
A

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurr ency

JAROSLAV ŠEVČÍK, Microsoft

VIKTOR VAFEIADIS, MPI-SWS

FRANCESCO ZAPPA NARDELLI, INRIA

SURESH JAGANNATHAN, Purdue University

PETER SEWELL, University of Cambridge

In this paper, we consider the semantic design and verified compilation of a C-like programming language

for concurrent shared-memory computation on x86 multiprocessors. The design of such a language is made
surprisingly subtle by several factors: the relaxed-memory behavior of the hardware, the effects of compiler
optimization on concurrent code, the need to support high-performance concurrent algorithms, and the
desire for a reasonably simple programming model. In turn, this complexity makes verified compilation

both essential and challenging.
We describe ClightTSO, a concurrent extension of CompCert’s Clight in which the TSO-based memory

model of x86 multiprocessors is exposed for high-performance code, and CompCertTSO, a formally verified
compiler from ClightTSO to x86 assembly language, building on CompCert. CompCertTSO is verified in

Coq: for any well-behaved and successfully compiled ClightTSO source program, any permitted observable
behavior of the generated assembly code (if it does not run out of memory) is also possible in the source
semantics. We also describe some verified fence-elimination optimizations, integrated into CompCertTSO.

Categories and Subject Descriptors: C.1.2 [Multiple Data Stream Architectures (Multiprocessors)]:
Parallel processors; D.1.3 [Concurrent Programming]: Parallel programming; F.3.1 [Specifying and

Verifying and Reasoning about Programs]

General Terms: Reliability, Theory, Verification

Additional Key Words and Phrases: Relaxed Memory Models, Semantics, Verified Compilation

ACM Reference Format:

Jaroslav Ševčı́k and Viktor Vafeiadis and Francesco Zappa Nardelli and Suresh Jagannathan and Peter
Sewell. 2013. CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency J. ACM 60, 3, Article A
(June 2013), 49 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

1.1. Context

Multiprocessors are now ubiquitous, with hardware support for concurrent computa-
tion over shared-memory data structures. But building programming languages with
well-defined semantics to exploit them is challenging, for several inter-linked reasons.

At the hardware level, most multiprocessor families (e.g., x86, Sparc, Power, Ita-
nium, and ARM) provide only relaxed shared-memory abstractions, substantially
weaker than sequentially consistent (SC) memory [Lamport 1979]: some of the hard-

We acknowledge funding from EPSRC grants EP/F036345, EP/H005633, and EP/K008528, ANR grant Par-

Sec (ANR-06-SETI-010-02), ANR grant WMC (ANR-11-JS02-011), and INRIA program Équipes Associées
MM.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0004-5411/2013/06-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

A:2 J Ševčı́k et al.

ware optimizations they rely on, while unobservable to sequential code, can observably
affect the behavior of concurrent programs. Moreover, while for some multiprocessors
it has long been clear what the programmer can rely on, e.g. the Sparc Total Store
Ordering (TSO) model [SPARC International, Inc. 1994], for others it has been hard
to interpret the vendor’s informal-prose architecture specifications [Sarkar et al. 2009;
Sarkar et al. 2011]. For x86, we recently proposed x86-TSO [Sewell et al. 2010a; Owens
et al. 2009] as a rigorous and usable semantics; we review this in §2.

Compilers also rely on optimizations for performance, and again many common op-
timizations (e.g., common subexpression elimination) preserve the behavior of sequen-
tial code but can radically change the behavior of concurrent programs. Moreover, for
good performance one may need concurrency-specific optimizations, for example to re-
move redundant fence instructions.
Hence, when designing a concurrent shared-memory programming language, where

one must choose what memory semantics to provide, there is a difficult tension to re-
solve. A strong model (such as sequential consistency) would be relatively easy for
programmers to understand but hard to implement efficiently, because compiler opti-
mizations will not always be sound and because expensive processor-specific memory
fences (or other synchronization instructions) will be needed to enforce ordering in the
target hardware. A second alternative is to take a data-race-free (DRF) approach [Adve
and Hill 1990], with an SC semantics but regarding programs containing races as un-
defined, relying on synchronization from the implementations of lock and unlock (or, in
C/C++11, certain atomic primitives). Precisely defining a satisfactory DRF program-
ming language model is a technical challenge in itself, as witnessed by the complexities
in establishing a Java memory model that admits all the intended optimizations [Pugh

2000; Manson et al. 2005; Cenciarelli et al. 2007; Ševčı́k and Aspinall 2008; Torlak
et al. 2010], and the recent work on C/C++11 [Boehm and Adve 2008; Batty et al.
2011; Becker 2011; ISO 2011]. When it comes to concurrent systems code and concur-
rent data structure libraries, however, for example as used in an OS kernel and in
java.util.concurrent [Lea 1999], it seems that neither of the above are appropriate,
and instead a weak model is essential. Compiler optimizations are not the main is-
sue here: these low-level algorithms often have little scope for optimization, and their
shared-memory accesses should be implemented exactly as expressed by the program-
mer. But for good performance it is essential that no unnecessary memory fences are
introduced, and for understanding and reasoning about these subtle algorithms it is
essential that the language has a clear semantics. Moreover, such algorithms are in-
trinsically racy. Such code is a small fraction of that in a large system, but may have
a disproportionate effect on performance [Boehm 2005], as illustrated by an improve-
ment to a Linux spinlock, where a one-instruction change to a non-SC primitive gave
a 4% performance gain [Linux 1999]. Recognizing this, both Java and C/C++11 aim to
provide a strong model for most programming but with low-level primitives for expert
use.
In the face of all this intertwined semantic subtlety, of source language, target lan-

guage, compilation between them, and the soundness of optimizations, it is essential
to take a mathematically rigorous and principled approach to relaxed-memory concur-
rency: to give mechanized semantics for source and target languages and to consider
verified compilation between them. In the sequential setting, verified compilation has
recently been shown to be feasible by Leroy et al.’s CompCert [Leroy 2009b; 2009c;
Blazy and Leroy 2009; Leroy and Blazy 2008]. CompCert 1.5, our starting point, is a
verified compiler from a sequential C-like language, Clight, to PowerPC and ARM as-

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:3

sembly language [Leroy 2009a]1. In this paper, we consider verified compilation in the
setting of concurrent programs with a realistic relaxed memory model.

1.2. Contributions

Our first contribution is the design and definition of ClightTSO (§3): a concurrent vari-
ant of Clight with threads and shared memory. There are several possible choices
for the relaxed-memory semantics of such a language, which we discuss in §3.1. For
ClightTSO, we choose to mirror the relaxed-memory semantics of the hardware-level
x86-TSO model at the language level, providing loads, stores, compare-and-swap,
and memory barriers that have TSO behavior. This has significant pros and cons.
ClightTSO is not a general-purpose programming language: compiling it to the more
relaxed architectures (ARM, Power in normal execution mode, Itanium) would require
excessive extra synchronization or impractically good analysis, and preserving TSO
semantics does limit compiler optimization to some extent. But it is a relatively simple
semantics (compared with C/C++11, for example) and one that can be implemented
fairly directly on x86, and also on Sparc (and on Power in ‘strong access ordering’
mode), without requiring the compiler to insert extra synchronization. It thus provides
a high-level language in which concurrent algorithms targetting these architectures
can be expressed precisely and with a clear synchronization-cost model. Most impor-
tantly for us here, it serves as a first test case for relaxed-memory compiler verification:
realistic but simple enough to be tractable. The semantic design of ClightTSO turns
out to involve a surprisingly delicate interplay between the relaxed memory model, the
behavior of block allocation and free, and the behavior of pointer equality.
Our second contribution is one of semantic engineering (§4). Relaxed memory models

are complex in themselves, and a verified compiler such as CompCert is complex even
in the sequential case; to make verified compilation for a concurrent relaxed-memory
language feasible we have to pay great attention to structuring the semantics of the
source and target languages, and the compiler and any correctness proof, to separate
concerns and re-use as much as possible. The main ideas here are the factoring of the
TSO memory from each language, with a single TSO abstract machine used at all lev-
els, and the use of small-step ‘labellized’ semantics, factoring out the memory interac-
tions from the semantics of each thread (§4.4). This allows most of the proof to be done
by threadwise simulation arguments. A key issue for each compiler phase is the ex-
tent to which it changes the memory accesses of the program. For many of our phases
(7 of 17) the memory accesses of source and target are in exact 1:1 correspondence.
Moreover, for four phases the memory accesses are identical except that some values
that are undefined in the source take particular values in the target; and one phase
(register allocation) has no effect on memory accesses except that it removes memory
loads to dead variables. For all these, the correctness of the phase is unrelated to the
TSO nature of our memory, and in several cases the proof could be a straightforward
adaptation of the original sequential CompCert proof. Exploiting these facts required
new theory to lift threadwise ‘downwards’ simulations to whole-system ‘upwards’ sim-
ulations (§4.6). That leaves two phases that change memory accesses substantially,
and whose proofs must really involve the whole system, of all threads and the TSO
memory, and three phases that leave memory accesses in place but change the fences.
We summarize these in §4.7 and §4.8, deferring the details to the next two sections.

Thirdly, we present evidence that our approach is effective (§5). We have imple-
mented a verified compiler, CompCertTSO, from ClightTSO to x86 multiprocessor as-
sembly language, taking CompCert as a starting point. We have proved correctness, in

1More recent CompCert versions start from a higher-level CompCert C language and add an x86 target.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:4 J Ševčı́k et al.

Coq [Coq], for all the CompCertTSO phases between ClightTSO abstract syntax and
x86 symbolic assembly code, including the optimizations present in Compcert 1.5 that
are safe under TSO. In addition, we have successfully run the compiler on a number of
sequential and concurrent benchmarks, including an implementation of a non-trivial
lock-free algorithm by Fraser [2003]. This section begins with our top-level statement
of compiler correctness, and with a diagram showing the structure of our compiler
and its correctness proof. We then flesh out the proof strategy outlined in the previ-
ous section, describing in more detail the TSO machine (§5.1), the correctness proof of
the first phase (handling its small-step semantics) (§5.2), the whole-system proofs of
the two phases that really change memory accesses (§5.3, §5.4), our adaptations of the
CompCert 1.5 optimizations that are sound under TSO (§5.5), and our x86 backend
(§5.6). The two whole-system simulation arguments in §5.3 and §5.4 are the heart of
our proof and the most challenging part; we describe the main ideas and the issues
that had to be addressed, abstracting from the 18 000 or so lines of underlying proof
script of these two phases.
Fourthly, we consider compiler optimizations to optimize barrier placement, and the

verification thereof (§6). There are many opportunities to perform fence removal op-
timizations on x86. In particular, if there are no writes between two memory fence
instructions, the second fence is unnecessary. Dually, if there are no reads between the
two fence instructions, then the first fence instruction is redundant. Finally, by a form
of partial redundancy elimination [Morel and Renvoise 1979], we can insert memory
barriers at selected program points in order to make other fence instructions redun-
dant, with an overall effect of hoisting barriers out of loops and reducing the number of
fences along some execution paths without ever increasing it on any path. The correct-
ness of one of our optimizations turned out to be much more interesting than we had
anticipated and could not be verified using a standard forward simulation [Lynch and
Vaandrager 1995] because it introduces unobservable non-determinism. To verify this
optimization, we introduce weak-tau simulations, which in our experience were much
easier to use than backward simulations [Lynch and Vaandrager 1995]. In contrast,
the other two optimizations were straightforward to verify, each taking us less than a
day’s worth of work to prove correct in Coq.
Finally, we describe some experiments running the compiler (§7), reflect on the for-

malization process and on the tools we used (§8), discuss related work (§9), and con-
clude (§10). The proof effort for each compiler phase was broadly commensurate with
its conceptual difficulty: some have essentially no effect on memory behavior, and
needed only days of work; a few were much more substantial, really changing the
intensional behavior of the source and with proofs that involve the TSO semantics in
essential ways.

This paper extends conference papers in POPL 2011 [Ševčı́k et al. 2011] and
SAS 2011 [Vafeiadis and Zappa Nardelli 2011]. The first paper reported on the cor-
rectness proof for key phases of the compiler only, whereas now our main theorem
is the correctness of the entire compiler, adding the (substantial) MachAbstr to Mach-
Concr phase, and the (more straightforward) Cminor to CminorSel to RTL phases. The
second paper described our fence elimination optimizations. The discussion and se-
mantic details have also been expanded throughout. Our development, all mechanized
in Coq, is available in the Supplementary Material and online, including a browsable
HTML version rendered from the Coq sources (http://www.cl.cam.ac.uk/users/pes20/
CompCertTSO).

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:5

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

H/W thread H/W thread

Fig. 1. x86-TSO block diagram

2. BACKGROUND: x86-TSO

We begin by recalling the relaxed-memory behavior of our target language, x86 multi-
processor assembly programs, as captured by our x86-TSO model [Owens et al. 2009;
Sewell et al. 2010a]. The classic example showing non-SC behavior in a TSO model
is the store buffer (SB) assembly language program below: given two distinct memory
locations x and y (initially holding 0), if two hardware threads (or processors) respec-
tively write 1 to x and y and then read from y and x (into register EAX on thread 0 and
EBX on thread 1), it is possible for both to read 0 in the same execution. It is easy to
check that this result cannot arise from any SC interleaving of the reads and writes of
the two threads, but it is observable on modern Intel or AMD x86 multiprocessors.

SB

Thread 0 Thread 1
MOV [x]←1 MOV [y]←1
MOV EAX←[y] MOV EBX←[x]
Allowed Final State: Thread 0:EAX=0 ∧ Thread 1:EBX=0

Microarchitecturally, one can view this behavior as a visible consequence of store
buffering: each hardware thread effectively has a FIFO buffer of pending memory
writes (avoiding the need to block while a write completes), so the reads from y and x
can occur before the writes have propagated from the buffers to main memory. More-
over, a read in TSO is required to read from the most recent write to the same address,
if there is one, in the local store buffer.
In addition, it is important to note that many x86 instructions involve multiple mem-

ory accesses, e.g. an increment INC [x]. By default, these are not guaranteed atomic (so
two parallel increments of an initially 0 location might result in it holding 1), but there
are ‘LOCK’d’ variants of them: LOCK INC [x] atomically performs a read, a write of the
incremented value, and a flush of the local write buffer. Compare-and-swap instruc-
tions (CMPXCHG) are atomic in the same way, and memory fences (MFENCE) simply
flush the local write buffer.
The x86-TSO model makes this behavior precise in two equivalent ways: an abstract

machine with an operational semantics, illustrated in Fig. 1, and an axiomatization of
legal executions, in the style of [SPARC International, Inc. 1992, App. K] (the model
covers the normal case of aligned accesses to write-back cacheable memory; it does
not cover other memory types, self-modifying code, and so on). For the relationship
between the model, the vendor documentation, and empirical test outcomes, we refer
to our previous work [Sewell et al. 2010a; Owens et al. 2009; Sarkar et al. 2009]. For
concreteness, we list the transitions of the operational model below:

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:6 J Ševčı́k et al.

type, ty ::= void | int (intsize,signedness) | float (floatsize) | pointer (ty)
| array (ty,len) | function (ty∗,ty) | struct (id,φ) | union (id,φ) | comp pointer(id)
| (ty)

fieldlist , φ ::= nil | (id,ty)::φ

unary operation, op1 ::= ! | ~ | -

binary operation, op2 ::= + | - | * | / | % | & | | | ^ | << | >> | == | != | < | > | <= | >=

expr , e ::= aty

expr descr , a ::= n | f | id | *e | &e | op1 e | e1 op2 e2 | (ty)e | e1?e2:e3 | e1&&e2 | e1||e2
| sizeof (ty) | e.id

opt lhs ::= | (id:ty)=

atomic statement , astmt ::= CAS | ATOMIC INC

statement , s ::= skip | e1=e2 | opt lhs e ′(e∗) | s1;s2 | if (e1) then s1 else s2
| while (e) do s | do s while (e) | for (s1;e2;s3)s | break | continue | return opt e
| switch (e)ls | l:s | goto l | thread create(e1,e2) | opt lhs astmt(e∗) | mfence

labeled statements, ls ::= default :s | casen:s;ls

fndefn internal ::= ty id(arglist){varlist s}

program ::= dcls fndefns main =id

Fig. 2. ClightTSO abstract syntax (excerpts)

(1) a thread can write into its buffer at any time;
(2) a thread can read from the newest write to an address from its store buffer, if there

is one and it is not blocked by another LOCK’d instruction in progress;
(3) a thread can read from memory if there are no writes to that address in its store

buffer and it is not blocked by another LOCK’d instruction in progress;
(4) a thread can silently dequeue the oldest write from its store buffer and place the

value in memory whenever it is not blocked by another LOCK’d instruction in
progress;

(5) a thread can execute an MFENCE whenever its store buffer is empty (otherwise it
must use the previous transition);

(6) a thread can begin a LOCK’d instruction if no other is in progress; and
(7) a thread can end a LOCK’d instruction if its store buffer is empty.

3. ClightTSO

ClightTSO is a C-like language: imperative, with pointers and pointer arithmetic, and
with storage that is dynamically allocated and freed, but not subject to garbage col-
lection. Currently this is stack-allocated storage for function local variables, but our
development is structured so that adding explicit malloc and free should be straight-
forward. We choose this level of abstraction for several reasons. First, it is what is
typically used for concurrent systems programming, e.g. in OS kernels (where garbage
collection may be infeasible), and many concurrent algorithms are expressed in C-
like pseudocode. Second, it is an attractive starting point for research in relaxed-
memory programming language semantics and compilation because C source-level
shared-memory accesses will often map 1:1 onto target accesses. Last but not least,
the work of Leroy et al. on CompCert gives us a verified compiler for sequential pro-
grams, and by using that as a starting point we can focus on the issues involved in
relaxed-memory concurrency.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:7

Syntactically, ClightTSO is a straightforward extension of the CompCert Clight lan-
guage [Blazy and Leroy 2009], adding thread creation and some atomic read-modify-
write primitives that are directly implementable by x86 LOCK’d instructions. An ex-
cerpt of the abstract syntax is given in Fig. 2, where one can see that programs consist
of a list of global variable declarations, a list of function declarations, and the name of
a main function. Function bodies are taken from a fairly rich language of statements
and expressions.

