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Abstract

Most programming languages adopt static binding, but for dis-
tributed programming an exclusive reliance on static binding is too
restrictive: dynamic binding is required in various guises, for exam-
ple when a marshalled value is received from the network, contain-
ing identifiers that must be rebound to local resources. Typically it
is provided only by ad-hoc mechanisms that lack clean semantics.

In this paper we adopt a foundational approach, developing core
dynamic rebinding mechanisms as extensions to simply-typed call-
by-value λ-calculus. To do so we must first explore refinements of
the call-by-value reduction strategy that delay instantiation, to en-
sure computations make use of the most recent versions of rebound
definitions. We introduce redex-time and destruct-time strategies.
The latter forms the basis for a λmarsh calculus that supports dy-
namic rebinding of marshalled values, while remaining as far as
possible statically-typed. We sketch an extension of λmarsh with
concurrency and communication, giving examples showing how
wrappers for encapsulating untrusted code can be expressed. Fi-
nally, we show that a high-level semantics for dynamic updating
can also be based on the destruct-time strategy, defining a λupdate

calculus with simple primitives to provide type-safe updating of
running code. We thereby establish primitives and a common se-
mantic foundation for a variety of real-world dynamic rebinding
requirements.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Constructs and
Features

General Terms Languages, Theory, Verification

Keywords programming languages, dynamic binding, dy-
namic update, marshalling, serialisation, distributed programming,
lambda calculus

1. Introduction

Most programming languages employ static binding, with the
meaning of identifiers determined by their compile-time context.
In general, this gives more comprehensible code than dynamic
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binding alternatives, where the meanings of identifiers depend in
some sense on their ‘use-time’ contexts; static binding is also a re-
quirement for conventional static type systems. Modern software,
though, is becoming increasingly dynamic, as it becomes ever more
modular, extensible, and distributed. Exclusive use of static bind-
ing is too limiting in many ways:

• When values or computations are marshalled from a running
system and moved elsewhere, either by network communication
or via a persistent store, some of their identifiers may need to be
dynamically rebound. These may be both ‘external’ identifiers of
system-calls or language run-time library functions, and, more in-
terestingly, ‘internal’ identifiers from application libraries which
exist in the new context. Such libraries should not be automatically
copied with values that use them, both for performance reasons and
as they may have location-dependent behaviour (e.g., routing func-
tions). Moreover, a value may be moved repeatedly, and the set
of identifiers to be rebound may change as it moves. For example,
it may be desirable to acquire an organisation-specific library that,
once resolved, should be fixed and carried with code moved within
that organisation.

• Flexible control of dynamic rebinding can support secure en-
capsulation of untrusted code, by allowing access only to sand-
boxed resources. For example, when loading an untrusted applet,
we may bind its open identifier to a safe open function that only
opens files in the /tmp directory. On the other hand, we want the
flexibility to link trusted code with the unconstrained open func-
tion.

• Systems that must provide uninterrupted service (e.g., tele-
phone switches) must be dynamically updated to fix bugs and add
new functionality – essentially by loading new code into the pro-
gram and then dynamically rebinding some of the existing identi-
fiers to the new definitions.

While dynamic rebinding is clearly useful in practice, most mod-
ern programming languages provide only rather limited and ad-hoc
mechanisms. Moreover, no adequate semantic understanding of re-
binding currently exists. Our goal in this paper is to identify core
mechanisms for dynamic rebinding, as a step towards the design of
improved languages for distributed computation.

We are focussing on distributed ML-like languages: with higher-
order functions, for expressiveness; with call-by-value (CBV) re-
duction, for a simple evaluation order (desirable in the presence of
either communication effects or dynamic updates); and where pos-
sible with static typing, as early detection of errors is particularly
important in both distributed and long-running systems.

The motivations for dynamic rebinding arise from distribution,
but it turns out that the essential problems come from the inter-



action between rebinding and sequential computation. We there-
fore begin with the simply-typed CBV lambda-calculus and de-
velop calculi that support rebinding for marshalling and update. To
demonstrate feasibility we sketch an extension of the former with
inter-machine communication, and discuss a possible implementa-
tion.

We express the semantics of these calculi with direct operational
semantics, defining reductions over the calculus syntax. This ap-
proach provides clarity, and should scale well to full language de-
signs; it avoids commitment to any particular implementation strat-
egy. We find this preferable to the lower-level alternatives of ex-
pressing semantics using abstract machines or encodings (into lan-
guages with references), which we believe would lead to rather
complex definitions.

A full version is available as a technical report [BHS+03].

Revisiting CBV λ-Calculus Consider the CBV λ-calculus, a
model fragment of ML, and in particular the way in which identi-
fiers are instantiated. The usual operational semantics substitutes
out binders – the standard construct-time (app) and (let) rules

(app) (λz :T .e)v −→ {v/z}e
(let) let z = v in e −→ {v/z}e

instantiate all instances of z as soon as the value v that it has been
bound to has been constructed.

