
IB Semantics - Supervision 1

Nandor Licker <nl364@cl.cam.ac.uk>

Due noon two days before supervision

This exercise is about a very simple imperative language which allocates all memory on the stack and
supports two datatypes: ints and pointers, along with function calls, basic arithmetic and if statements.

f(beg, end) {

if (beg == end) {

return 0;

} else {

return *beg + f(beg + 1, end);

}

}

a() {

x = allocate(3);

*(x + 0) = 1;

*(x + 1) = 2;

*(x + 2) = 3;

return f(x, x + 3);

}

b() {

x = allocate(1);

*x = 5;

return f(x, x + 1);

}

The language is going to be evaluated in the context of 〈e,Γ, s, S, P 〉, where:

• e is the current expression

• Γ is a mapping from names to locals

• s is the address of the top of the stack

• S is the stack, represented as a map from locations to any required value

• P is the program, mapping names to arguments, function bodies and return types

Provide the small-step semantics of all the constructs you can identify the the code sample. Unfold 10 steps
using the rules you have defined, starting from 〈a(), 0, ∅, {f 7→ ..., a 7→ ..., b 7→ ...}. Same for b.

Comment on the safety of the language.

1


