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Values v s= L) n|b| e (v1,v2)

Expressions e = z|l|()|n]|bleses| Ax.e|erea]|er+ey|iter(e, ep, x.e9)
| (e1,e2) | let (x,y) = ey in ey | if e then e; else eo
| let (z,y) = chan() in e | get(e1,e2) | put(er, e2)

Types AB = 1|B|N|A®B|A—oB|GetA|PutA

Type Contexts T'')A == .| z:A

Heap Values  hv m= E|V(v) ]| C(v)

Heaps h n= | L hv,h

Figure 1: The language Acuan

1 The Language A\can

In the present work, we consider the language Acyan given in Figure 1, an extension of the
simply-typed A-calculus with an implementation of asynchronous channels. A fresh channel
can be created with let (z,y) = chan() in e, where z is a handle for receiving values over
the new channel and y is a handle for sending values. The operation put can be used to send
values and the operation get to receive values.

We assign expressions a type A in the linear type system I' - e : A, defined in Figure 2.
Besides the base types 1, B, N, we have linear pairs A ® B and linear functions A — B. The
type Get A is used for the receive handle of a channel, indicating that the channel will transfer
a value of type A. Similarly, the type Put A is used for the send handle. We allow values of
arbitrary types A to be transferred through channels, including channel handles themselves
and functions possibly capturing channel handles. The context I' is a linear context without
an ordering of the variables. We write I'; A for the disjoint union of the contexts I' and A.

We equip the language with a single-threaded, heap-based operational semantics, given in Fig-
ure 3. Operationally, each channel is represented by a single location ¢ in the heap, storing
either nothing E, a value V(v), or a continuation C(Az.e). Initially, the heap stores the empty
heap value E. If a value is sent over channel ¢ with put(¢, v), then the value is stored in memory
as V(v). If subsequently get(¢, Az.e) is executed, then the continuation Az.e is invoked with
argument v and the state in the heap is restored to E. If from the initial state get(¢, Az.e) is
executed, then the continuation is stored in the heap as C(Axz.e) and invoked with argument
v once a corresponding put(¥, v) is called. Besides the operations on channels, the operational
semantics allows standard, pure reductions for the simply typed A-calculus. Reductions are al-
lowed to occur in any evaluation context K, making it a call-by-value, left-to-right operational
semantics.

We write h[¢ — hv] for the heap which returns hv for argument £ and h(¢') for any argument
¢ # (. Analogously, we use the notation to update finite and infinite maps with a new binding
in the remainder of this work. We assume substitution is capture avoiding, write e[v/x] for the
single-point substitution replacing x with v in e, and e[f)] for the parallel substitution replacing
each free variable x in e with 6.
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Figure 2: Typing Rules



= | Kie|Ke|vK]|(K,e)|(v,K)|let (z,y) =K in¢€
| K+e|vtK|iter(K,e,x.e') | iter(v, K,x.€)
| if K theneselsees | get(K,e') | get(v, K) | put(K,e’) | put(v, K)

Evaluation Contexts K

e (&) v (¢ 1) (e;h) = (¢, 1)
(e,h) ~ (¢, ) (eh) ~ (/1) (K[e]. h) ~ (K[}, 1)

Pure Reduction

()ie~pe let (z,y) = (v1,v2) in e~ e[vy/x,v2/Y]
(Az.e) v~ e[v/x] n+m-~», n+m

if true then e; else e; ~, €1 iter(0,v,x.€) ~p v

if false then e, else ex ~~, €3 iter(n + 1,v,z.e) ~, iter(n, e[v/z], x.€)

Channel Reduction

(let (z,y) = chan() in e, h) ~>. (e[l/x,L/y], h[ — E]) if ¢ ¢ domh
(get(¢, A\x.e), h) ~¢ ((), h[l — C(Az.€)]) ifht=E
(get(¢, \x.e), h) ~~. (e[v/z], h[¢ — E]) if ¢ =V (v)
(put(€,v), h) ~c (), h[€ = V(v)]) ifh¢ =E
(put(£,v), h) ~ (e[v/x], h[€ — E]) if he = C(Az.€)

Figure 3: Operational Semantics



2 Ordinals

In this work, we only consider ordinals strictly smaller than w*. Each such ordinal, denoted by
o, 3,7 in the following, can be expressed in its Cantor normal form. That is, for each ordinal
a < w" there is some k£ € N and coefficients aqg, ...,a;r € N such that o = E?:o aw’ =
wkay, + - - - + wYag. We combine ordinals using natural addition [3].

Definition 2.1 (Natural Addition). Let o = Zk 0 wiai and § = Zi o w'bi. We define natural

addition by a®B = Zmax(kl w'(a; + b;) wherea; = 0 fori =k +1,...,1 andb; 2 0 for
1=1+1,... K

Lemma 2.1. Natural addition is associative and commutative, and O is an identity. Natural
addition is compatible with < on ordinals, meaning o < 3 impliesa @y < B & forall o, 3, 7.
Natural addition is cancellative, meaning o & v = 3 @ v implies a = 5.

Proof. Letav = Y " wia;, B =Y 1 ywib;, andy = >°F_ wic;. We define k = max(m,n, p)
and extend v, 3, and y with zeros by a; = Ofori = m+1,...,kandb; £ 0fori =n+1,...,k
andc; 2 0fori =p—+1,...,k. Asw'-0 = 0and 0 + o = « for all 7 and o, we have
o= Zf:o wag, B = Zf:o wib;, and v = Zf:o wie;.

1. Associativity. a @ (B @) = a® Y8 (Wil +¢) = S8 jwia + (b + ) =
S owi((ai+b) +e) = (howila+ b)) @7 = (@@ B) @ .

2. Commutativity. a & 8 = % wi(a; + bi) = SF_ wi(bi +a;) = B® .

3. Identity. a ®0 =% ow'(a; +0) = Z?:o wla; = a.

4. Compatibility. As o < 3, we have a # (3. Let j be the largest number such that a; # b;.

Clearly a; < b; as otherwise 3 > «. Since Zg;& wi(a; + ¢;) < w?, we have:
a®y =Y owi(a+c)
= (Zh (e + )+ wiay + o) + (LI wila; + )
- (Z”f J—HW (bi + ci) ) +wl(aj +c¢j) + (Zz ow (ai—i—ci))
< (Zf i wi(bs —I—cl)
= (Z"ic:jJrl(bi + ¢)w’ ) + w’ (b + ¢;)
< Tiowihi+e)=B®y

+ wI (14 aj + ¢;)

5. Cancellation. We first show that if Z?:o wim; = Zf:o w'n;, then m; = n; for all i =
0, ...,k by induction on k. For k = 0 the claim is trivial. For k£ > 0, we first show m =
ny. By way of contradiction assume my, # ny. Wlthout loss of generahty, let mk > nyg.
Then Zfzowimi > whmy, > WF(ng + 1) = Wi + W > Wiy + ZZ o L wing =



Z?:o w'n;, a contradiction. Thus my, = ny. By left cancellation of ordinal addition, we
obtain Zf:_ol wim; = Zf:_ol w'n;. By induction m; = n; foralli =0,...,k — 1.

Let a®y = S&~. By assumption Zf:o Wiai+c) =ady=Boy= E?:o Wi (b;+c;).
Thus, we have a; + ¢; = b; + ¢; for all i = 0,...,k. The claim follows with right
cancellation of + on natural numbers.

O]

Natural addition gives rise to natural multiplication, a commutative, associative multiplication
operation which distributes over natural addition. In the present work, we resort to two special
cases, multiplication by natural numbers and multiplication by w.

Definition 2.2 (Natural Multiplication). Let o = Zf:o wla;. We definen @ a £ Zf:o wiagn

andw @ a2 Y8 witla,

Lemma 2.2. Natural multiplication has the following properties:

O®a=0 l1®a=a«o (N +n)@a=n @adny nRa<w®a

Proof. Leta = >_1" jwia;.
1. 0 ® a = 0. Immediate from the definition.
2. 1 ® o = . Immediate from the definition.

3. (m +n2) ®a=n ®adn ®a. Wehave (n1 +n2) @ a = S owiai(ng +ng) =
Yoiow(aing + aing) = (Yot wraing) & (O gwlaing) = (n1 ® ) @ (n2 ® ).
4. n@a < w®a If a =0, the claim is trivial. If « > 0, then one of the coeflicients

ag, - - - , Gy, must be larger than zero. Let k be the largest k such that a; > 0. Then
n@a=3Y" wan =" wan <t < witle =S witle =w

O]



3 Resources

Capabilities p,qg == get(l) | put(¥) | al(¥)
Capability Sets C,D == 0| C W {p}
Invariant Maps @ = (| ®,l:A
Resources R = (C,P,a)] 4
Resource Maps p 2= 0| p,l—R
Step-Indices i,k == (a,C)

In the logical relation, we incorporate the linearity of the type system in the form of resources (2,
4]. In our setting, each resource R is either invalid, meaning R = 4, or R is a triple (C, @, o)
where C' is a set of capabilities, ® an invariant map, and « an ordinal. In the logical relation,
we relate values, expressions, and heaps with the resources they own. Intuitively, we interpret
owning a resource R = (C, ®, a) as the knowledge that the invariants ¢ : A € ® are enforced
in the heap typing relation, the right to execute instructions corresponding to capabilities in C,
and the right to allocate & new channels. The capability get(¢) corresponds to the right to
receive a value on channel /, the capability put(¢) to the right to send a value over channel ¢,
and the capability al(¢) to the right to physically allocate ¢, meaning to the right to add ¢ to
the heap. To combine two resources R and R/, we combine their components.

Definition 3.1 (Resource Addition).

(C,®,0)® (C',®,d)2 (CUC,dUP,add) if C#C" and ® ag '
R®&R £ otherwise

where we write C # C', if C and C' are disjoint, meaning C N C' = () and we write ® ag @', if
two invariant maps ® and ®' agree, meaningV ¢ € dom ® N dom ®'. &L = P’Y.