This semantics is not compatible with dynamic rebinding, as
it loses too much information. To see this, suppose that e in
let z = v in e transmits a function containing z to some other
machine, and we have indicated somehow that z should be dynam-
ically rebound to the local definition when it arrives. With the (let)
rule this would be futile, as the z is substituted away before the
communication occurs. Similarly, a dynamic update of z after a
(let) would be vacuous.

We therefore need a more refined semantics that preserves in-
formation about the binding structure of terms, allowing us to de-
lay ‘looking up’ the value associated with an identifier as long as
possible so as to obtain the most relevant/recent version of its def-
inition. This should maintain the essentially call-by-value nature
of the calculus, however (we elaborate below on exactly what this
means).

We present two reduction strategies with delayed instantiation
in §2. The redex-time (λr) semantics resolves identifiers when in
redex position. While this is clean and simple, it is still unneces-
sarily eager, and so we formulate the destruct-time (λd) semantics
to delay resolving identifiers until their values must be destructed.

Dynamic Rebinding: the λmarsh Calculus With λd in place
we can consider dynamic rebinding of marshalled values. The key
question is this: when a value is moved between scopes, how can
the user specify which identifiers should be rebound and which
should be fixed? Our answer is embodied in the λmarsh calculus
of §3, which contains primitives for packaging a value such that
some of its identifiers are fixed to bindings in the current context,
while others will be rebound when unpackaged in a new scope (e.g.,
when the value is moved). Which bindings will be fixed is dynam-
ically determined with respect to a mark. Marking is done with an
expression form mark M in e . Here the mark name M is taken
from a new syntactic class (not subject to binding); it names the sur-
rounding declaration context. Packaging and unpackaging is done
by expressions marshal M e and unmarshal M e , which are
both with respect to a mark. An expression marshal M e will first
reduce e to a value u , and copy all bindings within the nearest en-

closing mark M ; these bindings are essentially static. Identifiers
of u not bound within the mark are recorded in a type environment
within the packaged value, which has form marshalled Γ u , and
can be rebound. For example:

let x1 = 5 in −→ let x1 = 5 in
mark M in mark M in
let y1 = 6 in let y1 = 6 in
marshal M (x1, y1) marshalled (x1:int)(

let y1 = 6 in (x1, y1))

Because y1 is defined within the mark M , its definition is copied
into the package, while x1 is defined outside of M , so it is sim-
ply noted in the captured type environment. When this package is
unmarshalled using unmarshal with respect to some mark M ′, x1

will be rebound to a definition outside M ′, subject to a dynamic
type environment check.

To indicate more concretely how λmarsh can form the basis for a
distributed programming language that supports mobile code, we
sketch an extension with concurrency, communication and exter-
nal library functions, giving examples showing how wrappers for
encapsulating untrusted code can be expressed.

Dynamic Update: the λupdate Calculus Dynamic updating
also requires dynamic rebinding and delayed variable instantiation.
We again extend λd, here with a simple update primitive that al-
lows a program variable to be rebound to a new expression. The
resulting λupdate calculus is given in §4. As an example, consider
the expression on the left below:

let x1 = 5 in {y⇐(x1,6)}−−−−−−−→ let x1 = 5 in
let y1 = (4, 6) in let y1 = (x1, 6) in
let z1 = update in let z1 = () in
π1y1 π1y1

The update expression indicates that an update is possible at the
point during evaluation when update appears in redex position.
At that run-time point the user can supply an update of the form
{w ⇐ e}, indicating that w should be rebound to expression e .
In the example this update is {y ⇐ (x1, 6)}; the let-binder for y1

is modified accordingly yielding the expression on the right above,
and thence a final result of 5. Here any identifier in scope at the
update point can be rebound, to an expression that may mention
identifiers in scope at its binding point. We define what it means
for an update to be well-typed with respect to a program; apply-
ing well-typed updates preserves typing. The use of λd enables us
to deal simply and cleanly with higher-order functions, largely ig-
nored in past work. We imagine λupdate will form the core of future
calculi that include other desirable features, such as state trans-
formation, abstract types, changing the types of variables, multi-
threading, etc.

2. Call-by-value λ-calculus revisited

This section reconsiders the call-by-value lambda calculus, explor-
ing refined operational semantics that instantiate identifiers at dif-
ferent times. We take a standard syntax:

Identifiers x , y , z
Integers n
Types T ::= int | unit | T ∗ T ′ | T → T ′

Expressions e ::= z | n | () | (e, e ′) | πre
| λz :T .e | ee ′ | let z = e in e ′

| letrec z = λx :T .e in e ′



Construct-time λc

Values v ::= n | () | (v , v ′) | λz :T .e
Atomic evaluation contexts A ::= ( , e) | (v , ) | πr | e | v | let z = in e
Evaluation contexts E ::= | E .A

