pi' \in \text{Perm and } w' \leq (w.n, \pi(\sigma_0), w.a)$.

Note that $\pi^{-1}(w') \leq (w.n, \sigma_0, w.a)$.

Instantiate π'' with $\pi' \circ \pi$ and w'' with $\pi^{-1}(w')$.

Then we know that $(\pi' \circ \pi)(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha$. A $\llbracket \rho \ (\pi' \circ \pi)(\pi^{-1}(w'))$.

Hence $\pi'(\pi(e)) \in \mathcal{L} \llbracket \hat{\mu} \alpha$. A $\lVert \rho \pi'(w') \rceil$.

Hence $\forall \pi' \in \text{Perm}, w' \leq (w.n, \pi(\sigma_0), w.a), \ \pi''(\pi(e)) \in \mathcal{L} \llbracket \hat{\mu} \alpha. \ A \rrbracket \rho \ \pi'(w').$ Hence $\pi(l) \in \mathcal{V} \llbracket \bullet \hat{\mu} \alpha. \ A \rrbracket \rho \ \pi(w).$

By induction, $\pi(v) \in \mathcal{V} [\![A]\!] (\rho, \mathcal{V} [\![\bullet(\hat{\mu}\alpha. A)]\!] \rho w/\alpha) \pi(w)$.

Therefore into $\pi(v) \in \mathcal{V} \llbracket \hat{\mu} \alpha$. A $\lVert \rho \pi(w) \rVert$.

Since into $\pi(v) = \pi(\text{into } v)$, we know $\pi(\text{into } v) \in \mathcal{V} \llbracket \hat{\mu} \alpha$. A $\rrbracket \rho \pi(w)$.

• Case A + B:

Assume ρ is a permutable environment.

Assume $w \in \text{World}$ and $v \in V [A + B] \rho w$.

```
Suppose v = \text{inl } v' \text{ where } v' \in V [A] \rho w.
    By induction, \pi(v') \in \mathcal{V} \llbracket A \rrbracket \rho \pi(w).
    Hence inl \pi(v') \in \mathcal{V} [A + B] \rho \pi(w).
    Bur \operatorname{inl} \pi(v') = \pi(\operatorname{inl} v').
    So \pi(\operatorname{inl} v') \in \mathcal{V} [A + B] \rho \pi(w).
    Suppose v = \operatorname{inr} v' where v' \in V \llbracket B \rrbracket \rho w.
    By induction, \pi(v') \in \mathcal{V} \llbracket B \rrbracket \rho \pi(w).
    Hence \operatorname{inr} \pi(v') \in \mathcal{V} [A + B] \rho \pi(w).
    Bur \operatorname{inr} \pi(v') = \pi(\operatorname{inr} v').
    So \pi(\operatorname{inr} v') \in \mathcal{V} [A + B] \rho \pi(w).
• Case A \times B:
    Assume \rho is a permutable environment.
    Assume w \in \text{World} and (v, v') \in V [A \times B] \rho w.
    Hence v \in V [A] \rho w and v' \in V [B] \rho w.
    By induction \pi(v) \in \mathcal{V} \llbracket A \rrbracket \rho \pi(w) and \pi(v') \in \mathcal{V} \llbracket B \rrbracket \rho \pi(w').
    Hence (\pi(v), \pi(v')) \in \mathcal{V} [A \times B] \rho \pi(w).
    Bur (\pi(v), \pi(v')) = \pi(v, v'), so \pi(v, v') \in \mathcal{V} [A \times B] \rho \pi(w).
• Case A \rightarrow B:
    Assume \rho is a permutable environment.
    Assume w \in \text{World} and \lambda x. e \in \mathcal{V} [A \to B] \rho w.
    Hence for all \pi'' \in \text{Perm} and w'' \leq w, if e' \in \mathcal{E} [\![A]\!] \rho \pi''(w''), then [e'/x]\pi''(e) \in \mathcal{E} [\![B]\!] \rho \pi''(w'').
    We want to show that \pi(\lambda x. e) \in \mathcal{V} [A \to B] \rho \pi(w).
    Note that \pi(\lambda x. e) = \lambda x. \pi(e).
    Hence we want to show \lambda x. \pi(e) \in \mathcal{V} [A \to B] \rho \pi(w).
    Assume \pi' \in \text{Perm and } w' \leq \pi(w) \text{ and } e' \in \mathcal{E} [\![A]\!] \rho \pi'(w').
    Since w' < \pi(w), we know that \pi^{-1}(w') < w.
    Instantiate \pi'' with \pi' \circ \pi and w'' with \pi^{-1}(w').
    Then \pi''(w'') = \pi'(\pi(\pi^{-1}(w'))) = \pi'(w').
    So e' \in \mathcal{E} [A] \rho \pi''(w'').
    Therefore we know that [e'/x]\pi''(e) \in \mathcal{E} [B] \rho \pi''(w'').
    Note that \pi''(e) = \pi'(\pi(e)) and \pi''(w'') = \pi'(w').
    Hence [e'/x]\pi'(\pi(e)) \in \mathcal{E} [\![B]\!] \rho \pi'(w').
    Hence \lambda x. \pi(e) \in \mathcal{V} [\![ A \rightarrow B ]\!] \rho \pi(w).
• Case •A:
    Assume \rho is a permutable environment.
    Assume w \in \text{World} and l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w.
    Hence w.\sigma = \sigma_0, l: e later, \sigma_1 and \forall \pi'' \in \text{Perm}, w'' \leq (w.n, \sigma_0, w.a), \pi''(e) \in \mathcal{L} \llbracket A \rrbracket \rho \pi''(w'').
    We want to show \pi(1) \in \mathcal{V} \llbracket \bullet A \rrbracket \rho \pi(w).
    Note \pi(w.\sigma) = \pi(\sigma_0), \pi(1) : \pi(e) later, \pi(\sigma_1).
    It remains to show \forall \pi' \in \text{Perm}, w' \leq (w.n, \pi(\sigma_0), w.a), \pi'(\pi(e)) \in \mathcal{L} [A] \rho \pi'(w').
    Assume \pi' \in \text{Perm and } w' \leq (w.n, \pi(\sigma_0), w.a).
    Note that \pi^{-1}(w') < (w.n, \sigma_0, w.a).
    Instantiate \pi'' with \pi' \circ \pi and w'' with \pi^{-1}(w').
    Then we know that (\pi' \circ \pi)(e) \in \mathcal{L} \llbracket A \rrbracket \rho \ (\pi' \circ \pi)(\pi^{-1}(w')).
    Hence \pi'(\pi(e)) \in \mathcal{L} [\![A]\!] \rho \pi'(w').
    Hence \forall \pi' \in \text{Perm}, w' \leq (w.n, \pi(\sigma_0), w.a), \pi''(\pi(e)) \in \mathcal{L} \llbracket A \rrbracket \rho \pi'(w').
    Hence \pi(l) \in \mathcal{V} \llbracket \bullet A \rrbracket \rho \pi(w).
```

• Case □*A*:

Assume ρ is a permutable environment.

Assume $w \in \text{World}$ and $\text{stable}(v) \in \mathcal{V} \llbracket \Box A \rrbracket \rho w$.

```
Hence v \in V [A] \rho (w.n, \cdot, w.a).
             By induction, \pi(v) \in \mathcal{V} [\![A]\!] \rho \pi(w.n, \cdot, w.a).
             Note that \pi(w.n, \cdot, w.a) = (\pi(w).n, \cdot, \pi(w).a).
             Hence \pi(v) \in \mathcal{V} [\![A]\!] \rho (\pi(w).n, \cdot, \pi(w).a).
             Hence \mathsf{stable}(\pi(v)) \in \mathcal{V} \llbracket \Box A \rrbracket \rho \pi(w).
             Hence \pi(\mathsf{stable}(v)) \in \mathcal{V} \llbracket \Box A \rrbracket \rho \pi(w).
         • Case S A:
             Assume \rho is a permutable environment.
             Assume w \in \text{World} and cons(v, l) \in V [SA] \rho w.
             Hence v \in V [A] \rho w and l \in V [-S A] \rho w.
             By induction, \pi(v) \in \mathcal{V} [\![A]\!] \rho \pi(w).
             Since l \in V \llbracket \bullet S A \rrbracket \rho w, we know that:
             1. w.\sigma = \sigma_0, l: e later, \sigma_1.
             2. \forall \pi'' \in \text{Perm}, w'' \leq (w.n, \sigma_0, w.a), \pi''(e) \in \mathcal{L} \llbracket S A \rrbracket \rho \pi''(w'').
             We want to show \pi(1) \in \mathcal{V} \llbracket \bullet S A \rrbracket \rho \pi(w).
             Note \pi(w.\sigma) = \pi(\sigma_0), \pi(1) : \pi(e) later, \pi(\sigma_1).
             It remains to show \forall \pi' \in \text{Perm}, w' \leq (w.n, \pi(\sigma_0), w.a), \pi'(\pi(e)) \in \mathcal{L} \llbracket S A \rrbracket \rho \pi'(w').
             Assume \pi' \in \text{Perm and } w' \leq (w.n, \pi(\sigma_0), w.a).
             Note that \pi^{-1}(w') \leq (w.n, \sigma_0, w.a).
             Instantiate \pi'' with \pi' \circ \pi and w'' with \pi^{-1}(w').
             Then we know that (\pi' \circ \pi)(e) \in \mathcal{L} [SA] \rho (\pi' \circ \pi)(\pi^{-1}(w')).
             Hence \pi'(\pi(e)) \in \mathcal{L} [SA] \rho \pi'(w').
             Hence \forall \pi' \in \text{Perm}, w' \leq (w.n, \pi(\sigma_0), w.a), \pi''(\pi(e)) \in \mathcal{L} \llbracket S A \rrbracket \rho \pi'(w').
             Hence \pi(l) \in \mathcal{V} \llbracket \bullet S A \rrbracket \rho \pi(w).
             Hence cons(\pi(v), \pi(l)) \in \mathcal{V} [SA] \rho \pi(w).
             Hence \pi(\mathsf{cons}(v, l)) \in \mathcal{V} \llbracket \mathsf{S} \mathsf{A} \rrbracket \rho \pi(w).
         Case alloc:
             Assume \rho is a permutable environment.
             Assume w \in World and \diamond \in \mathcal{V} [alloc] \rho w.
             Hence we know that w.a = \top.
             Note that \pi(\diamond) = \diamond.
             Note that \pi(w).\mathfrak{a} = w.\mathfrak{a} = \top.
             Hence \pi(\diamond) \in \mathcal{V} [alloc] \rho \pi(w).
2. Assume \rho is a permutable environment.
    Assume we have \pi \in \text{Perm}, and e \in \mathcal{E} [\![A]\!] \rho w.
    For all \sigma' \leq w.\sigma, there is \sigma'' \leq \sigma' and v such that \langle \sigma'; e \rangle \Downarrow \langle \sigma''; v \rangle and v \in \mathcal{V} \llbracket A \rrbracket \rho (w.n, \sigma'', w.a).
    Note that \pi(w) = (w.n, \pi(w.\sigma), w.a).
    Assume \sigma_1 \leq \pi(w.\sigma).
    Then \pi^{-1}(\sigma_1) \leq w.\sigma.
    So there is a \sigma_2 \leq \pi^{-1}(\sigma_1) and \nu such that \langle \pi^{-1}(\sigma_1); e \rangle \Downarrow \langle \sigma_2; \nu \rangle
    and v \in \mathcal{V} \llbracket A \rrbracket \rho (w.n, \sigma_2, w.a) and w.a = \top \implies \sigma_2 = \pi^{-1}(\sigma_1).
    We know that \pi(\sigma_2) \leq \sigma_1 \leq \pi(w.\sigma).
    We know that w.a = \top \implies \pi(\sigma_2) = \sigma_1.
```

3. Assume ρ is a permutable environment.

Hence $\pi(e) \in \mathcal{E} [\![A]\!] \rho \pi(w)$.

Hence $\pi(e) \in \mathcal{E} [\![A]\!] \rho (w.n, \pi(w.\sigma), w.a)$.

By permutation, we know that $\langle \sigma_1; \pi(e) \rangle \downarrow \langle \pi(\sigma_2); \pi(\nu) \rangle$.

By renaming for values, we know that $\pi(v) \in \mathcal{V} [\![A]\!] \rho (w.n, \pi(\sigma_2), w.a)$.

Assume we have $\pi \in \text{Perm}$ and $e \in \mathcal{L} \llbracket A \rrbracket \rho w$. Assume $e \in \mathcal{L} \llbracket A \rrbracket \rho w$.

We have two cases:

- Case w.n = 0: In this case $\pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(w)$ by definition.
- Case w.n = k + 1: In this case, we know that $w.\sigma \Longrightarrow \sigma'$ and $e \in \mathcal{E} \llbracket A \rrbracket \rho (k, \sigma', w.a)$. By renaming, we know that $\pi(e) \in \mathcal{E} \llbracket A \rrbracket \rho (k, \pi(\sigma'), w.a)$.

By permutation, we know that $\pi(w.\sigma) \Longrightarrow \pi(\sigma')$.

Hence $\pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(w)$.

Lemma 10 (Supportedness of the Logical Relation). *If* ρ *is a supported environment and* $\nu \in \mathcal{V}$ $[\![A]\!]$ ρ *w then* $\nu \subseteq w.\sigma$.

 \Box

Proof. This proof is by induction on the type. Assume we have a world w.

• Case α :

Assume we have a supported environment ρ .

Then $\mathcal{V} \llbracket \alpha \rrbracket \rho w = \rho(\alpha) w$.

Since $\rho(\alpha)$ *w* is supported, if $v \in \rho(\alpha)$ *w*, then $v \sqsubseteq w.\sigma$.

• Case μ̂α. A:

Assume we have a supported environment ρ .

Assume into $v \in V \llbracket \hat{\mu} \alpha$. $A \rrbracket \rho w$.

Hence $v \in \mathcal{V} \llbracket A \rrbracket (\rho, \mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket \rho w/\alpha) w$.

To apply the induction hypothesis, we need to show that $\mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket \rho$ *w* is supported.

Assume $l \in \mathcal{V} \llbracket \bullet (\hat{\mu} \alpha. A) \rrbracket \rho w$.

Hence $w.\sigma = \sigma_0$, l: e later, σ_1 .

Hence $l \in dom(w.\sigma)$.

Hence $l \sqsubseteq w.\sigma$.

• Case A + B:

Assume we have a supported environment ρ .

Now assume that $v \in V [A + B] \rho w$.

Either $v = \operatorname{inl} v'$ and $v' \in \mathcal{V} \llbracket A \rrbracket \rho w$ or $v = \operatorname{inr} v'$ and $v' \in \mathcal{V} \llbracket B \rrbracket \rho w$.

Suppose $v = \operatorname{inl} v'$ and $v' \in V [A] \rho w$.

Then by induction, we know that $v' \sqsubseteq w.\sigma$.

Hence $inl v' \sqsubseteq w.\sigma$.

Suppose $v = \operatorname{inr} v'$ and $v' \in V \llbracket B \rrbracket \rho w$.

Then by induction, we know that $v' \sqsubseteq w.\sigma$.

Hence $\operatorname{inr} v' \sqsubseteq w.\sigma$.

Hence $v \sqsubseteq w.\sigma$.

• Case $A \times B$:

Assume we have a supported environment ρ .

Now assume $(v, v') \in \mathcal{V} [A \times B] \rho w$.