We write v'R, if R is a valid resource, meaning R # 4. A resource R is a subresource of R/,
written R C R/, if there exists some resource R” with R" = R @& R”. We denote the empty
resource by ¢ = (1, (),0). In the following, it will sometimes be convenient to consider re-
sources which only consist of capabilities Re,p(c) = (C,0,0), invariants Ry ¢y = (0, ®,0),
or ordinals Ryyq(q) 2 (0,0, ). We write Reap(py,....pn) for the resource Ry and

Rinv(flel,A..,Zn:An) for the resource Rinv({flel,A..,Zn:An})'

{plw-ypn})

In the remainder of this section, we establish some basic properties about the use of invariants
and resources in general.

Lemma 3.1.

1. If®; ag ®o, then &1 UPy is an invariant map. Further,dom(®;UP2) = dom ®;Udom P
and (1 U &)l = &1/ forall ¢ € dom @1 and (P U $o)l = Pol for all ¢ € dom Ps.

O ag(Py U 3) and Py ag O3 iff Py ag P2 and 1 ag 3 and Py ag 3.
If @) ag Oy, then o ag ®;.

If®; C &y, then O ag Pa.

® ag .

SN



Proof.

1. Assume ®; ag o, that is V¢ € dom &1 N $9.P1£ = Pyl Then &1 U P, is a function.
Clearly dom(®1 U ®3) = dom ®; U dom ®9. If £/ € dom @4, then (P U $9)l = P/
regardless of whether ¢ € dom ®4 or not with ®; ag 5. Similarly, if £ € dom @5, then
(®1 U Py)l = Pyl regardless of whether £ € dom P or not with ®; ag ®,.

2. Let &1 ag(Py U ®3) and P9 ag P3. With the first claim we know that ®5 U ®3 is an
invariant map. We show ®; ag ®9. Let £ € dom ®; Ndom ®9. Then &14 = (DU P3)l =
@90 by the first claim. Analogously ®; ag ®s.

Let &1 ag P2 and @, ag P3 and Poag P3. Let /£ € dom P N (dom ®5 U dom ‘1>3) If
¢ € dom @9, then &4 = Pol = (P U P3)¢ by the first claim. If £ € dom P3, then
D10 = O3l = (Py U P3)l by the first claim.

3. Let @1 ag @9 and ¢ € dom P3Ndom ®1. Then £ € dom ®; Ndom Ps. The claim follows.
4. Since $; C Py, we have P14 = ®o/f for all ¥ € dom ¢ C dom Ps.
5. The set dom ® N dom ) is empty. Thus, the claim holds trivially.

O

Lemma 3.2. The resource addition & is associative, commutative, and € is an identity. The
subresource relation T is reflexive, transitive, and¢e C R and RC R® R’ for all R, R'. Validity
extends to subresources, meaning if v’ R and R’ T R, then v'R'. The subresource relation is
compatible with resource addition, meaning if RC R', then R® Ry C R' @ Ry. If (C, ®,a) C
(C', @', a), thenC C C' and ® C ¥’ and o < .

Proof.

1. Associativity @. Let Ry, Ra, R3 be resources. We show R1 @ (Ra@ R3) = (R1 B R2) D R3.
If both sides are 7, the claim follows.

Case R; @ (Ry @ R3) = (C, @, «) for some C, @, . Then by definition of & we have
C =C1UCUCsand @ = &1 UP,UPs and o = oy Dag B ag where Ry = (C1, @1, 1)
and Ry = (02, D, 042) and R3 = (Cg, Ps, 053) such that Cy #(02 U 03) and Cy # Cjs
and ®; ag(Py U @3) and Py ag P3. Thus, C1 # Cy and C # C5. Hence (C1 U Cy) # Cs.
Further, by Lemma 3.1 we have ®; ag ®5 and ®; ag 3. Thus, (®1 U $9) ag 3. With
with Lemma 2.1, we obtain: (R & Rg) @ R3 = ((C1 UCa) UC 3, (1 U Do) UPs, (a1 &
) ® az) = (CrU(CoUC3), @1 U (P2 UP3), 01 @ (a2 @ a3)) = Ry @ (R2 @ R3)

Case (R1 & R2) & R3 = (C,®, «) for some C, @, . Then by definition of & we have
C=CiUCyUC3and ® = &1 U Py U D3 and o = a1 ® as ® a3 where Ry =
(Cl, Py, Oél) and Ry = (02, Dy, 012) and R3 = (Cg, D3, Oég) such that (Cl U 02) #Cs
and C1 # Cy and (1 U ®3) ag @3 and Py ag Po. Thus, C1 # C5 and Co # C's3. Hence
Cy #(CyU(C3). Further, by Lemma 3.1 ®; ag ®3 and @ ag P53 and thus ®; ag(Po U P3).
With with Lemma 2.1, we obtain: Rl@(RQ@Rg) = (CﬂJ(CQUCg), CI’1U(‘I’2UCI)3), a1 P
(e ® ag)) = ((C1UCy) UCs, (91 UD) UPs, (a1 D ag) ®ag) = (R1 @ R2) ® R3



Commutativity @. Let Ry, Ro be resources. We show Ry @ Ry = Ro ® R1. If Ry = 4
or Ry = 4, the claim is trivial. Let Ry = (C1,®1, 1) and Ry = (Cy, P2, az). If not
C1# Co,then RiG Ry = § = Ra® Ry. If not &1 ag $o, then by Lemma 3.1 not $9 ag P4
and thus R1 @ Ry = 4 = Ro® R;. Otherwise, R1 ® Ry = (Cl UCs, ®1UD9, oy @QQ) =
(02 UCi, P U Py, a9 @ 051) = Ry & Ry with Lemma 2.1.

Identity ®. Let R be some resource. We show R @ e = R. If R = 4, the claim is trivial.
IfR=(C,®,a),wehave R&e= (CUD,PUD,ad0)=(C,P,a)= Rsince C#(
and ® ag () by Lemma 3.1.

Reflexivity C. For any resource R, we have R ® ¢ = R. Thus R C R.

Transitivity C. Let Ry C Ry and Ry C R3. Then there are Ry and R, such that R @
R; = Ry and Ry ® Ry = R3. Thus Ry @ (Ry @ Ry) = R3 and thus R; C Rs.

€ C R. Follows with e ® R = R.

Validity. Assume v'R and R’ T R. Then there is some Rf such that R = R’ & Ry.

Since v'R, we have R = (C, ®, «) for some C, ®, a. Thus R’ = (C’,®’, ) for some
C', ¥, o since R = R' & Ry.

. Compatibility. Let R T R’. Then there is some R” such that R & R” = R’. Hence

ROR;®R'"=R®R"® Ry =R & Ry. Thus R® Ry C R' @ Ry.

Decomposition. Let (C, @, o) C (C’, ', o). Then there is some Ry such that (C', @', o/) =
(C,®,a) @ Ry. By definition of @, we have Ry = (Cy, ¢, af) for some Cr, Py, ay
such that ¢’ = C U Cyand ®’ = ® U Py and o = a ® ay. Since 0 < ay, we have
a=a®0<adar=7d.

O

Lemma 3.3.

N S kR wN

Proof.
1.
2.

(C,®,0) = Regp(c) © Rinw(@) © Rord(a)

IFV' Ry ® Rogp(cy and Ry ® Rogpcy = Ri ® Regy(c, then Ry = Ry.
If V'R ® Regpcy and Ry ® Regpicy E R1 © Regp(c), then Ry C Ry
If Ry ® Rorg(a) = B ® Rora(a)> then Ry = Ry.

If Ry ® Rorg(a) E B1 ® Rorg(a)> then Ry C Ry.

If® C U, then Ripya) © Ripyw) = Rinv(w)-

VRIfFV RS Ryge.

By definition since C' # () and ® ag () by Lemma 3.1.

Assuming v' Ry © Reyp(0), we have Ry = (C1,®1, 1) for some C1, @y, such that
C4 # C. Further, Ry = (Cy, ®2, ) such that Cy # C'. By assumption (C1UC, &1, 1) =



(CQ uC, ®y, 042). Since C7 # C and Cy # C, we have C = Cs.

. By assumption Ry @ Reap(c) © Ry = R1® Regp(c)- Thus by the second claim, Ro® Ry =
R;. Hence Ry C R;.

. If Ry = 4, then Ry = 4 and the claim follows. If Ry = 4, then R; = 4 and the claim
follows. Let Ry = (C1, ®1, 1) and Ry = (Ca, P9, a2) for some Cy, Cy, D1, Do, vy, vo.
By assumption (C1,®1,a1 & a) = (C2, P2, a2 @& «). The claim follows with right
cancellation of natural addition, see Lemma 2.1.

. By assumption Ry ® Roq(a) @ Rf = R1© Rorg(a)- Thus by the second claim, Ry @ Ry =
R;. Hence Ry C R;.

. If® C W, then ® ag ¥ by Lemma 3.1. Thus Riny (@) D Rinv(v) = Binv(@uw) = Riny(w)-

. Follows by case analysis on R.

10



4 Logical Relation

In this section, we define the logical relation of the language Acyan. In Figure 4, we give the
definition of the type interpretations. In Section 4.1, we prove that the type interpretations are
Kripke logical relations. In Section 4.2 and Section 4.3, we prove several properties about the
type interpretations which enable compact proofs of the compatibility lemmas. In Section 4.4,
we define the semantic typing judgement I' F e : A and in Section 4.5, we prove the com-
patibility lemmas required to prove that its a sound model of the syntactic typing judgement

I'ke: A

Step-Indices As step-indices, we use pairs of ordinals and sets of capabilities i, j, k =
(cr, C'). On step-indices, we define the lexicographic ordering:

(a,C) < (/,CY2a<d V(ia=d ACCC)

and as usual definei < j 27 < jVi=j.