(proj) πr(v1, v2) −→ vr
(app) (λz :T .e)v −→ {v/z}e
(let) let z = v in e −→ {v/z}e
(letrec) letrec z = λx :T .e in e ′ −→ {λx :T .letrec z = λx :T .e in e/z}e ′ if z 6= x

e −→ e ′

E .e −→ E .e ′

Redex-time λr and Destruct-time λd
Common Syntax and Semantics

Values u ::= n | () | (u, u ′) | λz :T .e | let z = u in u ′ | letrec z = λx :T .e in u
Atomic evaluation contexts A1 ::= ( , e) | (u, ) | πr | e | u | let z = in e
Atomic bind contexts A2 ::= let z = u in | letrec z = λx :T .e in
Evaluation contexts E1 ::= | E1.A1

Bind contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2
e −→ e ′

E3.e −→ E3.e
′

(proj) πr(E2.(u1, u2)) −→ E2.ur
(app) (E2.(λz :T .e))u −→ E2.let z = u in e if fv(u) /∈ hb(E2)

Redex-time Instantiation Semantics

(inst) let z = u in E3.z −→ let z = u in E3.u if z /∈ hb(E3) and fv(u) /∈ z , hb(E3)
(instrec) letrec z = λx :T .e in E3.z −→ letrec z = λx :T .e in E3.λx :T .e if z /∈ hb(E3) and fv(λx :T .e) /∈ hb(E3)

Destruct-time Syntax Extension and Instantiation Semantics

Values
u ::= ... | z

Destruct contexts
R ::= πr | u

(inst-1) let z = u in E3.R.E2.z −→ let z = u in E3.R.E2.u
if z /∈ hb(E3,E2) and fv(u) /∈ z , hb(E3,E2)

(inst-2) R.E2.let z = u in E ′2.z −→ R.E2.let z = u in E ′2.u
if z /∈ hb(E ′2) and fv(u) /∈ z , hb(E ′2)

(instrec-1) letrec z = λx :T .e in E3.R.E2.z −→ letrec z = λx :T .e in E3.R.E2.λx :T .e
if z /∈ hb(E3,E2) and fv(λx :T .e) /∈ hb(E3,E2)

(instrec-2) R.E2.letrec z = λx :T .e in E ′2.z −→ R.E2.letrec z = λx :T .e in E ′2.λx :T .e
if z /∈ hb(E ′2) and fv(λx :T .e) /∈ hb(E ′2)

Figure 1: Three Call-by-Value Lambda Calculi

where r ranges over {1, 2}. Expressions are taken up to alpha
equivalence (though contexts are not). It is simply-typed, with a
typing judgement Γ ` e:T defined as usual, where Γ ranges over
sequences of z :T pairs. We omit the typing rules for brevity.

2.1 Construct-time

The standard semantics, here called the construct-time semantics,
is recalled at the top of Fig. 1. We define a small-step reduction
relation e −→ e ′, using evaluation contexts E , and a run-time-
error predicate e err (the rules for the latter are elided, but as usual,
projections from non-pairs and application to non-functions are the
only conditions giving rise to errors). Context composition and ap-
plication are both written with a dot, e.g., E .E ′ and E .e , instead of
the usual heavier brackets E [e]. Standard capture-avoiding substi-
tution of e for z in e ′ is written {e/z}e ′. We write hb(E), defined
below, for the list of binders around the hole of E . For now we will
be concerned only with the behaviour of closed expressions, with-
out external library functions. The choice of a small-step semantics
will be important when we add dynamic rebinding and communi-
cation later.

2.2 Redex-time

The redex-time and destruct-time semantics are shown in Fig. 1,
with common syntax and semantics presented first. Instead of sub-
stituting bindings of identifiers to values, as in the construct-time
(app) and (let), both semantics introduce a let to record a binding
of the abstraction’s formal parameter to the application argument,
e.g.,

(λz :T .e)u −→ let z = u in e

This is reminiscent of an explicit substitution [ACCL90], save that
here the let will not be percolated through the term structure, and
also of the λlet-calculus [AFM+95], though we are in a CBV not
CBN setting, and do not allow commutation of lets. In contrast, we
must preserve let-binding structure, since our later rebinding and
update primitives will depend on it.