Hence $v \in V \llbracket A \rrbracket \rho w$ and $v' \in V \llbracket B \rrbracket \rho w$.

By induction, $v \sqsubseteq w.\sigma$ and $v' \sqsubseteq w.\sigma$.

Hence $(v, v') \sqsubseteq w.\sigma$.

26

• Case $A \rightarrow B$:

Assume we have a supported environment ρ .

Now assume $\lambda x. e \in \mathcal{V} [\![A \rightarrow B]\!] \rho w.$

Hence by hypothesis λx . $e \sqsubseteq w.\sigma$.

• Case •A:

Assume we have a supported environment ρ .

Now assume $l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w$.

Hence $w.\sigma = \sigma_0, l: e$ later, σ_1 .

Hence $l \in dom(w.\sigma)$.

Hence $l \sqsubseteq w.\sigma$.

• Case S A:

Assume we have a supported environment ρ .

Assume we have $cons(v, l) \in V [SA] \rho w$.

Hence $v \in \mathcal{V} \llbracket A \rrbracket \rho w$ and $l \in \mathcal{V} \llbracket \bullet S A \rrbracket \rho w$.

By induction, $v \sqsubseteq w.\sigma$.

Since $l \in V \llbracket \bullet S A \rrbracket \rho w$, we know $w.\sigma = \sigma_0, l : e \text{ later}, \sigma_1$.

Hence $l \in dom(w.\sigma)$.

Hence $l \sqsubseteq w.\sigma$.

Hence $cons(v, l) \sqsubseteq w.\sigma$.

• Case □A:

Assume we have a supported environment ρ .

Assume we have a stable $(v) \in \mathcal{V} \llbracket \Box A \rrbracket \rho w$.

Hence $v \in V [A] \rho (w.n, \cdot, \top)$.

By induction, $v \sqsubseteq \cdot$.

Note $\sigma \leq \cdot$.

By supportedness lemma, $v \sqsubseteq \sigma$.

• Case alloc:

Assume $\diamond \in \mathcal{V}$ [alloc] ρw .

By definition $\diamond \sqsubseteq \sigma$.

Lemma 11 (Weakening). *Assuming* ρ *is a type environment, we have that:*

- 1. If $FV(A) \subseteq dom(\rho)$ then $V \llbracket A \rrbracket \rho w = V \llbracket A \rrbracket (\rho, \rho') w$.
- 2. If $FV(A) \subseteq dom(\rho)$ then $\mathcal{E} [A] \rho w = \mathcal{E} [A] (\rho, \rho') w$.
- 3. If $FV(A) \subseteq dom(\rho)$ then $\mathcal{L} [A] \rho w = \mathcal{L} [A] (\rho, \rho') w$.

Proof. These follow by a lexicographic induction on the step index w.n, and the structure of A.

1. • Case α :

Note that $\rho(\alpha) = (\rho, \rho')(\alpha)$.

• Case ûα. A:

First, let's show that $\mathcal{V} \llbracket \bullet (\hat{\mu} \alpha. A) \rrbracket \rho w = \mathcal{V} \llbracket \bullet (\hat{\mu} \alpha. A) \rrbracket (\rho, \rho') w$.

Assume that $l \in \mathcal{V} \llbracket \bullet (\hat{\mu} \alpha. A) \rrbracket \rho w$.

Then $w.\sigma = \sigma_0$, l: e later, σ_1 and $\forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} [\![\hat{\mu}\alpha. A]\!] \rho \pi(w')$.

We want that $\forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} [\![\hat{\mu} \alpha. A \!]\!] (\rho, \rho') \pi(w').$

Assume $w' \leq (w.n, \sigma_0, w.a)$ and $\pi \in Perm$.

```
We know that \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \llbracket \rho \pi(w').
    By renaming, e \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket \rho w'.
    By mutual induction, e \in \mathcal{L} [\hat{\mu}\alpha. A] (\rho, \rho') w'. By renaming, \pi(e) \in \mathcal{L} [\hat{\mu}\alpha. A] (\rho, \rho') \pi(w').
    Assume that l \in \mathcal{V} \llbracket \bullet (\widehat{\mu} \alpha. A) \rrbracket (\rho, \rho') w.
    Then w.\sigma = \sigma_0, l: e later, \sigma_1 and \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} [\hat{\mu}\alpha. A] (\rho, \rho') \pi(w').
    We want that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.}\pi(e) \in \mathcal{L} \llbracket \hat{\mu}\alpha. A \rrbracket \rho \pi(w').
    Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
    Hence \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket (\rho, \rho') \pi(w').
    By renaming, e \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket (\rho, \rho') w'.
    By mutual induction, e \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket \rho w'.
    By renaming, \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \alpha. A \rrbracket \rho \pi(w').
    Consider V [A] (\rho, V [\bullet (\hat{\mu}\alpha. A)] \rho w/\alpha) w.
    By lemma, this equals \mathcal{V} \llbracket A \rrbracket (\rho, \mathcal{V} \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket (\rho, \rho') w/\alpha) w.
    By induction, this equals \mathcal{V} \llbracket A \rrbracket (\rho, \rho', \mathcal{V} \llbracket \bullet (\hat{\mu} \alpha. A) \rrbracket (\rho, \rho') w/\alpha) w.
    Now we will show that into v \in V [\hat{\mu}\alpha. A] \rho w iff into v \in V [\hat{\mu}\alpha. A] (\rho, \rho') w.
    Assume into v \in V [\hat{\mu}\alpha. A] \rho w.
    Hence v \in V [A] (\rho, V [\bullet (\hat{\mu}\alpha. A)] \rho w/\alpha) w.
    Hence v \in V [A] (\rho, \rho', V [\bullet (\hat{\mu}\alpha. A)] (\rho, \rho') w/\alpha) w.
    Hence into v \in \mathcal{V} \llbracket \hat{\mu} \alpha. A \rrbracket (\rho, \rho') w.
    Assume into v \in \mathcal{V} \llbracket \hat{\mu} \alpha. A \rrbracket (\rho, \rho') w.
    Hence v \in V \llbracket A \rrbracket (\rho, \rho', V \llbracket \bullet (\hat{\mu}\alpha. A) \rrbracket (\rho, \rho') w/\alpha) w.
    Hence v \in V [A] (\rho, V [\bullet (\hat{\mu}\alpha. A)] \rho w/\alpha) w.
    Hence into v \in \mathcal{V} \llbracket \hat{\mu} \alpha. A \lVert \rho w.
    Hence \mathcal{V} \llbracket \hat{\mu} \alpha. A \rrbracket \rho w = \mathcal{V} \llbracket \hat{\mu} \alpha. A \rrbracket (\rho, \rho') w.
• Case A + B:
    By induction, we know that \mathcal{V} \llbracket A \rrbracket \rho w = \mathcal{V} \llbracket A \rrbracket (\rho, \rho') w.
    By induction, we know that \mathcal{V} \llbracket B \rrbracket \rho w = \mathcal{V} \llbracket B \rrbracket (\rho, \rho') w.
    Now we will show for all v, v \in V [A + B] \rho w iff v \in V [A + B] (\rho, \rho') w.
    Assume v \in V [A + B] \rho w.
    Then either v = \operatorname{inl} v' \wedge v' \in \mathcal{V} [A] \rho w \text{ or } v = \operatorname{inr} v' \wedge v' \in \mathcal{V} [B] \rho w.
    Suppose v = \operatorname{inl} v' \wedge v' \in V [A] \rho w.
    Then v' \in \mathcal{V} [\![A]\!] (\rho, \rho') w.
    Hence \operatorname{inl} v' \in \mathcal{V} [\![ A + B ]\!] (\rho, \rho') w.
    Suppose v = \operatorname{inr} v' \wedge v' \in V \llbracket B \rrbracket \rho w.
    Then v' \in \mathcal{V} \llbracket B \rrbracket (\rho, \rho') w.
    Hence \operatorname{inr} v' \in \mathcal{V} [A + B] (\rho, \rho') w.
    Assume v \in V [A + B] (\rho, \rho') w.
    Then either v = \operatorname{inl} v' \wedge v' \in \mathcal{V} [\![A]\!] (\rho, \rho') w \text{ or } v = \operatorname{inr} v' \wedge v' \in \mathcal{V} [\![B]\!] (\rho, \rho') w.
    Suppose v = \operatorname{inl} v' \wedge v' \in \mathcal{V} [A] (\rho, \rho') w.
    Then v' \in \mathcal{V} [A + B] \rho w.
    Hence \operatorname{inl} v' \in \mathcal{V} \llbracket A \rrbracket \rho w.
    Suppose v = \operatorname{inr} v' \wedge v' \in V \llbracket B \rrbracket (\rho, \rho') w.
    Hence v' \in V [A + B] \rho w.
```

Then $\operatorname{inr} v' \in \mathcal{V} \llbracket B \rrbracket \rho w$.

• Case $A \times B$:

By induction, we know that $\mathcal{V} \llbracket A \rrbracket \rho w = \mathcal{V} \llbracket A \rrbracket (\rho, \rho') w$.

By induction, we know that $\mathcal{V} \llbracket B \rrbracket \rho w = \mathcal{V} \llbracket B \rrbracket (\rho, \rho') w$.

Now we will show for all (v, v'), $(v, v') \in \mathcal{V} \llbracket A + B \rrbracket \rho w$ iff $(v, v') \in \mathcal{V} \llbracket A + B \rrbracket (\rho, \rho') w$.

Assume $(v, v') \in \mathcal{V} [A + B] \rho w$.

Hence $v \in V \llbracket A \rrbracket \rho w$ and $v' \in V \llbracket B \rrbracket \rho w$.

Hence $v \in V [A] (\rho, \rho') w$.

Hence $v' \in V \llbracket B \rrbracket (\rho, \rho') w$.

Hence $(v, v') \in \mathcal{V} [A \times B] (\rho, \rho') w$.

Assume $(v, v') \in \mathcal{V} [A + B] (\rho, \rho') w$.

Hence $v \in \mathcal{V} \llbracket A \rrbracket (\rho, \rho') w$ and $v' \in \mathcal{V} \llbracket B \rrbracket (\rho, \rho') w$.

Hence $v \in V [A] \rho w$.

Hence $v' \in \mathcal{V} \llbracket B \rrbracket \rho w$.

Hence $(v, v') \in \mathcal{V} [A \times B] \rho w$.

• Case $A \rightarrow B$:

By induction, we know that for all $w' \le w$, $\mathcal{E} [\![A]\!] \rho w = \mathcal{E} [\![A]\!] (\rho, \rho') w'$. By induction, we know that for all $w' \le w$, $\mathcal{E} [\![A]\!] \rho w = \mathcal{E} [\![A]\!] (\rho, \rho') w'$.

We want to show λx . $e' \in \mathcal{V} \llbracket A \to B \rrbracket \rho w$ iff λx . $e' \in \mathcal{V} \llbracket A \to B \rrbracket (\rho, \rho') w$.

Assume we have λx . $e' \in \mathcal{V} [\![A \rightarrow B]\!] \rho w$.

We want to show λx . $e' \in \mathcal{V} [A \to B] (\rho, \rho') w$.

Assume we have $w' \le w$ and $\pi \in Perm$.

Assume we have $e \in \mathcal{E} \llbracket A \rrbracket (\rho, \rho') \pi(w')$.

Hence we know that $e \in \mathcal{E} [\![A]\!] \rho \pi(w')$.

By renaming, we know that $\pi^{-1}(e) \in \mathcal{E} [\![A]\!] \rho w'$.

Hence we know that $[\pi^{-1}(e)/x]e' \in \mathcal{E} [\![B]\!] \rho w'$.

Hence we know that $[\pi^{-1}(e)/x]e' \in \mathcal{E}[\![B]\!](\rho, \rho')$ w'.

By renaming, we know that $[e/x]\pi(e') \in \mathcal{E} \llbracket B \rrbracket (\rho, \rho') \pi(w')$.

Hence $\lambda x. e' \in \mathcal{V} [\![A \rightarrow B]\!] (\rho, \rho') w$.

Assume we have λx . $e' \in \mathcal{V} [\![A \to B]\!] (\rho, \rho') w$.

We want to show λx . $e' \in \mathcal{V} [\![A \rightarrow B]\!] \rho w$.

Assume we have $w' \le w$ and $\pi \in Perm$.

Assume we have $e \in \mathcal{E} [\![A]\!] \rho \pi(w')$.

By renaming, we know $\pi^{-1}(e) \in \mathcal{E} [A] \rho w'$.

Hence we know that $\pi^{-1}(e) \in \mathcal{E} [\![A]\!] (\rho, \rho') w'$.

Hence we know that $[\pi^{-1}(e)/x]e^{i} \in \mathcal{E} \llbracket B \rrbracket (\rho, \rho') w'$.

Hence we know that $[\pi^{-1}(e)/x]e' \in \mathcal{E} [\![B]\!] \rho w'$.

By renaming, $[e/x]\pi(e') \in \mathcal{E} \llbracket B \rrbracket \rho \pi(w')$.

Hence $\lambda x. e' \in \mathcal{V} [A \to B] \rho w.$

• Case •A:

We will show $l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w \text{ iff } l \in \mathcal{V} \llbracket \bullet A \rrbracket (\rho, \rho') w$.

Assume that $l \in \mathcal{V} \llbracket \bullet A \rrbracket \rho w$.

Then $w.\sigma = \sigma_0$, l:e later, σ_1 and $\forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}.\pi(e) \in \mathcal{L}[\![A]\!] \rho \pi(w')$.