We define the value relation V[ A];, the heap typing H[®];, and the expression relation E[A];
by recursion on the step-index i. For a fixed step-index i, we define the value relation V[A];
and the expression relation £[A]; by recursion on the type A. More precisely, at step-index ¢
the heap typing H[®]; depends on V[B]; for j < i and arbitrary types B, the value relation
V[A]; depends on £[B]; for j < i and B structurally smaller than A, and the expression
relation [ A]; depends on V[A]; for j < i and on H[®]; for j < i and arbitrary ®.

Lemma 4.1. If (o, C) < (¢, C"), then (o, C'\ D) < (¢/,C"\ D).

Proof. If « < o, then (o, C'\ D) < (o, C) < (¢/,C"\ D). If &« = &/, then C C C". Hence
C\D CC'\ D.Thus (o, C\ D) < (a,C"\ D) = (/,C"\ D). O

Value Relation In the value relation V[A];, we relate values that semantically inhabit the
type A with the resources they own. Unit, Booleans, and natural numbers only own the
empty resource €. Inhabitants of Get A are locations £ that own the resource Ryeyr4) =
({get(¢)},{f: A},0). Ownership of get() entails the right to perform a get on location ¢
and ownership of £ : A guarantees that the invariant £ : A is satisfied by the heap in the heap
typing relation H[®];. Analogously, inhabitants of Put A are locations ¢ that own the resource
Ryue.a) = ({put(€)},{¢: A},0). For linear pairs A ® B, we combine the resources owned
by the individual components. In the interpretation of the linear function type A — B, a
function is related to those resources that are required to execute the body safely, provided the
resources owned by the argument are added.

Logical State There is no physical difference between a channel in its initial state and a
channel after it has been used to exchange a value: in both cases, the channel location stores
the value E. However, there is a logical difference, which matters for keeping track of resource

11



Step-Indices and Logical State

Step-Indices i,5,k == (a,C)

Logical State s == Start | Cont | Val | Done

Logical State Map o i= Qo ls
o --» o[l — Start] if ¢ ¢ domo o --» o[l — Done] if of = Val
o --» o[l — Val| if of = Start o --» o[l — Done] if o = Cont

o --+ o[ — Cont] if of = Start
Value Relation
V[1]: £ {(0, )} V[B]; = {(true, ), (false, ¢)} V[N]; £ {(n,€) | n € N}
V[Get A]; = {(¢, ({get(0)}, {¢: A},0))} V[Put A; = {(£, ({put(0)}, {¢: A}, 0))}
V[A® B]; 2 {((v1,v2),R1 ® Ry) | (v1, Ry) € V[A]; and (ve, R2) € V[B];}
V[A — B]; £ {(Ax.e,R.) | Vj < i, (v, Ry) € V[A];. (e[v/z], Ry ® R.) € E[B];}

Heap Typing

/H[[@]]l £ {(h7 g, P)

dom ® = dom h = dom o = dom p and
Ve:Aed. (hl,al,pl) € HV[L: A];

HV[C : Ala.c = {(E,Start, ), (E, Done, €)}
U{ (V(v),Val,R) |3C".C =C"& {put(¢)} and (v, R) € V[A]a,c" }
U {(C(v), Cont, R) ‘ 3C". C = C" W {get(¢)} and (v, R) € V[A — 1]q.cr}

Expression Relation

Vi< i>Rf7 P, h,0,p. le(Rme’q):h‘a g, 10) =
E[A]; 2 (e,R) | I<4,0 DO, N, 0,0, v,R,. Rlx(Ry, Ry, ®' h' o' p)
and (e, h) ~*(v,h’) and o --+* ¢’ and (v, R,) € V[A]x

where
Rlo.c(Re, Ry, ®,h,0,p) £ (h,0,p) € H[P]a,c and used o # C and
3D.C = D Widxo and Re ® Ry @ Dyeqom, L E (D, @, )
idx(¢, Val) = {put(¢)} used (¢, Done) = {al(¥), get(¢), put(¢)}
idx(¢, Cont) = {get(¢)} used(¢, s) = {al(¢)} othw.
idx(¢,s) =0 othw. used o = U used (¢, o)
idxo = U idx(¢, of) tedomo
{edom o

Figure 4: Logical Relation
12



usage in our logical relation. Thus, to distinguish both states, we introduce the notion of the
logical state of a channel. The logical state of every channel in the heap is tracked in a state
map 0. We evolve it according to the transition relation o --+ ¢’. Each fresh channel starts
in the state Start and is then advanced to Done, either by storing a value or a continuation in
between.

Heap Typing The heap typing relation H[®]; ensures that the values in the heap satisfy
the invariants ¢ : A € ®. More precisely, the heap typing relation H[®]; relates the logical
state o with the physical heap h and the resources owned by values in the heap p such that the
invariants in ¢ are upheld.

Expression Relation In the expression relation £[A];, to execute an expression e owning
resource Iz, we assume some global invariant map ®, a current logical state map o, a current
heap h, and a current resource map p. To remain compositional, following the approach of
Ahmed et al. [1], we additionally assume some frame resource Ry, representing the resource
owned by a potential context in which e could be executed. We then show that the resource
interpretation Rl is preserved during the execution with a potential decrease in the step-index.
That is, we assume the resource interpretation is initially satisfied and show that at the end of
the execution the resource interpretation is satisfied for some resource R, owned by the result
v, some extended invariant map ®’, some updated logical state map o’, some updated heap #/,
and some updated resource map p'. After the execution, we ensure that the logical state map
was advanced according to the transition relation --+ and that the result v is contained in the
value relation.

The resource interpretation Rl, c(Re, Ry, ®, h, 0, p) serves three purposes: First, it ensures
that the heap is well-typed given the current invariant map ® with (h, 0, p) € H[®]q,c. Sec-
ond, with Re & Ry & @cgom, ! T (D, ®,a) we ensure ownership of resources has the
intuitive meaning. For the resources owned by different program components, the invariant
maps must all agree and be contained in the global invariant map ®, the capability sets must
be pairwise disjoint and contained in the step-index since D C C, and the sum of all ordinals
must be at most a. The latter guarantees that we can compositionally decrease the global step-
index by locally decreasing the ordinal in the resource of an expression. For example, if the
expression resource is R, = R’ & Rora(1), we can decrease « and allocate new capabilities by
giving up the resource Ryq(1).-

Third, the resource interpretation enforces that capabilities are used according to the following
state transition system with tokens [5], where “tokens” in our case are capabilities:

Cont
get(¢) |21D)get(d) pyic(é)
,a,lgli),> Start |~ s Done
O .. al(£),get(£),put(¢)

~ B

put()) I val |get
aI(E),[?ut(E) get(f)
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Below every state are the capabilities currently owned by that state. Formally, for a state map o,
the capabilities currently owned by o are given by idx cUused o. The functions idx ¢ and used ¢
distinguish between two modes in which capabilities can be owned by ¢, depending on whether
they are still contained in the step-index or not. We transfer the capability put(¢) (resp. get(¢))
to idx o at the point where a value (resp. continuation) is stored in the heap. We move them
to used o at the point where the continuation or value is retrieved during the execution. If the
state map o owns capabilities, then no program component can own those capabilities since
Re ® Ry ® @yegom, PL E (D, @, ) where D #idx o and D # used 0.

Lemma 4.2.

1. idx(¢, s) # used(¥, s)
Ift £ 0, then idx(¢, s) # used(¢', s').
Reap(iaxo) = Dredom o Reapliax(t.01))-
If¢ € domo, then al(¢) € used 0.
al(¢) ¢ idx(¢, s) and al(¢) ¢ idxo.

A

Proof. 1. Immediate from the definition of idx and used.

2. Immediate from the definition of idx and used since the capabilities in idx(¢, s) only
mention the location ¢ and the capabilities in used(¢’, s’) only mention the location ¢'.

3. For any location /, the set idx(¢, o) contains only capabilities with the location ¢. Thus

idx(¢,00)# | idx(¢, o)
Vel (Al
for all £ € dom o and L C dom 0. Thus, @ qom ¢ Reap(idx(¢,0¢)) is valid and:

@ Rcap(idx(f,aé)) = Rcap(U[Edoma idx(¢,00)) — Rcap(idxa)

fedom o

4. We have al(¢) € used(, s) for any s. Thus, if ¢ € dom o, we have al(¢) € used(¢, o¢) C
Urcdom o used (¢, of) = used 0.

5. Immediate from the definition of idx.

4.1 Kripke Logical Relation

The logical logical relation is a Kripke relation in the step-index. More precisely, the value
relation V[A]; and the expression relation E[A]; are closed under smaller step-indices. The
heap typing relation H[®]; is almost closed under smaller step-indices as the following lemma
shows:
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Lemma 4.3. Leti = (o,C) > (8, D) = j.

1
2.
3.
4

Proof.
1.

4.

E[A]; C E[A];

V[A]; € V[A];

If (h, s, R) € HV[{ : A]; and idx({,s) C D, then (hv, s, R) € HV[{ : A];.
If (h,0,p) € H[®]; andidxo C D, then (h, o, p) € H[P];.

The claim E[A]; C E£[A]; is immediate from the definition: For any & < j, we have
k < i by transitivity. The claim then follows by assumption.

By induction on A. The claim is trivial for 1, B, N, Get A, and Put A.

For A ® B, let (v,R) € V[A ® B];. Then there are v;,ve and R;, R such that v =
(v1,v2), R = R1® Ry, (v1, R1) € V[A];, and (v2, R2) € V[B];. By induction, we know
(v1, R1) € V[A]; and (ve, R2) € V[B];. Hence ((v1,v2), R1 @ R2) € V[A® BJ;.

For A — B the claim follows immediately from the definition of V[A — B]: Let
(Ax.e,R.) € V[A — BJ; and k < j and (v, R,) € V[A]x. Then k < i. Hence, by
(Az.e,R.) € V[A — B];, we have (e[v/z], R, ® R.) € E[B].