Semantically, though, the addition of relaxed-memory concurrency has profound con-
sequences, as we now discuss.

3.1. TSO

Most substantially, the ClightTSO load and store operations must have TSO seman-
tics to make them directly implementable on x86, so we cannot model memory as (say)
a function from locations to values. Instead, we use a derivative of the TSO machine
recalled in the previous section (the abstract machine style is more intuitive and tech-
nically more convenient here than the axiomatic model). We return in §3.2, §4.5, and
§5.1 to exactly what this is.

We choose TSO because it is the simplest realistic relaxed-memory option for a C-
like language that supports high-performance concurrent algorithms. There are four
obvious alternatives: a pure DRF model, the C/C++11 memory model, the de facto
standard memory model used in the Linux kernel, or another hardware memory model
such as that of Power and ARM [Sarkar et al. 2011]. The first forbids all racy code,
thus ruling out typical lock-free datastructure algorithms. The second is designed to
be portable across hardware architectures but is not yet widely adopted and is much
more complex than TSO; understanding how to do compiler correctness verification
in the C/C++11 context remains a challenging problem for future work. The third is
not yet even well-defined, so cannot be used as a basis for verification. The fourth
is conceptually similar to TSO: a good fit for some architectures but not others, and
rather more complex.

3.2. Memory errors and buffering of allocations and frees

C implementations are typically not memory-safe: one can use pointer arithmetic to
corrupt arbitrary state (including that introduced by compilation). But in order to spec-
ify an implementable language, C standards rule out many programs from considera-
tion, giving them undefined behavior. For example, the recent C11 standard states that
“If an object is referred to outside of its lifetime, the behavior is undefined. The value of
a pointer becomes indeterminate when the object it points to (or just past) reaches the
end of its lifetime.” [ISO 2011, 6.2.4p2] In other words, a read or write of a pointer that
is dangling w.r.t. that thread must be a semantic error, so that a correct compiler is not
obliged to preserve the behavior of such programs. In Clight the memory state records
what is allocated, but in a relaxed-memory setting any appeal to global time should be
treated with great caution, and the concept of “currently allocated” is no longer simple:
different threads might have different views not only of the values in memory but also
of what is allocated. Implementations of memory allocation and free do not necessarily
involve a memory fence or other buffer flush: at the assembly language level, stack
allocation and free can be just register operations, while heap malloc and free might
often be w.r.t. some thread-local storage. We therefore treat allocations and frees anal-
ogously to writes, adding them to the buffers of the TSO machine. This is a convenient
common abstraction of stack and heap allocation (for the former, it essentially models
the stack pointer).

An allocation must immediately return a block address to the calling thread, but al-
locations should not clash when they are unbuffered (when they hit the main memory

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:8 J Ševčı́k et al.

of the TSO machine), so they must return blocks that are fresh taking into account
pending allocations and frees from all threads. It is technically convenient if frees and
writes also fail immediately, when they are added to the TSO machine buffer, so we
also take all possible sequences of the pending allocations and frees into account when
enqueuing them. Otherwise one would have latent failures, e.g. if two threads free a
block and those frees are both held in buffers.
As we shall see later, handling buffered allocations and frees is responsible for a

significant part of the complexity of our correctness proofs.

3.3. Pointer equality

The lack of a simple notion of global time also impacts the semantics of pointer compar-
ison. For example, in x86-TSO one thread might free, re-allocate and use some memory
while another thread does an equality comparison of a pointer to that memory against
some other pointer, with the writes of the first thread remaining within its buffer until
after the comparison. There are two reasonable choices here. First, one could make
pointer comparison effectful, querying the x86-TSO abstract machine to see whether
a pointer is valid w.r.t. a particular thread whenever it is used, and making the re-
sult of a comparison undefined if the pointers involved are not valid. However, this
would make pointer comparisons not necessarily commutable with each other or with
memory reads, which would complicate the correctness proofs for expressions: in our
threadwise labellized approach (§4.4), they would have to be exposed as new labelled
transitions, and the proofs for each compiler phase would have to check that they are
preserved, together with their relative order with respect to other transitions. The
loss of commutativity could also restrict optimization, though we are not aware of any
important cases where this would apply.
The second alternative, which we adopt for ClightTSO, is to take pointer equality

comparison to always be defined. This simplifies the language and the correctness
proof, and (as a minor additional benefit), comparing potentially dangling pointers for
equality is sometimes useful and supported in practice (the C standard notwithstand-
ing), e.g. in algorithms to free cyclic data structures.

3.4. Block reuse

In turn, always-defined pointer comparison means that the ClightTSO semantics must
permit re-use of pointers (contrasting with Clight, where comparison is not always
defined and in which allocations are always fresh), otherwise it would not be sound
w.r.t. the behavior of reasonable implementations. For example, in the program below
h must be allowed to return 0 or 1, as an implementation might or might not reuse the
stack frame of f for g.

int* f() { int a; return &a; }
int* g() { int a; return &a; }
int h() { return (f() == g()); }

3.5. Small-step semantics

ClightTSO is a concurrent language, in which execution of an expression or a state-
ment may involve multiple memory reads and hence multiple potential interaction
points with other threads. We therefore need a small-step operational semantics for
both expressions and statements. Conceptually this is routine, but it requires signifi-
cant re-engineering (described in §5.2) of definitions and proofs w.r.t. CompCert, where
Clight had a big-step semantics for expressions.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:9

We use a frame-stack style, with thread states that can be an executing expression
paired with an expression-holed continuation or an executing statement paired with a
statement-holed continuation:

state ::= e · κe |ρ
| s · κs |ρ
| . . .

Here ρ is a thread-local environment mapping identifiers to their locations in allocated
blocks. The two forms of continuation are just as one would expect from the abstract
syntax; we write them as lists of atomic contexts (each in square brackets) separated
by a dot.

expr cont , κe ::= [opτ
1] · κe | [τ=e2] · κs | [vτ=] · κs | . . .

stmt cont , κs ::= stop | [; s2] · κs | . . .

The semantics is also parameterized by an unchanging global environment of global
variables and functions, and additional machinery is needed to deal with l-values,
loops, and function calls, which we return to in §5.2. We also fix a left-to-right eval-
uation order.

In retrospect, we suspect that it would have been simpler to use what we call a
trace-step semantics for ClightTSO expressions. The small-step operational semantics
described above defines a small-step transition relation over states involving expres-
sion continuations, by case analysis on the structure of those continuations, and with
labels that represent internal events or single memory actions. Instead, a trace-step
semantics defines a transition relation over states simply involving expressions, and
inductively on the structure of expressions, but with lists of labels; given such, one can
easily define a small-step semantics by a general construction. The fact that ClightTSO
expressions are terminating (as in Clight) makes this particularly convenient. We used
such a semantics as an auxiliary definition for the correctness of one of our phases, in-
struction selection (from Cminor to CminorSel), for which its inductive-on-expressions
structure made it easy to re-use many original CompCert proofs. With hindsight, we
would do so for all the front-end languages (before RTL).

3.6. Finite memory

A final novelty of ClightTSO, not directly related to concurrency, is that we support
finite memory, in which allocation can fail and in which pointer values in the running
machine-code implementation can be numerically equal to their values in the seman-
tics. The latter is convenient for our correctness proofs, simplifying the simulations. It
also means that pointer arithmetic works properly (mod 232, as in Clight but in con-
trast to an infinite ‘flat’ memory semantics) and may be helpful in the future for a
semantic understanding of out-of-memory errors, for reasoning about adjacent stack
frames, or for testing the correspondence between the semantics and runtime traces of
other implementations.

The memory usage of a compiled program and its source may be radically different,
as the compiler may be able to promote local variables to registers, using less storage,
but will need extra storage for stack frames and temporaries. But (analogous to verify-
ing rather than verified compilation), it would be reasonably straightforward to make
the compiler emit and check, for each function, bounds on those. One could then reason
about real space usage in terms of a source semantics annotated with these bounds.

Without such a space-usage semantics, our correctness statement will be weaker
than one might like, in that it does not constrain the behavior of the compiler at all
after the target language has run out of memory. This provides an easy way to write a

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:10 J Ševčı́k et al.

stupid but nominally correct ‘cheating’ compiler: a compiler could simply (and silently)
generate an impossibly large allocation at the start of a compiled program; the target
semantics would immediately fail, and so the rest of the behavior of the compiler would
be unconstrained by the correctness statement. In contrast, the unbounded-memory
semantics and correctness statement of CompCert prohibits this, but it does suffer
from the related problem that a verified program compiled with a nominally correct
compiler can nonetheless run out of memory and crash when actually executed.

3.7. Examples

We give a flavour of the language with some very small examples of ClightTSO source
programs.

3.7.1. SB. The x86 visible-store-buffer behavior can now be seen at the ClightTSO
level, e.g. if the following threads are created in parallel then both could print 0 in the
same execution.

int x=0; int y=0;

void *thread0(void *tid)
{ x=1;
printf("T0: %d\n", y);
return(0); }

void *thread1(void *tid)
{ y=1;
printf("T1: %d\n", x);
return(0); }

3.7.2. Spinlock using CAS. More usefully, an efficient spinlock can be implemented di-
rectly in ClightTSO using CAS, where CAS(p,v new,v old) either atomically replaces
the value at pointer p with v new, and evaluates to v old, if the previous value was
v old, or otherwise simply returns the value at p; in either case it flushes the local
store buffer. Any integer variable can be used to represent the state of the spinlock,
with lock and unlock as follows:

void lock(int *mutex)
{ while (CAS(mutex, 1, 0))

while (*mutex) ; }

void unlock(int *mutex)
{ *mutex = 0; }

The generated assembler mimics the optimized implementation of Linux spinlocks
mentioned in §1. As shown by Owens [2010], the memory update performed by unlock
does not need to flush the x86-TSO store buffer.

3.7.3. A publication idiom. The memory model supports the common publication idiom
below:

double channel; int flag = 0;

// sender
channel = 5.2;
flag = 1;

// receiver
while (flag == 0);
printf ("%f\n", channel);

Since the store buffers are FIFO, when the receiver thread sees the update to flag, the
contents of the channel variable must have been propagated into main memory, and as
such must be visible to all other threads (that do not themselves have a pending write
to channel). For contrast, in C/C++11 [Becker 2011; Batty et al. 2011] (which also tar-
gets non-TSO machines), flag must be accessed with sequentially consistent atomics,
implemented with costly x86 LOCK’d instructions or fences, or with release/acquire
atomics, implemented with normal stores and loads but with a much more involved
semantics.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:11

4. VERIFIED COMPILER STRATEGY

Having discussed our x86 target language in §2, and the design and rationale of our
ClightTSO source language in §3, we now consider the semantics and proof structure
required to make a verified compiler for a concurrent relaxed-memory language feasi-
ble.

4.1. Correctness statement

The first question is the form of the correctness theorems that we would like the com-
piler to generate. We confine our attention to the behavior of whole programs, leaving a
compositional understanding of compiler correctness for relaxed-memory concurrency
(e.g. as in the work of Benton and Hur for sequential programs [Benton and Hur 2009])
as a problem for future work. The semantics of ClightTSO and x86-TSO programs will
be labelled transition systems (LTS) with internal τ transitions and with visible events
for call and return of external functions (e.g. OS I/O primitives), program exit, and se-
mantic failure:

event , ev ::= call id vs | return typ v | exitn | fail

We split external I/O into call and return transitions so that blocking OS calls can be
correctly modelled.

Now, how should the source and target LTS be related? As usual for implementations
of concurrent languages, we cannot expect them to be equivalent in any sense, as the
implementation may resolve some of the source-language nondeterminism (c.f. [Sewell
1997] for earlier discussion of the correctness of concurrent language implementa-
tions). For example, in our implementation, stack frames will be deterministically
stack-allocated and the pointers in the block-reuse example above will always be equal.
Hence, the most we should expect is that if the compiled program has some observable
behavior then that behavior is admitted by the source semantics — an inclusion of
observable behavior.

This must be refined further: compiled behavior that arises from an erroneous source
program need not be admitted in the source semantics (e.g. if a program mutates a
return address on its stack, or tries to apply a non-function). The compiled program
should only diverge, indicated by an infinite trace of τ labels, if the source program
can. Moreover, without a quantitative semantics, we have to assume that the target
language can run out of memory at any time. We capture all this with the following
definition of LTS trace.

Traces tr are either infinite sequences of non-fail visible events or finite sequences
of non-fail visible events ending with one of the following three markers: end (desig-
nating successful termination), inftau (designating an infinite execution that eventu-
ally stops performing any visible events), or oom (designating an execution that ends
because it runs out of memory). The traces of a program p are given as follows:

traces(p, args)
def
= {ℓ · end | ∃s ∈ init(p, args). ∃s′. s

ℓ
=⇒ s′ 6→}

∪ {ℓ · inftau | ∃s ∈ init(p, args). ∃s′. s
ℓ
=⇒ s′

τ
−→

ω
}

∪ {ℓ · tr | ∃s ∈ init(p, args). ∃s′. s
ℓ
=⇒ s′

fail
−−−→ }

∪ {ℓ · oom | ∃s ∈ init(p, args). ∃s′. s
ℓ
=⇒ s′}

∪ {l | ∃s ∈ init(p, args). s
l
=⇒ and l is infinite}

Here init(p, args) denotes the initial states for a program p when called with command-

line arguments args ; for a finite sequence ℓ of non-fail visible events, we define s
ℓ
=⇒ s′

to hold whenever s can do the sequence ℓ of events, possibly interleaved with a finite

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:12 J Ševčı́k et al.

number of τ -events, and end in state s′; and for a finite or infinite sequence l of non-

fail visible events, we define s
l
=⇒ to hold whenever s can do the sequence l of events,

possibly interleaved with τ -events.
We treat failed computations as having arbitrary behavior after their failure point,

whereas we allow the program to run out of memory at any point during its execution.
This perhaps-counter-intuitive semantics of oom is needed to express a correctness
statement guaranteeing nothing about computations that run out of memory.

Our top-level correctness statement for a compiler compile from ClightTSO to x86-
TSO, modelled as a partial function, will then be a trace inclusion for programs for
which compilation succeeds, of the form

∀p, args . defined(compile(p)) =⇒ tracesx86-TSO(compile(p), args) ⊆ tracesClightTSO(p, args).

4.2. The CompCert 1.5 proof strategy

ClightTSO is an extension of sequential Clight, and its compiler has to deal with every-
thing that a Clight compiler does, except for any optimizations that become unsound in
the concurrent setting. We therefore arrange our semantic definitions and proof struc-
ture to re-use as much as possible of the CompCert development for sequential Clight,
isolating the parts where relaxed-memory concurrency plays a key role.
Our starting point was CompCert 1.5, comprising around 55K lines of Coq subdi-

vided into 13 compiler phases, each of which builds a semantic preservation proof be-
tween semantically defined intermediate languages. The overall strategy is to prove
trace inclusions by establishing simulation results — more particularly, to build some
kind of “downward” simulation for each phase, showing that transitions of a source
program for the phase can be matched by transitions of the compiled target program;
these can be composed together and combined with determinacy for the target lan-
guage (there PowerPC or ARM assembly) to give an upward simulation for a complete
compilation, showing that any behavior of a compiled program is allowed by the source
program semantics.2 Downward simulations are generally easier to establish than up-
ward simulations because compiler phases tend to introduce intermediate states; a
downward simulation proof does not have to characterize and relate these. As we shall
see, this strategy cannot be used directly for compilation of concurrent ClightTSO to
x86, but much can be adapted.
Another distinctive aspect of the CompCert 1.5 proof strategy is the use of generic

memory embeddings for the passes that change memory behavior [Leroy and Blazy
2008]. In Compcert 1.5, pointer values are represented as pairs of an allocation block
identifier (a natural number) and an offset within that allocation block. Moreover,
the Compcert 1.5 semantics uses a deterministic memory allocator always returning
blocks with globally fresh identifiers. Consequently, compilation phases that change
allocation behavior have to show that program semantics is insensitive with respect to
the precise addresses returned by the allocator. This is achieved by the use of generic
memory embeddings, which are reused for several different phases.

In CompcertTSO, we represent pointers again as block-offset pairs, but interpret
these components differently. A CompcertTSO block is merely a 232-byte page, within
which multiple (disjoint) ranges of addresses may be allocated. Our semantics uses
a completely non-deterministic allocator, so in our upward simulation proofs we can

2Terminology: in CompCert “forward simulation” and “backward simulation” refer to the direction of the
simulation with respect to the compiler phases, thinking of compilation as “forwards”. This clashes with
another standard usage in which “forward” and “backward” refer to the direction of transitions. In this
paper we need to discuss both, so we use “downwards” (and conversely “upwards”) to refer to the direction
of compilation, reserving “forwards” and “backwards” for the direction of transitions. (Notwithstanding this,
the CompCertTSO sources retain the CompCert usage.)

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:13

“choose” where in the source memory to allocate the various local variables. As a result,
our proofs do not use the generic memory embeddings of Compcert 1.5.

4.3. Decomposing the proof by compiler phases

Our compiler is divided into similar (but not identical) phases to CompCert 1.5. For
each phase, we define the semantics of a whole program to be an LTS as above, and
inclusion of the above notion of traces also serves as the correctness criterion for each of
our phases. The individual correctness results can be composed simply by transitivity
of set inclusion.