We want that $\forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} \llbracket A \rrbracket (\rho, \rho') \pi(w').$

```
Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
   We know that \pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(w').
   By mutual induction, \pi(e) \in \mathcal{L} [\![A]\!] (\rho, \rho') \pi(w').
   Assume that l \in \mathcal{V} \llbracket \bullet A \rrbracket (\rho, \rho') w.
   Then w.\sigma = \sigma_0, l: e later, \sigma_1 and \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.}\pi(e) \in \mathcal{L}[A](\rho, \rho')\pi(w').
   We want that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} [A] \rho \pi(w').
   Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
   Hence \pi(e) \in \mathcal{L} [A] (\rho, \rho') \pi(w').
   By renaming, e \in \mathcal{L} [\![A]\!] (\rho, \rho') w'.
   By mutual induction, e \in \mathcal{L} [\![A]\!] \rho w'. By renaming, \pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(w').
• Case S A:
   We will show cons(v, l) \in \mathcal{V} \llbracket S A \rrbracket \rho w \text{ iff } cons(v, l) \in \mathcal{V} \llbracket S A \rrbracket (\rho, \rho') w.
   Assume cons(v, l) \in V [SA] \rho w.
   Hence v \in V \llbracket A \rrbracket \rho w and l \in V \llbracket \bullet (S A) \rrbracket \rho w.
   By induction, v \in V [A] (\rho, \rho') w.
   Then w.\sigma = \sigma_0, l: e later, \sigma_1 and \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} [SA] \rho \pi(w').
   We want that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}.\pi(e) \in \mathcal{L} [SA](\rho, \rho') \pi(w').
   Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
   We know that \pi(e) \in \mathcal{L} [SA] \rho \pi(w').
   By renaming e \in \mathcal{L} \llbracket S A \rrbracket \rho w'.
   By mutual induction, e \in \mathcal{L} [SA](\rho, \rho') w'.
   By renaming, \pi(e) \in \mathcal{L} [SA](\rho, \rho') \pi(w').
   Hence l \in \mathcal{V} \llbracket \bullet (SA) \rrbracket (\rho, \rho') w.
   Hence cons(v, l) \in \mathcal{V} [SA](\rho, \rho') w.
   Assume cons(v, l) \in V [SA] (\rho, \rho') w.
   Hence v \in V [\![A]\!] (\rho, \rho') w and l \in V [\![\bullet(SA)]\!] (\rho, \rho') w.
   By induction, v \in V [A] \rho w.
   Then w.\sigma = \sigma_0, l: e later, \sigma_1 and \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.} \pi(e) \in \mathcal{L} [SA] (\rho, \rho') \pi(w').
   We want that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm.}\pi(e) \in \mathcal{L} \llbracket S A \rrbracket \rho \pi(w').
   Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
   We know that \pi(e) \in \mathcal{L} [SA](\rho, \rho') \pi(w').
   By renaming e \in \mathcal{L} [SA](\rho, \rho') w'.
   By mutual induction, e \in \mathcal{L} [SA] \rho w'.
   By renaming, \pi(e) \in \mathcal{L} [SA] \rho \pi(w').
   Hence l \in \mathcal{V} \llbracket \bullet (SA) \rrbracket \rho w.
   Hence cons(v, l) \in V [SA] \rho w.

    Case □A:

   We will show stable (v) \in \mathcal{V} \llbracket \Box A \rrbracket \rho w iff stable (v) \in \mathcal{V} \llbracket \Box A \rrbracket (\rho, \rho') w.
   Assume stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket \rho w.
   Then v \in V \llbracket A \rrbracket \rho (w.n, \cdot, \top).
   By induction, v \in V \llbracket A \rrbracket (\rho, \rho') (w.n, \cdot, \top).
   Hence \mathsf{stable}(v) \in \mathcal{V} \llbracket \Box A \rrbracket (\rho, \rho') w.
   Assume stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket (\rho, \rho') w.
   Then v \in V [A] (\rho, \rho') (w.n, \cdot, \top).
   By induction, v \in V \llbracket A \rrbracket \rho (w.n, \cdot, \top).
   Hence stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket \rho w.
```

- Case alloc: Immediate, since \mathcal{V} [alloc] ρ $w = \mathcal{V}$ [alloc] ρ , ρ' $w = { <math>\diamond \mid w.a = \bot }$.
- 2. (Note that since we make a recursive call to the value relation, we can only appeal to this case on subterms or at lower step indexes in the other two mutually-inductive lemmas.)

```
We will show e \in \mathcal{E} [\![A]\!] \rho w iff e \in \mathcal{E} [\![A]\!] (\rho, \rho') w. Assume e \in \mathcal{E} [\![A]\!] \rho w. Then there exists a \sigma' \leq \sigma and \nu such that \langle w.\sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle and \nu \in \mathcal{V} [\![A]\!] \rho (w.n, \sigma', w.a). By induction, \nu \in \mathcal{V} [\![A]\!] (\rho, \rho') (w.n, \sigma', w.a). Hence e \in \mathcal{E} [\![A]\!] (\rho, \rho') (\rho, \rho'
```

3. We will show $e \in \mathcal{L} \llbracket A \rrbracket \rho w$ iff $e \in \mathcal{L} \llbracket A \rrbracket (\rho, \rho') w$.

Consider the value of w.n.

If w.n = 0, then the result is immediate.

If w.n = k + 1, then we proceed as follows:

Assume $e \in \mathcal{L} \llbracket A \rrbracket \rho w$. Then $w.\sigma \Longrightarrow \sigma'$ and $e \in \mathcal{E} \llbracket A \rrbracket \rho (k, \sigma', w.a)$. By induction, $e \in \mathcal{E} \llbracket A \rrbracket \rho, \rho' (k, \sigma', w.a)$. Hence $e \in \mathcal{L} \llbracket A \rrbracket (\rho, \rho') w$.

Assume $e \in \mathcal{L} \llbracket A \rrbracket (\rho, \rho') w$. Then $w.\sigma \Longrightarrow \sigma'$ and $e \in \mathcal{E} \llbracket A \rrbracket (\rho, \rho') (k, \sigma', w.a)$. By induction, $e \in \mathcal{E} \llbracket A \rrbracket \rho (k, \sigma', w.a)$. Hence $e \in \mathcal{L} \llbracket A \rrbracket \rho w$.

Lemma 12 (Type Substitution). *We have that:*

- 1. For all type environments ρ and w, $\mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w = \mathcal{V} \llbracket [A/\alpha]B \rrbracket \rho w$.
- 2. For all type environments ρ and w, $\mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w = \mathcal{E} \llbracket [A/\alpha] B \rrbracket \rho w$.
- 3. For all type environments ρ and w, $\mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w = \mathcal{L} \llbracket [A/\alpha] B \rrbracket \rho w$.

Proof. This proof follows by a lexicographic induction on the world index w.n and the structure of B.

1. • Case β :

If $\beta = \alpha$:

Note that $\mathcal{V} \llbracket \alpha \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \ w = (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) (\alpha) \ w = \mathcal{V} \llbracket A \rrbracket \rho \ w$.

Since $[A/\alpha]\alpha = A$, this is equal to $\mathcal{V} \llbracket [A/\alpha]\alpha \rrbracket \rho \ w$.

If $\beta \neq \alpha$: Note that $\mathcal{V} \llbracket \beta \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \ w = \rho(\beta)$.

Since $[A/\alpha]\beta = \beta$, this is equal to $\mathcal{V} \llbracket [A/\alpha]\beta \rrbracket \rho \ w = \rho(\beta)$.

```
• Case ûβ. B:
     First, we want \mathcal{V} \llbracket \bullet (\hat{\mu}\beta. B) \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w equals \mathcal{V} \llbracket [A/\alpha] \bullet (\hat{\mu}\beta. B) \rrbracket \rho w.
     Assume l \in \mathcal{V} \llbracket \bullet (\hat{\mu}\beta. B) \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w.
     Then w.\sigma = \sigma_0, l:e later, \sigma_1
     such that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \beta. B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
     We want \forall w' < (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] \hat{\mu} \beta. B \rrbracket \rho \pi(w').
     Assume w' < (w.n, \sigma_0, w.a) and \pi \in Perm.
     Hence \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \beta. B \lVert (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
     By renaming, e \in \mathcal{L} [\![\hat{\mu}\beta. B]\!] (\rho, \mathcal{V} [\![A]\!] \rho / \alpha) w'.
     By induction, e \in \mathcal{L} \llbracket [A/\alpha] \hat{\mu} \beta. B \rrbracket \rho w'.
     By renaming, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] \hat{\mu} \beta. B\llbracket \rho \pi(w').
     Hence l \in \mathcal{V} \llbracket \bullet ([A/\alpha] \hat{\mu} \beta. B) \rrbracket \rho w.
     Hence l \in \mathcal{V} \llbracket [A/\alpha] \bullet (\hat{\mu}\beta. B) \rrbracket \rho w.
     Assume l \in \mathcal{V} \llbracket [A/\alpha] \bullet (\hat{\mu}\beta. B) \rrbracket \rho w.
     Hence l \in \mathcal{V} \llbracket \bullet ([A/\alpha] \hat{\mu} \beta. B) \rrbracket \rho w.
     Then w.\sigma = \sigma_0, l:e later, \sigma_1
     such that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] \hat{\mu} \beta. B \rrbracket \rho \pi(w').
     We want \forall w' \leq (w, n, \sigma_0, w, a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \beta, B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
     Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
     Hence \pi(e) \in \mathcal{L} \llbracket [A/\alpha] \hat{\mu} \beta. B \rrbracket \rho \pi(w').
     By renaming, e \in \mathcal{L} \llbracket [A/\alpha] \hat{\mu} \beta. B \rrbracket \rho w'.
     By induction, e \in \mathcal{L} \llbracket \hat{\mu} \beta. B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w'.
     By renaming, \pi(e) \in \mathcal{L} \llbracket \hat{\mu} \beta. B \llbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
     Hence l \in \mathcal{V} \llbracket \bullet (\hat{\mu}\beta. B) \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w.
     Now consider \mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha, \mathcal{V} \llbracket \bullet (\hat{\mu}\beta. B) \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) / \beta) w.
     This equals \mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha, \mathcal{V} \llbracket \bullet [A/\alpha] (\hat{\mu}\beta. B) \rrbracket \rho / \beta) w.
     This equals \mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket (\rho, \mathcal{V} \llbracket \bullet [A/\alpha] (\hat{\mu}\beta. B) \rrbracket \rho / \beta) w/\alpha, \mathcal{V} \llbracket \bullet [A/\alpha] (\hat{\mu}\beta. B) \rrbracket \rho / \beta) w.
     By induction, this equals \mathcal{V} \llbracket [A/\alpha]B \rrbracket (\rho, \mathcal{V} \llbracket \bullet [A/\alpha](\hat{\mu}\beta. B) \rrbracket \rho / \beta) w.
     This equals \mathcal{V} \llbracket [A/\alpha]B \rrbracket (\rho, \mathcal{V} \llbracket \bullet (\hat{\mu}\beta. [A/\alpha]B) \rrbracket \rho / \beta) w.
     Now we will show that into v \in \mathcal{V} [\hat{\mu}\hat{\mu}. B] (\rho, \mathcal{V} [A] \rho/\alpha) w iff into v \in \mathcal{V} [[A/\alpha]\hat{\mu}\beta. B] \rho w.
     Assume into v \in \mathcal{V} \llbracket \hat{\mu} \beta. B \lVert (\rho, \mathcal{V} \llbracket A \rVert \rho / \alpha) w.
     Then v \in \mathcal{V} [B] (\rho, \mathcal{V} [A] \rho / \alpha, \mathcal{V} [\bullet(\hat{\mu}\beta. B)] (\rho, \mathcal{V} [A] \rho / \alpha) / \beta) w.
     Then v \in V \llbracket [A/\alpha]B \rrbracket (\rho, V \llbracket \bullet (\hat{\mu}\beta. [A/\alpha]B) \rrbracket \rho / \beta) w.
     Then into v \in V \llbracket \hat{\mu} \beta. [A/\alpha] B \rrbracket \rho w.
     Then into v \in V \llbracket [A/\alpha] \hat{\mu} \beta. B\llbracket \rho w.
     Assume into v \in V \llbracket [A/\alpha] \hat{\mu} \beta. B\llbracket \rho w.
     Then into v \in V \llbracket \hat{\mu} \beta . [A/\alpha] B \rrbracket \rho w.
     Then v \in V [B] (\rho, V [A] \rho / \alpha, V [\bullet(\hat{\mu}\beta. B)] (\rho, V [A] \rho / \alpha) / \beta) w.
     Then v \in \mathcal{V} \llbracket [A/\alpha]B \rrbracket (\rho, \mathcal{V} \llbracket \bullet (\hat{\mu}\beta. [A/\alpha]B) \rrbracket \rho /\beta) w.
     Then into v \in \mathcal{V} \llbracket \hat{\mu} \beta. B \lVert (\rho, \mathcal{V} \llbracket A \rVert \rho / \alpha) w.
• Case B + C:
     We will show that v \in V \llbracket B + C \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w \text{ iff } v \in V \llbracket [A/\alpha](B+C) \rrbracket \rho w.
     Assume v \in V \llbracket B + C \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w.
     Then either v = \inf v' \wedge v' \in \mathcal{V} [B] (\rho, \mathcal{V} A) \rho / \alpha w or v = \inf v' \wedge v' \in \mathcal{V} [C] (\rho, \mathcal{V} A) \rho / \alpha w.
```

Suppose $v = \operatorname{inl} v'$ and $v' \in V \llbracket B \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w$.

Then by induction $v' \in \mathcal{V} \llbracket [A/\alpha]B \rrbracket \rho w$.

Hence inl $v' \in \mathcal{V} \llbracket [A/\alpha]B + [A/\alpha]C \rrbracket \rho w$.

Hence $\operatorname{inl} v' \in \mathcal{V} \llbracket [A/\alpha](B+C) \rrbracket \rho w$.

Suppose $v = \operatorname{inr} v'$ and $v' \in V \llbracket C \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w$.

Then by induction $v' \in V \llbracket [A/\alpha]C \rrbracket \rho w$.

Hence $\operatorname{inr} v' \in \mathcal{V} \llbracket [A/\alpha]B + [A/\alpha]C \rrbracket \rho w$.

Hence $\operatorname{inr} v' \in \mathcal{V} \llbracket [A/\alpha](B+C) \rrbracket \rho w$.

Assume $v \in \mathcal{V} \llbracket [A/\alpha](B+C) \rrbracket \rho w$.

Then $v \in \mathcal{V} \llbracket [A/\alpha]B + [A/\alpha]C \rrbracket \rho w$.

Either $v = \operatorname{inl} v' \wedge v' \in \mathcal{V} \llbracket [A/\alpha] B \rrbracket \rho w \text{ or } v = \operatorname{inr} v' \wedge v' \in \mathcal{V} \llbracket [A/\alpha] C \rrbracket \rho w.$

Suppose $v = \operatorname{inl} v'$ and $v' \in \mathcal{V} \llbracket [A/\alpha]B \rrbracket \rho w$.

Then by induction, $v' \in \mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Hence inl $v' \in \mathcal{V} \llbracket B + C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Suppose $v = \operatorname{inr} v'$ and $v' \in \mathcal{V} \llbracket [A/\alpha] C \rrbracket \rho w$.

Then by induction, $v' \in \mathcal{V} \llbracket C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Hence $\operatorname{inr} v' \in \mathcal{V} \llbracket B + C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

• Case $B \times C$:

We will show that $(v, v') \in \mathcal{V} \llbracket B \times C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$ iff $(v, v') \in \mathcal{V} \llbracket [A/\alpha] (B \times C) \rrbracket \rho w$.

Assume $(v, v') \in \mathcal{V} \llbracket B \times C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Then $v \in V \llbracket B \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w$.

Then $v' \in \mathcal{V} \llbracket C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

By induction, $v \in V \llbracket [A/\alpha]B \rrbracket \rho w$.

By induction, $v' \in \mathcal{V} \llbracket [A/\alpha]C \rrbracket \rho w$.

Hence $(v, v') \in \mathcal{V} \llbracket [A/\alpha]B \times [A/\alpha]C \rrbracket \rho w$.

Hence $(v, v') \in \mathcal{V} \llbracket [A/\alpha](B \times C) \rrbracket \rho w$.

Assume $(v, v') \in \mathcal{V} \llbracket [A/\alpha](B \times C) \rrbracket \rho w$.

Hence $(v, v') \in \mathcal{V} \llbracket [A/\alpha]B \times [A/\alpha]C \rrbracket \rho w$.

Hence $v \in \mathcal{V} \llbracket [A/\alpha] B \rrbracket \rho w$.

Hence $v' \in \mathcal{V} \llbracket [A/\alpha] C \rrbracket \rho w$.

By induction, $v \in V \llbracket B \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w$.

By induction, $v' \in \mathcal{V} \llbracket C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Hence $(v, v') \in \mathcal{V} \llbracket B \times C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

• Case B \rightarrow C:

We will show that $\lambda x. e' \in \mathcal{V} \llbracket B \to C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$ iff $\lambda x. e' \in \mathcal{V} \llbracket [A/\alpha] (B \to C) \rrbracket \rho w$.