Example (1) in Fig. 2 illustrates (app), contrasting it with the
substitution approach of the construct-time semantics. Note that
the resulting let z = 8 in 7 is a λr (and λd) value. Because values
may involve lets, some clean-up is needed to extract the usual final



Construct-time λc Redex-time λr Destruct-time λd

(1) (λz .7)8 (λz .7)8 (λz .7)8
−→ 7 let z = 8 in 7 let z = 8 in 7

(2) let x = 5 in π1(x , x ) let x = 5 in π1(x , x ) let x = 5 in π1(x , x )
−→ π1(5, 5) let x = 5 in π1(5, x ) let x = 5 in x
−→ 5 let x = 5 in π1(5, 5)
−→ let x = 5 in 5

(3) let x = (5, 6) in let y = x in π1y let x = (5, 6) in let y = x in π1y let x = (5, 6) in let y = x in π1y
−→ let y = (5, 6) in π1y let x = (5, 6) in let y = (5, 6) in π1y let x = (5, 6) in let y = x in π1x
−→ π1(5, 6) let x = (5, 6) in let y = (5, 6) in π1(5, 6) let x = (5, 6) in let y = x in π1(5, 6)
−→ 5 let x = (5, 6) in let y = (5, 6) in 5 let x = (5, 6) in let y = x in 5

Figure 2: Call-by-Value Lambda Calculi Examples

result, for which we define

[|n |] = n
[| () |] = ()

[| (u, u ′) |] = ([| u |], [| u ′ |])
[|λx :T .e |] = λx :T .e

[| let z = u in u ′ |] = {[| u |]/z}[| u ′ |]
[| letrec z = λx :T .e in u |]
= {λx :T .letrec z = λx :T .e in e/z}[| u |] if z 6= x

[| z |] = z

taking any value (λr or λd) and substituting out the lets.
The semantics must allow reduction under lets – in addition

to the atomic evaluation contexts A we had above (here A1) we
now have the binding contexts A2 ::= let z = u in . Re-
duction is closed under both. Redex-time variable resolution is
handled with the (inst) rule, which resolves an occurrence of the
identifier z in redex position with the innermost enclosing let that
binds that identifier. The side-condition z /∈ hb(E3) ensures
that the correct binding of z is used. Here hb(E) denotes the
list of identifiers that bind around the hole of a context E , is de-
fined by hb( ) = []; hb(E .(let z = e in )) = hb(E), z ;
hb(E .(letrec z = λx :T .e in )) = hb(E), z ; and hb(E .A) =
hb(E) for any other atomic context A. We overload ∈ for lists.
The other side-condition, fv(u) /∈ z , hb(E3), which can always be
achieved by alpha conversion, prevents identifier capture, making
E3 and let z = u in transparent for u . Here fv( ) denotes the set
of free identifiers of an expression or context.

Example (2) in Fig. 2 illustrates identifier instantiation. While
the construct-time strategy substitutes for x immediately, the redex-
time strategy instantiates x under the let, following the evaluation
order. Both this and the first example also illustrate a further aspect
of the redex-time calculus: values u include let-bindings of the
form let z = u in u ′. Intuitively, this is because a value should
‘carry its bindings with it’ preventing otherwise stuck applications,
e.g., (λx :int.x )(let z = 3 in 5) or (for an example where the let
is not garbage) (λf :(int→ int).x 2)(let z = 3 in λx :int.z ). Note
that identifers are not values, so z , (z , z ) and let z = 3 in (z , z )
are not values. Values may contain free identifiers under lambdas,
as usual, so λx :int.z is an open value and let z = 3 in λx :int.z is
a closed value.

The (proj) and (app) rules are straightforward except for the ad-
ditional binding context E2. This is necessary as a value may
now have some let bindings around a pair or lambda; terms such
as π1(let z = 3 in (4, 5)) or (more interestingly) π1(let z =

3 in (λx :int.z , 5)) would otherwise be stuck. The side condition
for (app) can always be achieved by alpha conversion; it prevents
capture.

2.3 Destruct-time

The redex-time strategy is appealingly simple, but it instantiates
earlier than necessary. In example (2) in Fig. 2, both occurrences
of x are instantiated before the projection reduction. However, we
could delay resolving x until after the projection; we see this be-
haviour in the destruct-time semantics in the third column. In many
dynamic rebinding scenarios it is desirable to instantiate as late as
possible.1 For example, in repeatedly-mobile code, we want to in-
stantiate each identifier only as needed to always pick up local def-
initions. Similarly, for dynamically updateable code we want to
delay looking up a variable as long as possible, so as to acquire the
most recent version.

To instantiate as late as possible, while remaining call-by-value,
we instantiate only identifiers that are immediately under a projec-
tion or on the left-hand-side of an application. In these ‘destruct’
positions their values are about to be deconstructed, and so their
outermost pair or lambda structure must be made manifest. The
destruct contexts R ::=πr | u can be seen as the outer parts of
the construct-time (proj) and (app) redexes. The choice of destruct
contexts is determined by the basic redexes – for example, if we
added arithmetic operations, we would need to instantiate identi-
fiers of int type before using them.