4.4. Labellization and threadwise proof

In our concurrent setting the languages are not deterministic, so the CompCert ap-
proach to building upward simulations is not applicable. However, for most of the
phases we can re-use the CompCert proof, more-or-less adapted, to give downward
simulation results for the behavior of a single thread in isolation — and we can make
our semantics deterministic for such. We therefore ‘labellize’ the semantics for each
level (source, target, and each intermediate language). Instead of defining transitions

(s,mSC) −→ (s′,m′

SC)

over configurations that combine a single-threaded program state s and an SCmemory
mSC (as most sequential language semantic definitions, including CompCert, do), we
define the semantics of a single thread (split apart from the memory) as a transition
system:

s
te
−→ s′

(together with extra structure for thread creation) where a thread event te is either
an external event, as above, an interaction with memory me, an internal τ action, the
start or exit of the thread, or an out-of-memory error oom:

thread event , te ::= ext ev | memme | τ | start opt tid p vs | exit | oom

The whole-system semantics of each level is a parallel composition roughly of the
form

s1 | . . . | sn | mTSO

of the thread states si and a TSO machine mTSO. The threads interact with the TSO
machine by synchronizing on various events: reads or writes of a pointer p with a
value v of a specified memory chunk size, allocations and frees of a memory block at a
pointer p, various error cases, and thread creation. These transitions are in the style
of the ‘early’ transition system for value-passing CCS [Milner 1989]: a thread doing
a memory read will have a transition for each possible value of the right type. For
example, here is the ClightTSO rule for dereferencing a pointer:

access mode ty ′ = By value c
typ = type of chunk c
Val.has type v typ

p · [* ty′] · κe |ρ
mem (read p c v)
−−−−−−−−−→ v · κe |ρ

LOADBYVALUE

The conclusion has a start state with a pointer value p in an expression continuation
[* ty′

] · κe headed by a dereference at a ClightTSO type ty ′. The first premise finds the
access mode of that type: here it must be accessed by value and has a chunk c (specify-
ing int/float, size, and signedness). The second premise collapses this onto an internal
type typ (just int/float, because internal values do not record their size or signedness).

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:14 J Ševčı́k et al.

The third premise allows an arbitrary value v of type typ. Then the conclusion has a
transition labelled with a memory read, at pointer p, of that value v, as a chunk c, to
a state with v in the remaining continuation. (There is a further subtlety here. One
might think that the rule should also check that v represents a value of type ty ′, not
just that it has internal type typ. That check could be added here, but in fact we have it
in the TSO machine. The premises do suffice to ensure a receptiveness property, which
is what we really need of the thread semantics.)
External events of the threads (and of the TSO machine) are exposed directly as the

whole-system behavior.
This conceptually simple change to a labellized semantics separates concerns: com-

piler phases that do not substantially affect the memory accesses of the program can
be proved correct per-thread, as described in §5.5 (and those results lifted to the whole
system by a general result below), leaving only the two remaining main phases and
three fence optimization phases that require proofs that really involve the TSO ma-
chine.

4.5. The TSO machine

Our TSOmachine is based on the x86-TSO abstract machine, with a main memory and
per-thread buffers, but with several differences. The TSO machine must handle mem-
ory allocations and frees (which are buffered), and various memory errors; the main
memory records allocation as in CompCert. We use the TSO semantics for software
threads, not hardware threads, which is sound provided that the scheduler flushes the
buffer during task switching. We use the same TSO machine for all the intermediate
languages, and we uniformly lift threadwise LTSs to the parallel composition with the
TSO machine.

4.6. Establishing whole-system trace inclusions from threadwise dow nward simulations

For the phases that do not substantially change memory accesses, we establish whole-
system trace inclusions from threadwise downward simulations in three steps. First,
we observe that a downward simulation from a receptive language to a determinate
language implies the existence of upward simulation and use this to obtain threadwise
upward simulation. Then we lift the threadwise upward simulation to a whole-system
upward simulation. Finally, we establish trace inclusion from the whole-system up-
ward simulation.
We say that two labels are of the same kind, written te ≍ te ′ if they only differ

in input values. In our case, te ≍ te ′ if (i) te and te ′ are reads from the same memory
location (but not necessarily with the same value), or (ii) te and te ′ are external returns,
or (iii) te = te ′.

Definition 4.1. A thread LTS is receptive if s
te
−→ t and te ′ ≍ te implies ∃t′. s

te′

−−→ t′.

Definition 4.2. A thread LTS is determinate if s
te
−→ t and s

te′

−−→ t′ implies te ≍ te ′

and, moreover, if te = te ′, then t = t′.

Definition 4.3. A relation R between the states of two thread LTSs S and T is a
threadwise downward simulation if there is a well-founded order < on the states of S
such that if given any s, s′ ∈ S, t ∈ T and label te, whenever s

te
−→ s′ and s R t, then

either

(1) te = fail, or

(2) ∃t′. t
τ
−→

∗ te
−→

τ
−→

∗

t′ ∧ s′ R t′, or
(3) te = τ ∧ s′ R t ∧ s′ < s.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:15

Definition 4.4. A relation R is a threadwise upward simulation if there is a well-

founded order < on T such that whenever t
te
−→ t′ and s R t, then either

(1) ∃s′. s
τ
−→

∗ te
−→ s′ ∧ s′ R t′, or

(2) ∃s′. s
fail
−−−→ s′, or

(3) te = τ ∧ s R t′ ∧ t′ < t.

Moreover, if t 6−→ (t is stuck) and s R t, then s 6−→ or ∃s′. s
fail
−−−→ s′.

Note the subtle asymmetry in handling errors: if a source state signals an error
or gets stuck, both the upward simulation and downward simulation hold. In contrast,
the target states’ errors must be reflected in the source to make the upward simulation
hold. This is necessary to allow compilers to eliminate errors but not to introduce them.

THEOREM 4.5. If R is a threadwise downward simulation from S to T , S is recep-
tive, and T is determinate, then there is a threadwise upward simulation that contains
R. [Coq proof]

Eliding details of initialization and assumptions on global environments, we have:

Definition 4.6. A relation R : States(S) × States(T), equipped with a well-founded

order < on States(T), is a measured upward simulation if, whenever s R t and t
ev
−→ t′,

then either

(1) ∃s′. s
τ
−→

∗

s′
fail
−−−→ (s can reach a semantic error), or

(2) ∃s′. s
τ
−→

∗ ev
−→ s′ ∧ s′ R t′ (s can do a matching step), or

(3) ev = τ ∧ t′ < t ∧ s R t′ (t stuttered, with a decreasing measure).

THEOREM 4.7. A threadwise upward simulation can be lifted to a whole-system
measured upward simulation, for the composition of the threads with the TSOmachine.
[Coq proof]

THEOREM 4.8. A whole-system upward simulation implies trace inclusion.
[Coq proof]

To establish correctness of compiler phases that remove dead variable loads and con-
cretize undefined values, we have also proved variants of Theorems 4.5 and 4.7 for
suitably modified Definitions 4.3 and 4.4. Here, we only describe the concretizing sim-
ulations.

4.6.1. Concretizing Simulations. Compcert values contain a special value Vundef for rep-
resenting what the C standard calls indeterminate values, such as the result of read-
ing from an uninitialized location. During compilation, such indeterminate values may
safely be replaced with whatever concrete values can most efficiently be produced. One
example of concretization of values is the compilation of function entry in the reloading
phase: in LTLin, all registers are set to Vundef upon function entry, but in Linear, they
keep their original value.

Such a refinement cannot break the overall upward simulation: if the LTLin code
used the Vundef value in any interesting way it would get stuck and the simulation
would be trivially satisfied. It is important to note that even though the compiler con-
cretizes only values in registers, the values in registers can be written to memory and
spread through the entire system state. The overall simulation relation has to account
for this and allow arbitrary parts of the state to be more concrete.

When constructing the whole-system upward simulation, there are two cases of in-
teraction with memory: if the target transition system gets a value from memory, then
the source system must be able to accept a less concrete value, because the memory

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:16 J Ševčı́k et al.

may contain a less concrete value. In contrast, if the target system writes to memory,
the source system may want to write a less concrete value. To make concretization in
input and output explicit, we introduce two relations on events, written ≤in and <out.
We prove the downward-to-upward simulation theorem abstractly, requiring only that
the ≤in and <out relations satisfy the following properties: (i) uniqueness of the same-
kind relation for more output-concrete values, i.e., l1 ≍ l2 and l <out l2 implies l1 = l2,
(ii) τ is not more output-concrete than any other action, i.e., for all l it is not true that
l <out τ , (iii) the less-concrete-input relation is reflexive, i.e., for all l, l ≤in l.

Our concretizing threadwise upward simulation handles the output and input cases
separately. We require that any output action transition can be simulated by some less
concrete output action, and any input action transition can be simulated by all less
concrete input actions:

Definition 4.9. A relationR is a concretizing threadwise upward simulation if there

is a well-founded order <T on T such that whenever t
te
−→ t′ and s R t, then either

(1) ∃s′ te ′. te ′ <out te ∧ s
τ
−→

∗ te′

−−→ s′ ∧ s′ R t′, or

(2) ∀te ′′. te ′′ ≤in te→ ∃s′. s
τ
−→

∗ te′′

−−→ s′ ∧ s′ R t′, or

(3) ∃s′. s
fail
−−−→ s′, or te = τ ∧ s R t′ ∧ t′ <T t.

Moreover, if t 6−→ (t is stuck) and s R t, then s 6−→ or ∃s′. s
fail
−−−→ s′.

The concretizing downward simulation unsurprisingly requires that output actions
are simulated by more concrete output actions. The input action simulation is more
intricate — to prove the upward simulation from the downward simulation we need to
ensure that the source LTS can accept any less concrete value for any input action:

Definition 4.10. A relation R between the states of two thread LTSs S and T is a
concretizing threadwise downward simulation if there is a well-founded order <S on

the states of S such that if given any s, s′ ∈ S, t ∈ T and label te, whenever s
te
−→ s′ and

s R t, then either

(1) te = fail, or

(2) ∃t′ te ′. te <out te
′
∧ t

τ
−→

∗ te′

−−→
τ
−→

∗

t′ ∧ s′ R t′, or

(3) ∃t′. t
τ
−→

∗ te
−→

τ
−→

∗

t′ ∧ ∀te ′′. te ′′ ≤in te → ∃s′′.s
te′′

−−→ s′′ ∧ s′′ R t′, or
(4) te = τ ∧ s′ R t ∧ s′ <S s.

Using these definitions, we establish concretizing versions of Theorems 4.5 and 4.7.
For our concrete case of thread events, te ≤in te ′ iff te = te ′ or te and te ′ read the

same chunk at the same location and the value of te is less concrete than the value of
te ′. We define te <out te

′ to hold iff te is a write of a less concrete value from the same
chunk at the same location as te ′ (in reality, one also has to define ≤in and <out for
read-modify-write handling).

4.7. Establishing whole-system trace inclusions for the two phases t hat substantially change
memory accesses

In ClightTSO (as in Clight) local variables are all in allocated blocks, but an early
phase of the compiler identifies the variables whose addresses are not taken (by any
use of the & operator) and keeps them in thread-local environments, changing loads
and stores into (τ -action) environment accesses; moreover, individual stack allocations
on function entry are merged into one large allocation of the entire stack frame. Con-
versely, a later phase does activation record layout, and thread-local state manipula-

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:17

tion (τ actions) is compiled into memory accesses to the thread-local part of activation
records. In both cases, the thread has different views of memory in source and target,
and these views involve the TSO-machine buffering of loads, stores, allocations and
frees. We return to this, which is the heart of our proof, in §5.3 and §5.4.

4.8. Establishing whole-system trace inclusions for the three phase s that change fences

Our compiler contains one phase that inserts memory fences at appropriate program
points and two phases that remove redundant memory fences: one where the removed
fences have a trivial effect as the buffer is empty when the fences are executed, and one
where the effect of the fence is never observed by the program. The correctness of the
first two of these transformations is straightforward and shown using a whole-system
upward simulation. The correctness of the third transformation is much subtler and
requires a new form of whole-system upwards simulation, which we call a weak-tau
simulation. We return to this in §6.

4.9. Finite memory revisited

To be faithful to a real machine semantics, our x86 semantics uses finite memory and
performs memory allocations only when threads are initialized (the stack of the thread
is allocated). In Clight, however, small memory allocations happen whenever a vari-
able is declared; as a result, the memory should be unbounded because the compiler
can promote local variables to registers and thus a Clight program can have a footprint
that would not fit in the x86 memory. In our intermediate languages, we switch from
infinite to finite memory in the Csharpminor to Cstacked phase (§5.3), where we move
local variables whose address is not taken to local environments, and perform one al-
location (for the remaining local variables) per function call. Since our pointer type
needs to accommodate both the finite and infinite nature of addresses, our pointers
are composed of two parts: an unbounded block identifier and machine integer offset
within the block. The lower-level language semantics uses only the finite memory in
block 0—the memory refuses to allocate any other block. The higher level languages
can allocate in any block. Note that one memory block can contain more than one mem-
ory object. A later phase (MachAbstr to MachConcr, §5.4) compiles away the allocations
per function call, pre-allocating a thread’s stack when it is created.

4.10. The final phase: targetting x86

We target x86 because x86-TSO gives us a relatively simple and well-understood re-
laxed memory model for a common multiprocessor. CompCert 1.5 targets sequential
PowerPC and ARM assembly language, but these have much more intricate concur-
rent behavior [Sarkar et al. 2011; Alglave et al. 2010]. We therefore implemented an
x86 backend, described in §5.6, adopting parts of the new x86 backend of CompCert
1.8 but with a different instruction semantics.

5. COMPCERTTSO

Following the strategy above, we have built a working verified compiler from
ClightTSO to x86 assembly language with x86-TSO semantics. This shows (a) how
we can reason about concurrent TSO behavior, in the phases where that plays a key
role, and (b) how our overall strategy enables relatively straightforward adaptation of
the existing sequential proof, in the phases where concurrent memory accesses do not
have a big impact.

The structure of our compiler, and of its proof, is shown in Fig. 3. The subdivision
into phases between intermediate languages follows CompCert 1.5 as far as possible,
with our major changes being:

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:18 J Ševčı́k et al.

In
fi
n
it
e

m
em

or
y

ClightTSO source

Parsing, type-checking, simplification (CIL)

ClightTSO

§5.2
Control-structure simplification;
type-based overloading resolution

F
in
it
e

m
em

or
y

Csharpminor

§5.3 Stack allocation of address-taken locals

Cstacked

§5.5

Simplification
(undefined values can become defined)

Cminor

Instruction selection

CminorSel
Construction of the CFG;
3-address code generation

RTL

Constant propagation

RTL

CSE (for arithmetic expressions only)

RTL

§6.3 Fence elimination FE1

RTL

§6.3 Fence elimination PRE

RTL

§6.3 Fence elimination FE2

RTL

§5.5

Register allocation
(unnecessary loads removed)

LTL

Branch tunnelling

LTL

Linearization of the CFG

S
ta
ck

a
ll
oc
a
ti
on

s
a
t
ca
ll
s

LTLin
Spilling, reloading, calling conventions
(undefined values can become defined)

Linear

Laying out the activation records (Part I)

S
ta
ck

a
ll
oc
a
ti
on

s
a
t
th

re
a
d
cr
ea

ti
on

MachAbstr

§5.4 Laying out the activation records (Part II)

MachConcr

§5.6
Emission of x86 assembly code

(undefined values can become defined)
Asm (x86)

Printing of x86 AST, assembly and linking

Machine code (x86)

Our proof structure is indicated by single arrows for threadwise downward simulations
(lifted to upward trace inclusions, shown with upwards single arrows, by Theorems 4.5,
4.7 and 4.8); straight double arrows for direct proofs of whole-system upward simulations;
and a straight triple arrow for a direct proof of a whole-system upward weak-tau simulation.
ClightTSO and Csharpminor perform a stack allocation for each individual variable in

the program and assume an infinite memory, whereas the languages below have only finite
memory. From Cstacked to MachAbstr a stack allocation occurs for each non-empty stack
frame (that is, almost every function call), whereas inMachConcr and Asm a stack allocation
occurs only when a thread is created.

Fig. 3. CompCertTSO phases

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:19

—The source and target languages are ClightTSO and concurrent x86 assembly, not
Clight and PowerPC or ARM assembly.

—The semantics is expressed with a TSO machine, which is common to all phases.
—We need a stack of memory-model-aware abstractions for the intermediate lan-

guages. While named after those of CompCert, their semantics are all adapted to
labellized TSO semantics.

—The simulation from ClightTSO to the first intermediate language, Csharpminor, is
a new proof above our small-step semantics.

—The CompCert phase that does stack allocation of some local variables (those whose
address is taken by &), from Csharpminor to Cminor, is divided into two via a new
intermediate language Cstacked. Cstacked has the same syntax as Csharpminor
(and compilation to it is the identity on terms) but a memory semantics more like
Cminor. The proof of the Csharpminor-to-Cstacked phase is a new direct whole-
system upward simulation argument, dealing with the very different patterns of
memory accesses in the two languages and how they interact with the TSOmachine.

—The proofs of the previous middle phases of the compiler, from RTL to MachAbstr
with various optimizations, are relatively straightforward adaptations of the Com-
pCert proofs to our per-thread labellized semantics and are lifted by the general
results of the previous section.

—The fence elimination phases are new.
—Our Mach-to-Asm phase generates x86 rather than PowerPC or ARM assembly.

The rest of this section discusses these in more detail except for the fence elimination
optimizations, which are deferred to Section 6. To give a flavour of the actual Coq
development we switch presentation style, quoting small excerpts of the Coq source
rather than hand-typesetting. Our main result is as follows.

THEOREM 5.1 (COMPILER CORRECTNESS).