Assume $\lambda x. e' \in \mathcal{V} \llbracket B \to C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Assume $w' \le w$, $\pi \in \text{Perm and } e \in \mathcal{E} \llbracket [A/\alpha] B \rrbracket \rho \pi(w')$.

By renaming $\pi^{-1}(e) \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho w'$.

By mutual induction, $\pi^{-1}(e) \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho w'/\alpha) w'$.

By renaming, $e \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho w'/\alpha) \pi(w')$.

Hence $[e/x]\pi(e') \in \mathcal{E} \llbracket C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho w'/\alpha) \pi(w')$.

By renaming $\pi^{-1}([e/x]\pi(e')) \in \mathcal{E} \llbracket C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho w'/\alpha) w'$.

By mutual induction, $\pi^{-1}([e/x]\pi(e')) \in \mathcal{E}[[A/\alpha]C] \rho w'$.

By renaming, $[e/x]\pi(e') \in \mathcal{E} \llbracket [A/\alpha]C \rrbracket \rho \pi(w')$.

Hence $\lambda x. e' \in \mathcal{V} \llbracket [A/\alpha]B \to [A/\alpha]C \rrbracket \rho w.$

Hence $\lambda x. e' \in \mathcal{V} \llbracket [A/\alpha](B \to C) \rrbracket \rho w.$

Note $\mathcal{V} \llbracket [A/\alpha](B \to C) \rrbracket \rho w = \mathcal{V} \llbracket [A/\alpha]B \to [A/\alpha]C \rrbracket \rho w$.

Assume $\lambda x. e' \in \mathcal{V} \llbracket [A/\alpha](B \to C) \rrbracket \rho w.$

```
Assume w' \le w, \pi \in \text{Perm} and e \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
    By renaming, \pi^{-1}(e) \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w'.
    By mutual induction, \pi^{-1}(e) \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho w'.
    By renaming, e \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho \pi(w').
    Hence [e/x]\pi(e') \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho \pi(w').
    By renaming, \pi^{-1}([e/x]\pi(e')) \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho w'.
    By mutual induction, \pi^{-1}([e/x]\pi(e')) \in \mathcal{E} [\![B]\!] (\rho, \mathcal{V} [\![A]\!] \rho /\alpha) w'.
    By renaming, [e/x]\pi(e') \in \mathcal{E} [\![B]\!] (\rho, \mathcal{V} [\![A]\!] \rho /\alpha) \pi(w').
    Hence \lambda x. e' \in \mathcal{V} \llbracket B \to C \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w'.

    Case •B:

    We will show that l \in \mathcal{V} \llbracket \bullet B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w iff l \in \mathcal{V} \llbracket \bullet [A/\alpha] B \rrbracket \rho w.
    Assume l \in \mathcal{V} \llbracket \bullet B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w.
    Then w.\sigma = \sigma_0, l: e \text{ later}, \sigma_1 \text{ and } \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
    We want to show that \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket [A/\alpha]B \rrbracket \rho \pi(w').
    Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
    Hence e \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w'.
    By mutual induction, e \in \mathcal{L} \llbracket [A/\alpha]B \rrbracket \rho w'.
    By renaming, \pi(e) \in \mathcal{L} \llbracket [A/\alpha]B \rrbracket \rho \pi(w').
    Hence \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] B \rrbracket \rho \pi(w').
    Hence l \in \mathcal{V} \llbracket \bullet [A/\alpha] B \rrbracket \rho w.
    Assume l \in \mathcal{V} \llbracket \bullet [A/\alpha] B \rrbracket \rho w.
    Then w.\sigma = \sigma_0, l: e later, \sigma_1 and \forall w' < (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] B \rrbracket \rho \pi(w').
    Assume w' < (w.n, \sigma_0, w.a) and \pi \in Perm.
    Hence e \in \mathcal{L} [[A/\alpha]B] \rho w'.
    By mutual induction, e \in \mathcal{L} [B] (\rho, \mathcal{V} [A] \rho / \alpha) w'.
    By renaming, \pi(e) \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
    Hence \forall w' \leq (w.n, \sigma_0, w.a), \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \pi(w').
    Hence l \in \mathcal{V} \llbracket \bullet B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w.
• Case S B:
    We will show that cons(v, l) \in \mathcal{V} \llbracket S B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w iff cons(v, l) \in \mathcal{V} \llbracket [A/\alpha] (S B) \rrbracket \rho w.
    Assume cons(v, l) \in \mathcal{V} \llbracket S B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w.
    Then v \in V \llbracket B \rrbracket (\rho, V \llbracket A \rrbracket \rho / \alpha) w.
    Then l \in \mathcal{V} \llbracket \bullet S B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w.
    By induction, v \in \mathcal{V} \llbracket [A/\alpha]B \rrbracket \rho w.
    We know that w.\sigma = \sigma_0, l:e later, \sigma_1
    and for all w' \leq (w.n, \sigma_0, w.a) and \pi \in \text{Perm}, \pi(e) \in \mathcal{L} [SB](\rho, \mathcal{V}[A][\rho/\alpha)]\pi(w').
    Assume w' \leq (w.n, \sigma_0, w.a) and \pi \in Perm.
    Then we know e \in \mathcal{L} [SB] (\rho, \mathcal{V} [A] \rho / \alpha) w'.
    By mutual induction, e \in \mathcal{L} \llbracket [A/\alpha] S B \rrbracket \rho w'.
    By renaming, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] S B \rrbracket \rho \pi(w').
    Hence for all w' \leq (w.n, \sigma_0, w.a) and \pi \in \text{Perm}, \pi(e) \in \mathcal{L} \llbracket [A/\alpha] S B \rrbracket \rho \pi(w').
    Hence l \in \mathcal{V} \llbracket \bullet ([A/\alpha]SB) \rrbracket \rho w.
    Hence l \in \mathcal{V} \llbracket [A/\alpha] \bullet (SB) \rrbracket \rho w.
    Hence cons(v, l) \in \mathcal{V} \llbracket [A/\alpha](SB) \rrbracket \rho w.
    Assume cons(v, l) \in \mathcal{V} \llbracket [A/\alpha](SB) \rrbracket \rho w.
    So cons(v, l) \in \mathcal{V} [S([A/\alpha]B)] \rho w.
```

So $v \in \mathcal{V}$ [[A/ α]B]] ρ w and $l \in \mathcal{V}$ [[\bullet S ([A/ α]B)]] ρ w. By induction, $v \in \mathcal{V}$ [[B]] (ρ , \mathcal{V} [A]] ρ / α) w. We know $w.\sigma = \sigma_0$, l : e later, σ_1 , and for all $w' \leq (w.n, \sigma_0, w.a)$ and $\pi \in \text{Perm}$, $\pi(e) \in \mathcal{L}$ [[A/ α](SB)]] ρ $\pi(w')$. Assume $w' \leq (w.n, \sigma_0, w.a)$ and $\pi \in \text{Perm}$. Hence $e \in \mathcal{L}$ [[A/ α](SB)]] ρ w'. By induction, $e \in \mathcal{L}$ [[SB]] (ρ , \mathcal{V} [A]] ρ / α) w'. By renaming, $\pi(e) \in \mathcal{L}$ [[SB]] (ρ , \mathcal{V} [A]] ρ / α) $\pi(w')$. Hence for all $w' \leq (w.n, \sigma_0, w.a)$ and $\pi \in \text{Perm}$, $\pi(e) \in \mathcal{L}$ [[SB]] (ρ , \mathcal{V} [A]] ρ / α) $\pi(w')$.

Hence $l \in \mathcal{V} \llbracket \bullet (SB) \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Hence $cons(v, l) \in \mathcal{V} \llbracket S B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

• Case □B:

We will show that $\mathsf{stable}(v) \in \mathcal{V} \llbracket \Box B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \ w \ \text{iff} \ \mathsf{stable}(v) \in \mathcal{V} \llbracket [A / \alpha] (\Box B) \rrbracket \rho \ w.$

Assume stable(ν) $\in \mathcal{V}$ [\square B] (ρ , \mathcal{V} [A] ρ / α) w. Then we know that $\nu \in \mathcal{V}$ [B] (ρ , \mathcal{V} [A] ρ / α) (w.n, \cdot , \top). Hence by induction, $\nu \in \mathcal{V}$ [[A/ α]B]] ρ (w.n, \cdot , \top). Hence stable(ν) $\in \mathcal{V}$ [[A/ α](B)] ρ w. So stable(ν) $\in \mathcal{V}$ [[A/ α](B)] ρ w.

Assume $\mathsf{stable}(v) \in \mathcal{V}\left[\!\left[A/\alpha\right](\Box B)\right]\!\right] \rho \ w.$ So $\mathsf{stable}(v) \in \mathcal{V}\left[\!\left[\Box([A/\alpha]B)\right]\!\right] \rho \ w.$ Then we know that $v \in \mathcal{V}\left[\!\left[A/\alpha\right]B\right]\!\right] \rho \ (w.n, \cdot, \top).$ By induction, $v \in \mathcal{V}\left[\!\left[B\right]\!\right] (\rho, \mathcal{V}\left[\!\left[A\right]\!\right] \rho \ / \alpha) \ w.$ Hence $\mathsf{stable}(v) \in \mathcal{V}\left[\!\left[\Box B\right]\!\right] (\rho, \mathcal{V}\left[\!\left[A\right]\!\right] \rho \ / \alpha) \ w.$

Case alloc:

$$\mathcal{V} \, \llbracket \mathsf{alloc} \rrbracket \, (\rho, \mathcal{V} \, \llbracket \mathsf{A} \rrbracket \, \rho \, / \alpha) \, w \quad = \quad \{ \diamond \, | \, w.\mathfrak{a} = \bot \} \\ = \quad \mathcal{V} \, \llbracket \mathsf{alloc} \rrbracket \, \rho \, w \\ = \quad \mathcal{V} \, \llbracket [\mathsf{A} / \alpha] \mathsf{alloc} \rrbracket \, \rho \, w$$

2. Note that we have to take the same care as in the weakening lemma.

We will show that $e \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$ iff $e \in \mathcal{E} \llbracket [A/\alpha] B \rrbracket \rho w$.

Assume $e \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Then $e \sqsubseteq w.\sigma$. Then for all $\sigma \le w.\sigma$, there is a $\sigma' \le \sigma$ and v such that $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$, and $v \in \mathcal{V}$ [B] $(\rho, \mathcal{V}$ [A] $\rho / \alpha)$ w.

Assume $\sigma < w.\sigma$.

Then there is a $\sigma' \leq \sigma$ and ν such that $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle$, and $\nu \in \mathcal{V}$ [B] $(\rho, \mathcal{V}$ [A] $\rho / \alpha)$ w. By induction, $\nu \in \mathcal{V}$ [[A/ α]B] ρ w.

So for all $\sigma \leq w.\sigma$, there is a $\sigma' \leq \sigma$ and v such that $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$, and $v \in \mathcal{V}$ $\llbracket [A/\alpha]B \rrbracket \rho w$. Hence $e \in \mathcal{E}$ $\llbracket [A/\alpha]B \rrbracket \rho w$.

Assume $e \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho w$.

Then for all $\sigma \leq w.\sigma$, there is a $\sigma' \leq \sigma$ and v such that $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$, and $v \in \mathcal{V} \llbracket [A/\alpha] B \rrbracket \rho w$.

Assume $\sigma < w.\sigma$.

Then there is a $\sigma' \leq \sigma$ and ν such that $\langle \sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle$, and $\nu \in \mathcal{V} \llbracket [A/\alpha] B \rrbracket \rho w$. By induction $\nu \in \mathcal{V} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

So for all $\sigma \leq w.\sigma$, there is a $\sigma' \leq \sigma$ and v such that $\langle \sigma; e \rangle \Downarrow \langle \sigma'; v \rangle$, and $v \in \mathcal{V} \llbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \rrbracket \rho$ Bw. Hence $e \in \mathcal{E} \llbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) \rrbracket \rho$ Bw.

3. We will show that $e \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$ iff $e \in \mathcal{L} \llbracket [A/\alpha] B \rrbracket \rho w$.

If w.n = 0, then the result is immediate.

If w.n = k + 1, then we proceed as follows.

Assume $e \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Then $e \sqsubseteq w.\sigma$ and $w.\sigma \Longrightarrow \sigma'$ and $e \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) (k, \sigma', w.a)$.

By mutual induction, $e \in \mathcal{E} [[A/\alpha]B] \rho (k, \sigma', w.a)$.

Hence $e \in \mathcal{L} \llbracket [A/\alpha]B \rrbracket \rho w$.

Assume $e \in \mathcal{L} \llbracket [A/\alpha]B \rrbracket \rho w$.

Then $e \sqsubseteq w.\sigma$ and $w.\sigma \Longrightarrow \sigma'$ and $e \in \mathcal{E} \llbracket [A/\alpha]B \rrbracket \rho (k, \sigma', w.a)$.

By induction, $e \in \mathcal{E} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) (k, \sigma', w.a)$.

Hence $e \in \mathcal{L} \llbracket B \rrbracket (\rho, \mathcal{V} \llbracket A \rrbracket \rho / \alpha) w$.

Lemma 13 (Value Inclusion). *If* $v \in V \llbracket A \rrbracket \rho w$ *then* $v \in \mathcal{E} \llbracket A \rrbracket \rho w$.

Proof. Assume $v \in V [A] \rho w$.

We want to show that for all $\sigma' \leq w.\sigma$, there exists a σ'' such that $\langle \sigma'; \nu \rangle \Downarrow \langle \sigma''; \nu \rangle$ and $\nu \in \mathcal{V}$ [A] ρ ($w.n, \sigma'', w.a$). Assume $\sigma' \leq w.\sigma$.

By rule, we know that $\langle \sigma'; \nu \rangle \downarrow \langle \sigma'; \nu \rangle$.

Take $\sigma'' = \sigma'$.

Note that $(w.n, \sigma', w.a) < w$.

By Kripke monotoncity, $v \in V [A] \rho (w.n, \sigma', w.a)$

Lemma 14 (Kripke Monotoncity for Environments). *If* $w' \le w$, then $\text{Env}(\Gamma)$ $w' \supseteq \text{Env}(\Gamma)$ w.

Proof. We proceed by induction on Γ .

Assume we have $w' \le w$, and $\gamma \in \text{Env}(\Gamma) w$.

- Case $\Gamma = \cdot$: Immediate
- Case $\Gamma = \Gamma', x : A$ now:

Hence $\gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : X \text{ now}) \ w$.

Hence $\gamma' \in \text{Env}(\Gamma')$ w and $\forall \pi \in \text{Perm}, w'' \leq w$. $\pi(e) \in \mathcal{V} \llbracket A \rrbracket \rho \pi(w'')$.

By induction $\gamma' \in \text{Env}(\Gamma')$ w'.

Since $w' \le w$, it follows $\forall \pi \in \text{Perm}, w'' \le w'$. $\pi(e) \in \mathcal{V} \llbracket A \rrbracket \rho \pi(w'')$.

Hence $(\gamma', e/x) \in \text{Env}(\Gamma', x : X \text{ now}) w'$.

• Case $\Gamma = \Gamma', x : A$ later:

Hence $\gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : X \text{ later}) w$.

Hence $\gamma' \in \text{Env}(\Gamma')$ w and $\forall \pi \in \text{Perm}, w'' \leq w$. $\pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(w'')$.

By induction $\gamma' \in \text{Env}(\Gamma')$ w'.