The essential change from the redex-time semantics is that now
any identifier is a value ( u ::= ... | z ). The (proj) and (app) rules
are unchanged. The (inst) rule is replaced by two that together
instantiate identifiers in destruct contexts R. The first (inst-1) copes
with identifiers that are let-bound outside a destruct context, e.g.:

let z = (1, 2) in π1z −→ let z = (1, 2) in π1(1, 2)

whereas in (inst-2) the let-binder and destruct context are the other
way around:

π1(let z = (1, 2) in z ) −→ π1(let z = (1, 2) in (1, 2))

Further, we must be able to instantiate under nested bindings be-
tween the binding in question and its use. Therefore, (inst-2) must
allow additional bindings E2 and E ′2 between R and the let and
1“It is the conventional wisdom of distributed programming that in
any cases of this sort early binding is extremely wicked, and every
opportunity must be taken to allow for variability.” [Nee93].



between the let and z . Similarly, (inst-1) must allow bindings E2

between the R and z ; it must allow both binding and evaluation
contexts E3 between the let and the R, e.g., for the instance

let z = (1, (2, 3)) in π1(π2z )
−→ let z = (1, (2, 3)) in π1(π2(1, (2, 3)))

with E3 = π1 , R = π2 and E2 = . The conditions z /∈
hb(E3,E2) and z /∈ hb(E ′2) ensure that the correct binding of z
is used; the other conditions prevent capture and can always be
achieved by alpha equivalence.

Example (3) illustrates a chain of instantiations, from outside in
for λr and from inside out for λd.

2.4 Properties

This subsection gives properties of our various λ-calculi: sanity
checks to confirm that our definitions are coherent and more sub-
stantial results showing that λr and λd are essentially CBV. Details
of proofs can be found in the technical report [BHS+03].

First, we recall the important unique decomposition property of
evaluation contexts for λc, essentially as in [FF87, p. 200], and
generalise it to the more subtle evaluation contexts of λr and λd:

THEOREM 1 (UNIQUE DECOMPOSITION FOR λr AND λd).
Let e be a closed expression. Then, in both the redex-time and
destruct-time calculi, exactly one of the following holds: (1) e is
a value; (2) e err; (3) there exists a triple (E3, e

′, rn) such that
E3.e

′ = e and e ′ is an instance of the left-hand side of rule rn .
Furthermore, if such a triple exists then it is unique.

(Note that the destruct-time error rules defining e err, which have
been elided, must include cases for identifiers in destruct contexts
that are not bound by enclosing lets and so are not instantiatable,
giving stuck non-value expressions.) Determinacy is a trivial corol-
lary. We also have type preservation and type safety properties for
the three calculi.

THEOREM 2 (TYPE PRESERVATION FOR λc , λr AND λd).
If Γ ` e:T and e −→ e ′ then Γ ` e ′:T .

THEOREM 3 (SAFETY FOR λc , λr AND λd).
If ` e:T then ¬(e err).

Finally we show that all three calculi are observationally equiv-
alent, hence that both λr and λd are essentially call-by-value. As
we noted earlier, values in λr and λd may need to be ‘cleaned-up’
to exactly correspond to λc values. The proof of this is non-trivial;
it involves constructing a tight correspondence between reduction
steps in the three calculi.

THEOREM 4 (OBSERVATIONAL EQUIVALENCE).

1. If ` e:int and e −→∗c n then e −→∗r u and e −→∗d u′ for
some u and u ′ with [| u |] = [| u ′ |] = n .

2. If ` e:int and e −→∗r u (or e −→∗d u) then for some n we
have e −→∗c n and [| u |] = n .

Proof Sketch The proof technique is the same for both claims:
generalise the claim to arbitary type and proceed to construct a
bisimulation (modulo possible instantiations of letrec bindings) that
captures a tight operational correspondence between reductions in
the different calculi. To do so, we introduce intermediate caluli
with annotated lets, distinguishing lets that, in the λc reduction
sequence, correspond to substitutions from those that have yet to
be reached. Additional transitions move value-lets from the latter

to the former. Bisimulations can then be constructed by factoring
simulations through these intermediate calculi. A key notion in the
simulation proofs is that of instantiation normal form. Essentially a
term is in instantiation normal form if it can not do an instantiation
reduction. It is important that this form is always finitely reachable
by reduction from any term. Finally, we use the bisimulation and
some auxilary lemmas to prove the generalised claim (the claim
as stated in the theorem avoids the complication of possible letrec
unfoldings).

3. A Dynamic Rebinding Calculus: λmarsh

Many applications require a mix of dynamically and statically
bound variables. Consider sending a function value between ma-
chines. It might contain identifiers for

(1) ubiquitous standard library calls, e.g., print , which should
be rebound at the destination;

(2) application-specific location-dependent library calls, e.g.,
routing functions, which should be rebound at the destina-
tion;

(3) application code which is not location-dependent but (for
performance) should be rebound rather than sent; and

(4) other let-bound application values, which should be sent with
it.

Moreover, for both (1) and (2) one may wish the rebinding to be
to non-standard definitions, to securely encapsulate (sandbox) un-
trusted code.