By case analysis on s. Trivial for Start and Done.

For Val, we have hv = V(v) and C = C" & {put({)} for some C’ and v such that
(v,R) € V[A]a,cr- Since put(¢) € idx(¢, Val) C D, we know that D = D' & {put(¢)}
for some D’. Since (8, D) < (a, C), we have (8, D’) < (a,C’) by Lemma 4.1. By the
second claim, it follows that (v, R) € V[A],p'.

For Cont, we have hv = C(v) and C' = C'wW{get(¢)} for some C’ and v such that (v, R) €
V[A — 1]a,cr. Since get(£) € idx(¢, Cont) C D, we know that D = D’ & {get({)}
for some D’. Since (8, D) < (a, C), we have (8, D’) < («,C’) by Lemma 4.1. By the
second claim, it follows that (v, R) € V[A — 1] p.

Follows immediately from the first claim since idx(¢, s) C idxo forall £ — s € o.

4.2 Resource Interpretation Properties

In the compatibility lemmas for the channel operations, we update the resource interpreta-
tion during the execution. The lemmas in this section capture how we update the resource
interpretation.

For the resource interpretation Rl;(Re, Rf, ®, h, 0, p) we use the following equivalent formu-
lation in the proofs:
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Lemma 4.4. Rl c(R., Ry, ®, h,0,p) iff
(h,o,p) € H[®]a,c and used o # C and sum(p) © Re © Ry © Regp(iax o) E (C, @, )

where sum(p) £ Drcaom , P

Proof. For the forward direction, let Rl c(Re, Rf, ®, h, 0, p). Then (h,0, p) € H[P]q,c and
usedo # C and C = DWidxo and R, ® Ry @ sum(p) C (D, ®, o). By Lemma 3.2, we have:

(Re S Rf D SUI’ﬂ(p)) @ Rcap(idxo) C (D, P, a) ©® Rcap(idxa) - (Ca P, a)

The claim follows with commutativity of .

For the backward direction, let (h, 0, p) € H[P]q,c and used o # C and sum(p) & R. ® Ry ®
Reap(idxo) E (C, @, a). Thenidxo C C by Lemma 3.2. Thus C' = DWidx o for some capability
set D. Hence, we have sum(p) @ Re © Ry © Reap(idxo) & (D, ®,a) © Regp(idxo)- Thus,
by Lemma 3.3, we have sum(p) ® R.® Ry C (D, ®, o). The claim follows with commutativity
of @. O

We can move resources from the expression into the frame and back:

Lemma 4.5. RI;(Ry ® Ry, Ry, ®,h,0,p) iff Rl;(R1, Ry @ Ry, ®, h,0,p)

Proof. Follows immediately from associativity of &:
sum(p) @ (R1 © R2) ® Ry @ Rcap(idxg) =sum(p) ® R & (R2 @ Rf) ® Rcap(idxg)
O

The resource interpretation is affine, in particular in the ordinal resources. For example, we
can trade in the right to allocate w fresh locations for the right to allocate n fresh locations for
some n € N.

Lemma 4.6. IfRlg c(Re © Ropgay; Ry, ®,h,0,p) and o < a, then there is some 3 < 3 such
that RIﬁ’,C(Re S Rord(o/): Rfa P, h, 0o, p)

Proof. By Lemma 3.2, we have Royq(q) C sum(p) @ Re @ Rorg(a) © Ry ® Reap(iaxo) E (C, @, 5)
and thus 3 = 3 & « for some 7. We define 8/ = 3¢ & . Then 3’ < 3 by Lemma 2.1. Thus,
(6',C) < (B,C). By Lemma 3.2, we have idxo C C. Since (h,0,p) € H[®]s,c, we have
(h,0,p) € H[®] s .c by Lemma 4.3. Lastly:

sum(p) ® R ® Rord(a) @ Rf D Rcap(idxa) C (07 P, B)

= sum(p) ® Re @ Rora(a) © Ry @ Reap(iaxo) E (C; P, By) @ Rora(a) (B=Br@a)
= sum(p) ® Re @ Ry @ Reap(idxo) E (C, @, By) (Lemma 3.3)
= sum(p) © Re @ Rorg(ar) ® Ry © Reap(iaxo) & (C, @, Br) © Rora(ar) (Lemma 3.2)
= sum(p) ® Re @ Rorg(ar) © Ry ® Reap(iaxo) & (C, @, 3') (8" =By ® )

]
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Lemma 4.7. IfRly c(R1 ® R, Ry, ®,h,0,p), thenRly c(R1, R, ®, h, 0, p).

Proof. By assumption, we have (h, o, p) € H[®],c and used o # C and sum(p) & Ry & Ry &
Ry ® Rep(idxo) £ (C, @, ). Thus sum(p) © Ry @ Ry @ Reap(idxo) = (C; @, ) and the claim
follows. O

We can trade in one ordinal resource for the capabilities associated with some fresh channel ¢.

Lemma 4.8. IfRly o(Re @ Ro1), By, @, h, 0, p), then there is some £ and 3 witha = 8@ 1
and Rlg cwiai(e)put(),get(0)} (Be © Regp(get (), put(0),a1(0))> s @, hy 0, p).

Proof. By Lemma 3.2, we have Ry (1) C sum(p) © Re © Rorq(1) @ Ry © Reap(iax o) E (C, @, )
and thus @« = 8 @ 1 for some 5. Let ¢ be some fresh location such that ¢ ¢ domo and
al(¢), get(¢), put(¢) ¢ C. We abbreviate D = {al(¢), get(¢), put(¢)}. We have:

sum(p) @ Re © Rorg1) @ Ry @ Reap(idxo) E (C, P, )
= sum(p) ® Re @ Rora1) © Ry @ Reap(iaxo) C (C; P, B) & Roaqr) (a=pd1)
= sum(p) ® Re @ Ry © Reap(iax o) & (C, @, B) (Lemma 3.3)
= sum(p) @ Re © Reap(p) © Ry ® Reap(idxo) = (C, @, B) @ Reap() (Lemma 3.2)
= sum(p) ® Re © Reap(p) ® Ry © Reap(idxo) E (C'W D, @, B) (D#0O)

By assumption, we have (h, 0, p) € H[®P]q,c. Further, idxoc C C'¢¥ D by Lemma 3.2. Since
(8,CW D) < (a,C), we have (h,0,p) € H[P]s,cup by Lemma 4.3. Since by assumption
used o # C, we have used o # C' & D as D = {al(¥), get(¢), put(¢)} and ¢ ¢ dom o. O

In the above lemma, we extend the capability set C' in the step-index with the capabilities
al({), get(¢), and put(¢). Due to the lexicographic ordering, we obtain the resource interpre-
tation at a smaller step-index by decreasing a. We refer to the above lemma as the logical
allocation since the heap h is left unchanged. The following lemma allows for the physical
allocation of ¢, meaning trading the capability al(¢) in for extending the heap h by the fresh
location /.

Lemma 4.9. IfRly c(Re © Regpai(e)); By, @, h, 0, p), then
RIQ,C\{aI(ﬁ)}(Re D Rim,(g:A), Rf, (CI), I A), h[f — E], U[f — Start], ,O[f — 6])

Proof. By Lemma 3.2, we have Re,p(ai(¢)) E sum(p) @ Re @ Reapai(r)) © Ry © Reap(idxo) &
(C,®, ). Hence, we have {al({)} C C and thus C = C’' W {al(¢)} for some C’. Since
used o # C, we have al({) ¢ usedo. Thus ¢ ¢ domo by Lemma 4.2. From (o, h,p) €
H[®]a,c, we know dom® = domp = domo and thus ¢ ¢ dom® and ¢ ¢ domp. We
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sum(p) @ Re @ Reap(al(e)) D Ry & Reap(idno) & (C, @, )
= sum(p) ® Re @ Reap(al(e)) ® Ry ® Reap(idxo) E (C', @, ) & Reap(ai(e))
= sum(p) ® Re @ Ry @ Reap(idxo) & (C', @, ) (Lemma 3.3)
= sum(p) ® Re ® Riny(.4) ® Rf ® Regp(iaxo) E (C', @, ) @ Riny(e.) (Lemma 3.2)
= sum(p) ® Re ® Riny(r:a) ® Ry ® Reap(idxo) T (C', (2,4 : A), ) (¢ & dom )
= sum(p[l — €]) ® Re ® Riny(p:a) @ Ry ® Reap(idx(olisstar])) T (O (2, €: A),a) (%)

where (x) is true since £ ¢ domp and ¢ ¢ domo. We have idx(c[¢ — Start]) C C’
by Lemma 3.2. Thus, by Lemma 4.3, we have (h,0,p) € H[®]qacr. Since (E,Start,e) €
HV[L : A]o,cr, we have (h[¢ — E], o[¢ — Start], p[l — €]) € H[P,{ : A],,cr. By assumption
used o # C'. Hence used(o[¢ — Start]) = {al(¢)} Wused o # C". O

Lemma 4.10. IfRl, c(Re, Rf, ®,h,0,p) andl : A € ® and (hv,s,R) € HV[{ : A]a,c and
used(?, s) \ used(¢,0¢) C D and

pg ® R @ Rcap(idx((,o’f)) @ Rinv({)) =R® R,e S Rcap(idx(ﬁ,s)) D Rcap(D) > Rinv(¢)7
then Rl o\ p(Re, Ry, @, h[l = hv], o[l = s], p[l — R]).

Proof. By assumption sum(p)® Re® Ry ® Reap(idxo) E (C @, ). We abbreviate the resources

that remain unchanged Rp := (@Z’edomp,i’# pl') ® Ry ® (@Z’edomo—,e’yée Reap(iax(e ot)))-
Then Rp @© pl © Re © Reap(idx(t,00)) E (C; @, ) by Lemma 4.2.