Since $w' \le w$, it follows $\forall \pi \in \text{Perm}, w'' \le w'$. $\pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(w'')$.

Hence $(\gamma', e/x) \in \text{Env}(\Gamma', x : X \text{ later}) w'$.

```
• Case \Gamma = \Gamma', x : A stable:
        Hence \gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : X \text{ stable}) w.
        Hence \gamma' \in \text{Env}(\Gamma') w and \forall \pi \in \text{Perm}, w'' \leq w. \pi(e) \in \mathcal{E} [\![A]\!] \rho \pi(w''.n, \cdot, \top).
        By induction \gamma' \in \text{Env}(\Gamma') w'.
        Since w' \le w, it follows \forall \pi \in \text{Perm}, w'' \le w'. \pi(e) \in \mathcal{E} [\![A]\!] \rho \pi(w''.n, \cdot, \top).
        Hence (\gamma', e/x) \in \text{Env}(\Gamma', x : X \text{ stable}) w'.
Lemma 15 (Renaming for Environments). If \pi \in \text{Perm } and \gamma \in \text{Env}(A) w then \pi(\gamma) \in \text{Env}(A) \pi(w).
Proof. We proceed by induction on \Gamma.
```

Assume we have $\pi \in \text{Perm and } \gamma \in \text{Env}(\Gamma)$ *w*.

• Case $\Gamma = \cdot$:

```
Immediate
• Case \Gamma = \Gamma', x : A now:
   Hence \gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : A \text{ now}) \ w.
   So \gamma' \in \text{Env}(\Gamma') w and \forall w' \leq w. e \in \mathcal{E} [A] \rho w'.
   By induction, \pi(\gamma') \in \text{Env}(\Gamma') \pi(w).
   Assume w'' \leq \pi(w).
   Then \pi^{-1}(w'') \leq w.
   Hence e \in \mathcal{E} [A] \rho \pi^{-1}(w'').
   By renaming lemma, \pi(e) \in \mathcal{E} [\![A]\!] \rho \pi(\pi^{-1}(w'')).
   Hence \pi(e) \in \mathcal{E} [\![ A ]\!] \rho w''.
   Hence \forall w'' \leq \pi(w). \pi(e) \in \mathcal{E} [\![A]\!] \rho w''.
   Hence (\pi(\gamma'), \pi(e)/x) \in \text{Env}(\Gamma', x : A \text{ now}) \pi(w).
   Hence \pi(\gamma) \in \text{Env}(\Gamma) \ \pi(w).
• Case \Gamma = \Gamma', x : A later:
   Hence \gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : A \text{ later}) \ w.
   So \gamma' \in \text{Env}(\Gamma') w and \forall w' \leq w. e \in \mathcal{L} [A] \rho w'.
   By induction, \pi(\gamma') \in \text{Env}(\Gamma') \pi(w).
   Assume w'' \le \pi(w).
   Then \pi^{-1}(w'') \leq w.
   Hence e \in \mathcal{L} [A] \rho \pi^{-1}(w'').
   By renaming lemma, \pi(e) \in \mathcal{L} [\![A]\!] \rho \pi(\pi^{-1}(w'')).
   Hence \pi(e) \in \mathcal{L} [\![ A ]\!] \rho w''.
   Hence \forall w'' \leq \pi(w). \pi(e) \in \mathcal{L} [\![A]\!] \rho w''.
   Hence (\pi(\gamma'), \pi(e)/x) \in \text{Env}(\Gamma', x : A \text{ later}) \pi(w).
   Hence \pi(\gamma) \in \text{Env}(\Gamma) \pi(w).
• Case \Gamma = \Gamma', x : A stable:
   Hence \gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : A \text{ stable}) w.
   So \gamma' \in \text{Env}(\Gamma') w and \forall w' \leq w. e \in \mathcal{E} [A] \rho (w'.n, \cdot, \top).
   By induction, \pi(\gamma') \in \text{Env}(\Gamma') \pi(w).
   Assume w'' \le \pi(w).
   Then \pi^{-1}(w'') \leq w.
   Hence e \in \mathcal{E} [A] \rho (\pi^{-1}(w'').n, \cdot, \top).
   By renaming lemma, \pi(e) \in \mathcal{E} \llbracket A \rrbracket \rho \pi(\pi^{-1}(w'').n, \cdot, \top).
   But \pi(\pi^{-1}(w'').\mathfrak{n},\cdot,\top)=(w''.\mathfrak{n},\cdot,\top).
```

Hence $\pi(e) \in \mathcal{E} [\![A]\!] \rho (w''.n, \cdot, \top)$.

```
Hence \forall w'' \leq \pi(w). \pi(e) \in \mathcal{E} [A] \rho (w''.n, \cdot, \top).
Hence (\pi(\gamma'), \pi(e)/x) \in \text{Env}(\Gamma', x : A \text{ stable}) \pi(w).
Hence \pi(\gamma) \in \text{Env}(\Gamma) \pi(w).
```

Lemma 16 (Environment Shift). *Suppose* $\gamma \in \text{Env}(\Gamma)$ *w. Then:*

- 1. $\gamma_{\Gamma}^{\square} \in \text{Env}(\Gamma^{\square}) \ (w.n, \cdot, \top).$
- 2. If $w = (n + 1, \sigma, a)$ and $\sigma \Longrightarrow \sigma'$, then $\gamma_{\Gamma}^{\bullet} \in \text{Env}(\Gamma^{\bullet})$ (n, σ', a) .

Proof. We proceed as follows:

1. We prove this by induction on Γ .

Assume $\gamma \in \text{Env}(\Gamma)$ *w*.

Now analyse Γ :

- Case $\Gamma = \cdot$: Immediate.
- Case $\Gamma = \Gamma', x : A$ now:

Then we know $\gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : A \text{ now}) w$.

So $\gamma' \in \text{Env}(\Gamma')$ w.

By induction, ${\gamma'}_{\Gamma'}^{\square} \in \operatorname{Env}({\Gamma'}^{\square})$ ($w.n, \cdot, \top$).

By definition $(\Gamma', x : A \text{ now})^{\square} = {\Gamma'}^{\square}$

By definition $(\gamma', e/x)^{\square}_{\Gamma} = {\gamma'}^{\square}_{\Gamma'}$. Hence ${\gamma}^{\square}_{\Gamma} \in \operatorname{Env}({\Gamma}^{\square})$ $(w.n, \cdot, \top)$.

• Case $\Gamma = \Gamma', x : A$ later:

Then we know $\gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : A \text{ later}) w$.

So $\gamma' \in \text{Env}(\Gamma')$ w.

By induction, ${\gamma'}_{\Gamma'}^{\square} \in \operatorname{Env}({\Gamma'}^{\square})$ ($w.n, \cdot, \top$).

By definition $(\Gamma', x : A | ater)^{\square} = {\Gamma'}^{\square}$.

By definition $(\gamma', e/x)^{\square}_{\Gamma} = {\gamma'}^{\square}_{\Gamma'}$. Hence ${\gamma}^{\square}_{\Gamma} \in \operatorname{Env}({\Gamma}^{\square})$ $(w.n, \cdot, \top)$.

• Case $\Gamma = \Gamma', x : A$ stable:

Then we know $\gamma = (\gamma', e/x) \in \text{Env}(\Gamma', x : A \text{ stable}) \ w$.

So $\gamma' \in \text{Env}(\Gamma')$ w and $\forall w' \leq w$. $e \in \mathcal{E} [A] \rho (w'.n, \cdot, \top)$.

By induction, $\gamma'^{\square}_{\Gamma'} \in \operatorname{Env}(\Gamma'^{\overline{\square}})$ ($w.n, \cdot, \top$).

Assume $w' \leq (w.n, \cdot, \top)$.

Note that if $w' \leq (w.n, \cdot, \top)$, then $(w'.n, w.\sigma, w.a) \leq w$.

Hence $e \in \mathcal{E} [\![A]\!] \rho (w'.n, \cdot, \top)$.

Hence $\forall w' \leq (w.n, \cdot, \top)$. $e \in \mathcal{E} \llbracket A \rrbracket \rho (w'.n, \cdot, \top)$. Hence $(\gamma'^{\square}_{\Gamma'}, e/x) \in \operatorname{Env}(\Gamma'^{\square}, x : A \text{ stable}) (w.n, \cdot, \top)$. By definition $(\Gamma', x : A \text{ stable})^{\square} = \Gamma'^{\square}, x : A \text{ stable}$.

By definition $(\gamma', e/x)^{\square}_{\Gamma', x: A \text{ stable}} = (\gamma'^{\square}_{\Gamma'}, e/x).$ Hence $\gamma^{\square}_{\Gamma} \in \text{Env}(\Gamma^{\square})$ $(w.n, \cdot, \top).$

2. We proceed by induction on Γ .

Assume $w = (n + 1, \sigma, a)$ and $\sigma \Longrightarrow \sigma'$. Let $w' = (n, \sigma', a)$. Now analyze Γ .

• Case $\Gamma = \cdot$:

Immediate.

```
• Case \Gamma = \Gamma_{x} x : A later:
     Then \gamma = (\gamma', e/x) \in \text{Env}(\Gamma) w.
     Hence \gamma' \in \text{Env}(\Gamma') w and \forall w'' \leq (n+1, \sigma, a). e \in \mathcal{L} [A] \rho w''.
     By induction, {\gamma'}_{\Gamma'}^{\bullet} \in \operatorname{Env}({\Gamma'}^{\bullet}) w'.
     By instantiation, e \in \mathcal{L} [A] \rho (n + 1, \sigma, a).
     By definition, \forall w'' \leq (n, \sigma', a). e \in \mathcal{E} [A] \rho w''.
     Hence \forall w'' \leq w'. e \in \mathcal{E} [A] \rho w''.
    Hence (\gamma'_{\Gamma'}, e/x) \in \operatorname{Env}(\Gamma'^{\bullet}, x : A \text{ now}) w'. By definition, (\Gamma', x : A \text{ later})^{\bullet} = \Gamma'^{\bullet}, x : A \text{ now}.
    By definition, (\gamma', e/x)^{\bullet}_{\Gamma', x:A \text{ later}} = (\gamma'^{\bullet}_{\Gamma'}, e/x).
     Hence \gamma_{\Gamma}^{\bullet} \in \operatorname{Env}(\Gamma^{\bullet}) w'.
• Case \Gamma = \Gamma, x : A now:
     Then \gamma = (\gamma', e/x) \in \text{Env}(\Gamma) w.
    Hence \gamma' \in \text{Env}(\Gamma') w and \forall w'' \leq (n+1, \sigma, \alpha). e \in \mathcal{L} \llbracket A \rrbracket \rho w''.
     By induction, \gamma'^{\bullet}_{\Gamma'} \in \operatorname{Env}(\Gamma'^{\bullet}) w'.
     By definition, (\Gamma', x : A \text{ now})^{\bullet} = {\Gamma'}^{\bullet}
    By definition, (\gamma', e/x)^{\bullet}_{\Gamma', x:A \text{ now}} = \gamma'^{\bullet}_{\Gamma'}.
     Hence \gamma_{\Gamma}^{\bullet} \in \operatorname{Env}(\Gamma^{\bullet}) w'.
• Case \Gamma = \Gamma, x : A stable:
     Then \gamma = (\gamma', e/x) \in \text{Env}(\Gamma) w.
     Hence \gamma' \in \text{Env}(\Gamma') w and \forall w'' \leq (n+1, \sigma, a). e \in \mathcal{E} [\![A]\!] \rho (w''.n, \cdot, \top).
     By induction, \gamma'_{\Gamma'}^{\bullet} \in \operatorname{Env}(\Gamma'^{\bullet}) w'.
     Assume w'' \leq w'.
     Note that (n, \sigma, a) \leq (n + 1, \sigma, a).
     Since w'' \le w', then (w''.n, \sigma, a) \le (n + 1, \sigma, a).
     Hence e \in \mathcal{E} [\![A]\!] \rho (w''.n, \cdot, \top).
    Hence \forall w'' \leq w'. e \in \mathcal{E} \llbracket A \rrbracket \rho \ (w''.n, \cdot, \top).
     Hence ({\gamma'}_{\Gamma'}^{\bullet}, e/x) \in \operatorname{Env}({\Gamma'}^{\bullet}, x : A \text{ stable}) w'.
     By definition, (\Gamma', x : A \text{ stable})^{\bullet} = {\Gamma'}^{\bullet}, x : A \text{ now}.
    By definition, (\gamma', e/x)^{\bullet}_{\Gamma', x: A \text{ stable}} = (\gamma'^{\bullet}_{\Gamma'}, e/x).
     Hence \gamma_{\Gamma}^{\bullet} \in \operatorname{Env}(\Gamma^{\bullet}) w'.
```

Lemma 17 (Stability). *If* A stable and $v \in V$ $\llbracket A \rrbracket \rho w$, then $v \in V$ $\llbracket A \rrbracket \rho (w.n, \cdot, \top)$.

Proof. This follows from an induction on the derivation of A stable.

```
• Case \square A:
Assume stable(v) \in \mathcal{V} [\![\square A]\!] \rho w.
Then v \in \mathcal{V} [\![A]\!] \rho (w.n, \cdot, \top).
Hence stable(v) \in \mathcal{V} [\![\square A]\!] \rho (w.n, \cdot, \top).
```

• Case A + B:

By inversion, A stable and B stable.

Assume $v \in V [A + B] \rho w$.

Either $v = \operatorname{inl} v' \wedge v' \in \mathcal{V} \llbracket A \rrbracket \rho w \text{ or } v = \operatorname{inr} v' \wedge v' \in \mathcal{V} \llbracket B \rrbracket \rho w.$

Suppose $v = \mathsf{inl}\,v'$ and $v' \in \mathcal{V}\,[\![A]\!]\,\rho\,w$.

By induction, $v' \in V \llbracket A \rrbracket \rho (w.n, \cdot, \top)$.

Hence inl $v' \in \mathcal{V} [\![A + B]\!] \rho (w.n, \cdot, \top)$.

Suppose $v = \operatorname{inr} v'$ and $v' \in V \llbracket B \rrbracket \rho w$.

By induction, $v' \in \mathcal{V} \llbracket B \rrbracket \rho (w.n, \cdot, \top)$.

Hence $\operatorname{inr} v' \in \mathcal{V} [\![A + B]\!] \rho (w.n, \cdot, \top)$.

• Case $A \times B$: By inversion, A stable and B stable. Assume $(v, v') \in \mathcal{V} \llbracket A \times B \rrbracket \rho w$. Then $v \in \mathcal{V} \llbracket A \rrbracket \rho w$ and $v' \in \mathcal{V} \llbracket B \rrbracket \rho w$. By induction, $v \in \mathcal{V} \llbracket A \rrbracket \rho (w.n, \cdot, \top)$. By induction, $v' \in \mathcal{V} \llbracket B \rrbracket \rho (w.n, \cdot, \top)$. Hence $(v, v') \in \mathcal{V} \llbracket A \times B \rrbracket \rho (w.n, \cdot, \top)$.

Theorem 1 (Fundamental Property). *The following properties hold:*

- 1. If $\Gamma \vdash e : A \text{ later } and \ \gamma \in Env(\Gamma) \ w$, then $\gamma(e) \in \mathcal{L} \ \llbracket A \rrbracket \cdot w$.
- 2. If $\Gamma \vdash e : A$ stable and $\gamma \in \text{Env}(\Gamma)$ w, then $\gamma(e) \in \mathcal{E} \llbracket A \rrbracket \cdot (w.n, \cdot, \top)$.