∀fe1 fi2 fe2 p p’,
transf_c_program false fe1 fi2 fe2 p = OK p’ →
∀args trace,
valid_args args →
prog_traces Asm.x86_sem p’ args trace →
prog_traces Csem.Clight.cl_sem p args trace.

[Coq proof]

Here transf c program is the compiler, p ranges over ClightTSO programs, p’ ranges
over x86 programs, args ranges over command-line arguments, and trace ranges over
traces. The first four arguments of transf c program control whether fence insertion
and fence elimination are performed, as described in §6.

Proof outline: First, we construct threadwise downward simulations from ClightTSO
to Csharpminor, between each of the non-fence-elimination phases from Cminor to
MachAbstr, and from MachConcr to Asm. Then, we turn these threadwise downward
simulations to threadwise upward simulations by Theorem 4.5 (and by the analogous
theorems for the concretizing threadwise downward simulation and for the lock-step
threadwise downward simulation with unnecessary load removal). Then, by Theo-
rem 4.7, we turn the threadwise upward simulations into whole-system measured up-
ward simulations. In §5.3 and §5.4, we also establish measured upward simulations
from Cstacked to Csharpminor and from MachAbstr to MachConcr. In §6, we also es-
tablish measured upward simulations for the first two fence elimination phases and
an upward weak-tau simulation for the third fence elimination phase. By Theorem 4.8
(and by the analogous theorem for weak-tau simulations), we deduce that the traces of

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:20 J Ševčı́k et al.

the output program of each phase are included in those of its input program. Finally,
by transitivity of trace inclusion, we get the end-to-end trace inclusion.

5.1. TSO machine design and interaction with threads

To separate the sequential language semantics from the memory model, we split the
whole-system semantics in two parts: the thread transition systems indexed by thread
identifiers, and the TSO transition system with a state consisting of the main memory
(essentially an array of values) and buffers, represented as thread-id-indexed lists of
buffered events. The buffered events can be writes, allocations, or frees:

Inductive buffer_item :=
| BufferedWrite (p: pointer) (c: memory_chunk) (v: val)
| BufferedAlloc (p: pointer) (i: int) (k: mobject_kind)
| BufferedFree (p: pointer) (k: mobject_kind).

Note that all the transition systems have different labels: the whole system labels
are events (§4.1), the threads’ labels are thread events (§4.4) and the TSO machine la-
bels are tso events:

Inductive tso_event :=
| TSOmem (tid: thread_id) (m: mem_event)
| TSOreadfail (tid: thread_id) (p: pointer) (c: memory_chunk)
| TSOfreefail (tid: thread_id) (p: pointer) (k: mobject_kind)
| TSOoutofmem (tid: thread_id) (i: int) (k: mobject_kind)
| TSOstart (tid: thread_id) (newtid: thread_id)
| TSOexit (tid: thread_id)
| TSOtau.

where the memory events mem event are:

Inductive mem_event :=
| MEfence
| MEwrite (p: pointer) (chunk: memory_chunk) (v: val)
| MEread (p: pointer) (chunk: memory_chunk) (v: val)
| MErmw (p: pointer) (chunk: memory_chunk) (v: val) (instr: rmw_instr)
| MEalloc (p: pointer) (size: int) (k: mobject_kind)
| MEfree (p: pointer) (k: mobject_kind).

The TSO machine differs from our original x86-TSO [Owens et al. 2009; Sewell et al.
2010a] semantics described in Section 2 by adding error handling, allocation and free,
thread creation and exit, and by replacing machine lock and unlock transitions by
explicit read-modify-write transitions.
Ideally, the TSO transition system would synchronize with the thread transition

systems on memory events and thread management events (producing a whole-system
τ transition), and all the remaining events of the threads and the TSO machine would
be exposed as whole-system transitions. Unfortunately, there are several cases where
we need a more fine-grained approach because of error-handling; for example, if a
thread issues a read, the TSO machine can either successfully read a value (using the
TSOmem t (MEread . . .) event), or it can fail because the memory is not allocated (with the
TSOreadfail event). We should note that we handle out-of-memory events separately
because we aim to separate programmer errors, such as memory safety violations, from
a possibly inefficient allocator that produces excessively fragmented memory.
For full details of the TSO machine transition system, see Figures 4 and 5.

The TSO machine handles the successful cases of memory operations using rules
tso step write, tso step read, tso step alloc, tso step free, tso step mfence and

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:21

Inductive tso_step : tso_state → tso_event → tso_state → Prop :=

(∗ MEMORY OPERATIONS ∗)
| tso_step_write : (∗ Memory write (goes into buffer) ∗)
∀t ts ts’ p c v
(EQts’: ts’ = buffer_insert ts t (BufferedWrite p c v))
(SAFE: unbuffer_safe ts’),

tso_step ts (TSOmem t (MEwrite p c v)) ts’

| tso_step_read : (∗ Memory read ∗)
∀ts t m’ p c v
(AB: apply_buffer (ts.(tso_buffers) t) ts.(tso_mem) = Some m’)
(LD: load_ptr c m’ p = Some v),

tso_step ts (TSOmem t (MEread p c v)) ts

| tso_step_read_fail: (∗ Memory read failure ∗)
∀ts t p c
(Bemp: ts.(tso_buffers) t = nil)
(LD: load_ptr c ts.(tso_mem) p = None),

tso_step ts (TSOreadfail t p c) ts

| tso_step_alloc : (∗ Memory allocation (goes into buffer) ∗)
∀t ts ts’ p i k
(EQts’: ts’ = buffer_insert ts t (BufferedAlloc p i k))
(UNS: unbuffer_safe ts’),

tso_step ts (TSOmem t (MEalloc p i k)) ts’

| tso_step_free : (∗ Memory deallocation (goes into buffer) ∗)
∀t ts ts’ p k
(EQts’: ts’ = buffer_insert ts t (BufferedFree p k))
(UNS: unbuffer_safe ts’),

tso_step ts (TSOmem t (MEfree p k)) ts’

| tso_step_free_fail : (∗ Memory deallocation fail ∗)
∀t ts p k
(Bemp: ts.(tso_buffers) t = nil)
(FAIL: match free_ptr p k (tso_mem ts) with

| None ⇒ True
| Some m’ ⇒ ∃tid’ p c v b,

ts.(tso_buffers) tid’ = BufferedWrite p c v :: b
∧ store_ptr c m’ p v = None

end),
tso_step ts (TSOfreefail t p k) ts

| tso_step_outofmem :
∀t ts n k
(OOM: ∀p, ¬ unbuffer_safe (buffer_insert ts t (BufferedAlloc p n k))),

tso_step ts (TSOoutofmem t n k) ts

Fig. 4. TSO machine transition system: Part 1

tso step rmw. The read rule obtains the value from its current view of memory, i.e.,
the main memory with the reading thread’s buffer applied. The fence and read-modify-
write rules require the buffer of the thread to be flushed. For the other memory rules,
the TSO machine appends the memory operation to the thread’s buffer. When insert-
ing to memory buffers, we always make sure that all possible interleavings of applying
buffers to memory would succeed. In particular, it is important to guarantee that all
allocations in buffers are fresh after any unbuffering. It might seem that it would be
sufficient to check freshness when inserting the allocation. However, when inserting
a free event into a buffer, we might free memory that has a pending allocation if we

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:22 J Ševčı́k et al.

(∗ UNBUFFERING ∗)
| tso_step_unbuffer : (∗ Apply buffer item ∗)
∀t ts bufs’ bi b m’
(EQbufs: ts.(tso_buffers) t = bi :: b)
(EQbufs’: bufs’ = tupdate t b ts.(tso_buffers))
(AB: apply_buffer_item bi ts.(tso_mem) = Some m’),

tso_step ts TSOtau (mktsostate bufs’ m’)

(∗ ATOMIC INSTRUCTIONS ∗)
| tso_step_mfence : (∗ Mfence (note that the buffer must be flushed) ∗)
∀ts t
(Bemp: ts.(tso_buffers) t = nil),

tso_step ts (TSOmem t MEfence) ts

| tso_step_rmw : (∗ Read−modify−write (note that the buffer must be flushed) ∗)
∀ts ts’ t p c v instr m’
(Bemp: ts.(tso_buffers) t = nil)
(LD: load_ptr c ts.(tso_mem) p = Some v)
(STO: store_ptr c ts.(tso_mem) p (rmw_instr_semantics instr v) = Some m’)
(EQts’: mktsostate ts.(tso_buffers) m’ = ts’),

tso_step ts (TSOmem t (MErmw p c v instr)) ts’

(∗ THREAD MANAGEMENT ∗)
| tso_step_start : (∗ Thread start ∗)
∀ts ts’ t bufs’ newtid
(EQbufs’: bufs’ = tupdate newtid nil ts.(tso_buffers))
(EQts’: mktsostate bufs’ ts.(tso_mem) = ts’),

tso_step ts (TSOstart t newtid) ts’

| tso_step_finish : (∗ Thread finish ∗)
∀ts t
(Bemp: ts.(tso_buffers) t = nil),

tso_step ts (TSOexit t) ts

Fig. 5. TSO machine transition system: Part 2

unbuffer the free event before the allocation event. To avoid these corner cases, we
simply require that no insertion to buffers can introduce errors when unbuffering, and
fail eagerly if there is a potential error.
The TSO machine handles write, read and read-modify-write errors using the

tso step read fail rule. For simplicity, the rule can only be applied with an empty
buffer, but it is easy to establish (and we have a Coq proof) that this is weakly bisimi-
lar to the more permissive alternative, where writes fail if insertion into a buffer would
cause an error after some unbuffering, and reads fail if the memory being read is not
allocated in the TSO machine’s memory with the thread’s buffer applied. Similarly,
tso step free fail can only fail with an empty buffer, but to have the bisimilarity
we further insist that writes in other buffers can be successfully performed after the
deallocation. Finally, there are unsurprising steps for applying the head of a buffer
(tso step unbuffer), adding and removing threads (tso step start, tso step finish)
and out-of-memory handling (tso step outofmem).

The whole-system transition system mostly synchronizes corresponding transitions
of threads and the TSO machine, but there are several exceptions to this scheme. The
rule handling thread start creates a new thread and initializes the thread with a func-
tion identified by the name in the spawning thread’s start event. If there is no function
of the required name there is a start error transition rule. The rule for thread stuck-
ness fires an error transition if there is a thread that cannot make any progress. This
can only happen if there is a run-time error, such as multiplication of two pointers. We

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:23

ClightTSO Csharpminor

v2 · [v1 +ptr∗int→ptr] · κe |ρ

τ

(BINOP)

v2 · [n *] · [v1 +ptr∗int→ptr] · κ̂e |ρ̂

τ

(BINOP)

v · κe |ρ v̂2 · [v1 +ptr∗int→ptr] · κ̂e |ρ̂

τ

(BINOP)

v · κ̂e |ρ̂

Here int = int (I32,Signed) and ptr = pointer (int). The type annotation in the multiplica-
tion (*) context is omitted.

Fig. 6. Part of the simulation relating ClightTSO and Csharpminor evaluation for addition of an int and a
pointer

ClightTSO Csharpminor

*((&(id ty1)ty2))ty3 · κe |ρ

τ

(DEREF)

id · κ̂e |ρ̂

mem (read p c v)

(VAR)

eval var ref ρ id p c

has type v

(type of chunk c)

(&(id ty1)ty2) · [* ty3] · κe |ρ

τ

(ADDR)

lval (id ty1) · [* ty3] · κe |ρ

τ

(VARLOCAL)
ρ!id= Somep

p · [* ty3] · κe |ρ

mem (read p c v)

(LOADBYVALUE)
...

v · κe |ρ v · κ̂e |ρ̂

Fig. 7. ClightTSO compilation can sometimes eliminate source-level transitions

should note that there are two sets of rules for thread start and external action because
their argument passing is different in the back end of the compiler (MachConcr, Asm)
and the front/middle end of the compiler (Clight to MachAbstr). Languages between
Clight and MachAbstr pass arguments to an external (or thread start) function in the
external/thread-start event and no memory is involved. In contrast, the MachConcr
and Asm languages use the approach mandated by the calling conventions: the ar-
guments are passed on stack in memory, the external and thread start thread-events
take the addresses of their arguments’ locations, and the whole-system transition is
responsible for reading out the arguments from the TSO memory before emitting a
whole-system external event (or spawning a thread).

5.2. Small-stepping (ClightTSO to Csharpminor)

ClightTSO is compiled into Csharpminor, a high-level intermediate representation
that has a simpler form of expressions and statements. Most notably, the translation

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:24 J Ševčı́k et al.

unifies various looping constructs found in the source, compiles away casts, translates
unions and structs into primitive indexed memory accesses, and makes variable l-
value and r-value distinctions explicit. High-level type information found in ClightTSO
is compiled to a lower-level byte-aware memory representation. Accounting for these
differences in the simulation is complicated by the relatively large size of the two lan-
guages: ClightTSO’s definition has 94 rules, while Csharpminor has 62.
Because expression evaluation is defined by a small-step semantics, adapting the

downward simulation proofs directly from CompCert (which uses a big-step expres-
sion evaluation semantics) was not feasible, and much of the proof, along with the
simulation change, had to be written from scratch as a result. Since the two lan-
guages are relatively close, however, the revised simulation could sometimes simply
map ClightTSO transitions directly to the corresponding Csharpminor ones; evalua-
tion of constants, unary operations, and certain components of function call and return
are such examples.
However, as we mentioned earlier, compilation often results in a ClightTSO term

becoming translated to a sequence of lower-level simpler Csharpminor terms. To il-
lustrate, the diagram shown in Fig. 6 shows the evaluation of a binary addition of an
integer and a pointer. For ClightTSO, the multiplication of the integer operand by the
representation size of the pointer type is performed implicitly, subsumed within the
intrinsic definition of addition. In Csharpminor, an explicit binary multiplication oper-
ation is introduced. Notice that the continuations in the subsequent matching states
are structurally quite different from each other as a result; the simulation relation
must explicitly account for these differences.
Perhaps a more surprising consequence of using a small-step semantics is that the

simulation relation may sometimes be required to match multiple ClightTSO tran-
sitions to a single Csharpminor one. For example, compilation from ClightTSO to
Csharpminor eliminates various states defined in ClightTSO to deal with addressing
and dereferencing. Consider the evaluation of an identifier that appears in an r-value
context. In ClightTSO, the identifier is first translated into a pointer, and a separate
step returns either the contents of the pointer (in case it references a scalar type) or
the pointer itself (in case of e.g., arrays or structs). Compilation to Csharpminor re-
moves this intermediate step, generating the appropriate access instruction directly,
since the pointer type is statically known. This simplification generalizes to sequences
of address-of and dereferencing operations. We depict the sequence of steps necessary
to compute a variable’s address, and then dereference it (if it is a scalar) in Fig. 7.
The relation eval var ref states that variable id, in the context of local environment
ρ, evaluates to pointer p that references an object with memory representation c. The
value v read must have a type consistent with c as defined by relation has type. No-
tice that ClightTSO requires four steps to perform this operation while compilation
to Csharpminor requires only one. To account for such differences, the simulation re-
lation forces Csharpminor transitions to stutter, and we incorporate a measure on
ClightTSO expressions and continuations that allows matching of several intermedi-
ate ClightTSO states to a single Csharpminor one. Indeed, such a measure, suitably
adapted, must be defined for most other compiler phases.
Besides memory read and write operations, the ClightTSO semantics also gener-

ates events for function argument and local variable allocation as part of the function
calling sequence. The small-step semantics requires these operations be performed in
stages. After all argument expressions and the function pointer have been evaluated,
memory is allocated for each formal parameter, as well as all local variables, in turn.
Each distinct allocation is represented as a separate labelled transition. After alloca-
tion, the values of the actuals are written to the formals. On function exit, allocated
storage is freed individually. The corresponding Csharpminor transitions are similar,

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:25

albeit with a change in the underlying type representation used to guide memory allo-
cation and writes.

5.3. Changing memory accesses (1) (Csharpminor to Cstacked)

5.3.1. Languages and Compilation. The Csharpminor to Cstacked phase bridges the se-
mantic gap to the next intermediate language, Cminor, by introducing a new semantics
for the Csharpminor syntax. That is, the program transformation from Csharpminor
to Cstacked is an identity function. However, the Cstacked memory semantics closely
follows that of Cminor, which differs radically from Csharpminor.

Csharpminor

Stack allocation of address-taken locals

Cstacked

§5.5
Simplification

(undefined values can become defined)
Cminor

To understand the motivation for introducing Cstacked, we summarize the main
features of the following compilation phase (Cstacked to Cminor):

(1) Local variable reads and writes are turned into explicit memory accesses or local
state reads and updates. Note that in Csharpminor, as in C, it is legal to take the
address of a local variable and even to pass it to another thread, so long as it is not
accessed outside its lifetime. Variables whose address is never taken, however, are
guaranteed to be thread-local, and the compiler lifts such variables from memory
to local state. The remaining variables are kept in memory.

(2) Individual local variable allocations are replaced with single stack-frame alloca-
tion.

(3) Switch-case statements are compiled to switch-table statements.

Without the intermediate Cstacked phase, the first two steps would change memory
semantics: Step 1 would replace memory accesses to local variables with local state
manipulation that does not touch memory, and Step 2 would replace the individual
variable (de)allocations with a single stack-frame (de)allocation in Cminor.
To separate concerns, the Cstacked semantics only captures the memory effects

of the transformation, i.e., its transitions simulate the compilation steps 1 and 2.
Cstacked and Csharpminor only differ in handling local variables. The change is most
evident in the types of local environments, which are part of the local state of threads.
In Csharpminor, a local environment is a map from names to pointers and type infor-
mation that essentially describes the size of a local variable in memory:

var kind , vk ::= scalarmemory chunk | array size
cshm env , cshe ::= nil | (id :(p , vk))::cshe

In Cstacked, a local environment consists of a stack frame pointer and a map that
assigns to each name a value or an offset within the stack-frame:

st kind , sk ::= local v | stack scalarmemory chunk ofs | stack array size ofs
cst items , csti ::= nil | (id : sk)::csti
cst env , cste ::= (p , csti)

Note that Cstacked can keep values of local variables in the local environment (when
the corresponding st kind is local). This contrasts with Csharpminor, which stores the
values of all local variables in memory.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:26 J Ševčı́k et al.