In this section we develop a calculi to support all of the above.
The calculus λmarsh extends the destruct-time λd-calculus of §2.3
with high-level representations of marshalled values and primitives
to manipulate them. We make two main choices. First, to have as
intuitive a semantics as possible we want dynamic rebinding to only
occur when unmarshalling values, not during normal computation.
Second, to allow the programmer to cleanly and flexibly notate
which definitions should be fixed and which should be rebindable,
we introduce marks mark M in e which name contexts. Marshal
and unmarshal operations marshal M e and unmarshal M e are
each with respect to a mark: a marshal M u packages the value u
together with all the bindings within the closest enclosing mark M
(thus fixing them); it cuts any bindings of identifiers in u that cross
that mark M (thus making them rebindable). When the packaged
value is unpackaged by an unmarshal M ′ , the latter identifiers
are rebound to binders outside the closest enclosing mark M ′.

The mark M in e construct does not bind M ; marks have
global meaning across a distributed system. Allowing the choice
of context to be made differently for each marshal and unmarshal
provides important flexibility, especially for implementing secure
encapsulation; note that we have just a single class of identifiers,
rather than dynamic and static forms. In the simplest practical case
each program might have a single mark Lib in , distinguishing li-
brary code, defined above the mark, from application code, defined
below it.

For simplicity, λmarsh simulates communication using beta-
reduction (in fact, λd (inst) reduction), and omits treatment of (1),
focusing on the more interesting cases of rebinding application-
specific libraries. At the end of this section we sketch λio

marsh, which
straightforwardly extends λmarsh with communication and external
identifiers, and discuss alternative design choices.

3.1 Syntax

The λmarsh syntax and an example, discussed below, are given in
Fig. 3; the new semantic rules are given in Fig. 4 (error rules omit-
ted). The calculus requires a more elaborate treatment of alpha



Syntax

Integers n Identifiers x , y , z Tags i , j , k Context marks M
Type environments Γ finite partial functions from (identifier,tag) pairs to types
Types T ::= int | unit | T ∗ T ′ | T → T ′ | Marsh T
Expressions e ::= zi | n | () | (e, e ′) | πre | λxi:T .e | ee ′ | let zk:T = e in e ′ | letrec zk:T ′ = λxi:T .e in e ′|

mark M in e | marshal M e | marshalled Γ u | unmarshal M e

Example

let y1:int = 6 in
mark M in
let x1:Marsh (int ∗ int) = (

let z1:int = 3 in
marshal M (y1, z1)) in

let y2:int = 7 in
mark M ′ in
unmarshal M ′ x1

where T = Marsh (int ∗ int)

(marshal)−→
let y1:int = 6 in
mark M in
let x1:T = (

let z1:int = 3 in
marshalled (y0:int) (

let z1:int = 3 in
(y0, z1))) in

let y2:int = 7 in
mark M ′ in
unmarshalM ′ x1

(inst-1)−→
let y1:int = 6 in
mark M in
let x1:T = (

let z1:int = 3 in
marshalled (y0:int) (

let z1:int = 3 in
(y0, z1))) in

let y2:int = 7 in
mark M ′ in
unmarshal M ′ (

let z1:int = 3 in
marshalled (y0:int) (

let z1:int = 3 in
(y0, z1)))

(unmarshal)−→
let y1:int = 6 in
mark M in
let x1:T = (

let z1:int = 3 in
marshalled (y0:int) (

let z1:int = 3 in
(y0, z1))) in

let y2:int = 7 in
mark M ′ in
let z1:int = 3 in
(y2, z1)

Figure 3: Dynamic Rebinding Calculus λmarsh: Syntax and Example

equivalence than λd. There – as usual for λ-calculi – we had to
use alpha equivalence during normal computation steps, to avoid
mistaken capture of identifiers as the rules move subterms between
different scopes. Here that is still required, but occurrences of the
‘same’ identifier under different bindings must be related so that the
identifier can be marshalled with respect to one and unmarshalled
with respect to another. Accordingly, instead of working with iden-
tifiers x , we work with variables xi that are pairs of an identifier x
and a tag i , similar to the external and internal names used in some
module systems. Alpha equivalence changes only the tags; tags for
different identifiers lie in different namespaces, so e.g.,

λx1:T .x1 = λx2:T .x2 6= λy2:T .y2 and
λx1:T .λy1:T .(x1, y1) = λx2:T .λy3:T .(x2, y3)

In practice tags would not appear in source programs; they are
needed only for the semantics. The fv( ) and hb( ) functions now
give sets and lists of variables, respectively, not identifiers.

3.2 Example

As an example, consider the expression on the left of Fig. 3. The
value (y1, z1) is marshalled with respect to the context marked M ,
where y = 6, but unmarshalled with respect to the context M ′,
where y = 7. The z1, on the other hand, is bound below mark M ,
so its binding z1 = 3 is grabbed and carried with it.