3. If $\Gamma \vdash e : A \text{ now } and \gamma \in \text{Env}(\Gamma) \text{ } w, \text{ } then \gamma(e) \in \mathcal{E} \llbracket A \rrbracket \cdot w.$

Proof. We proceed as follows:

- 1. Assume $\Gamma \vdash e : A$ later and $\gamma \in Env(\Gamma)$ w. Now consider what the world is:
 - $w = (0, \sigma, \alpha)$. In this case, $\gamma(e) \in \mathcal{L} \llbracket A \rrbracket \cdot (0, \sigma, \alpha)$ by definition of $\mathcal{L} \llbracket A \rrbracket \cdot w$.
 - In this case, $\gamma(e) \in \mathcal{L} \, [\![A]\!] \cdot (0, \sigma, a)$ by definition of $\mathcal{L} \, [\![A]\!] \cdot w$.

 $w = (n+1, \sigma, a)$.

 We know $\sigma \in \operatorname{Heap}_{n+1}$, so $\sigma \Longrightarrow \sigma'$ such that $\sigma' \in \operatorname{Heap}_n$.

 Hence $w' \triangleq (n, \sigma', a) \in \operatorname{World}$.

 By inversion, we have $\Gamma^{\bullet} \vdash e : A$ now.

 By environment shift, we have $\gamma_{\Gamma}^{\bullet} \in \operatorname{Env}(\Gamma) \, w'$.

 Assume $w'' \leq w'$.

 By Kripke monotoncity, $\gamma_{\Gamma}^{\bullet} \in \operatorname{Env}(\Gamma) \, w''$.

 Hence by fundamental theorem, $\gamma_{\Gamma}^{\bullet}(e) \in \mathcal{E} \, [\![A]\!] \cdot w''$.

 But by definition, $\gamma_{\Gamma}^{\bullet}(e) = \gamma(e)$, so $\gamma(e) \in \mathcal{E} \, [\![A]\!] \cdot w''$.

 Hence for all $w'' \leq w'$, we have $\gamma(e) \in \mathcal{E} \, [\![A]\!] \cdot w''$.

 Hence $\gamma(e) \in \mathcal{L} \, [\![A]\!] \cdot w$.
- 2. Assume $\Gamma \vdash e : A$ stable and $\gamma \in \operatorname{Env}(\Gamma)$ w. By inversion, we know that $\Gamma^{\square} \vdash e : A$ now. By environment shift, we know that $\gamma^{\square}_{\Gamma} \in \operatorname{Env}(\Gamma^{\square})$ $(w.n, \cdot, \top)$. By the the fundamental property, $\gamma^{\square}_{\Gamma}(e) \in \mathcal{E}$ $[\![A]\!] \cdot (w.n, \cdot, \top)$. Note $\gamma^{\square}_{\Gamma}(e) = \gamma(e)$. Hence $\gamma(e) \in \mathcal{E}$ $[\![A]\!] \cdot (w.n, \cdot, \top)$.
- 3. We proceed by induction on the typing derivation:
 - Case HYP:

Assume $\gamma \in \text{Env}(\Gamma)$ *w*.

We know $\Gamma \vdash x : A$ now.

By inversion, we know that $x : A \text{ now } \in \Gamma \text{ or } x : A \text{ stable}$.

- Suppose $x: A \text{ now } \in \Gamma$: Then by definition of $\operatorname{Env}(\Gamma)$ w, $\forall w' \leq w$. $\gamma(x) \in \mathcal{E}$ $[\![A]\!] \cdot w'$. Hence $\gamma(x) \in \mathcal{E}$ $[\![A]\!] \cdot w$.

```
Then by definition of Env(\Gamma) w, \forall w' \leq w. \gamma(x) \in \mathcal{E} [\![A]\!] \cdot (w'.n, \cdot, \top).
           Hence \langle \cdot; e \rangle \Downarrow \langle \cdot; v \rangle such that v \in \mathcal{V} \llbracket A \rrbracket \cdot (w.n, \cdot, \top).
           Note that w \leq (w.n, \cdot, \top).
           We want to show e \in \mathcal{E} [\![A]\!] \cdot w.
           Assume \sigma' \leq w.store.
           Note (w.n, \sigma', w.a) \leq w.
           By uniformity, we know that \langle \sigma'; e \rangle \Downarrow \langle \sigma'; v \rangle.
           Hence by Kripke monotoncity, v \in V [\![A]\!] \cdot (w.n, \sigma', w.a).
           Take the existential witness \sigma'' to be \sigma' itself.
           Vacuously, if w.a = \top, then \sigma' = \sigma''.
           Hence e \in \mathcal{E} [\![A]\!] \cdot w.
• Case FIX:
    Assume \gamma \in \text{Env}(\Gamma) w.
   We know \Gamma \vdash \text{fix } x. e : A \text{ now.}
    By inversion, we know that \Gamma^{\square}, x : A later \vdash e : A now.
    Now, we know that w = (n, \sigma, a).
    By nested induction, we show for all m \le n, w' \le (m, \cdot, \top). \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot w'.
       - m = 0:
           By Kripke monotonicity, we know that \gamma \in \text{Env}(\Gamma) (0, \sigma, a).
           By environment shift, we know that \gamma_{\Gamma}^{\square} \in \text{Env}(\Gamma^{\square}) (0, \cdot, \top).
           Assume that w' \leq (0, \cdot, \top).
           By Kripke monotonicity, we know that \gamma \in \text{Env}(\Gamma) w'.
           Assume that w'' \leq (0, \cdot, \top).
           Note that w''.n = 0.
           Then by definition, \gamma(\text{fix x. e}) \in \mathcal{L} [\![A]\!] \cdot w''.
           Hence \forall w'' \leq w', \gamma(\text{fix x. e}) \in \mathcal{L} [\![A]\!] \cdot w''.
           Hence we know that (\gamma_{\Gamma}^{\square}, \gamma(\operatorname{fix} x. e)/x) \in \operatorname{Env}(\Gamma^{\square}, x : A \text{ later}) w'.
           By the fundamental lemma, we know (\gamma_{\Gamma}^{\square}, \gamma(\text{fix x. e})/x)(e) \in \mathcal{E}[\![A]\!] \cdot w'.
           Note that (\gamma_{\Gamma}^{\square}, \gamma(\operatorname{fix} x. e)/x)(e) = (\gamma, \gamma(\operatorname{fix} x. e)/x)(e).
           Hence there is v \in \mathcal{V} \llbracket A \rrbracket \cdot w' s.t. \langle \cdot; (\gamma, \gamma(\text{fix } x. \ e)/x)(e) \rangle \Downarrow \langle \cdot; v \rangle.
           Hence there is v \in \mathcal{V} \llbracket A \rrbracket \cdot w' s.t. \langle \cdot; \gamma([fix \ x. \ e/x]e) \rangle \Downarrow \langle \cdot; v \rangle.
           Hence there is v \in \mathcal{V} \llbracket A \rrbracket \cdot w' s.t. \langle \cdot; \gamma(\text{fix } x. e) \rangle \Downarrow \langle \cdot; v \rangle.
           Hence \gamma(\text{fix x. e}) \in \mathcal{E} [A] \cdot w'.
           Hence \forall w' \leq (0, \cdot, \top). \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot w'.
       - m = k + 1:
           By induction, we know that for all i \leq k, w' \leq (i, \cdot, \top), \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot w'.
           Now, we want to show that \forall w' \leq (k+1, \cdot, \top). \gamma(\text{fix } x. \ e) \in \mathcal{L} [\![A]\!] \cdot w'.
           Assume w' \leq (k+1, \cdot, \top).
           If w'.n = 0, the result is immediate.
           If w'.n = j + 1, then we want to show
           there is a \sigma'' such that w'.store \Longrightarrow \sigma'' and \sigma'' \in \text{Heap}_i and
           that for all w'' \leq (j, \sigma'', \top). \gamma(\text{fix } x. \ e) \in \mathcal{E} \ [\![A]\!] \cdot w''.
           Since w'.\sigma \in \text{Heap}_{i+1}, we know there is w'.\text{store} \Longrightarrow \sigma'' such that \sigma'' \in \text{Heap}_{i}.
           We want to show for all w'' \leq (j, \sigma'', \top). \gamma(\text{fix } x. \ e) \in \mathcal{E} [\![A]\!] \cdot w''.
           Assume w'' \leq (j, \sigma'', \top).
           Note that since w'.n = j + 1 \le k + 1, we know that j \le k.
           Hence w'' \leq (j, \sigma'', \top) \leq (j, \cdot, \top).
           Hence by the induction hypothesis, \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot w''.
           Hence for all w'' \leq (j, \sigma'', \bar{\top}). \gamma(\text{fix } x. e) \in \mathcal{E} \llbracket A \rrbracket \cdot w''.
           Hence \forall w' \leq (k+1, \cdot, \top). \gamma(\text{fix } x. \ e) \in \mathcal{L} \llbracket A \rrbracket \cdot w'.
```