The difference in the environment drives all the other changes from Csharpminor
to Cstacked: we adjust the rules for assignment, the write of a function’s return value,
local variable reads, function entry, and function exit to handle local in-state variables
and on-stack variables separately. The most significant change is in function entry,
where we scan the function body for the & operator and compute the size of its stack
frame together with offsets for on-stack local variables.
We illustrate the radical difference between the memory semantics of Csharpmi-

nor and Cstacked on the environment construction and parameter binding in function
entry. Consider the following function:

int f(int i) {int j, k; g(i, &j, &k); return j+k;}

Fig. 8 shows the environment construction and argument binding transitions following
an invocation of f with parameter 1. The states have the following meaning: the state
Call l f follows the evaluation of actual parameters l in the invocation of f ; Alloc l v e
is an intermediate state for allocation of local variables v, where e is an accumulator
for the environment and l is the list of values to be bound to the function’s formal
parameters; Bind l p e is a state for binding parameter names p to values l in environ-
ment e. The Alloc to Bind transition retrieves the parameter names from the state’s
continuation, which we omit in this example for brevity. Note that the states do not
refer to memory directly. Instead, the transitions expose the memory interaction in
the labels. In Csharpminor, the semantics of function entry allocates three different
4-byte blocks, one for parameter i, and two for variables j and k. In Cstacked (and in
all languages between Cminor and MachAbstr), the function entry semantics allocates
a single 8-byte stack frame for variables j and k. No memory is reserved for variable
i because i’s value is kept in the thread-local local environment. The binding tran-
sitions are also different: Csharpminor writes the value 1 of parameter i to memory,
but Cstacked simply stores the value in the environment. Indeed, note the difference
in the environment entry for i in the last Bind states at the bottom of the figure: the
Csharpminor entry only contains a pointer to memory, whereas the Cstacked entry
contains the value of the variable.

5.3.2. Simulating Cstacked in Csharpminor. Remember that the Csharpminor-Cstacked
phase switches from infinite memory to finite memory. This is necessary to be able to
simulate the creation of the Cstacked local environments by fresh memory allocation
in Csharpminor so that the memory cannot be allocated even by future Cstacked allo-
cations. We call the finite space used by Cstacked the machine space. The remaining
(infinite) part of the Csharpminor memory space in other blocks is called scratch space.
Our representation of pointers is of the form (b, ofs) where b is an integer block identi-
fier and ofs ∈ {0, . . . , 232− 1} is an offset. In our semantics, the machine space pointers
have block b = 0. Pointers with non-zero b are scratch space pointers. We simulate
Cstacked transitions so that we preserve equality of pointer values in the states and
the values in the (machine) memory:

—We simulate Cstacked stack frame allocation in Csharpminor by allocating the indi-
vidual variables at the same (machine) memory locations as they have in Cstacked.
Moreover, we allocate space for Cstacked local environments in globally fresh blocks
in Csharpminor’s scratch memory.

—Cstacked memory reads/writes are simulated by the same reads/writes in Csharp-
minor.

—Cstacked local environment accesses (which are τ events in Cstacked) are simulated
by memory accesses to the corresponding Csharpminor scratch memory.

—We simulate Cstacked stack frame deallocation by freeing the individual variables,
including the ones in non-machine memory, in Csharpminor.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:27

Call [1] f

Csharpminor

τ

Call [1] f

Cstacked

alloc as 8 Stack

Alloc [1]





i : I
j : I
k : I



 []

alloc ai 4 Stack

Alloc [1]

[

j : I
k : I

]

[

i : (ai, I)
]

alloc aj 4 Stack

Alloc [1]
[

k : I
]

[

j : (aj , I)
i : (ai, I)

]

alloc ak 4 Stack

Alloc [1] []





k : (ak, I)
j : (aj , I)
i : (ai, I)





τ

Bind [1] [i]





k : (ak, I)
j : (aj , I)
i : (ai, I)





write ai int32 1

Bind [1] [i]



as,





k : SI 4
j : SI 0
i : LUnd









τ

Bind [] []





k : (ak, I)
j : (aj , I)
i : (ai, I)



 Bind [] []



as,





k : SI 4
j : SI 0
i : L 1









Here I stands for scalar int32, LUnd for local Vundef, SI ofs for stack scalar int32 ofs, and L 1
for local (Vint 1).

Fig. 8. Function entry transitions in Csharpminor and Cstacked

The simulation relation on the states of the parallel composition of threads and the
TSO machine consists of three main components: a thread state relation, a TSO buffer
relation and a memory relation.

5.3.3. Relating thread states. The main source of difficulty is relating the local environ-
ments of Cstacked and Csharpminor, because the values of the local environments in
Cstacked correspond to the memory contents of Csharpminor. Therefore, the thread
state simulation must relate a Cstacked thread state with a Csharpminor thread state
and memory.

In our TSO semantics, a thread’s view of memory may differ from the real contents
of the memory and from other threads’ views of memory because of possibly pending
writes, allocations and frees in store buffers of this and other threads. We consider
local environments related for thread t if the values in the local environments in the
Cstacked state are the same as the ones in the memory of Csharpminor’s TSO ma-
chine with t’s buffer applied. Moreover, we consider stack environments related if for
each Cstacked environment item of the stack kind with offset ofs, the corresponding
Csharpminor item’s pointer equals the sum of the Cstacked stack frame pointer and

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:28 J Ševčı́k et al.

write (0, 8) int32 3

free (1, 4) Stack

free (0, 12) Stack

free (0, 16) Stack

Csharpminor

write (0, 8) int32 3

Cstacked

. . . free (0, 12) Stack

write (1, 4) int32 1 . . .

alloc (0, 16) 4 Stack alloc (0, 12) 8 Stack

alloc (0, 12) 4 Stack

alloc (1, 4) 4 Stack

Fig. 9. Buffer relation

ofs . Since Cstacked and Csharpminor only differ in their environments, the thread
state simulation relation is a natural lifting of the environment relation.

All thread transitions preserve such a relation because they can only affect the
thread’s buffer. However, the simulation of applying other threads’ buffers to the main
memory (unbuffering) requires a stronger relation. In particular, the state relation
does not prevent unbuffering in one thread from interfering with another thread’s
state relation. To get non-interference for unbuffering, we keep track of memory par-
titioning among threads (this is also necessary to make sure that threads do not free
each others’ stack frames) by augmenting the state relation with the partitions they
own in memory.

5.3.4. Relating buffers. The buffer relation requires that a Cstacked (stack-frame) allo-
cation corresponds to individual disjoint Csharpminor allocations (of individual vari-
ables) that must be in the stack-frame; Cstacked writes correspond to the same writes
in the Csharpminor buffer; and frees in a Cstacked buffer correspond to frees of sub-
ranges in Csharpminor. To relate frees, we must know the sizes of objects in memory
because a free label does not contain a size; hence, we parameterize the buffer re-
lation by the thread’s partition. It is worth noting that the Csharpminor buffer may
contain extra memory labels for the local environment manipulation, which are τ la-
bels in Cstacked and thus do not appear in the Cstacked buffer. We only require the
operations in the labels to be valid in the thread’s partition.
Fig. 9 illustrates the buffer relation. Assuming that the TSO machine inserts labels

to the top of the buffer and applies the labels to memory from the bottom, the buffer
contents might be generated by the function f from the beginning of this section, where
the allocations correspond to the transitions from Fig. 8, the dotted part of the buffer
is generated by the function g, the frees correspond to local variable deallocations at
function exit, and the write label is issued by writing the return value to the caller’s
stack frame. The grey labels are the memory manipulation removed by the compiler,
or, more precisely, they are the labels introduced by the upward simulation (note that
they act on scratch memory).
In the simulation proof, the buffer relation says how to simulate Cstacked buffer

application in Csharpminor while preserving the simulation relation. For example, if
we are to simulate Cstacked buffer application of the alloc label, we apply the three
corresponding allocations followed by the write from the Csharpminor buffer.

5.3.5. Relating TSO states. The whole-system simulation relation states that there are
Cstacked and Csharpminor partitionings, i.e., maps from thread ids to partitions such
that

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:29

—The Csharpminor (resp. Cstacked) partitioning corresponds to the ranges allocated
in the Csharpminor (resp. Cstacked) TSO machine’s memory. Moreover, the parti-
tionings must be pairwise disjoint and for each thread, the Csharpminor machine
partitions must contain sub-ranges of Cstacked partitions. This is necessary to guar-
antee that any Cstacked allocation can be successfully simulated in Csharpminor3.

— The values in the machine memory are the same in Cstacked and in Csharpminor.
We need this property to establish that reads of the same address give the same
value in Cstacked and in Csharpminor.

—Each thread’s Cstacked and Csharpminor buffers are related.
—For each thread t, the states of t in Csharpminor and Cstacked are related in the

partitions and memory updated by t’s buffers.

The relation also imposes several consistency invariants: to guarantee that Cstacked
writes do not overwrite Csharpminor scratch memory, we require that scratch pointers
only appear as pointers in Csharpminor environments. With these ingredients, the
relation on the TSO states is a whole-system upward simulation relation.

5.4. Changing memory accesses (2) (MachAbstr to MachConcr)

The overall structure of the simulation proof from MachAbstr to MachConcr is similar
to the Csharpminor-Cstacked correctness proof. MachAbstr and MachConcr are again
two different semantics for the same programs.

Linear

Laying out the activation records (Part I)

MachAbstr

Laying out the activation records (Part II)

MachConcr

§5.6
Emission of x86 assembly code

(undefined values can become defined)
Asm (x86)

Both MachAbstr’s and MachConcr’s thread states include the processor state, i.e.,
the state of general purpose registers, the current function, the stack pointer and the
instruction pointer. The semantics differ in storage of function frames, which contain
(non-escaping) local variables, function arguments, callee-saved register contents and
return addresses. The MachAbstr semantics stores the frames in its state, and instruc-
tions that manipulate the function frames (getstack, setstack, getparam) do not touch
memory, i.e., they perform a τ transition, which accesses only the thread-local function
frames. In contrast, MachConcr stores the function frames in (global) memory; so the
three aforementioned instructions generate read or write events for communicating
with the TSO machine. It is worth remembering that not all function-local variables
are thread-local since a program can take the address of a function-local variable and
send it to another thread which can then access it. If a C program takes an address of a
function-local variable, the variable is put into memory by the Csharpminor-Cstacked
phase; otherwise, the variable is kept in the thread-local environment. The manage-
ment of the former does not change until the MachAbstr phase, where they are still
allocated in memory upon function entry and deallocated on function exit (we refer to

3A simulation of successful allocation is an interesting (and lengthy) exercise because one must show that
in Csharpminor, no possible partial application of other threads’ buffers conflicts with the simulated allo-
cations. The partial buffer applications create states that do not directly correspond to any Cstacked state
(e.g., partially allocated environments), forcing us to invent a new simulation relation for this purpose.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:30 J Ševčı́k et al.

this memory as the MachAbstr frames). In MachConcr, on the other hand, function-
local variables whose addresses are taken live inside function frames. The function
frames (or MachConcr frames) are included in the thread’s stack space that is allo-
cated upon starting the thread.
We split the MachAbstr-MachConcr simulation proof in two parts. First, we prove a

form of threadwise upward simulation that keeps track of thread-local parts of memory
and is independent of the TSO semantics. Then we show that if we have the thread-
wise upward simulation, then there is a whole-system upward simulation. This second
part of the proof does not refer directly to the thread semantics—it only uses the ab-
stract notion of threadwise simulation. Before we give an overview of the proof, we
describe our intermediate threadwise simulation abstraction. We illustrate the con-
cept of threadwise simulation relation on an example program:

int f(int x) {
int i, *p;
i = x; p = &i;
return *p;

}

int main() {
int r = f(1);
return r;

}

Observe that the variable i is part of f’s MachAbstr frame while p is not (because
the program does not take the address of p). For the purposes of our explanation here,
we assume that the MachConcr frame of f includes both p and i. The MachConcr
frame of main contains r, a place-holder for the parameter x of f, and a place-holder for
the return address from f. To illustrate the difference between MachAbstr and Mach-
Concr, Figure 10 shows thread states of the MachAbstr semantics and the MachConcr
semantics just before returning from function f. Note that the memory of MachAb-
str only allocates space for the MachAbstr frame of f. Since main does not need to
store anything on the stack, main’s MachAbstr frame is empty and the corresponding
stack frame pointer is None. In contrast, MachConcr stores all local variables, return
addresses and function arguments in memory. Unlike in MachAbstr, the memory is
allocated only when a thread starts and remains allocated until the thread exits.

5.4.1. Threadwise simulation definition. The threadwise simulation serves as an interface
between the threadwise and whole-system correctness lemmas. We take care to make
the definition parametric in the source and target transition systems so that we can
completely separate the whole-system argument about the TSO machine from the se-
mantics of MachAbstr and MachConcr.
In addition to relating the usual source and target states, our simulation relation

keeps track of memory ownership and local memory content: we decorate the source
and target states with lists of owned memory regions and we also associate local mem-
ory with the target state so that the simulation relation can describe the relationship
between the target’s function (MachConcr) frames in memory and the source’s local
state. As a result, the simulation relation is of the form

Variable rel : TgtS → list arange → mem →
SrcS → list arange →
Prop.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:31

Fig. 10. MachConcr and MachAbstr thread states

where TgtS is the type of target transition system states, SrcS is the type of source
states, list arange is a list of memory ranges and mem is memory. In our example in
Figure 10, the source and target states are illustrated on the left. The list of source
ranges corresponds to MachAbstr frames, i.e., the list contains a single range – the
stack frame of f. The list of target ranges is a list containing a single element – the
thread’s entire stack space. The target memory is the MachConcr memory. We omit the
source memory from the threadwise simulation because the relationship between the
MachAbstr memory and non-local MachConcr memory will be specified by the whole-
system simulation relation.

We require that the threadwise simulation relation must preserve stuckness, must
only depend on local memory and must simulate events correctly. More precisely, the
simulation relation preserves stuckness if for any related states s and t, if t is stuck
then s is stuck. By local memory we mean the following: memory chunk c at location
p is local for target list of ranges tp and source list of ranges sp if the chunk is inside
some range in tp, but does not overlap with any range from sp. In our MachAbstr-
MachConcr case, a chunk is local if it is in the part of the extra memory that was
allocated by MachConcr to hold the MachConcr frames. A simulation relation rel is
only dependent on local memory if for all states s, t, lists of ranges sp, tp and memo-
ries m, m′ that have equal value in all their memory chunks, rel(t, tp,m, s, sp) implies
rel(t, tp,m′, s, sp). The local memory of MachConcr is MachConcr’s stack space without
the MachAbstr frames. In Figure 10, the chunk containing variable p is local, but the
chunk containing i is not.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:32 J Ševčı́k et al.

The event simulation essentially says that operations on local memory in the tar-
get can be simulated by τ events in the source. Simulation of allocation is subtle: we
allow the target semantics to allocate extra memory to store its local state. In our
MachConcr-MachAbstr simulation, MachAbstr and MachConcr do not perform mem-
ory allocation at the same time: MachConcr semantics allocates the entire stack space
(our semantics allocates 8MB for thread stacks) at thread start and frees the space at
thread exit, but MachAbstr allocates its stack frames upon function entry and deallo-
cates on function exit.
We illustrate the precise simulation definition on the example of read simulation

that is a part of the event simulation:

Definition local_simulation :=
∀ss ts ts’ tm sp tp l,
tgt_step ts l ts’ →
rel ts tp tm ss sp →
match l with
| ...
| TEmem (MEread p c v) ⇒ read_simulation ss ts ts’ tm sp tp p c v
| ...

end.

That is if ts
l
−→ ts ′ in the target semantics and ts, tp, tm are related with ss, sp, where tp

are the memory ranges owned by the target state ts, sp are the memory ranges owned
by the source state ss, tm is the local memory associated with the state ts, and l is a
read event of value v from chunk c at location p, then we require that

— the state ss can reach an error, or
— the chunk c at location p is local for tp, sp, the load of the chunk from memory tm

must succeed, and if the value of the chunk in memory matches the value v from

the event then the source semantics can do the transition ss
τ
−→ ss ′, where ss ′, sp is

related to ts ′, tp, tm, or ss can stutter with decreasing measure, or
— the source semantics can perform a read transition to a related state, where the

read must read the same value or the undef value.

The precise Coq statement of the definition follows.

Definition read_simulation ss ts ts’ tm sp tp p c v :=
(∗ Either the source can signal an error ∗)
stuck_or_error _ ss ∨
(∗ or the read is local and we can do a matching tau step in the source ∗)
(chunk_inside_range_list p c tp ∧
range_not_in (range_of_chunk p c) sp ∧
load_ptr c tm p 6= None ∧
(load_ptr c tm p = Some v →
(∃ ss’, src_taustep ss TEtau ss’ ∧ rel ts’ tp tm ss’ sp) ∨
(rel ts’ tp tm ss sp ∧ ord ts’ ts) ∨
stuck_or_error _ ss)) ∨

(∗ or we can read any less defined value ∗)
(∀ v’ (LD : Val.lessdef v’ v),
∃ss’, src_taustep ss (TEmem (MEread p c v’)) ss’ ∧

rel ts’ tp tm ss’ sp).