Rr®pl® R ® Rcap(idx(é,oﬂ)) - (07 P, a)

= Rp ® pl ® Re ® Reap(iax(t,00)) D Rinv(@) T (C, @, ) & Riny(a) (Lemma 3.2)
= Rp ® pl ® Re ® Regp(idx(t,00)) D Rinv(e) C (C, @, ) (Lemma 3.3)
= Rr ® R® Ry ® Reyp(idx(t,5)) ® Reap(D) @ Rinv(e) E (C, @, )

= Rp ® R® R, ® Reap(idx(t,5)) ® Reap(p) T (C, @, ) (Lemma 3.2)
= Rr © R® Ry @ Regp(iax(t,s)) ® Reap(p) E (C'\ D, @, ) & Regp(p) (*)
= RFOROR.® Reap(idx(e,s)) E (C\ D, @, ) (Lemma 3.3)
= sum(p[{ — R]) ® R, ® Ry ® Reap(iax(ofts))) E (C'\ D, @, ) (Lemma 4.2)

where (%) follows with D C C which holds given Rr © R ® R, © Reap(idx(t,s)) © Reap(p) E
(C,®,a) by Lemma 3.2.

By assumption, we have C' # used 0. We show (C'\ D) # used(o[¢ — s]). By way of contradic-
tion, assume p € C'\ D and p € used(c[¢ — s]). Since C' # used o, we have p ¢ used 0. Thus
p ¢ used(¢,0l) and p € used(?, s). Hence p € used(?, s) \ used(¢,0¢) C D, a contradiction.

By assumption we have (h, 0, p) € H[®]q,c and (hv, s, R) € HV[{ : A]qs,c. Thus, by defini-
tion we have (h[¢ — hv],c[l — s], p[¢ — R]) € H[P]q,c. With Lemma 4.3, it suffices to show
idx(o[¢ = s]) € C'\ D which follows from sum(p[l — R]) © R, © Ry © Reap(idx(o[tss))) T
(C\ D,®,«a) by Lemma 3.2. O
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Once a location has been allocated, the following lemma, Lemma 4.11, characterises how we
can update the resource interpretation. From the state Start, the resource interpretation may
be updated to the Val state by giving up the resources for the value v and the resource R,/ 1)
which contains the capability put(¢). The resource R, associated with the value is transferred
to the heap while the capability put(?) is transferred to the logical state and remains part of the
step-index. Analogously, we can store a continuation in the heap and advance the logical state
to Cont. If the heap currently stores a value with logical state Val, we can advance the state to
Done and remove the resource R, from the resource map. We decrease the current step-index
(ar, C) to the smaller step-index («, C'\ {get(¢), put(¢)}). Analogously, we can advance from
the state where a continuation is stored to the Done state.

Lemma 4.11. LetRl, c(Re, R¢, ®, h, 0, p).

1. Ifol = Start and pl = € and R, = Ry, ® Rpyy,4) and (v, Ry) € V[A]a,c, then
Rlo,c(e, Ry, @, h[l — V(v)], o[l — Val], p[l — R,]).

2. Ifol = Start and pl = € and R, = R\ @ Rgeyy,4) and (v, Ry) € V[A —o 1]4,c, then
Rlo,c(€, Rf, ®, h[l — C(v)], o[l — Cont], p[¢ — R)]).

3. Ifol = Val and pl = Ry, and R. = R\ & Rgeis, ), then
Rlo o0\ fget(0) put(0)} (Ro © Ry, Ry, @, h[l — E], o[¢ > Done], p[l — €]).

4. Ifol = Cont and pl = Ry and Re = Ry, © Ry, 4), then
RIa,C\{get(Z),put(Z)}(Rv ® Ry, Rfa o, h[f = E]a U[K = Done]a P[f = E])

Proof. We prove each of the claims using Lemma 4.10. For each case, we have / : A € ®
because Ryey(r,4) E Re or Ry 4) E Re from which £ : A € ® follows by Lemma 3.2 since
R C Sum(p) © R ® Rf ® Rcap(idxa) C (07 o, Oé).

1. We pick D £ () = used(/, Val) \ used(/, Start). We show (V(v),Val, R,) € HV[( :
Ala,c. We have put(f) € C as Ryyr,4) E Re E (C, ®,a) by Lemma 3.2. Thus, there
is some C” such that C' = C" & {put(¢)}. By Lemma 4.3, we have (v, R,) € V[A]q.c’.
Lastly, we have by Lemma 3.2 and Lemma 3.3:

Pl ® Re ® Reap(idx(t,00)) D Rinv(a)

=€ D Ry ® Ryui(r,4) D € D Riny(a) (Def. idx)
=€ D Ry ® Reap(put(e)) © Binv(e:4) © € D Riny(a)

=Ry ® € D Reap(put(t)) D Reap(D) © Rinv(a) (6: A€ P, Reypp) =€)
=Ry ® € D Reap(idx(t,val)) D Reap(D) © Riny(a) (Def. idx)

2. We pick D £ () = used (¥, Cont) \ used(/, Start). We show (C(v), Cont, Ry) € HV[{ :
Ala,c. We have get(f) € C as Rgeys,4) E Re T (C, @, ) by Lemma 3.2. Thus, there
is some C’ with C' = C" & {get(¢)}. By Lemma 4.3, we have (v, Ry) € V[A — 1], ¢’
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Lastly, we have by Lemma 3.2 and Lemma 3.3:

pﬁ ® R @ Rcap(idx(f,aﬁ)) > Rinv(q))
=€ @ R) ® Rger(r,4) D € D Riny(a)

=e® R) ® Rcap(get(ﬁ)) D Rinv(@:A) Ded Rinv(@) (Deft. IdX)
=R\®e® Rcap(get(l)) D Rcap(D) ¥ Rinv(@) (t:Ae?, Rcap(@) =)
=R\®ed Rcap(idx(Z,Cont)) D Rcap(D) D Rinv(fb) (Def. idx)

3. We pick D £ {get(¢), put(¢)} = used(¢,Done) \ used(/, Val). By definition, we have
(E,Done, €) € HV[l : A]q,c- Lastly, we have by Lemma 3.2 and Lemma 3.3:

pe ® R @ Rcap(idx(f,aﬂ)) @ Rinv(CI))

=Ry ® R)x ® Rger(r,4) D Reap(put(r)) D Rinv(@) (Def. idx)
=€ @ (Ry © R)\) @ Reap(get(t),put(t)) © Rinv(r:4) © Rinv(a)

—¢® (Ry © Ry) © Reap(p) © Buny(ar) (0:Acd
=e @ (Ry @ R)\) © Reap(iax(t,Done)) D Reap(D) © Rinv(a) (Def. idx)

4. We pick D £ {get(¢), put(¢)} = used(¢, Done) \ used(¢, Cont). By definition, we have
(E,Done, €) € HV[( : A]q,c. Lastly, we have by Lemma 3.2 and Lemma 3.3:

pl & Re @ Rcap(idx(ﬁ,aﬁ)) @ Rinv(Cb)

=R\P R, P Rput(Z,A) D Rcap(get(ﬁ)) ® Rinv((p) (Def. idx)

=D (Ry ® Ry) © Reap(get(t),put(0)) © Rinv(e:4) © Riny(a)

=D (Rv ® R)\) S%) Rcap(D) ® Rinv(@) £:Aecd)

=e® (Rv @ R)\) ® Rcap(idx(E,Done)) D Rcap(D) D Rinv({)) (Def. idx)
O

4.3 Properties of the Type Interpretations

The expression relation is closed under larger resources, in particular in the number of locations
that can be allocated. We can always weaken the number to a larger bound:

Lemma 4.12. 1 If(e, Re © Ryy(a)) € E[A]i and a < 3, then (e, Re © Ronyp)) € E[A]
2. If (e, R.) € E[A];, then (e, R. & R) € E[A];.

Proof. 1. Let (7,C) <idandRl, ¢(Re ® Ry, Ry, ®, h, 0, p). Then there is some 7' <
such that Rl o(Re © Roa(a), Ry, @, h,0,p) by Lemma 4.6. Since 7/ < v, we have
(+',C) < (v,C) < i. By assumption, there is some k < (7/,C) and ®' O & and
h',o',p" and (v,R,) € V[A]x such that Rlx(R,, Ry, ®' W', 0’,p') and o --+* 0’ and
(e, h) ~*(v, h'). The claim follows with k < (v, C) < (v, C).
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2. Let j < iand Rlj(R. ® R, Ry, ®, h,0,p). Then Rl;(Re, Ry, ®, h,0,p) by Lemma 4.7.
The claim follows by the assumption (e, R.) € E[A];.

d

The following lemma is useful in proofs of standard compatibility lemmas. First, every value
in the value relation is already contained in the expression relation. Second, we can take steps
which do not manipulate the heap, defined by ¢/ ~+ ¢ £ Vh.(e, h) ~ (€, h), to prove that an
expression is contained in the logical relation. Third, we can reason about composite expres-
sions K [e] by reasoning about e and the remaining expression K [v] after e has been executed,
if we abstract over the result v.

Lemma4.13. 1 V[A]; C E[A];.
2. If (e, R.) € E[A]; and ' ~~* ¢, then (¢/, R.) € E[A];.

3. If (e, Re) € E[A]; andVj < i, (v, Ry) € V[A];. (K[v], R, ® Rk) € E[B];,
then (K[e], Re ® Ri) € E[B];.

Proof. 1. Let(v,R,) € V[A];andj < iandRl;(R,, Rf,®, h,0,p). Then (v, R,) € V[A];
by Lemma 4.3. The claim follows with (v, h) ~>*(v, h) and o ~* 0.

2. Let (e, R.) € E[A]; and €’ ~»*e and j < i and RI;(R,, Ry, ®, h, 0, p). By assumption,
there exist k < jand ®’ O ®and 1, ¢’, o', v, R, such that Rl (R,, Ry, ', b/, o', p') and
(v, Ry) € V[A]\ and (e, h) ~*(v, h’). The claim follows with (¢/, h) ~~*(e, h) ~*(v, h').