- Suppose x : A stable $\in \Gamma$:

```
Since k + 1 \le w.n, by Kripke monotonicity, \gamma \in \text{Env}(\Gamma) (k + 1, \sigma, a).
            By environment shift, \gamma_{\Gamma}^{\square} \in Env(\Gamma^{\square}) \ (k+1,\cdot,\top).
By definition, (\gamma_{\Gamma}^{\square}, \gamma(\text{fix } x.\ e)/x) \in Env(\Gamma^{\square}, x: A \ \text{later}) \ (k+1,\cdot,\top).
            By the fundamental property, (\gamma_{\Gamma}^{\square}, \gamma(\text{fix } x. \ e)/x)(e) \in \mathcal{E} [\![A]\!] \cdot (k+1, \cdot, \top).
            Note (\gamma_{\Gamma}^{\square}, \gamma(\operatorname{fix} x. e)/x)(e) = (\gamma, \gamma(\operatorname{fix} x. e)/x)(e).
            Hence (\gamma, \gamma(\operatorname{fix} x. e)/x)(e) \in \mathcal{E} [\![A]\!] \cdot (k+1, \cdot, \top).
            So for every \sigma, there is a v \in \mathcal{V} \llbracket A \rrbracket \cdot (k+1,\cdot,\top) s.t. \langle \sigma; (\gamma, \gamma(\mathsf{fix}\,x.\,e)/x)(e) \rangle \Downarrow \langle \sigma; v \rangle.
            Hence it follows that for every \sigma, there is a v \in \mathcal{V}[\![A]\!] \cdot (k+1,\cdot,\top) s.t. \langle \sigma; \gamma(\mathsf{fix}\,x.\,e) \rangle \Downarrow \langle \sigma; v \rangle.
            Hence \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot (k+1, \cdot, \top)
    Therefore we know that \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot (n, \cdot, \top).
    We want to show \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot (n, \sigma, a).
    Assume we have \sigma' \leq \sigma.
    Note that \sigma' < \cdot.
    Hence we know that \langle \sigma'; \gamma(\mathsf{fix} \, \mathsf{x.e}) \rangle \Downarrow \langle \sigma'; \nu \rangle such that \nu \in \mathcal{V} [\![ \mathsf{A} ]\!] \cdot (\mathsf{n}, \cdot, \top).
    By Kripke monotonicity, we know that v \in V [A] \cdot (n, \sigma', a).
    Take \sigma'' = \sigma'.
    Hence \sigma'' \leq \sigma', such that \langle \sigma'; \gamma(\mathsf{fix} \, \mathsf{x.} \, e) \rangle \Downarrow \langle \sigma''; \nu \rangle and \nu \in \mathcal{V} [\![ \mathsf{A} ]\!] \cdot (\mathsf{n}, \sigma'', \mathfrak{a}).
    Hence \gamma(\text{fix } x. e) \in \mathcal{E} [\![A]\!] \cdot (n, \sigma, a).
• Case +LI:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \mathsf{inl}\, e : A + B \mathsf{now}.
    By inversion, \Gamma \vdash e : A now.
    By fundamental lemma, \gamma(e) \in \mathcal{E} [\![A]\!] \cdot w.
    Hence there is a \nu and \sigma' \leq w.\sigma such that \langle w.\sigma; e \rangle \Downarrow \langle \sigma'; \nu \rangle such that \nu \in \mathcal{V} \llbracket A \rrbracket \cdot (w.n, \sigma', w.a).
    Hence inl v \in V [A + B] \cdot (w.n, \sigma', w.a).
    Note that by rule \langle w.\sigma; \mathsf{inl}\,e \rangle \Downarrow \langle \sigma'; \mathsf{inl}\,v \rangle.
    Hence inl e \in \mathcal{E} [A + B] \cdot w.
• Case +RI:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \mathsf{inr}\, e : A + B \mathsf{ now}.
    By inversion, \Gamma \vdash e : B now.
    By fundamental lemma, \gamma(e) \in \mathcal{E} \llbracket B \rrbracket \cdot w.
    Hence there is a \nu and \sigma' \leq w.\sigma such that \langle w.\sigma; e \rangle \downarrow \langle \sigma'; \nu \rangle such that \nu \in \mathcal{V} \llbracket B \rrbracket \cdot (w.n, \sigma', w.a).
    Hence \operatorname{inr} v \in \mathcal{V} [A + B] \cdot (w.n, \sigma', w.a).
    Note that by rule \langle w.\sigma; \mathsf{inr} \, e \rangle \downarrow \langle \sigma'; \mathsf{inr} \, v \rangle.
    Hence inr e \in \mathcal{E} [A + B] \cdot w.
• Case +E:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know that \Gamma \vdash \mathsf{case}(e, \mathsf{inl}\, x \to e_1, \mathsf{inr}\, y \to e_2) : C \mathsf{now}.
    By inversion, \Gamma \vdash e : A + B now and \Gamma, x : A now \vdash e_1 : C now and \Gamma, y : B now \vdash e_2 : C now.
    By induction, \gamma(e) \in \mathcal{E} [\![ A + B ]\!] \cdot w.
    Hence there is a \nu and \sigma' \leq w.\sigma such that \nu \in \mathcal{V} [A + B] \cdot (w.n, \sigma', w.a).
    Suppose v = \operatorname{inl} v' and v' \in V [A] \cdot (w.n, \sigma', w.a).
    By weakening, we know that \gamma \in \text{Env}(\Gamma) (w.n, \sigma', w.a).
    By value inclusion, we know that v' \in \mathcal{E} [A] \cdot (w.n, \sigma', w.a).
    Hence (\gamma, \nu'/x) \in \text{Env}(\Gamma, x : A \text{ now}) (w.n, \sigma', w.a).
    By induction, (\gamma, \nu'/x)e_1 \in \mathcal{E} [\![C]\!] \cdot (w.n, \sigma', w.a).
    Note that (\gamma, v'/x)e_1 = [v'/x]\gamma(e_1), so [v'/x]\gamma(e_1) \in \mathcal{E}[[C]] \cdot (w.n, \sigma', w.a).
    Therefore there is a v'' and \sigma'' \leq \sigma' such that \langle \sigma'; [v'/x] \gamma(e_1) \rangle \Downarrow \langle \sigma''; v'' \rangle and v'' \in \mathcal{V} \llbracket \mathbb{C} \rrbracket \cdot (w,n,\sigma'',w,a).
```

```
Note \langle w.\sigma; \mathsf{case}(\gamma(e), \mathsf{inl}\, x \to \gamma(e_1), \mathsf{inr}\, y \to \gamma(e_2)) \rangle \Downarrow \langle \sigma''; v'' \rangle.
    Hence case(\gamma(e), inl x \to \gamma(e_1), inr y \to \gamma(e_2)) \in \mathcal{E} \llbracket \mathbb{C} \rrbracket \cdot w.
    Note that case(\gamma(e), inl x \rightarrow \gamma(e_1), inr y \rightarrow \gamma(e_2)) = \gamma(case(e, inl x \rightarrow e_1, inr y \rightarrow e_2)).
    Hence \gamma(\mathsf{case}(e,\mathsf{inl}\,x\to e_1,\mathsf{inr}\,y\to e_2))\in\mathcal{E}\,[\![C]\!]\cdot w.
    Suppose v = \operatorname{inr} v' and v' \in V \llbracket B \rrbracket \cdot (w.n, \sigma', w.a).
    By weakening, we know that \gamma \in \text{Env}(\Gamma) (w.n, \sigma', w.a).
    By value inclusion, we know that v' \in \mathcal{E} [\![B]\!] \cdot (w.n, \sigma', w.a).
    Hence (\gamma, v'/y) \in \text{Env}(\Gamma, x : B \text{ now}) (w.n, \sigma', w.a).
    By induction, (\gamma, \nu'/y)e_2 \in \mathcal{E} [\![C]\!] \cdot (w.n, \sigma', w.a).
    Note that (\gamma, \nu'/y)e_2 = [\nu'/y]\gamma(e_2), so [\nu'/y]\gamma(e_2) \in \mathcal{E} [\![C]\!] \cdot (w.n, \sigma', w.a).
    Therefore there is a \nu'' and \sigma'' \leq \sigma' such that \langle \sigma'; [\nu'/y]\gamma(e_2)\rangle \Downarrow \langle \sigma''; \nu''\rangle and \nu'' \in \mathcal{V} \llbracket C \rrbracket \cdot (w.n, \sigma'', w.a).
    Note \langle w.\sigma; \mathsf{case}(\gamma(e), \mathsf{inl}\, x \to \gamma(e_1), \mathsf{inr}\, y \to \gamma(e_2)) \rangle \Downarrow \langle \sigma''; v'' \rangle.
    Hence case(\gamma(e), inl x \to \gamma(e_1), inr y \to \gamma(e_2)) \in \mathcal{E} \llbracket C \rrbracket \cdot w.
    Note that case(\gamma(e), inl x \rightarrow \gamma(e_1), inr y \rightarrow \gamma(e_2)) = \gamma(case(e, inl x \rightarrow e_1, inr y \rightarrow e_2)).
    Hence \gamma(\mathsf{case}(e,\mathsf{inl}\,x\to e_1,\mathsf{inr}\,y\to e_2))\in\mathcal{E}\,[\![C]\!]\cdot w.
• Case ×I:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash (e_1, e_2) : A \times B now.
    By inversion, we know \Gamma \vdash e_1 : A \text{ now and } \Gamma \vdash e_2 : B \text{ now.}
    By induction, we know that \gamma(e_1) \in \mathcal{E} [\![A]\!] \cdot w.
    Hence there is a v_1 and \sigma' \leq w.\sigma such that \langle w.\sigma; \gamma(e_1) \rangle \Downarrow \langle \sigma'; v_1 \rangle and v_1 \in \mathcal{V} \llbracket A \rrbracket \cdot (w.\pi, \sigma', w.\alpha).
    By weakening, \gamma \in \text{Env}(\Gamma) (w.n, \sigma', w.a).
    By induction, \gamma(e_2) \in \mathcal{E} [\![B]\!] \cdot (w.n, \sigma', w.a).
    Hence there is a v_2 and \sigma'' \leq \sigma' such that \langle \sigma'; \gamma(e_2) \rangle \Downarrow \langle \sigma''; v_2 \rangle and v_2 \in \mathcal{V} \llbracket B \rrbracket \cdot (w.n, \sigma'', w.a).
    By weakening, v_1 \in \mathcal{V} [\![A]\!] \cdot (w.n, \sigma'', w.a).
    Hence (v_1, v_2) \in \mathcal{V} [A \times B] \cdot (w.n, \sigma'', w.a).
    By rule \langle w.\sigma; (\gamma(e_1), \gamma(e_2)) \rangle \Downarrow \langle \sigma''; (\nu_1, \nu_2) \rangle.
    Hence (\gamma(e_1), \gamma(e_2)) \in \mathcal{E} [A \times B] \cdot w.
    Note (\gamma(e_1), \gamma(e_2)) = \gamma((e_1, e_2)).
    Hence \gamma((e_1, e_2)) \in \mathcal{E} [A \times B] \cdot w.
• Case ×LE:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \mathsf{fst}\, e : \mathsf{A} \mathsf{now}.
    By inversion, \Gamma \vdash e : A \times B now.
    By induction, \gamma(e) \in \mathcal{E} [A \times B] \cdot w.
    Hence there is a (v_1, v_2) and \sigma' \leq \sigma such that \langle w.\sigma; e \rangle \Downarrow \langle \sigma'; (v_1, v_2) \rangle and (v_1, v_2) \in \mathcal{V} \llbracket A \times B \rrbracket \cdot (w.\pi, \sigma', w.a).
    Hence v_1 \in \mathcal{V} [\![A]\!] \cdot (w.n, \sigma', w.a).
    By rule, \langle w.\sigma; \mathsf{fst} \gamma(e) \rangle \Downarrow \langle \sigma'; v_1 \rangle.
    Hence fst \gamma(e) \in \mathcal{E} [A] \cdot w.
    Note fst \gamma(e) = \gamma(fst e).
    Hence \gamma(\mathsf{fst}\,e) \in \mathcal{E}\,[\![\mathsf{A}]\!]\cdot w.
• Case \times RE:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \mathsf{snd}\, e : \mathsf{B}\, \mathsf{now}.
    By inversion, \Gamma \vdash e : A \times B now.
    By induction, \gamma(e) \in \mathcal{E} [\![ A \times B ]\!] \cdot w.
    Hence there is a (v_1, v_2) and \sigma' \leq \sigma such that \langle w.\sigma; e \rangle \Downarrow \langle \sigma'; (v_1, v_2) \rangle and (v_1, v_2) \in \mathcal{V} [A \times B] \cdot (w.n, \sigma', w.a).
    Hence v_1 \in \mathcal{V} \llbracket B \rrbracket \cdot (w.n, \sigma', w.a).
    By rule, \langle w.\sigma; \mathsf{snd} \gamma(e) \rangle \Downarrow \langle \sigma'; v_1 \rangle.
    Hence snd \gamma(e) \in \mathcal{E} \llbracket B \rrbracket \cdot w.
    Note snd \gamma(e) = \gamma(\text{snd } e).
```

```
Hence \gamma(\mathsf{snd}\,e) \in \mathcal{E}\,[\![\mathsf{B}]\!]\cdot w.
• Case •I:
   Assume \gamma \in \text{Env}(\Gamma) w.
   We know \Gamma \vdash \delta_{e'}(e) : \bullet A now.
   By inversion, we know \Gamma \vdash e : A later and \Gamma \vdash e' : alloc now.
   By fundamental lemma, we know \gamma(e') \in \mathcal{E} [alloc] · w.
   Hence there is a \sigma' \leq w.\sigma such that \langle w.\sigma; e' \rangle \Downarrow \langle \sigma'; \diamond \rangle and \diamond \in \mathcal{V} [alloc] \cdot (w.n, \sigma', w.a).
   Hence we know that w.a = \bot.
   Let w' = (w.n, \sigma', w.a), and note that w' \le w.
   Assume \pi \in \text{Perm and } w'' \leq w'.
   By Kripke monotonicity and renaming, \pi(\gamma) \in \text{Env}(\Gamma) \pi(w'').
   By fundamental lemma, (\pi(\gamma))(e) \in \mathcal{L} [\![A]\!] \cdot \pi(w').
   Since e has no free locations in it, (\pi(\gamma))(e) = \pi(\gamma(e)).
   Hence \forall \pi \in \text{Perm and } w'' \leq w', we know \pi(\gamma(e)) \in \mathcal{L} \llbracket A \rrbracket \cdot \pi(w'').
   Choose l \notin dom(\sigma') and let \sigma'' = w'.\sigma, l : e later
   Now, we will show that \sigma'' \in \text{Heap}_{w,n}.
      - Suppose w.n = 0:
          Then \sigma'' \in \text{Heap}_0 immediately.
      - Suppose w.n = k + 1:
          Then we know that there is a \hat{\sigma}' such that w'.\sigma \Longrightarrow \hat{\sigma}' and \hat{\sigma}' \in \text{Heap}_{k}.
          Due to the permutability and renaming properties, we can assume l \notin dom(\hat{\sigma}').
          Since \gamma(e) \in \mathcal{L} [\![A]\!] \cdot w', we know \langle \hat{\sigma}'; \gamma(e) \rangle \Downarrow \langle \hat{\sigma}''; \nu \rangle, with \hat{\sigma}'' \leq \hat{\sigma}'.
          Due to the permutability and renaming properties, we can assume l \notin dom(\hat{\sigma}'').
          Therefore (\hat{\sigma}'', l : v \text{ now}) \in \text{Heap}_{\nu}.
          Note \sigma'' \Longrightarrow (\hat{\sigma}'', l : \nu \text{ now}).
          So \sigma'' \in Heap_{k+1}
   Since \sigma'' \in \text{Heap}_{w.n}, it follows \sigma'' \leq w'.\sigma.
   Let w'' = (w.n, \sigma'', \bot).
   Now we will show that l \in \mathcal{V} \llbracket \bullet A \rrbracket \cdot w''.
   Note that w''.\sigma = \sigma', 1:e later, and that (w''.n, \sigma', w''.a) = w'. Note that \forall \pi \in \text{Perm and}
   w'' \le w', we know \pi(\gamma(e)) \in \mathcal{L} [A] \cdot \pi(w'').
   Hence l \in Env(\bullet A) w'.
   Hence \delta_{\gamma(e')}(\gamma(e)) \in \mathcal{E} \llbracket \bullet A \rrbracket \cdot w.
   Hence \gamma(\delta_{e'}(e)) \in \mathcal{E} \llbracket \bullet A \rrbracket \cdot w.
• Case •E:
   Assume \gamma \in \text{Env}(\Gamma) w.
   We know \Gamma \vdash \text{let } \delta(x) = e \text{ in } e' : C \text{ now.}
   By inversion, \Gamma \vdash e : \bullet A now.
   By the fundamental theorem, \gamma(e) \in \mathcal{E} \llbracket \bullet A \rrbracket \cdot w.
   Hence there is v, \sigma' \leq w.\sigma such that \langle w.\sigma; e \rangle \downarrow \langle w'.\sigma; l \rangle,
   where w' = (w.n, \sigma', w.a) \le w and l \in V \llbracket \bullet A \rrbracket \cdot w.
   Therefore \sigma' = \sigma_0, l : e_0 later, \sigma_1 and \forall w'' \leq (w.n, \sigma_0, w.a). e_0 \in \mathcal{L} [A] \cdot w''.
   Now, we will show that !l \in \mathcal{L} [\![A]\!] \cdot w'.
   If w.n = 0, then this is immediate.
   So suppose w.n = k + 1.
   Then, we know that \sigma' \Longrightarrow \hat{\sigma}'.
   Hence \sigma_0, l:e later, \sigma_1 \Longrightarrow \hat{\sigma}_0, l:v now, \hat{\sigma}_1
   where \sigma_0 \Longrightarrow \hat{\sigma}_0 and \langle \hat{\sigma}_0; e_0 \rangle \Downarrow \langle \hat{\sigma}_0'; \nu \rangle.
```

```
Since e_0 \in \mathcal{L}[\![A]\!] \cdot (w.n, \sigma_0, w.a), we know that \sigma_0 \Longrightarrow \underline{\hat{\sigma}_0} and e_0 \in \mathcal{E}[\![A]\!] \cdot (k, \underline{\hat{\sigma}_0}, w.a).
    Therefore \langle \hat{\underline{\sigma}}_0; e_0 \rangle \Downarrow \langle \hat{\sigma}'_0; \underline{\nu} \rangle and \underline{\nu} \in \mathcal{V} [\![A]\!] \cdot (k, \hat{\sigma}'_0, w.a).
    There is a permutation \pi such that \pi(\sigma_0) = \sigma_0, and \nu = \pi(\underline{\nu}) and \hat{\sigma}'_0 = \pi(\hat{\sigma}'_0).
    Hence by renaming v \in V [A] \cdot (k, \hat{\sigma}'_0, w.a).
    Assume w'' \leq (k, \hat{\sigma}', w.a).
    Note that for all \sigma'' \leq \hat{\sigma}'_0, we have \langle \sigma''; !l \rangle \Downarrow \langle \sigma''; \nu \rangle.
    Hence \langle w''.\sigma;!l \rangle \Downarrow \langle w''.\sigma;v \rangle.
    By Kripke monotonicity, v \in V [\![A]\!] \cdot w''.
    Hence for all w'' \leq (k, \hat{\sigma}', w.a), we know !l \in \mathcal{E} [\![A]\!] \cdot w''.
    Hence !l \in \mathcal{L} [\![A]\!] \cdot w'.
    By Kripke monotonicity, \gamma \in \text{Env}(\Gamma) w'.
    Hence (\gamma,!l/x) \in \text{Env}(\Gamma,x:A \text{ later}) w'.
    By fundamental property, (\gamma, !l/x)(e) \in \mathcal{E} [C] \cdot w'.
    Hence we have v', w'' such that \langle w', \sigma; (\gamma, !l/x)(e) \rangle \Downarrow \langle w'', \sigma; v' \rangle and v' \in \mathcal{V} \llbracket C \rrbracket \cdot w''.
    Hence \langle w.\sigma; \gamma(\text{let } \delta(x) = e \text{ in } e') \rangle \Downarrow \langle w''.\sigma; v' \rangle and v' \in \mathcal{V} \llbracket C \rrbracket \cdot w''.
    Hence \gamma(\text{let }\delta(x) = e \text{ in } e') \in \mathcal{E} \llbracket C \rrbracket \cdot w.
• Case □I:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \mathsf{stable}(e) : \Box \mathsf{A} \mathsf{ now}.
    By inversion, we know \Gamma^{\square} \vdash e : A now.
    By induction, for all w', \gamma' \in \text{Env}(\Gamma^{\square}) w', we have \gamma'(e) \in \mathcal{E} [\![A]\!] \cdot w'.
    By environment shift, we know \gamma_{\Gamma}^{\square} \in \text{Env}(\Gamma^{\square}) (w.n, \cdot, \top).
    Hence, there is a v \in \mathcal{V} \llbracket A \rrbracket \cdot (w.n, \cdot, \top) such that \langle \cdot; \gamma_{\Gamma}^{\square}(e) \rangle \Downarrow \langle \cdot; v \rangle.
    But note that \gamma_{\Gamma}^{\square}(e) = \gamma(e).
    Note stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket \cdot w.
    By uniformity, \langle w.\sigma; \gamma(e) \rangle \Downarrow \langle w.\sigma; \nu \rangle.
    Hence \langle \sigma; \gamma(\mathsf{stable}(e)) \rangle \Downarrow \langle \sigma; \mathsf{stable}(v) \rangle and \mathsf{stable}(v) \in \mathcal{V} \llbracket \Box A \rrbracket \cdot w.
    Hence \gamma(\mathsf{stable}(e)) \in \mathcal{E} \llbracket \Box A \rrbracket \cdot w.
• Case □E:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash let stable(x) = e in e' : C now.
    By inversion, we know \Gamma \vdash e : \Box A now and \Gamma, x : A stable \vdash e' : C now.
    By induction, we know that \gamma(e) \in \mathcal{E} \llbracket \Box A \rrbracket \cdot w.
    Hence there is a \sigma' < w.\sigma s.t. \langle w.\sigma; \gamma(e) \rangle \downarrow \langle \sigma'; \mathsf{stable}(v) \rangle
    and stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket \cdot (w.n, \sigma', w.a) and \sigma' = w.\sigma if w.a = \top
    Let w' = (w.n, \sigma', w.a).
    By Kripke monotonicity, \gamma \in \text{Env}(\Gamma) w'.
    By definition, v \in V [A] \cdot (w'.n, \cdot, \top).
    Assume w'' \le w'. Then by Kripke monotonicity, v \in \mathcal{V} [\![A]\!] \cdot (w''.n, \cdot, \top).
    Hence (\gamma, \nu/x) \in \text{Env}(\Gamma, x : A \text{ stable}) w'.
    Hence (\gamma, \nu/x)(e') \in \mathcal{E} [\![C]\!] \cdot w'.
    Therefore \sigma'' \leq w'.\sigma s.t. \langle w'.\sigma; \gamma(e) \rangle \Downarrow \langle w.\sigma''; \nu'' \rangle
    and v'' \in V \llbracket C \rrbracket \cdot (w'.n, \sigma'', w'.a) and \sigma'' = w'.\sigma if w.a = \top
    Note that w'.n = w.n and w'.a = w.a.
    Hence we know that \sigma'' \leq w.\sigma and \sigma'' = w.\sigma if w.\alpha = \top.
    By rule, we know that \langle w.\sigma; \gamma(\text{let stable}(x) = e \text{ in } e') \rangle \Downarrow \langle \sigma''; v'' \rangle.
    Hence \gamma(\text{let stable}(x) = e \text{ in } e') \in \mathcal{E} \llbracket C \rrbracket \cdot w.
• Case PROMOTE:
    Assume \gamma \in \text{Env}(\Gamma) w.
```

```
We know \Gamma \vdash \mathsf{promote}(e) : \Box A \mathsf{now}.
    By inversion, \Gamma \vdash e : A \text{ now and } A \text{ stable.}
    By induction, \gamma(e) \in \mathcal{E} [\![ A ]\!] \cdot w.
    Hence there are v, \sigma' \leq w.\sigma such that \langle w.\sigma; \gamma(e) \rangle \Downarrow \langle \sigma'; v \rangle
    and v \in V [A] \cdot (w.n, \sigma', w.a) and w.a = \top \implies \sigma' = w.\sigma.
    Since A is a stable type, v \in V [A] \cdot (w.n, \cdot, \top).
    Hence stable(v) \in \mathcal{V} \llbracket \Box A \rrbracket \cdot (w.n, \sigma', w.a).
    By rule \langle w.\sigma; \gamma(\mathsf{promote}(e)) \rangle \Downarrow \langle \sigma'; \mathsf{stable}(v) \rangle.
    Hence \gamma(\mathsf{promote}(e)) \in \mathcal{E} \llbracket \Box A \rrbracket \cdot w.
• Case \rightarrowI:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \lambda x. e : A \rightarrow B now.
    By inversion, \Gamma, x : A \text{ now } \vdash e : B \text{ now.}
    It suffices to show \gamma(\lambda x. e) \in \mathcal{V} [A \to B] \cdot w.
    This is equivalent to showing \lambda x. \gamma(e) \in \mathcal{V} [\![ A \rightarrow B ]\!] \cdot w.
    Assume \pi \in \text{Perm} and w' \leq w and e_0 \in \mathcal{E} [\![A]\!] \cdot \pi(w').
    Then, by Kripke monotonicity, \gamma \in \text{Env}(\Gamma) w'.
    Then, by environment renaming, \pi(\gamma) \in \text{Env}(\Gamma) \pi(w').
    Then we know (\pi(\gamma), e_0/x) \in \text{Env}(\Gamma, x : A \text{ now}) \pi(w').
    By induction, we know (\pi(\gamma), e_0/x)(e) \in \mathcal{E} [\![B]\!] \cdot \pi(w').
    Since e has no free location variables, [e_0/x](\pi(\gamma(e)) \in \mathcal{E} \llbracket B \rrbracket \cdot \pi(w').
    Hence \lambda x. \gamma(e) \in \mathcal{V} [\![ A \rightarrow B ]\!] \cdot w.
• Case \rightarrowE:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash e e' : B \text{ now}.
    By inversion, \Gamma \vdash e : A \rightarrow B now and \Gamma \vdash e' : A now.
    By induction, \gamma(e) \in \mathcal{E} [\![ A \rightarrow B ]\!] \cdot w.
    Hence there is a \sigma' < w.\sigma such that \langle w.\sigma; \gamma(e) \rangle \Downarrow \langle \sigma'; \lambda x. e_1 \rangle
    and \lambda x. e_1 \in \mathcal{V} [A \to B] \cdot (w.n, \sigma', w.a) and w.a = T implies \sigma' = w.\sigma.
    Note that w' \triangleq (w.n, \sigma', w.a) < w.
    By Kripke monotonicity, \gamma \in \text{Env}(\Gamma) w'.
    Hence \gamma(e') \in \mathcal{E} [\![A]\!] \cdot w'.
    Hence there is a \sigma'' \leq w'.\sigma such that \langle w'.\sigma; \gamma(e) \rangle \Downarrow \langle \sigma''; \nu \rangle
    and v \in \mathcal{V} [A] \cdot (w'.n, \sigma'', w'.a) and w'.a = \top implies \sigma'' = w'.\sigma.
Note that w'' \triangleq (w'.n, \sigma'', w'.a) \leq w'.
    Hence [v/x]e_1 \in \mathcal{E} \llbracket B \rrbracket \cdot w''.
    Hence there is a \sigma''' \leq w''.\sigma such that \langle w''.\sigma; (\gamma, \nu/x)e_1 \rangle \Downarrow \langle \sigma'''; \nu' \rangle
    and v' \in V \llbracket B \rrbracket \cdot (w''.n, \sigma''', w''.a) and w''.a = \top implies \sigma''' = w''.\sigma.
    By rule \langle w.\sigma; \gamma(e e') \rangle \Downarrow \langle \sigma'''; v' \rangle.
    Note that w''' \triangleq (w''.n, \sigma''', w''.a) < w''.
    Note that w'''.n = w.n and w'''.\sigma \le w.\sigma and w'''.\alpha = w.\alpha and w.\alpha = \top implies \sigma''' = w.\sigma.
    Hence \gamma(e e') \in \mathcal{E} \llbracket B \rrbracket \cdot w.
• Case SI:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash cons(e, e') : SA now.
    By inversion, \Gamma \vdash e : A \text{ now and } \Gamma \vdash e' : \bullet(SA) \text{ now.}
    By induction, \gamma(e) \in \mathcal{E} [\![A]\!] \cdot w.
    Hence there is a \sigma' \leq w.\sigma and v s.t. \langle w.\sigma; \gamma(e) \rangle \downarrow \langle \sigma'; v \rangle
    and v \in V [\![A]\!] \cdot (w.n, \sigma', w.a) and w.a = \top \implies \sigma' = w.\sigma.
    Note that w' \triangleq (w.n, \sigma', w.a) \leq w.
```