The reduction sequence is shown in the Figure, boxing key parts
of redexes and contracta. The first reduction step copies
the bindings that are inside mark M and around the marshal ex-
pression (here just z1 = 3), ensuring that these have static-binding
semantics. This gives a value

marshalled (y0:int) (let z1 = 3 in (y0, z1))

This marshalled Γ u form would not occur in source pro-

grams. The free variables of u are subject to rebinding when
this is unmarshalled, so we regard all of fv(u) as bound by Γ in
marshalled Γ u . This is emphasised in the example by showing a
y0 alpha-variant.

The second step instantiates the x1 under the (unmarshal M ′ )
with its value let z1 = 3 in ...marshalled.... (In this case the outer
z1 let is redundant but in more complex cases it would not be, e.g.,
if x1 were bound to a pair of the marshalled value and some other
value mentioning z1.)

The third step performs the unmarshal, rebinding the y0 in the
packaged value let z1 = 3 in (y0, z1) to the innermost yi binder
outside mark M ′ – here, to y2. It also discards the now-redundant
bindings.

Modulo final instantiation, the result is (7, 3) not (6, 3), showing
the y1 and z1 have been treated dynamically and statically respec-
tively. For contrast, putting the first let y1 = 6 inside the first mark
M would give (6, 3).

3.3 Semantics

Turning now to the details of the rules, the (proj), (app) and
(inst-r ) rules are as in λd but with zk instead of z . In the
(marshal) and (unmarshal) rules we abuse notation, writing the con-
text mark M in as mark M . The (marshal) rule copies all
bindings and marks between the marshal M and the closest en-
closing mark M , using the bindmark( ) auxiliary to extract the
bind and mark components of a context E3, discarding the evalua-
tion context components: bindmark( ) = , bindmark(E3.A1) =
bindmark(E3), and bindmark(E3.A2) = bindmark(E3).A2. The
predicate dhb(E3) holds iff the hole-binders of E3 are all distinct
(which can always be made so by alpha conversion). The auxiliary
env(E3) extracts the type environment of the hole-binders of E3,
so they can be recorded in the marshalled value.

The (unmarshal) rule rebinds the fv(u) to the let-binders in E3

around the nearest enclosing mark M , using the auxiliary func-



Values u ::= n | () | (u, u ′) | λxi:T .e | let zk:T = u in u ′ | letrec zk:T ′ = λxi:T .e in u | zi
| mark M in u | marshalled Γ u

Atomic evaluation contexts A1 ::= ( , e) | (u, ) | πr | e | (λxi:T .e) | let zk:T = in e
| marshal M | unmarshal M

Atomic bind and mark contexts A2 ::= let zk:T = u in | letrec zk:T ′ = λxi:T .e in
| mark M in

Evaluation contexts E1 ::= | E1.A1

Bind and mark contexts E2 ::= | E2.A2

Reduction contexts E3 ::= | E3.A1 | E3.A2

Destruct contexts R ::= πr | u | unmarshal M

Rules (proj), (app), (inst-r ), (instrec-r ) are exactly as in λd except for zk replacing z and the addition of explicit types. These reductions
are closed under E3, whereas the (marshal) and (unmarshal) rules are global.

(marshal) E3.mark M .E ′3.marshal M u −→ E3.mark M .E ′3.marshalled (env(E3)) (bindmark(E ′3).u)
if dhb(E3) and no mark M around in E ′3

(unmarshal) E3.mark M .E ′3.unmarshalM .E2.marshalled Γ u −→ E3.mark M .E ′3.S(u)
if dhb(E3), dhb(E ′3, hb(E3)), S = rebind(Γ, thb(E3)) is defined, and no mark M around in E ′3.

Figure 4: Dynamic Rebinding Calculus λmarsh: Semantics

tion rebind( , ) to construct the appropriate substitution. Here
dhb(E ′3, hb(E3)) holds iff the hole-binders of E ′3 are distinct from
each other and from all the variables in hb(E3) (always possible
by alpha conversion). The thb(E3) gives the list of (variable,type)
pairs, which are the typed hole-binders of E3 (type annotations
were added to lets to facilitate this). Finally, rebind(Γ,L), for a
type environment Γ and list of typed hole-binders L, is a substitu-
tion taking each xi in dom(Γ) to the rightmost xj in L, if the types
correspond appropriately. It is defined by

rebind(Γ, []){
undefined if Γ nonempty
= {} otherwise

rebind(Γ, (L, (xi:T ))){
undefined, if ∃j ,T ′.(xj :T ′) ∈ Γ ∧ T ′ 6= T
= {xi/xJ} ∪ rebind(Γ− xJ ,L), otherwise

where xJ = {xj | (xj :T ) ∈ Γ}

(abusing notation to treat the partial function Γ as a set of tuples
and writing {xi/xJ} for the substitution of xi for all the xj ∈ xJ ).
To keep a unique decomposition property the (unmarshal) rule is
global, not closed under additional E3. We briefly justify why the
(unmarshal) rule discards its E2 context: observe the right hand
side of the rule and notice that the binders in the E2 context can no
longer be referenced after unmarshalling, the only possible refer-
ences to the enclosing E2 are the free variables of u , but subsequent
to this reduction these variables are rebound to binders in E3.