3. Let j < i and Rl;(R. ® Rk, Ryf,®,h,0,p). By Lemma 4.5, we have Rl;(R., Rx @
R¢,®, h,o,p). By assumption, there exist some 5/ < jand ® D ® and b/, 0’,p’, v, R,
such that Rl (R,, Rx ® Ry, ®',h',0’,p') and 0 --»*¢’ and (v, R,) € V[A]; and
(e, h) ~*(v,h’). By Lemma 4.5, Rl;/(R, @ Ry, Rys,®', 1,0, p') follows. By assump-
tion, (K[v], Ry ® Rk) € &[B];. Thus, there exists some k < j’ and ®” O @ and
h",a", p",v', R, such that Rl (R, Rf, ®",h" 0", p") and ¢’ --+*¢” and (v, R}) €
V[B]and (Kv], h') ~*(v', h"). We have (K [e], h) ~*(K[v], k') ~* (v, k") and o --+*
o' --+*c"and k < 5/ < j.

O

The following four lemmas are the compatibility lemmas on closed expressions for creating
channels, for receiving values over them, for sending values over them, and for closing them.

Lemma 4.14.
Ve.(e[l/x,L/y], Re © Rgeye,a) © Rpuye,a)) € E[BI

(let (x,y) = chan() in e, Re @ Ropq(1y) € E[B]:

Proof. Let (o, C') < iand Rl o(Re © Rora(1), Ry, ®, h, 0, p). By Lemma 4.8, we have

Rlg,cual(e) put().get(0)} (e © Reap(al(6) get(6),put(6))> L @, b, 0, p)
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for some § with & = @ 1 and some location £. We have (C'w{al(¢), put(¢), get(¢)}) # used o
by the definition of Rl and thus ¢ ¢ dom ¢ by Lemma 4.2. With (h, 0, p) € H[®]4,c, we further
have ¢ ¢ dom h and ¢ ¢ dom ® and ¢ ¢ dom p. By Lemma 4.9, we have:

Rl cuwiget(o)put(0)} (Re @ Reap(get(0),put(e)) © Rinv(e:a), Ry, (®,€: A), b, o', p')

=Ryger(e,4) D Rpur(e,4)

for h' £ h[¢ — E] and ¢’ £ o[¢ ~ Start] and p’ = p[¢ — €. By assumption (e[l/z, £/y], Re ®
Ryget(r,4) ® Rpur(e,4)) € E[B];- Since 8 < a by Lemma 2.1, we have (3, Cd{get(¢), put(¢)}) <
(a, C) < i. Hence, there is some (5, C") < (8, CW{get(¢), put(¢)}) and ' O (®,¢ : A) with

Rlgcr(Ry, Ry, @', 0", 0", p")

for some 1", 0", p", (v,R,) € V[B]g . Further, o’ --+* " and (e[¢/x,¢/y], h') ~*(v, h").
We have (8/,C") < (8,C W {put(¥),get(V)}) < (a,C) and ®" O (d,¢ : A) DO . Since

¢ ¢ domo and £ ¢ domh, we have ¢ --» ¢’ --+*¢” and (let (z,y) = chan() in e, h) ~
(elt/x, L/y], B') ~* (v, B"). O

Lemma 4.15.
('Uchv Rch) € V[[Get A]]z (U)\, R)\) S V[[A —o ]l]]i

(get(ven, v), Ren ® Ry) € E[1];

Proof. Let (a,C) < i and Rly,c(Reh @ Ry, Ry, ®,h,0,p). By (veh, Ren) € V[Get A];, we
know vep = £ and Ren = Rgey(p,4) for some £. By Lemma 3.2, we have Ryeg,4) E (C, @, )
and v’ Ryeq(r,4) ® Reap(idx o) and thus get(¢) € C and get(£) ¢ idxo and £ : A € ®. Further, we
have used o # C. Thus, get(¢) ¢ used o follows. Further, unfolding the definition of Rl, ¢, we
have (hl,0/, pl) € HV[L : A]q,c. Since get(£) ¢ used o and get({) ¢ idx o, either o¢ = Start
or of = Val.

1. Let o¢ = Start. By (hl,0l,pl) € HV[l : A]a,c, we have h! = E and pl = e.
By Lemma 4.3, we have (vy, R)) € V[A —o 1]4,c. Hence, with Lemma 4.11 we have:

Rla.c(e, Ry, ®, h[¢ s C(uy)], ot s Cont], pll s Ry])
We define b’ £ h[¢ — C(v))], o’ & o[¢ — Cont], and p' £ p[¢ — R,]. By definition
(get(£,vn), h) ~*((), h') and o --»* ¢’. Further, by definition ((),€) € V[1]q.c-

2. Let of = Val. By (hl,0/,pl) € HV[l : A]a,c, we have C = C1 W {put({)} for some
C1 and h¢ = V(v) and pl = R, for some (v, R,)) € V[A]q,c,. Since get(¢) € C, there
is some C such that Cy = C & {get(¢)}. By Lemma 4.3 (v, R,,) € V[A]a,c,- Thus, by
definition of the value relation V[A — 1];, we have vy = Az.e for some z and e such
that (e[v/z], R, @ R)) € £[1]a,c,. By Lemma 4.11, we obtain:

Rlo,co (Ry @ Ry, Ry, @, h[l — E], o[l — Donel, p[l — ¢])

Thus, there are some (3, C3) < (a,C2) and @' O @, b/, 0/, p' and (v, R})) € V[1],cs,
such that Rlg ¢, (R, Ry, @', 1,0’ p') and (e[v/z],h[l — E])~*(v',h') and o[l —
Done] --»*¢”.
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We have (3,C3) < (o, C3) < (o, C) and &' O . Further, we have (get(¢, \z.€), h) ~
(e[v/x], h[l — E]) ~*(v', 1). Lastly, 0 --» o[¢ — Done| --+* ¢’

O]

Lemma 4.16.
(Ucha Rch) € V[[PUt A]]l (U) Rv) € V[[A]]z

(pUt(Uch’ U)a Rch 2] Rv) € g[[]]-ﬂl

Proof. Let (a,C') < i and Rly,c(Reh ® Ry, Rf, ®, h,0,p). By (ven, Ren) € V[Put A];, we
know vy = £ and Ren = Ry (¢, 4) for some /. By Lemma 3.2, we have Ry ¢,4) E (C, @, )
and v Rpuy(r, 4) © Reap(idx o) and thus put(¢) € C and put(f) ¢ idxo and £ : A € ®. Further, we
have used o # C'. Thus, put(¢) ¢ used o follows. Further, unfolding the definition of Rl ¢, we
have (h?, o/, pl) € HV[{ : A] c. Since put(¢) ¢ used o and put(¢) ¢ idx o, either o/ = Start
or o/ = Cont.

1. Let of = Start. By (hl,0l,pl) € HV[{ : A]n,c, we have h! = E and pl = e.
By Lemma 4.3, we have (v, R,) € V[A]4,c. Hence, with Lemma 4.11 we have:

Rla.c(e, Ry, ®, h[0— V(v)], o]0 — Val], plf — R,))

We define ' 2 h[f — V(v)], o/ £ o[¢ + Val], and o' £ p[¢ — R,]. By definition
(put(4,v), h) ~*((),h') and o --+* ¢’. Further, by definition ((),€) € V[1]a,c-

2. Let o¢ = Cont. By (hl,0l,pl) € HV[{ : A]a,c, we have C = Cy & {get({)} for
some C; and W = C(vy) and p/ = R) for some (vy, R\) € V[A — 1]4,c,. Since
put(¢) € C, there is some C3 such that Cy = C7 W {put(¢)}. By Lemma 4.3, we have
(v, Ry) € V[A]a,c,- Thus, by definition of the value relation V[A — 1], ¢, we have
vy = Az.e for some x and e such that (e[v/z], R, ® R)) € £[1]q,c,. By Lemma 4.11,
we obtain:

Rlo,co (Ry @ Ry, Ry, @, h[l — E], o[l — Donel, p[t — ¢€])

Thus, there are some (3, C3) < (a,C2) and @' O ®, b/, 0/, p' and (v, R))) € V[1],cs,
such that Rlg ¢, (R, Rs, ®', 1/, 0',p') and (e[v/z],h[¢ — E])~*(v',h') and o[¢ —
Done] --+* ¢’

We have (3,C3) < (a,C3) < (a,C) and & O ®. Further, we have (put(¢,v),h) ~
(e[v/x], h[l — E]) ~*(v', 1). Lastly, 0 --» o[¢ — Done| --+* o’

d

For the remaining expressions, properties about their behavior follow from the lemmas above.
We showcase iteration. For iteration iter(n, €/, z.¢e), the function that is iterated Az.e cannot
make use of capabilities of existing channels. Otherwise, the capabilities would have to be
duplicated for repeated iteration. The function may however allocate fresh channels. If « is an
upper bound on the number of locations that are allocated by Az.e, regardless of the argument,
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then n ® a is an upper bound on the number of locations that are allocated when iterating the
function n-times. If the number of iterations is not known before the execution, we can bound
itby w ® .

Lemma 4.17.

(elv R/e) € g[[A]]Z ()\ZL‘.@, Rord(oc)) € V[[A —° A]]Z
(iter(n, 6,, x.e), R/e ©® Rord(n@a)) € 5[[A]]z

Proof. By induction on n for arbitrary 4, €/, and R,. With Lemma 4.13, it suffices to show
(iter(n, v, v.€), Ry ® Roamea)) € E[A]i forall j <iand (v, R,) € V[A];.