5.4.2. Threadwise simulation for MachAbstr to MachConcr. The threadwise simulation re-
lation essentially requires that the MachAbstr state matches MachConcr frames in

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:33

memory and that the MachConcr and MachAbstr registers match, with the exception
of the stack pointer, which points to the stack frame in MachAbstr, but in MachConcr
points to the frame. In reality, the simulation relation must also keep track of several
other technical invariants. Most notably, we require that all MachAbstr frame ranges
are inside the stack space of MachConcr, the stack space is allocated in MachConcr’s
memory and all MachConcr frames are properly aligned.

Although the simulation proof does not explicitly mention separation between the
individual function frames, most of the proof work concentrates on establishing sep-
aration of memory regions to guarantee non-interference of memory operations with
frames. For example, for a simulation of a local variable write in MachConcr, not only
do we need to show the correspondence of the updated memory with the updated frame
in MachAbstr, we also must establish that all the other MachAbstr frames still corre-
spond to the MachConcr memory, i.e., that the memory used by the other frames does
not change. We do this by showing that the updated frame is disjoint from all the
other frames. A similar proof obligation comes even from simulation of local reads, be-
cause the simulation of reads requires us to show that local reads do not interfere with
MachAbstr stack frames.

Another interesting example of the difference between the languages is the handling
of function entry – while the MachAbstr semantics allocates the MachAbstr frame on
function entry, the MachConcr semantics simply decrements its stack pointer. If the
decremented stack pointer exceeds the allocated stack range, the MachConcr seman-
tics issues an out-of-memory label and the simulation is trivially satisfied. Otherwise,
we simulate function entry by the stack space allocation in MachAbstr. Since the newly
allocated memory is still inside the MachConcr stack space, we keep the invariant re-
quiring that each range allocated in MachAbstr is a sub-range of some range allocated
in MachConcr.

We also show the stuckness simulation and non-interference with non-local memory
requirements of the threadwise simulation by case analysis on the transition relation
for stuckness and by induction on the derivation of the simulation relation for the
non-interference.

5.4.3. Whole-system simulation from threadwise simulation. The overall structure of the
whole-system simulation relation is similar to the Csharpminor-to-Cstacked relation:
for both the target and source there must be disjoint partitioning of memory between
threads such that the values in the allocated source memory are the same as the val-
ues in the target memory at the same location. For each thread we have (i) each range
in the thread’s source partition is a subrange of some range in the thread’s target par-
tition, (ii) the buffers of the threads are related in a similar way to the Csharpminor-
Cstacked buffer relation, and (iii) the source and target thread states are related in
their partitions and target memory after applying the thread’s buffer.

The trickiest part is to prove that applying the buffer in one thread does not affect
the state relation (iii) for all the other threads. This is tricky because our threadwise
non-interference with non-local memory only applies to memory after completely ap-
plying the thread’s buffer. To get the non-interference before applying the buffers we
make a subtle use of the fact that no unbuffering can fail.

5.5. The ‘easy’ phases, including optimizations

We have enabled all the CompCert 1.5 optimizations that are sound under the TSO
semantics except tail call optimization. These are: constant propagation and partial
evaluation, a restricted version of CSE (common subexpression elimination) that elim-
inates only common arithmetic expressions, but does not eliminate common memory
loads, redundant load removal (as part of register allocation), and branch tunneling.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:34 J Ševčı́k et al.

The tail call optimization, as implemented in CompCert 1.5, only works on functions
with empty stack frames. This optimization is sound but not very useful in our set-
ting as in the x86 ABI all function arguments are stack-allocated, so one only rarely
has empty stack frames. The only CompCert 1.5 optimization that we do not perform
because it is unsound under the TSO memory model is CSE for memory reads, as
demonstrated by the following example (adapted from Pugh [2000]):

int x;

x = 0;
x = 1;

void f (int *p) {int a = x, b = *p, c = x;
printf("%d%d%d", a, b, c);}

f(&x);

CSE would replace the assignment c = x with c = a, allowing the second thread to
print 010, a behavior that is not allowed by the TSO semantics.
Labellizing CompCert’s definitions of RTL, LTL, LTLin, Linear, MachAbstr, and

MachConcr and establishing that they are determinate and receptive (so that they can
be composed with the TSO machine) was straightforward because the CompCert 1.5
definitions of these languages were already fully small-step. Porting CompCert’s down-
ward simulation proofs to threadwise downward simulation proofs and lifting them
to measured whole-system upward simulations using Theorems 4.5, 4.7 and 4.8 was
equally straightforward. (In the early days of the project, porting one phase took ap-
proximately two days, but by the end 3 hours were sufficient to port constant propaga-
tion and lift it to a measured whole-system upward simulation.) Elimination of redun-
dant loads required a small adaptation of the downward-to-upward simulation infras-
tructure. Moreover, the Cstacked-Cminor and spilling/reloading phases may change
some of the undefined values in the source semantics to particular values in the target
semantics requiring us to prove another slightly more general version of Theorems 4.5
and 4.7.
The CompCert instruction selection phase, from Cminor to CminorSel, uses vari-

ous “smart constructors” to choose appropriate operations and addressing modes for
the target machine; its correctness relies on many lemmas showing the correctness of
these with respect to expression evaluation. To make it easy to port these lemmas, for
this phase we introduced a “trace step” semantics, as outlined in §3.5. The inductive-
on-expressions structure of these helped significantly, though some plumbing was re-
quired to compose the result with the adjacent phases.

5.6. The x86 backend

We adapted the x86 backend from CompCert 1.8 (CompCert 1.5 supported PowerPC
and ARM only), with several notable differences in the semantics and proofs. Our x86
semantics is based on a well-tested HOL4 formalization of part of the x86 instruction
set [Sarkar et al. 2009, Section 3]. The structure of our instruction AST is closer to that
of general x86 instructions, with their various combinations of immediate, register
and addressing-mode arguments, than the AST used in CompCert 1.8, which defines a
flat AST supporting just the combinations used by the compiler. This does entail some
additional complexity in the proof, but allows a more generally reusable and extensible
x86 semantics. For instance, binary operations over integers are represented as

Xbinop : int_binop_name → int_dest_src → instruction

where int_dest_src accounts for all possible combinations of operands:4

4In x86, binary operations reuse the destination operand as the first source operand. For example, the
instruction ADD %eax,%ebx corresponds to the assignment %eax <- %eax + %ebx.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:35

Inductive int_dest_src :=
| Xri (dst: ireg) (src: imm) (∗ r32, imm32/imm8(sign−extended) ∗)
| Xrr (dst: ireg) (src: ireg) (∗ r32, r32 ∗)
| Xrm (dst: ireg) (src: xmem) (∗ r32, m32 ∗)
| Xmr (dst: xmem) (src: ireg). (∗ m32, r32 ∗)

Immediate operands to an arithmetic instruction or an indexed memory access, de-
noted by imm, can be either integer literals, or a symbolic reference (the address of a
symbol – symbolic references are resolved later by the linker):

Inductive imm :=
| Cint (i: int)
| Csymbol (s: ident) (offset: int).

while the rich set of indexed-memory addressing modes is accounted for by xmem:

Inductive xmem :=
| Xm (idx: option (word2 * ireg)) (base: option ireg) (displ: imm).

We faithfully model flag updates for integer arithmetic and comparison instructions,
and the semantics of the conditional branches is defined in terms of the flag status
(in contrast to CompCert 1.8 where it is axiomatized). This required proving several
theorems about 32-bit integer arithmetic, relating the flag state to the logic result of
comparison instruction; their proof is tiresome in Coq (while the HOL4 model-checker
blast can prove them automatically by exhaustive exploration of the state space).

For floating point, we target the SSE2 instruction set, and floating point arithmetic
and comparison semantics is axiomatized, as in CompCert 1.8.

We had to add a number of pseudo-instructions standing for short instruction se-
quences. Ideally these should have been represented as real instructions in the AST,
but unfortunately their semantics cannot be specified in the current CompCert setting.
These are:

— Xxor_self r standing for XOR r, r. This is a pseudo-instruction to work around the
fact that Val.xor x x is not always Vzero (in particular, when x = Vundef);

— Xset cc r for setting r <- cc. This corresponds to

SETcc CL
MOVZBL r, CL

because the semantics of SETcc cannot be represented faithfully in isolation. SETcc
writes only the least significant byte of ECX leaving the rest unchanged. If, how-
ever, ECX held Vundef, then the resulting value of ECX could not be represented as a
CompCert value;

— several floating-point instructions: Xmovftr and Xmovftm for truncating floating
point moves, dropping precision (these are pseudo-instructions because our seman-
tic values do not include single-point floating point values); Xmovstr and Xmovrst
for moving values between the FP stack and the XMM registers; Xnegf for negating
floating point numbers; Xfctiu for converting a floating point number to an un-
signed integer; and Xiuctf for converting an unsigned integer to a floating point
number. These are pseudo-instructions because the floating point semantics is ax-
iomatized.

OS-specific behaviors, such as thread creation and thread exit, are axiomatized.
Many x86 assembler instructions can involve both a read and a write to memory,

and their semantics must define two separate interactions with the TSO machine.
This is done by extending the state of the local computations with partially executed
instructions, that keep track of the pending write (if any) of the continuation.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:36 J Ševčı́k et al.

At the compilation level, the main difference with CompCert 1.8 is that we replaced
individual stackframe allocations with one-off stack space allocation at the start of the
thread and direct stack pointer arithmetic. We detect stack overflow by checking that
the stack pointer register stays inside the thread’s stack space. If not, the semantics
issues an explicit oom event.
Using the more realistic single stack space gives us the added benefit of direct access

to function arguments and the return address. This contrasts with CompCert 1.5 that
accesses arguments through an indirect link to parent stackframe and models the
return address with a virtual return-address register (similarly to PowerPC’s real link
register).
Saving the return address in the stack enables a more realistic modelling of x86,

but several parts of the x86 semantics remain less realistic than we would wish. The
most notable abstraction in the semantics is modelling register and memory contents
by the high-level value datatype (as in CompCert), which is a discriminated union
of pointers, integers, floats and undefined value, instead of the more appropriate bit-
vector representation. Unfortunately, this deficiency is not easy to remove, mostly be-
cause code pointers, such as the instruction pointer register or return addresses on the
stack, critically use the block-offset components of pointers for function id and instruc-
tion index within the function respectively.

6. FENCE OPTIMIZATIONS

The previous two sections focussed on the correctness statement and proofs in the TSO
setting of what were largely standard sequential-compiler phases, restricting some se-
quential optimizations (CSE in particular) to make them sound in that setting. In this
section we turn to some concurrency-specific optimizations, removing redundant fence
instructions. We detect and optimize away the following cases of redundant MFENCE
instructions:

— a fence is redundant if it always follows a previous fence or locked instruction in
program order, with no memory store instructions in between (FE1);

— a fence is redundant if it always precedes a later fence or locked instruction in pro-
gram order, with no memory read instructions in between (FE2).

We also perform partial redundancy elimination (PRE) [Morel and Renvoise 1979] to
improve on the second optimization: we selectively insert memory fences in the pro-
gram to make fences that are redundant along some execution paths to become redun-
dant along all paths, which allows FE2 to eliminate them. The combined effect of PRE
and FE2 is quite powerful and can even hoist a fence instruction out of a loop, as we
shall see later in this section.
The correctness of FE1 is intuitive: since no memory writes have been performed

by the same thread since executing an atomic instruction, the thread’s buffer must be
empty and so the fence instruction is effectively a no-op and can be optimized away.

The correctness of FE2 is more subtle. To see informally why it is correct, first con-
sider the simpler transformation that swaps a MFENCE instruction past an adjacent
store instruction (that is, MFENCE;store ; store;MFENCE). To a first approximation,
we can think of FE2 as successively applying this transformation to the earlier fence
(and also commuting it over local non-memory operations) until it reaches the later
fence; then we have two successive fences and we can remove one. Intuitively, the
end-to-end behaviors of the transformed program, store;MFENCE, are a subset of the
end-to-end behaviors of the original program, MFENCE;store: the transformed pro-
gram leaves the buffer empty, whereas in the original program there can be up to
one outstanding write in the buffer. Notice that there is an intermediate state in the
transformed program that is not present in the original program: if initially the buffer

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:37

is non-empty, then after executing the store instruction in store;MFENCE we end up
in a state where the buffer contains the store and some other elements. It is, however,
impossible to reach the same state in the original MFENCE;store program because the
store always goes into an empty buffer. What saves soundness is that this intermedi-
ate state is not observable. Since threads can access only their own buffers, the only
way to distinguish an empty buffer from a non-empty buffer must involve the thread
performing a read instruction from that intermediate state.

Indeed, if there are any intervening reads between the two fences, the transforma-
tion is unsound, as illustrated by the following variant of SB+mfences:

Thread 0 Thread 1
MOV [x]←1 MOV [y]←1
MFENCE (*) MFENCE
MOV EAX←[y] MOV EBX←[x]
MFENCE

If the MFENCE labelled with (*) is removed, then it is easy to find an x86-TSO execu-
tion that terminates in a state where EAX and EBX are both 0, which was impossible in
the unoptimized program.

This ‘swapping’ argument works for finite executions, but does not account for infi-
nite executions, as it is possible that the later fence is never executed — if, for example,
the program is stuck in an infinite loop between the two fences. In the formal proof,
for each removed fence we essentially have to do a case split on whether a later fence
will be executed or not, and deal with the second case differently. The problem is that
in a standard forward simulation proof, we cannot do such a case split, because we do
not have full traces at hand, but rather only the current states of the two simulated
programs.

Abstracting the problem, the essential difficulty is that FE2 introduces non-
observable non-determinism. Since buffer entries may be debuffered at any point in
time until the next fence is executed, removing a fence allows these entries to be de-
buffered at later points in time. In general, introducing non-determinism is unsound
(and thus not found in other CompCert phases), but in the case of FE2, the program
cannot observe the introduced non-determinism, and so the optimization is sound.

It is well-known that reasoning about such determinism-reducing transformations
cannot, in general, be done solely by a standard forward simulation (e.g., [Lynch and
Vaandrager 1995]), but it also requires a backward simulation [Lynch and Vaandrager
1995] or, equivalently, prophecy variables [Abadi and Lamport 1991]. In essence, these
more advanced techniques allow the simulation relation to depend not only on the cur-
rent states, but also (under some rather strict conditions) on future execution states.
We tried using backward simulation to carry out the proof, but found the backward rea-
soning painfully difficult. Instead, we came up with a new kind of forward simulation,
which we call a weak-tau simulation, that incorporates a simple version of a boolean
prophecy variable (corresponding to the aforementioned case split) that is much easier
to use and suffices to verify FE2. The details are in §6.3.

We can observe that neither optimization subsumes the other: in the program below
on the left the (*) barrier is removed by FE2 but not by FE1, while in the program on
the right the (†) barrier is removed by FE1 but not by FE2.

MOV [x]←1 MFENCE
MFENCE (*) MOV EAX←[x]
MOV [x]←2 MFENCE (†)
MFENCE MOV EBX←[y]

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:38 J Ševčı́k et al.

T1(nop, E) = E
T1(op(op, ~r, r), E) = E
T1(load(κ,addr, ~r, r), E) = E
T1(store(κ,addr, ~r, src), E) = ⊤
T1(call(sig, ros,args, res), E) = ⊤
T1(cond(cond,args), E) = E
T1(return(optarg), E) = ⊤
T1(threadcreate(optarg), E) = ⊤
T1(atomic(aop, ~r, r), E) = ⊥
T1(fence, E) = ⊥

T2(nop, E) = E
T2(op(op, ~r, r), E) = E
T2(load(κ,addr, ~r, r), E) = ⊤
T2(store(κ,addr, ~r, src), E) = E
T2(call(sig, ros,args, res), E) = ⊤
T2(cond(cond,args), E) = E
T2(return(optarg), E) = ⊤
T2(threadcreate(optarg), E) = ⊤
T2(atomic(aop, ~r, r), E) = ⊥
T2(fence, E) = ⊥

Fig. 11. Transfer functions for FE1 and FE2

6.1. Implementation

The fence instructions eligible to be optimized away are easily computed by two intra-
procedural dataflow analyses over the boolean domain, {⊥,⊤}, performed on RTL pro-
grams. Among the intermediate languages of CompCertTSO, RTL is the most conve-
nient to perform these optimizations, and it is the intermediate language where most
of the existing optimizations are performed: namely, constant propagation, CSE, and
register allocation.
The first is a forward dataflow problem that associates to each program point the

value ⊥ if along all execution paths there is an atomic instruction before the current
program point with no intervening writes, and ⊤ otherwise. The problem can be for-
mulated as the solution of the standard forward dataflow equation:

FE1(n) =

{

⊤ if predecessors(n) = ∅
⊔

p∈predecessors(n) T1(instr(p),FE1(p)) otherwise

where p and n are program points (i.e., nodes of the control-flow-graph), the join oper-
ation is logical disjunction (returning ⊤ if at least one of the arguments is ⊤), and the
transfer function T1 is defined in Fig. 11.
The second is a backward dataflow problem that associates to each program point

the value ⊥ if along all execution paths there is an atomic instruction after the current
program point with no intervening reads, and ⊤ otherwise. This problem is solved by
the standard backward dataflow equation:

FE2(n) =

{

⊤ if successors(n) = ∅
⊔

s∈successors(n) T2(instr(s),FE2(s)) otherwise

where the join operation is again logical disjunction and the transfer function T2 is
defined in Fig. 11.
To solve the dataflow equations we reuse the generic implementation of Kildall’s

algorithm provided by the CompCert compiler. Armed with the results of the dataflow
analysis, a pass over the RTL source replaces the fence nodes whose associated value
in the corresponding analysis is ⊥ with nop (no-operation) nodes, which are removed
by a later pass of the compiler.