By Kripke monotonicity, $\gamma \in \text{Env}(\Gamma)$ w'.

```
By induction, \gamma(e') \in \mathcal{E} \llbracket \bullet (SA) \rrbracket \cdot w'.
    Hence there is a \sigma'' \leq w' \cdot \sigma and v s.t. \langle w' \cdot \sigma; \gamma(e) \rangle \Downarrow \langle \sigma''; l \rangle
    and l \in V [A] \cdot (w'.n, \sigma'', w'.a) and w'.a = T \implies \sigma'' = w'.\sigma.
    Hence by rule, \langle w.\sigma; cons(e, e') \rangle \Downarrow \langle \sigma''; cons(v, l) \rangle.
    Note that w'' \triangleq (w'.n, \sigma'', w'.a) < w'.
    Hence w'' < w.
    Furthermore, w''.n = w.n and w''.a = w.a, and so if w.a = \top then \sigma'' = w.\sigma.
    Hence \gamma(\mathsf{cons}(e, e')) \in \mathcal{E} \, \llbracket \mathsf{S} \, \mathsf{A} \rrbracket \cdot w.
• Case SE:
    Assume \gamma \in \text{Env}(\Gamma) w.
    We know \Gamma \vdash \text{let cons}(x, xs) = e \text{ in } e' : C \text{ now.}
    By inversion, \Gamma \vdash e : S \land A \text{ now and } \Gamma, x : A \text{ now, } xs : \bullet(S \land A) \text{ now } \vdash e' : C \text{ now.}
    By induction, \gamma(e) \in \mathcal{E} [\![A]\!] \cdot w.
    Hence there is a \sigma' \leq w.\sigma and v s.t. \langle w.\sigma; \gamma(e) \rangle \downarrow \langle \sigma'; cons(v, l) \rangle
    and cons(v, l) \in V [A] \cdot (w.n, \sigma', w.a) and w.a = T \implies \sigma' = w.\sigma.
    Note that w' \triangleq (w.n, \sigma', w.a) < w.
    By definition, v \in V [\![A]\!] \cdot w' and l \in V [\![\bullet(SA)]\!] \cdot w'.
    By Kripke monotonicity, \gamma \in \text{Env}(\Gamma) w'.
    Assume w'' \le w'.
    By Kripke monotonicity, v \in V [\![A]\!] \cdot w'' and l \in V [\![\bullet S A]\!] \cdot w''.
    Hence v \in \mathcal{E} [\![A]\!] \cdot w'' and l \in \mathcal{E} [\![\bullet]\!] \cdot w''.
    Hence for all w'' \le w', v \in \mathcal{E} [\![A]\!] \cdot w''.
    Hence for all w'' \le w', l \in \mathcal{E} \llbracket \bullet S A \rrbracket \cdot w''.
    Hence (\gamma, \nu/x, 1/xs) \in \text{Env}(\Gamma, x : A \text{ now}, xs : \bullet(SA) \text{ now}) w'.
    By induction, (\gamma, \nu/x, l/xs)(e') \in \mathcal{E} [C] \cdot w'.
    Hence there is a \sigma'' \le w'.\sigma and v' s.t. \langle w'.\sigma; \gamma(e) \rangle \Downarrow \langle \sigma''; v' \rangle
    and v' \in V \llbracket C \rrbracket \cdot (w'.n, \sigma'', w'.a) and w'.a = \top \implies \sigma'' = w.\sigma'.
    Note that w'' \triangleq (w'.n, \sigma'', w'.a) \leq w'.
    Hence w'' < w.
    Furthermore, w''.n = w.n and w''.a = w.a, and so if w.a = T then \sigma'' = w.\sigma.
    By rule \langle w.\sigma; \gamma(\text{let cons}(x, xs) = e \text{ in } e') \rangle \Downarrow \langle \sigma''; \nu' \rangle.
    Hence \gamma(\text{let cons}(x, xs) = e \text{ in } e') \in \mathcal{E} \llbracket C \rrbracket \cdot w.
• Case uI:
    Assume w and \gamma \in \text{Env}(\Gamma) w.
    Assume \Gamma \vdash \text{into } e : \hat{\mu}\alpha. A now.
    By inversion, we know \Gamma \vdash e : [\bullet(\hat{\mu}\alpha. A)/\alpha]A now.
    By induction, we know that \gamma(e) \in \mathcal{E} \llbracket [\bullet(\hat{\mu}\alpha. A)/\alpha]A \rrbracket \cdot w.
    Hence for all \sigma < w.\sigma, there exists v and \sigma' < \sigma
    such that \langle \sigma; \gamma(e) \rangle \Downarrow \langle \sigma'; \nu \rangle and \nu \in \mathcal{V} \llbracket [\bullet(\hat{\mu}\alpha. A)/\alpha] A \rrbracket \cdot w.
    Assume \sigma < w.\sigma.
    Then there exists \nu and \sigma' \leq \sigma such that \langle \sigma; \gamma(e) \rangle \Downarrow \langle \sigma'; \nu \rangle and \nu \in \mathcal{V} \llbracket [\bullet(\hat{\mu}\alpha. A)/\alpha]A \rrbracket \cdot w.
    By substitution lemma, v \in V [\![A]\!] (V [\![\bullet (\hat{\mu}\alpha. A)]\!] \cdot w/\alpha) w.
    Hence into v \in \mathcal{V} [\hat{\mu}\alpha. A] \rho w.
    So \langle \sigma; \gamma(e) \rangle \Downarrow \langle \sigma'; \nu \rangle and into \nu \in \mathcal{V} \parallel \hat{\mu} \alpha. A\parallel \cdot w.
    So for all \sigma \leq w.\sigma, there exists v and \sigma' \leq \sigma
    such that \langle \sigma; \text{into } \gamma(e) \rangle \downarrow \langle \sigma'; \nu \rangle and into \nu \in \mathcal{V} \llbracket \hat{\mu} \alpha. A \rrbracket \cdot w.
    Hence into \gamma(e) \in \mathcal{E} \llbracket \hat{\mu} \alpha. A \rrbracket \cdot w.
    Hence \gamma(\text{into }e) \in \mathcal{E} \llbracket \hat{\mu} \alpha. A \rrbracket \cdot w.
• Case μE:
    Assume w and \gamma \in \text{Env}(\Gamma) w.
```

```
Assume \Gamma \vdash \text{out } e : [\bullet(\hat{\mu}\alpha.\ A)/\alpha]A \text{ now.} Hence \Gamma \vdash e : \hat{\mu}\alpha.\ A \text{ now.} Hence \gamma(e) \in \mathcal{E} [\![\hat{\mu}\alpha.\ A]\!] \cdot w. So for all \sigma \leq w.\sigma, there exists v and \sigma' such that \langle \sigma; e \rangle \Downarrow \langle \sigma'; \text{into } v \rangle and \text{into } v \in \mathcal{V} [\![\hat{\mu}\alpha.\ A]\!] \cdot w. We want to show \gamma(\text{out } e) \in \mathcal{E} [\![\bullet(\hat{\mu}\alpha.\ A)/\alpha]A]\!] \cdot w. Assume \sigma \leq w.\sigma. So there are v and \sigma' such that \langle \sigma; e \rangle \Downarrow \langle \sigma'; \text{into } v \rangle and \text{into } v \in \mathcal{V} [\![\hat{\mu}\alpha.\ A]\!] \cdot w. Hence v \in \mathcal{V} [\![A]\!] (\mathcal{V} [\![\bullet(\hat{\mu}\alpha.\ A)/\alpha]A]\!] \cdot w. By substitution v \in \mathcal{V} [\![\bullet(\hat{\mu}\alpha.\ A)/\alpha]A]\!] \cdot w. So \text{out } \gamma(e) \in \mathcal{E} [\![\bullet(\hat{\mu}\alpha.\ A)/\alpha]A]\!] \cdot w. So \text{out } \gamma(e) \in \mathcal{E} [\![\bullet(\hat{\mu}\alpha.\ A)/\alpha]A]\!] \cdot w.
```

48