1. Casen = 0. As Ryq(09q) = €and iter(0, v, x.e) ~ v, the claim follows with Lemma 4.13
and (v, R,) € V[A];.

2. Casen > 0. By definition iter(n,v,z.e) ~~ iter(n — 1, elv/z], z.e). With Lemma 4.13
and Lemma 2.2, it suffices to show (iter(n — 1, e[v/x], 7€), Ry® Rord(a) P Rord((n—1)2a)) €
E[A];. Since (v, R,) € V[A]; and (Az.e, Rorq(a)) € V[A — A]; and j < i, we have
(e[v/z], Ry ® Rora(a)) € E[A];. The claim follows by induction and Lemma 4.3.

O]

Lemma 4.18.

(e, R) € E[N]; (eo, Ro) € E[A]i (AT.€5, Rorg(ag)) € V[A — A];
(iter(e, €0, z.€5), R ® Ro ® Rorg(wpas)) € E[A]:

Proof. By Lemma 4.13, it suffices to show:
(iter(v, e, z.€5), Ry ® Ry @ Rord(w@as)) € E[A];

forall j <iand (v, R,) € V[N];. By definition of V[N];, we have v = n for some n € N and
R, =€ Sincen ® ag < w ® ag by Lemma 2.2, by Lemma 4.12 it suffices to show:

(iter(n, eg, z.€5), Ro © Rord(ngag)) € E[A];

The claim follows with Lemma 4.3 and Lemma 4.17. O

4.4 Semantic Typing

To define the semantic typing judgement I' F e : A, we close the expression with a substitution
from the context interpretation G[I'];:

Gl = {(0, )}
GIl,z: Al; = {(0, Ro® R) | (0, Ry) € G[I']; and (0z, R) € V[A];}
FEe: A% 3aViv(0,Ry) € G[IT;.(ed], Rp & Rorga)) € E[A:
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Context Interpretation Before we proceed to prove semantic soundness, we establish the
following properties of the context interpretation G[I'];.

Lemma 4.19. If (0, Ry) € G[TI', A];, then Ry = Ry @ Rz for some resources Ry, Ro such that
(Q,Rl) S g[[F]]l and (0, RQ) S g[[A]]Z

Proof. By induction on A.
1. Case -. Then (0, Ry) € G[I'];. The claim follows with Ry £ Ry and Ry = e.
2. Case A,z : A. Then (6, Rg) € G[I', A,z : A];. Thus, Ry = Ry & R for some R}, R
with (0z, R) € V[A]; and (6, R})) € G[I', A];. By induction, there are R;, R such that
Rj = Ry ® R} and (0, Ry) € G[I']; and (0, R) € G[A];. We define Ry £ R}, ® R. By
definition, (6, Rs) € G[A, x : A];.

O
Lemma 4.20.
1. If0 =domT 0" and (0, R) € g[[l“]]i, then (9/, R) € g[[F]]Z
2. Ifi < j, then G[I']; € G[I'];.
Proof. Both by induction on I'. For the second, we use Lemma 4.3. O

Lemma 4.21. IfT,x : A is defined and (0, Rg) € G[I']; and (v, R,) € V[A];, then (0[x —
v], Rg ® Ry) € G[I', z : A];.

Proof. By definition of G[I',x : A]; it suffices to show (8[x — v|, Rg) € G[I'];. As type
contexts are linear, we know x ¢ domT. Thus 0]z — v] =gomr 6. The claim follows
with Lemma 4.20. O

Semantic Soundness In the following, we prove semantic soundness of the type system I -
e : A with respect to the semantic interpretation I F e : A. The proof proceeds by induction
using compatibility lemmas in each case. We prove those compatibility lemmas in Section 4.5.
Given the semantic soundness proof, it is then straightforward to derive termination.

Theorem 4.1. If'Fe: A, then'Fe: A.
Proof. By induction on I' - e : A using Lemmas 4.22 to 4.37. O
Corollary 4.1. If- + e : A, then (e, ) ~*(v, h) for some value v and heap h.

Proof. By Lemma 4.1, we have - F ¢ : A. Thus, there is some « such that:
Vi.(e[id], e ® Rord(a)) € E[A];

since (id, €) € G[-]; for all i by definition. We pick i £ (a, ). Thus (e, Rora()) € E[A]i. By
definition of £[AJ;, it suffices to show Rl;(Rora(a), €, 0, -, 0, 0). By definition (-, 0,0) € H[0];
Further, used () = () # (). Lastly, sum(0) © Rora(a) ® € ® Reap(idx0) = Rord(a) T (0,0,a). O

25



4.5 Compatibility Lemmas

Lemma 4.22.
z:AFEx: A

Proof. Pick a = 0. Let (6,R) € G[z : A];. Then (§x, R) € V[A];. It remains to show
(z[0], RORora(0)) € E[A]i- As (2]0], RO Rorg(0)) = (02, R), the claim follows with Lemma 4.13.
O

Lemma 4.23.
I'Ee: B

INz:AFe:B

Proof. By assumption, we have some a, for e. We pick a £ a. Let (0, Ry) € G[I',z : A];.
Then Ry = Ry @ Ry for some Ry, Ry such that (0, Ry) € G[I']; and (6, R2) € Gz : A];
by Lemma 4.19. It remains to show (e[0], R1 © Ro(a) © R2) € E[B];. By Lemma 4.12, it
suffices to show:

(e[0], R1 ® Rord(a)) € &[B]:

which follows by assumption with (6, R;) € G[I'];. O
Lemma 4.24.
E():1

Proof. Pick v = 0. Let (6, R) € G[-];. It remains to show (()[0], Rora(0)) € E[1]i- As
(O[], Roraoy) = ((), €) € V[1];, the claim follows with Lemma 4.13. O

Lemma 4.25.
T'ke 1 AFey: A

I''AFepe: A

Proof. By assumption, we have «; for e; and ay for e5. We pick « £ a1 @ as. Let (0, Ry) €
G[I', A];. Then Ry = R1® Ry for some R;, Ry such that (6, R;) € G[I']; and (0, R2) € G[A];
by Lemma 4.19. It remains to show (e [0]; e2[0], R1 © Rorg(a,) @ R2 © Rord(an)) € E[A]:-

By assumption (e1[0], R1 @ Rord(a,)) € E[1]i- By Lemma 4.13, it suffices to show:
(Ul; €2 [9]5 Ry, ® Ry ® Rord(az)) € g[[A]]J

forall j <iand (v, Ry, ) € V[1];. By definition of V[1];, we know v; = () and R,, = €. By
assumption (e2[0], Ra® Rorq(ay)) € E[A]i. The claim follows with Lemma 4.13 and Lemma 4.3
given the pure reduction (); (e2[f]) ~ e2[d]. O

Lemma 4.26.
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Proof. Pick @ = 0. Let (0,R) € G[];. It remains to show (b[6)], Rora()) € E[B]i. As
(b[0], Rora(0)) = (b, €) € V[B];, the claim follows with Lemma 4.13. O

Lemma 4.27.
I'Ee:B AFEe : A AFey: A

I'' Ak ifethenejelsees: A

Proof. By assumption, we have a, for e, a; for eq, and s for ea. We pick L 0. P a1 ® as.
Let (0, Ry) € G[I', A];. Then Ry = R; & Ry for some Rj, Ry such that (0, R;) € G[I']; and
(0, R2) € G[A]; by Lemma 4.19. Thus, it remains to show:

(if e[0] then e1[0] else e2[0], R1 © Rord(a,) © B2 © Rord(ar@as)) € E[A]
By assumption (e[f)], R1 © Rord(a.)) € €[B]:. Thus, by Lemma 4.13, it suffices to show:
(if v then e [0] else e2[0], Ry © Ro © Rord(a@as)) € E[A];

for all j < iand (v, R,) € V[B];. By definition of the value relation, we have R, = € and
v = true or v = false.

1. Let v = true. By assumption (e1[0], Ry © Rorg(a,)) € E[A]i. By Lemma 4.12 and
Lemma 4.3, we have (e1[0], Ro® Rora(aya2)) € E[A];. The claim follows with Lemma 4.13
since if true then e;[f] else ea[0] ~~ e1[0].

2. Let v = false. By assumption (e2[0], R2 © Rord(as)) € E[A]i- By Lemma 4.12 and
Lemma 4.3, we have (e2[0], Ro® Rord(a,¢a2)) € E[A];. The claim follows with Lemma 4.13
since if false then e;[0] else ea[0] ~~ ea[d)].

O
Lemma 4.28.
-EFn:N

Proof. Pick v = 0. Let (§,R) € G[];. It remains to show (n[f], Rog0)) € E[N]i. As
(n[0], Rora(0)) = (n,€) € V[N];, the claim follows with Lemma 4.13. O

Lemma 4.29.

I'Ee:N AFey: N
I''AEFe +e: N

Proof. By assumption, we have o for e; and ay for ey. We pick « £ a1 @ as. Let (0, Ry) €
G[T, A];. Then Ry = R1® R, for some Ry, Ry such that (0, R1) € G[I']; and (6, R2) € G[A];
by Lemma 4.19. It remains to show (e1[0] 4 e2[0], R1 © Rorg(a,) © R2 © Rorg(as)) € E[N]:.
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By assumption (e1[0], R1 @ Rora(a,)) € €[N];. By Lemma 4.13, it suffices to show:
(1)1 + €2 [9]7 Rv1 ® Ry @ Rord(az)) € g[[N]]J

for all j < i and (v1, Ry,) € V[N];. By assumption (e2[0], R2 © Rorg(as)) € E[N]i and
by Lemma 4.3 (e2[0], Rz © Rord(as)) € E[N];. Thus, by Lemma 4.13, it suffices to show:

(v1 +v2, Ry, ® Ry,) € E[N]

for all k£ < j and (ve, Ry,) € V[N]. By definition of V[N] , we know v; = n; and v = ng
and Ry = € and Ry = € for some n1,ny € N. As (n1 + na,€) € V[N]y, the claim follows
with Lemma 4.13 given the pure reduction n1 + ng ~ ny + no. O

Lemma 4.30.
I'Fe:N AFey: A r:AFeg: A

I, A Eiter(e, ep, z.€5) : A

Proof. By assumption, we have o, for e, ag for eg, and ag for eg. We pick « £ 0 DapPwRasg.
Let (6, Rg) € G[I', A];. Then Ry = R1 & Rs for some R;, Ry such that (0, R;) € G[I']; and
(0, R2) € G[A]; by Lemma 4.19. Thus, it remains to show:

(iter<e[9]7 60[9}733-65[9[33 = .fL'H), Ry ® Rord(ae) ® R @ Rord(ao) D Rord(w@as)) S g[[A]]z
We have (e[0], R1 © Roq(a.)) € E[N]i and (eo[d], R2 @ Rora(a,)) € E[A]: by assumption.