6.2. Partial Redundancy Elimination

In practice, it is common for MFENCE instructions to be redundant on some but not all
paths through a program. To help with these cases, we perform a partial redundancy
elimination phase (PRE) that inserts fence instructions so that partially redundant

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:39

FENCE

nop

s tore

FENCE

r e t u r n

if

ifso

nop

ifnot

nop

FENCE

nop

s tore

FENCE

r e t u r n

if

ifso

FENCE

ifnot

nop

nop

nop

s tore

nop

r e t u r n

if

ifso

FENCE

ifnot

nop

Fig. 12. Unoptimized RTL, RTL after PRE, and RTL after PRE and FE2

fences become fully redundant. Inserting a fence is always a valid program transfor-
mation because it merely restricts the set of program behaviors: every behavior with
an additional fence instruction is also a valid behavior without the fence, where the
buffer simply happened to be empty. For instance, the RTL program on the left of
Fig. 12 (from Fraser’s lockfree-lib) cannot be optimized by FE2: PRE inserts a memory
fence in the ifnot branch, which in turn enables FE2 to rewrite the program so that all
execution paths go through at most one fence instruction.

The implementation of PRE runs two static analyses to identify the program points
where fence nodes should be introduced. First, the RTL generation phase introduces
a nop as the first node on each branch after a conditional; these nop nodes will be
used as placeholders to insert (or not) the redundant barriers. We then run two static
analyses:

—For each program point, the first, called A, detects whether there is an atomic in-
struction ahead in the control flow graph that would make a fence at the current
point partially redundant. It is a backward analysis returning ⊤ if along some path
after the current program point there is an atomic instruction with no intervening
reads;

—For each program point, the second, called B, detects whether there is always a
fence before in the control flow graph that would be removed if a fence is added
at the current point. It is a forward analysis returning ⊥ if along all paths to the
current program point there is a fence with no later reads or atomic instructions.

The transformation inserts fences after conditional nodes on branches whenever:

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:40 J Ševčı́k et al.

TA(nop, E) = E
TA(op(op, ~r, r), E) = E
TA(load(κ,addr, ~r, r), E) = ⊥
TA(store(κ,addr, ~r, src), E) = E
TA(call(sig, ros,args, res), E) = ⊥
TA(cond(cond,args), E) = E
TA(return(optarg), E) = ⊥
TA(threadcreate(optarg), E) = ⊥
TA(atomic(aop, ~r, r), E) = ⊤
TA(fence, E) = ⊤

TB(nop, E) = E
TB(op(op, ~r, r), E) = E
TB(load(κ,addr, ~r, r), E) = ⊤
TB(store(κ,addr, ~r, src), E) = E
TB(call(sig, ros,args, res), E) = ⊤
TB(cond(cond,args), E) = E
TB(return(optarg), E) = ⊤
TB(threadcreate(optarg), E) = ⊤
TB(atomic(aop, ~r, r), E) = ⊥
TB(fence, E) = ⊥

Fig. 13. Transfer functions for analyses A and B of PRE

—analysis B returns ⊥ (i.e., there exists a previous fence that will be eliminated if we
were to insert a fence at both branches of the conditional nodes); and

—analysis A returns ⊥ (i.e., the previous fence will not be removed by FE2); and
—analysisA returns⊤ on the other branch (the other branch of the conditional already

makes the previous fence partially redundant).

If all three conditions hold for a nop node following a branch instruction, then that
node is replaced by a fence node. A word to justify the some path (instead of for all
paths) condition in analysis A: as long as there is a fence on some path, then at all
branch points PRE would insert a fence on all other paths, essentially converting the
program to one having fences on all paths.
The transfer functions TA and TB are detailed in Fig. 13. Note that TB defines the

same transfer function as T2, but here it is used in a forward, rather than backward,
dataflow problem.

6.3. Proofs of the optimizations

We give brief outlines of the formal Coq proofs of correctness for the three fence elimi-
nation optimizations.

6.3.1. Fence Elimination 1. We verify this optimization by a whole-system measured
upward simulation.
Take > to be the empty relation (which is trivially well-founded) and s R t the rela-

tion requiring that (i) the control-flow-graph of t is the optimized version of the CFG
of s, (ii) s and t have identical program counters, local states, buffers and memory, and
(iii), for each thread i, if the analysis for i’s program counter returned ⊥, then i’s buffer
is empty.
It is straightforward to show that each target step is matched exactly by the corre-

sponding step of the source program. In the case of a nop instruction, this could arise
either because of a nop in the source or because of a removed fence. In the latter case,
the analysis will have returned ⊥ and so, according to ∼, the thread’s buffer is empty
and so the fence can be executed without affecting the buffers or memory.

6.3.2. Fence Elimination 2. We verify this optimization by exhibiting a weak-tau sim-
ulation. Eliding assumptions on initial states, weak-tau simulations are defined as
follows:

Definition 6.1. A pair of relations R,R′ : States(S) × States(T), equipped with an
arbitrary relation < on States(T), is a weak-tau upward simulation if:

(1) R ⊆ R′ (i.e., for all s, t, s R t implies s R′ t); and

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:41

(2) Whenever s R t and t
ev
−→ t′, then either

(a) ∃s′. s
τ
−→

∗

s′
fail
−−−→ (s can reach a semantic error), or

(b) ∃s′. s
τ
−→

∗ ev
−→ s′ ∧ s′ R t′ (s can do a matching step), or

(c) ev = τ ∧ t′ < t ∧ s R t′ (t stuttered); and
(3) Whenever s R′ t and t

τ
−→ t′ and t′ < t,

(a) ∃s′. s
τ
−→

∗

s′
fail
−−−→ (s can reach a semantic error), or

(b) ∃s′. s
τ
−→

∗ τ
−→ s′ ∧ s′ R′ t′ (s can do a matching step).

Similar to measured upward simulations, weak-tau simulations imply trace inclu-
sion. To prove this in the case where the target trace contains an infinite τ sequence,
we do a case split on whether the trace contains an infinite sequence of states in the <
relation. If it does, then we can use the relation R′ to construct an infinite sequence of
source τ transitions. Otherwise, the relation R can stutter only for finite sequences of
τ steps each time and will thus produce an infinite sequence.

THEOREM 6.2. A weak-tau upward simulation implies trace inclusion. [Coq proof]

To verify the optimization, we will use the following auxiliary definitions:

—Define s ≡i t to hold whenever the ith thread of s and the ith thread of t have identical
program counters, local states and buffers.

—Define s ;i s′ if thread i of s can execute a sequence of nop, op, store and fence
instructions and end in the state s′.

—Define t′ < t to hold whenever t
τ
−→ t′ by a thread executing a nop, an op, or a store

instruction.

Take s R t to be the relation requiring that (i) t’s CFG is the optimized version of
s’s CFG, (ii) s and t have identical memories, (iii), for each thread i, either s ≡i t or
the analysis for i’s program counter returned ⊥ (meaning that there is a later fence in
the CFG with no reads in between) and there exists a state s0 such that s ;i s0 and
s0 ≡i t.

Take s R′ t to be the relation requiring that: (i) the CFG of t is the optimized version
of the CFG of s, and (ii), for each thread i, there exists s0 such that s ;i s0 and s0 ≡i t.

We will now show that R, R′, and < form a weak-tau simulation. First, observe that
condition (1) follows immediately from the definition; that is, R ⊆ R′.

To prove condition (2), we match every step of the target with the corresponding step
of the source whenever the analysis at the current program point of the thread doing
the step returns ⊤. It is possible to do so, because by the simulation relation (s R t),
we have s ≡i t.

Now, consider the case when the target thread i does a step and the analysis at the
current program point returns ⊥. According to the simulation relation (R), we have
s ;i s0 ≡i t. Because of the transfer function, T2, that step cannot be a load or a
call/return/threadcreate. We are left with the following cases:

— nop (either in the source program or because of a removed fence), op, or store. In
these cases, we stutter in the source, i.e. do s R t′. This is possible because we
can perform the corresponding transition from s0 (i.e., there exists an s′ such that
s ;i s0 ;i s

′ ≡i t
′).

— fence, atomic: This is matched by doing the sequence of transitions from s to s0
followed by flushing the local store buffer and finally executing the corresponding
fence or atomic instruction from s0.

— Thread i unbuffering: If i’s buffer is non-empty in s, then unbuffering one element
from s preserves the simulation relation. Otherwise, if i’s buffer is empty, then there

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:42 J Ševčı́k et al.

br br+FE1 aw aw+FE2 aw+PRE+FE2
Dekker 3 2 5 4 4
Bakery 10 2 4 3 3
Treiber’s stack 5 2 3 1 1
Fraser’s skiplist 32 18 19 12 11
TL2 166 95 101 68 68
Genome 133 79 62 41 41
Labyrinth 231 98 63 42 42
SSCA 1264 490 420 367 367

Fig. 14. Static number of fences present after fence optimizations

exists an s′ such that s ;i s′ ;i s0 and i’s buffer in s′ has exactly one element.

Then the transition from t
τ
−→ t′ is simulated by first doing s

τ
−→∗ τ
−→ s′ followed by an

unbuffering from s′, which preserves the simulation relation.

To prove condition (3), we simulate a target thread transition by doing the sequence
of transitions from s to s0 followed by executing the corresponding instruction from s0.

6.3.3. Partial Redundancy Elimination. Even though this optimization was the most com-
plex to implement, its proof was actually the easiest. What this optimization does is
to replace some nop instructions by fence instructions depending on some non-trivial
analysis. However, as far as correctness is concerned, it is always safe to insert a fence
instruction irrespective of whatever analysis was used to used to decide to perform the
insertion. Informally, this is because inserting a memory fence just restricts the set of
behaviors of the program; it never adds any new behavior.
In the formal proof, we take the simulation relation to be equality except on the

programs themselves, where we require the target program to be the ‘optimized’ ver-
sion of the source program. Executing the inserted fence instruction in the target is
simulated by executing the corresponding nop in the source.

7. RUNNING CompCertTSO

Despite making little attempt at optimizing the generated code, results on simple se-
quential and concurrent benchmarks (mostly drawn from Leroy [2009a]) show that our
generated code runs at about 30% slower than gcc -O1. As a more representative ex-
ample, we have also successfully compiled Fraser’s lock-free skiplist algorithm [Fraser
2003]; we are roughly 40% slower than gcc -O1 on this benchmark. Porting required
only three changes, all to in-line assembly macros, two of which were replacing macros
for CAS and MFENCE by the ClightTSO constructs.

7.1. Fence optimization

For a crude investigation of the effect of the fence optimizations, we instructed the
RTL generation phase of CompCertTSO to systematically introduce an MFENCE in-
struction before each memory read (strategy br), or after each memory write (strategy
aw), and looked at how many were removed by the fence optimization phases. In Fig-
ure 14 we consider several well-known concurrent algorithms, including the Dekker
and Bakery mutual exclusion algorithms, Treiber’s stack [Treiber 1986], the TL2 lock-
based STM [Dice et al. 2006], Fraser’s lockfree skiplist implementation [Fraser 2003],
and several of the STAMP benchmarks [Cao Minh et al. 2008]; for each the table re-
ports the total numbers of fences in the generated assembler files, following the br and
aw strategies, possibly enabling the FE1, PRE and FE2 optimizations.
A basic observation is that FE2 removes on average about 30% of the MFENCE in-

structions, while PRE does not further reduce the static number of fences, but rather

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:43

Specs Proof
Library code 8998 11058
ClightTSO definition (§3) 2424 267
x86 definition (§5.6) 1012 70
TSO machine (§5.1) 992 992
ClightTSO to Csharpminor (§5.2) 1990 2526
Csharpminor to Cstacked (§5.3) 3421 8163
10 intermediate language definitions (§5.5) 6466 1107
Intermediate ‘easy’ phases (§5.5) 11166 9742
Fence Elimination (§6) 940 1099
MachAbstr to MachConcr (§5.4) 2724 6525
MachConcr to Asm (§5.6) 1729 2833
TOTAL 41862 44382

Fig. 15. Line counts for the Coq development

reduces the dynamic number of fences executed, e.g. by hoisting fences out of loops as
in Figure 12. When it comes to execution times, then the gain is much more limited
than the number of fences removed. For example, we observe a 3% speedup when PRE
and FE2 are used on the skiplist code (running skiplist 2 50 100 on a 2-core x86 ma-
chine): the hand-optimized (barrier free) version by Fraser is about 45% faster than
the code generated by the aw strategy. For Lamport’s bakery algorithm we generate
optimal code for lock, as barriers are used to restore SC on accesses to the choosing
array.

Looking at the fences we do not remove in more detail, the Treiber stack is instruc-
tive, as the only barrier left corresponds to an update to a newly allocated object, and
our analyses cannot guess that this newly allocated object is still local; a precise escape
analysis would be required. In general, about half of the remaining MFENCE instruc-
tions precede a function call or return; we believe that performing an interprocedural
analysis would remove most of these barriers. Our focus here is on verified optimiza-
tions rather than performance alone, and the machine-checked correctness proof of
such sophisticated optimizations is a substantial challenge for future work.

8. DISCUSSION

We reflect briefly on the impact of the tool chain and proof style that we employed to
ease development of our compiler.

The main tool was Coq. Here we found the proof style advocated by SSRE-
FLECT [Gonthier and Mahboubi 2007] to be helpful in ensuring proof robustness, but
to retain backward compatibility with CompCert, we employed it selectively. Occasion-
ally, we used specialized tactics to automate some of the more tedious proofs, such as
the threadwise determinacy and receptiveness of all the languages.

To give the reader a flavour for the effort involved in the development, in Fig. 15
we list the number of lines of proof and specifications (definitions and statements of
lemmas and theorems) for the various parts of our compiler, as reported by coqwc.
Blank lines and comments are not counted.

As described in §4, we structured our development to re-use as much of CompCert
1.5 as we could, but much is new. The total of 86K lines for CompCertTSO compares
with around 55K lines for CompCert 1.5 (31K lines of specifications and 23K lines of
proofs). The project has taken approximately 45–50 man-months.

The semantics of ClightTSO is given as an inductively defined relation, as usual
and following Clight. To make it easier to check the integrity of the definition, we also
implemented a functional characterization of the threadwise single-step transition re-

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:44 J Ševčı́k et al.

lation and proved that the two definitions are equivalent. By extracting the functional
version into an OCaml program serving as an interpreter, we were able to test the se-
mantics on sample ClightTSO programs. This revealed a number of subtle errors in our
original definitions. It would also be worth testing our x86 semantics against processor
behavior, as we did for a HOL4 x86 semantics in previous work with Myreen [Sarkar
et al. 2009]. As mentioned in §5.6, and as in CompCert, there is a significant semantic
gap between our assembly semantics and that of actual x86 machine code (with Com-
pCert values rather than bit vectors); this “final phase” verification is an open question
for future work.
A mechanized theorem is only useful if its statement can be understood, and for

CompCertTSO the overall correctness theorem involves the ClightTSO and x86 se-
mantics. We defined ClightTSO using Ott [Sewell et al. 2010b], a tool that generates
Coq and LATEX definitions from a single source; it also helped in enforcing naming con-
ventions. The ClightTSO grammar and semantic rules, and the terms in examples, are
all parsed and automatically typeset.

9. RELATED WORK

Research on verified compilation of sequential languages has a long history, dating
back at least to McCarthy and Painter [1967] and Milner and Weyrauch [1972]. No-
table recent work includes CompCert, which we have already discussed in detail; Chli-
pala’s compiler from a small impure functional language to an idealized assembly lan-
guage, focussing on Coq proof automation [Chlipala 2010]; Myreen’s JIT compiler from
a bytecode language to x86 [Myreen 2010]; and Benton and Hur’s compilation [Benton
and Hur 2009] from a simply typed functional language to a low-level SECD machine.
This last differs from most other work in giving a compositional understanding of com-
piler correctness rather than just a relationship between the whole-program behaviors
of source and target.
Verified compilation of concurrent languages has received much less attention. Per-

haps the most notable example is the work of Lochbihler [2010] extending Jinja (a
compiler from sequential Java to JVM, verified in Isabelle/HOL) to concurrency. As
here, shifting to a small-step semantics required non-trivial proof effort, but the Jinja
memory accesses in source and target are very closely related, so issues of relaxed-
memory behavior, memory layout, finite memory, and so on seem to have played no
role. Recently this has been extended to integrate a JMM model with the threadwise
semantics and to prove a DRF result [Lochbihler 2012]. To the best of our knowledge,
there is no other prior work addressing verified compilation for a relaxed-memory con-
current language.
CompCert itself has been under active development since our CompCert 1.5 start-

ing point. Among many other changes, CompCert 1.12.1 [Leroy 2013] incorporates a
higher-level C-like language, CompCert C, which permits more side-effects in expres-
sions. There are also more optimization passes, including function inlining, constant
propagation, and redundant reload elimination. We expect that such optimizations
could also be added to CompCertTSO: the first should give isomorphic memory ac-
cesses and the third only changes local accesses, while the second would require en-
riching some CompCertTSO proof invariants with a notion of const locations.

An alternative approach to extending CompCert with concurrency has been sug-
gested by Hobor et al. [2008]. They define a concurrent version of Cminor equipped
with a concurrent separation logic. The idea is to do verified compilation for programs
that have been proved correct in such a logic, and their oracle semantics for concurrent
Cminor (factored rather differently to ours) is intended to make that possible without
extensive refactoring of the CompCert proofs. That is in some sense complementary
to our work: we focus on intrinsically racy concurrent algorithms, whereas programs

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:45

proved correct in that logic are known to be race free (as most application code is
expected to be). However, we conjecture that an oracle semantics could be defined di-
rectly above the labellized semantics that we use. More recently, Stewart and Appel
[2011] report on an almost-complete mechanized soundness proof of a separation logic
for Cminor, introducing machinery to factor out the world structure required for the
logic from the language operational semantics.

The problem of inserting memory barriers so that a program admits only SC ex-
ecutions has been an important research topic since Sasha and Snir’s seminal pa-
per on delay set analysis [Shasha and Snir 1988]. Most formal studies of this prob-
lem [Shasha and Snir 1988; Alglave 2010; Burckhardt et al. 2010] have been in terms
of hypothetical program executions and, unlike our work, have not been integrated in
a working compiler. There is also some more practical algorithm and compiler work.
Lee and Padua [2001] describe an algorithm based on dominators for inserting mem-
ory fences, while Sura et al. [2005] focus on the more practical aspects, e.g., on how to
approximate delay sets by performing cheaper whole-program analyses coupled with
an escape analysis. These perform much more sophisticated analyses than the ones
we implemented, but none comes with a mechanized soundness proof. Another line of
research [Burckhardt et al. 2007; Huynh and Roychoudhury 2007; Kuperstein et al.
2010] uses model checking techniques to insert fences to ensure SC. While these tech-
niques may insert fewer fence instructions for small intricate concurrent libraries,
they often guarantee soundness only for some clients of those libraries, and are too
expensive to perform in a general-purpose compiler.

We recall that ClightTSO is not intended as a proposal for a complete general-
purpose language: the ClightTSO load and store operations have well-defined (TSO)
behavior for arbitrarily racy programs, and they map directly onto x86 machine loads
and stores (and similarly for Sparc, and for POWER in its Strong Access Ordering
(SAO) mode). That makes ClightTSO a good match for concurrent algorithms above
those architectures, but guaranteeing TSO behavior for all (possibly racy) loads and
stores prevents some compiler optimisations, and efficiently implementing TSO se-
mantics above ARM or POWER (not in SAO mode) would be challenging. The impact
of the first point is not yet clear; for example, recent work by Marino et al. [2011] ar-
gues that the cost of requiring a compiler to preserve sequential consistency (a more
severe restriction than preserving TSO) is modest. But Java and C/C++11 both take
a DRF approach [Adve and Hill 1990], requiring the programmer to avoid races for
normal accesses (thereby licensing more compiler optimisations on those) and provid-
ing Java volatiles [Manson et al. 2005] and C/C++11 atomics [Boehm and Adve 2008;
Batty et al. 2011; Becker 2011; ISO 2011] to use for racy code. To enable efficient im-
plementation of these above a variety of hardware architectures (including x86, Sparc,
ARM, POWER, and Itanium), the latter are available in several different strengths,
with subtle semantics [Batty et al. 2011]. The strongest provide sequential consis-
tency and must be implemented with a combination of hardware fence operations and
restrictions on compiler optimisations; the weakest map directly onto hardware ac-
cesses even on ARM and POWER. Recent work by Owens, Sarkar, Batty, and Memar-
ian [Batty et al. 2011; Batty et al. 2012; Sarkar et al. 2012] has proved the correctness
of compilation schemes from the C/C++11 concurrency primitives to those of x86 and
IBM POWER multiprocessors, under the assumption that the threadwise compilation
of sequential code is straightforward; integrating such results into a complete verified
compiler is a substantial challenge for future work.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:46 J Ševčı́k et al.

10. CONCLUSION

The shift to commodity multicore processors has recently made relaxed-memory con-
current computation pervasive, but semantics and verification in this setting is a long-
standing problem. As Lamport wrote in 1979 [Lamport 1979]:

For some applications, achieving sequential consistency may not be worth the price
of slowing down the processors. In this case, one must be aware that conventional
methods for designing multiprocess algorithms cannot be relied upon to produce
correctly executing programs. Protocols for synchronizing the processors must be
designed at the lowest level of the machine instruction code, and verifying their
correctness becomes a monumental task.

This paper is a step towards putting them on a rigorous foundation, both for pro-
gramming and verification. While it remains a very challenging task, it is no longer
monumental: the advances in semantics and reasoning techniques that we can bring
to bear make it entirely feasible.

ACKNOWLEDGMENT

We thank Xavier Leroy for enlightening discussions and comments on drafts, and for making CompCert
available, and the anonymous reviewers for their helpful remarks.

Received November 2011; revised June 2012; accepted April 2013

REFERENCES

Martn Abadi and Leslie Lamport. 1991. The Existence of Refinement Mappings. Theoretical Computer Sci-
ence (1991), 253–284.

Sarita V. Adve and Mark D. Hill. 1990. Weak ordering — a new definition. In Proc. 17th In-
ternational Symposium on Computer Architecture (ISCA). ACM, New York, NY, USA, 2–14.
DOI:http://dx.doi.org/10.1145/325164.325100

Jade Alglave. 2010. A shared memory poetics. Ph.D. Dissertation. Université Paris 7.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak Memory Models. In
Proc. 22nd International Conference on Computer Aided Verification (CAV). Springer-Verlag, Berlin,
Heidelberg, 258–272. DOI:http://dx.doi.org/10.1007/978-3-642-14295-6 25

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and com-
piling C/C++ concurrency: from C++11 to POWER. In Proc. 39th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages (POPL). ACM, New York, NY, USA, 509–520.
DOI:http://dx.doi.org/10.1145/2103656.2103717

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ Con-
currency. In Proc. 38th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Lan-
guages (POPL). ACM, New York, NY, USA, 55–66. DOI:http://dx.doi.org/10.1145/1926385.1926394

Pete Becker (Ed.). 2011. Programming Languages — C++, ISO/IEC 14882:2011 (N3242). Retrieved May 15,
2013 from http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf (N3242 is a near-final
draft standard which is available online).

Nick Benton and Chung-Kil Hur. 2009. Biorthogonality, step-indexing and compiler correctness. In
Proc. 14th ACM SIGPLAN International Conference on Functional programming (ICFP). ACM, New
York, NY, USA, 97–108. DOI:http://dx.doi.org/10.1145/1596550.1596567

Sandrine Blazy and Xavier Leroy. 2009. Mechanized semantics for the Clight subset of the C language.
Journal of Automated Reasoning 43, 3 (2009), 263–288.

Hans-J. Boehm. 2005. Threads cannot be implemented as a library. In Proc. ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI). ACM, New York, NY, USA, 261–268.
DOI:http://dx.doi.org/10.1145/1065010.1065042

Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In Proc. SIG-
PLAN conference on Programming Language Design and Implementation (PLDI). ACM, New York, NY,
USA, 68–78. DOI:http://dx.doi.org/10.1145/1375581.1375591

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. 2007. CheckFence: checking consistency
of concurrent data types on relaxed memory models. In Proc. ACM SIGPLAN conference on

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:47

Programming Language Design and Implementation (PLDI). ACM, New York, NY, USA, 12–21.
DOI:http://dx.doi.org/10.1145/1250734.1250737

Sebastian Burckhardt, Madanlal Musuvathi, and Vasu Singh. 2010. Verifying local transformations on re-
laxed memory models. In Proc. international conference on Compiler Construction (CC). Springer-Verlag,
Berlin, Heidelberg, 104–123. DOI:http://dx.doi.org/10.1007/978-3-642-11970-5 7

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford Trans-
actional Applications for Multi-Processing. In Proc. IEEE International Symposium on Workload Char-
acterization (IISWC). 35–46.

Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. 2007. The Java memory model: operationally,
denotationally, axiomatically. In Proc. 16th European Symposium on Programming (ESOP), LNCS 4421.
Springer-Verlag, Berlin, Heidelberg, 331–346. DOI:http://dx.doi.org/10.1007/978-3-540-71316-6 23

Adam Chlipala. 2010. A verified compiler for an impure functional language. In Proc. 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages (POPL). ACM, New York, NY,
USA, 93–106. DOI:http://dx.doi.org/10.1145/1706299.1706312

COQ 2011. The Coq proof assistant. (2011). http://coq.inria.fr/, version 8.3pl1.

Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In Proc. 20th Interna-
tional Conference on Distributed Computing (DISC). Springer-Verlag, Berlin, Heidelberg, 194–208.
DOI:http://dx.doi.org/10.1007/11864219 14

Keir Fraser. 2003. Practical Lock Freedom. Ph.D. Dissertation. University of Cambridge. Also available as
Tech. Report UCAM-CL-TR-639.

Georges Gonthier and Assia Mahboubi. 2007. A small scale reflection extension for the Coq system. Technical
Report 6455. INRIA.

Aquinas Hobor, Andrew W. Appel, and Francesco Zappa Nardelli. 2008. Oracle semantics for concurrent
separation logic. In Proc. European Symposium on Programming (ESOP), LNCS 4960. Springer-Verlag,
Berlin, Heidelberg, 353–367. DOI:http://dx.doi.org/10.1007/978-3-540-78739-6 27

Thuan Quang Huynh and Abhik Roychoudhury. 2007. Memory model sensitive bytecode verification. Formal
Methods in System Design 31 (December 2007), 281–305. Issue 3.

ISO. 2011. Programming Languages — C, ISO/IEC 9899:2011 (N1547). Retrieved May 15, 2013 from http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/PostBatavia.tar.bz2 (N1547 is a near-final draft standard
which is available online).

Michael Kuperstein, Martin Vechev, and Eran Yahav. 2010. Automatic inference of memory fences.
In Proc. Formal Methods in Computer-Aided Design (FMCAD). FMCAD Inc, Austin, TX, 111–120.
DOI:http://dx.doi.org/10.1145/2261417.2261438

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Pro-
grams. IEEE Trans. Comput. C-28, 9 (1979), 690–691.

Doug Lea. 1999. Concurrent Programming in Java. Second Edition: Design Principles and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Jaejin Lee and David A. Padua. 2001. Hiding Relaxed Memory Consistency with a Compiler. IEEE Trans.
Comput. 50 (August 2001), 824–833. Issue 8.

Xavier Leroy. 2009a. The Compcert verified compiler, v. 1.5. (Aug. 2009). Retrieved May 15, 2013 from
http://compcert.inria.fr/release/compcert-1.5.tgz

Xavier Leroy. 2009b. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.

Xavier Leroy. 2009c. A formally verified compiler back-end. Journal of Automated Reasoning 43, 4 (2009),
363–446.

Xavier Leroy. 2013. The Compcert verified compiler, v. 1.12.1. (2013). Retrieved May 15, 2013 from http:
//compcert.inria.fr/release/compcert-1.12.1.tgz

Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like memory model and its uses for
verifying program transformations. Journal of Automated Reasoning 41, 1 (2008), 1–31.

Linux 1999. Linux Kernel mailing list, thread “spin unlock optimization(i386)”, 119 messages, Nov. 20–
Dec. 7th. (1999). Retrieved May 15, 2013 from http://www.gossamer-threads.com/lists/engine?post=
105365; list=linux

Andreas Lochbihler. 2010. Verifying a Compiler for Java Threads. In Proc. Euro-
pean Symposium on Programming (ESOP), A. D. Gordon (Ed.). Springer, 427–447.
DOI:http://dx.doi.org/10.1007/978-3-642-11957-6 23

Andreas Lochbihler. 2012. Java and the Java Memory Model – a unified, machine-checked formalisation.
In Proc. European Symposium on Programming (ESOP). Springer-Verlag, Berlin, Heidelberg, 497–517.
DOI:http://dx.doi.org/10.1007/978-3-642-28869-2 25

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

A:48 J Ševčı́k et al.

Nancy Lynch and Frits Vaandrager. 1995. Forward and backward simulations I: untimed systems. Informa-
tion and Computation 121 (September 1995), 214–233. Issue 2.

Jeremy Manson, William Pugh, and Sarita V. Adve. 2005. The Java memory model. In Proc. 32nd ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages (POPL). ACM, New York, NY,
USA, 378–391. DOI:http://dx.doi.org/10.1145/1040305.1040336

Daniel Marino, Abhayendra Singh, Todd Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011.
A case for an SC-preserving compiler. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI). ACM, New York, NY, USA, 199–210.
DOI:http://dx.doi.org/10.1145/1993498.1993522

John McCarthy and James Painter. 1967. Correctness of a Compiler for Arithmetic Expressions. In Proceed-
ings of a Symposium in Applied Mathematics, Vol. 19, Mathematical Aspects of Computer Science, J.T.
Schwartz (Ed.). American Mathematical Society, Providence, R.I., 33–41.

Robin Milner. 1989. Communication and Concurrency. Prentice Hall International.

Robin Milner and R. Weyrauch. 1972. Proving compiler correctness in a mechanized logic. In Machine Intel-
ligence 7, B. Meltzer and D. Michie (Eds.). American Elsevier, New York, 51–70.

Etienne Morel and Claude Renvoise. 1979. Global optimization by suppression of partial redundancies.
Commun. ACM 22 (February 1979), 96–103. Issue 2.

Magnus O. Myreen. 2010. Verified just-in-time compiler on x86. In Proc. 37th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages (POPL). ACM, New York, NY, USA,
107–118. DOI:http://dx.doi.org/10.1145/1706299.1706313

Scott Owens. 2010. Reasoning about the implementation of concurrency abstractions on x86-TSO. In
Proc. 24th European Conference on Object-Oriented Programming (ECOOP), LNCS 6183. Springer-
Verlag, Berlin, Heidelberg, 478–503. DOI:http://dx.doi.org/10.1007/978-3-642-14107-2 23

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In Proc. 22nd
International Conference on Theorem Proving in Higher Order Logics (TPHOLs), LNCS 5674. Springer-
Verlag, Berlin, Heidelberg, 391–407. DOI:http://dx.doi.org/10.1007/978-3-642-03359-9 27

William Pugh. 2000. The Java memory model is fatally flawed. Concurrency — Practice and Experience 12,
6 (2000), 445–455.

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave,
and Derek Williams. 2012. Synchronising C/C++ and POWER. In Proc. 33rd ACM SIGPLAN conference
on Programming Language Design and Implementation (PLDI). ACM, New York, NY, USA, 311–322.
DOI:http://dx.doi.org/10.1145/2254064.2254102

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Under-
standing POWER multiprocessors. In Proc. 32nd ACM SIGPLAN conference on Program-
ming Language Design and Implementation (PLDI). ACM, New York, NY, USA, 175–186.
DOI:http://dx.doi.org/10.1145/1993498.1993520

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas Braibant, Mag-
nus O. Myreen, and Jade Alglave. 2009. The semantics of x86-CC multiprocessor machine code. In
Proc. 36th annual ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL). ACM, New York, NY, USA, 379–391. DOI:http://dx.doi.org/10.1145/1480881.1480929

Jaroslav Ševčı́k and David Aspinall. 2008. On Validity of Program Transformations in the Java Memory
Model. In Proc. 22nd European Conference on Object-Oriented Programming (ECOOP). Springer-Verlag,
Berlin, Heidelberg, 27–51. DOI:http://dx.doi.org/10.1007/978-3-540-70592-5 3

Jaroslav Ševčı́k , Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell.
2011. Relaxed-memory concurrency and verified compilation. In Proc. 38th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages (POPL). ACM, New York, NY, USA, 43–
54. DOI:http://dx.doi.org/10.1145/1926385.1926393

Peter Sewell. 1997. On Implementations and Semantics of a Concurrent Programming Language. In
Proc. 8th International Conference on Concurrency Theory (CONCUR), LNCS. Springer-Verlag, London,
UK, 391–405. DOI:http://dx.doi.org/10.1007/3-540-63141-0 27

Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen. 2010a. x86-
TSO: A Rigorous and Usable Programmer’s Model for x86 Multiprocessors. Communications of the ACM
53, 7 (July 2010), 89–97. (Research Highlights).

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar, and
Rok Strniša. 2010b. Ott: Effective tool support for the working semanticist. J. Functional Programming
20, 1 (2010), 71–122.

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

CompCertTSO: A Verified Compiler for Relaxed-Memory Concurrency A:49

Dennis Shasha andMarc Snir. 1988. Efficient and correct execution of parallel programs that share memory.
ACM Transactions on Programming Languages and Systems (TOPLAS) 10 (April 1988), 282–312. Issue
2.

SPARC International, Inc. 1992. The SPARC Architecture Manual, V. 8, Revision SAV080SI9308. (1992).
Retrieved May 15, 2013 from http://www.sparc.org/standards/V8.pdf

SPARC International, Inc. 1994. The SPARC Architecture Manual, V. 9. (1994). Retrieved May 15, 2013
from http://www.sparc.com/standards/SPARCV9.pdf

Gordon Stewart and Andrew W. Appel. 2011. Local actions for a curry-style operational semantics. In
Proc. 5th ACM workshop on Programming Languages meets Program Verification (PLPV). ACM, New
York, NY, USA, 31–42. DOI:http://dx.doi.org/10.1145/1929529.1929535

Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David Padua. 2005. Compiler
techniques for high performance sequentially consistent Java programs. In Proc. 10th ACM SIGPLAN
symposium on Principles and Practice of Parallel Programming (PPoPP). ACM, New York, NY, USA,
2–13. DOI:http://dx.doi.org/10.1145/1065944.1065947

Emina Torlak, Mandana Vaziri, and Julian Dolby. 2010. MemSAT: checking axiomatic specifications of mem-
ory models. In Proc. ACM SIGPLAN conference on Programming Language Design and Implementation
(PLDI). ACM, New York, NY, USA, 341–350. DOI:http://dx.doi.org/10.1145/1806596.1806635

R. Kent Treiber. 1986. Systems programming: Coping with parallelism. Technical Report TR RJ 5118. IBM.

Viktor Vafeiadis and Francesco Zappa Nardelli. 2011. Verifying fence elimination optimisations. In
Proc. 18th international conference on Static Analysis (SAS). Springer-Verlag, Berlin, Heidelberg, 146–
162. DOI:http://dx.doi.org/10.1007/978-3-642-23702-7 14

Journal of the ACM, Vol. 60, No. 3, Article A, Publication date: June 2013.