Hence, by Lemma 4.18, it suffices to show:
(Az.eslf[z — ]|, Rorg(ag)) € V[A — AJ;

Let j < iand (v, R,) € V[A];. We show (es[0[z — z]][v/x], Rorg(ag) © Rv) € E[A];. By
definition (0[z + v], Ry) € G[z : A]; and thus by assumption (es[0[z +— v]], Ry® Reap(ay)) €
E[A];. The claim follows with eg[f[x — z]|[v/z] = eg[f]x — v]]. O

Lemma 4.31.

ke : 4 AFes: As
F,AlZ(el,eQ):A1®A2

Proof. By assumption, we have o for e; and «y for eo. We pick « £ a1 ® as. Let (0, Ry) €
G[I', A];. Then Ry = R;1 & Ry for some R;, Ry and (6, R1) € G[I']; and (0, R2) € G[A];
by Lemma 4.19. It remains to show ((e1[0], e2[0]) , R1©® Rora(a,) PR2® Rord(ay)) € E[A1®A2]:.

By assumption (e1[0], R1 © Rora(a,)) € E[A1]:- By Lemma 4.13, it suffices to show:
((UL 62[0]) 7R’U1 ) RQ S Rord(ag)) € g[[Al ® AQ]]j

forall j <iand (v, Ry,) € V[A1];. We have (e2[0], R2 @ Rord(a,)) € E[A2]: by assumption
and thus (e2[0], R2 © Rord(ay)) € E[A2]; by Lemma 4.3. By Lemma 4.13, it suffices to show:

((Ulv '02) aRm @ RUQ) € 5[[/11 ® Az]]k
forall k < j and (v, Ry,) € V[A2]. The claim follows with Lemma 4.12 and Lemma 4.3. ]

28



Lemma 4.32.
T'Ee : 41 ® Ay Ax:A,y:AsEes: B

[CAFElet (x,y) =ejiney: B

Proof. By assumption, we have «; for e; and ag for ea. We pick « £ o1 @ ao. Let (0, Ry) €
G[I', A];. Then Ry = R; & R for some Ry, Ry and (6, R;) € G[I']; and (0, Ra) € G[A];

by Lemma 4.19. It remains to show:
(let (z,y) = e1[0] in e[z = z,y = Y]], B1 © Rorg(a,) D Ro ® Rord(an)) € E[B:
By assumption (e1[0], R1 @ Rord(a,)) € E[A1 ® A2];. By Lemma 4.13, it suffices to show:
(let (z,y) = vineg[f[z — x,y — y]], Ry & Ry & Rord(ag)) € &[B];

for all j < i and (v,R,) € V[A; ® As];. By definition of the value relation, we have
v = (v1,v2) and R = R, @ R,, for some (vi, R,,) € V[A1]; and (v2, Ry,) € V[A2];.
By Lemma 4.13, it suffices to show

(62[0[33 = U1,y UQ]L Rv1 D sz SRy @ Rord(ag)) € 5[[B]]]

since let (z,y) = (vi,v2) in e2[0[z — x,y — Y]] ~ e2f[x — z,y — y|][vi/z,v2/y] =
eaf[z — vi,y — v2]]. By Lemma 4.20, we have (0, R2) € G[A];. Thus, (f[x — v1,y —
v2], Ro & Ry, @ Ry,) € G[A,x : Ai,y : As]; by Lemma 4.21. The claim follows by the
assumption for es. O

Lemma 4.33.
INz:AFe:B

I'EXe:A—oB

Proof. By assumption we have some c for e. We pick o = a.. Let (6, Ry) € G[I'];. It remains
to show (Az.(e[f[x +— =]]), Rg © Rorg(a)) € E[A —o BJ;. By Lemma 4.13, (A\z.(e[0[z >
7]]), Ry © Rora(a)) € V[A —o B]; suffices. Let j < i and (v, R,) € V[A];. We show:

(e[0[z — z]][v/], Ro © Rora(a) © Rv) € E[B];

By Lemma 4.20, we have (6, Rg) € G[I'];. Hence (f]x — v],Rg @ R,) € G[I',z : A];
by Lemma 4.21. By assumption, we have (e[0[z + v]], Ro ® Ry © Rora(a)) € E[B];. The claim
follows with e[f[z — v]] = e[0[z — z]][v/z]. O

Lemma 4.34.
I'ke;:A—oB AFey: A

F,Al:eleg:B
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Proof. By assumption, we have oy for e; and ao for es. We pick o = oy @ . Let (0, Ry) €
G[I', A];. Then Ry = R1® Ry for some R, Ry such that (6, R;) € G[I']; and (0, R2) € G[A];
by Lemma 4.19. It remains to show (e1[0] e2[0], R1 © Rora(a;) ® R2 ® Rord(as)) € E[B]:-

By assumption (e1[0], R1 © Roa(ay)) € E[A —o BJ;. By Lemma 4.13, it suffices to show:
(Ul 62[0]7 Rm D Ry @ Rord(ag)) € g[[B]]]

forall j < iand (v1, Ry,) € V[A — B];. By assumption, we have (e2[0], R2 © Rord(as)) €
E[A]; and thus (e2[0], Ro® Rorg(a,)) € E[A]; by Lemma 4.3. Hence, by Lemma 4.13, it suffices
to show:

(Ul UQ,RUI D Rv2) S g[[B]]k

for all £ < j and (v2, Ry,) € V[A]. By definition of V[A — B];, we know v; = Az.e for
some z and e. Further, we have (e[va/x], Ry, ®Ry,) € E[B]k. The claim follows by Lemma 4.13
given the pure reduction (A\x.e) vy ~ ef[ve/x]. O

Lemma 4.35.
T'Eel:GetA AFey: A—o1

A F get(eg,e) : 1

Proof. By assumption, we have «; for e; and «y for eo. We pick « £ a1 ® «as. Let (0,Ry) €
G[I', A];. Then Ry = R1® R» for some R, Ry such that (6, R;) € G[I']; and (0, R2) € G[A];
by Lemma 4.19. It remains to show (get(e1[0], e2[0]), R1 © Rord(a,) ® R2 @ Rorda(as)) € E[1]:-
By assumption (e1[0], R1 © Roa(ay)) € E[Get A];. By Lemma 4.13, it suffices to show:

(get(vl, €9 [9])7 Ry, ® Ry ® Rord(az)) € 5[[1]]]

for all j < 7 and (v1, Ry,) € V[Get A];. By assumption, we have (e2[0], R @ Rorg(as)) €
E[A —o 1]; and thus by Lemma 4.3 it follows (e2[0], R2 © Rord(a,)) € E[A — 1];. Hence,
by Lemma 4.13, it suffices to show:

(get(v1,v2), Ry, ® Ryy) € E[1]x

forall kK < j and (ve, Ry,) € V[A —o 1]. The claim follows with Lemma 4.15 and Lemma 4.3.
O

Lemma 4.36.

I'kFe :Putd AFEey: A
A FE put(eg,ea) : 1

Proof. By assumption, we have o for e; and a for eo. We pick o £ a1 @ as. Let (6, Ry) €
G[T, A];. Then Ry = R1® Rs for some Ry, Ry such that (0, R1) € G[I']; and (6, R2) € G[A];
by Lemma 4.19. It remains to show (put(e1[0], e2[0]), R1 © Rord(a,) @ B2 © Rord(as)) € E[1]:-

By assumption (e1[0], R1 @ Rord(a,)) € E[Put A];. By Lemma 4.13, it suffices to show:

(pUt(Ula €2 [9])7 va S2) R2 @ Rord(oeg)) € 5[[]1]]_7
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for all j < i and (v1, Ry,) € V[Put A];. By assumption, we have (e2[0], Ra @ Rora(as)) €
E[A];. Thus, (e2[0], R2 © Rord(as)) € E[A]; by Lemma 4.3. Hence, by Lemma 4.13, it suffices
to show:

(put(vi, v2), Ry, ® Ry,) € E[1]k

for all £ < j and (ve, Ry,) € V[A]k. The claim follows with Lemma 4.16 and Lemma 4.3. [J

Lemma 4.37.
I'z:GetA,y:PutAFe: B

I'Elet (z,y) =chan()ine: B

Proof. By assumption we have some a, for e. We pick a = o @ 1. Let (6, Ry) € G[I'];. We
show (let (z,y) = chan() in (e[0[z — z,y — y]]), Rg® Rord(a.) ® Rora(1)) € E[B]i- To show
the claim, we use Lemma 4.14. Let ¢ be some location. It remains to show:

(6[(9[:5‘ =X,y = y]”f/x7€/y], Ry ® Rcap(ae) D Rget(Z,A) @ Rput(E,A)) € g[[B]]z
By definition (¢, Rgey(¢,4)) € V[Get A]; and (£, Ryy(s,4)) € V[Put AJ;. Thus, we have:
(9[$ =Ly f]v Ry @ Rget(E,A) D Rput(E,A)) € g[[Fa z : Get Av y : Put A]]z

with Lemma 4.21. The claim follows by assumption with e[f[z — z,y — y]][¢/z,l/y] =
elflx — £,y — {]]. O
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