Reduction must take place under a mark so A2 now con-
tains mark M in . To maintain a CBV semantics both
marshal and unmarshal should fully reduce their arguments, so
they are included in the evaluation contexts A1. The (unmarshal)
rule can only fire if the argument to unmarshal is of the
form marshalled Γ u , so the destruct contexts must include
unmarshal M .

There are several choices embodied in the semantics. First, in
(marshal) bindmark(E ′3) records the marks of E ′3 as well as its let-
bindings, so that uses of marshal and unmarshal within u will
behave as expected. Second, in (marshal) we record the full type
environment env(E3), not just its restriction to fv(u). The latter
would be more liberal (more unmarshals would succeed) but we

believe would lead to code that is hard to maintain: success of an
unmarshal would depend on the free variables of the marshalled
value, instead of simply on the binders above the mark used for
marshalling. Third, if there is shadowing of identifiers outside a
mark then a marshalled Γ u may have Γ with xi:T and xj :T ′ for
T 6= T ′, in which case (unmarshal) will always fail. One could
check this at (marshal)-time, or indeed forbid shadowing outside
marks.

3.4 Typing and Run-Time Errors

In some cases one would expect dynamic rebinding to require a
run-time check to ensure safety, e.g., if code is sent to a site that
may or may not provide some resource it requires. For λmarsh we
have new run-time errors, if a marshal or an unmarshal refers to
a mark which is not in scope, or if at (unmarshal)-time the envi-
ronment does not have the required binders at the correct types. At
the very least, however, one would like a type system to exclude
all run-time errors except these. This can be done by a simple type
system, as usual but with a type Marsh T of marshalled type-T
values, and rules

Γ ` e:T

Γ ` mark M in e:T

Γ ` e:T

Γ ` marshal M e:Marsh T

Γ ` e:Marsh T

Γ ` unmarshal M e:T

Γ′ ` u:T

Γ ` marshalled Γ′ u:Marsh T

Partitioning the run-time errors into e err for the usual projec-
tion/application errors, together with unmarshalling of values not
of the form marshalled Γ u , and e err′ for the new errors above
(their rules are elided), we have:

THEOREM 5 (UNIQUE REDEX/CONTEXT DECOMPOSITION).
Let e be a closed λmarsh expression. Then exactly one of the
following holds: (1) e is a value; (2) e err; (3) e err′; (4) there
exist E3, e0, rn such that E3.e0 = e and e0 is an instance of the
left-hand side of rule rn ∈ (proj,app,inst-r,instrec-r). (5) there
exists rn ∈(marshal),(unmarshal) such that e is an instance of the
left-hand side of rule rn . Furthermore, if such a triple or rn exists
then it is unique.

THEOREM 6 (TYPE PRESERVATION FOR λmarsh).



Simple: P =




t1:let here0 = “site 1” in
mark AppLib in
let = print0here0 in
c!marshal AppLib (λx0:unit.print0here0)



∣∣∣∣




t2:let here0 = “site 2” in
mark AppLib in
c?(λf0:Marsh (unit→ unit).(unmarshal AppLib f0)())




Secure encapsulation: Q =




t1:let here0 = “site 1” in
mark AppLib in
let = print0here0 in
c!marshal AppLib (λx0:unit.print0here0)



∣∣∣∣




t2:let here0 = “site 2” in
mark TrustedAppLib in
let print3 = (λs0:string.

let = print0“sandboxed: ” in print0s0) in
let here3 = “site 33” in
mark UntrustedAppLib in
c?(λf0:Marsh (unit→ unit).

let g0 = (if trusted() then unmarshal TrustedAppLib f0
else unmarshal UntrustedAppLib f0) in g0())




Figure 5: Dynamic Rebinding with IO and Communication: λio
marsh Examples

If ` e:T and e −→ e ′ then ` e ′:T

THEOREM 7 (PARTIAL SAFETY FOR λmarsh).
If ` e:T then ¬(e err).

A full language would raise catchable exceptions in the e err′

cases, thereby allowing code to dynamically check the presence of
resources.

Ideally, of course, one would like a type system that could stati-
cally prevent all run-time errors, in the case where all parts of the
(distributed) system can be type-checked coherently. Unfortunately
static typing and dynamic rebinding seem to be at odds. Any sound
type system for λmarsh must constrain the contexts around marks,
ensuring that when unmarshalling a marshalled value the context of
the unmarshal mark contains bindings for all identifiers that were
in the context of the marshal mark. The problem is that reduc-
tion moves subterms, in particular subterms containing marks, so
the shape of the context around a mark can change dynamically.
One can devise rather draconian systems that prevent some run-
time errors, but it is hard to see what a really useful system could
be like. Moreover, in the wide-area setting it is generally impos-
sible to guarantee that all parts are type-checked together, so we
believe that the limited guarantees of the simple type system above
may have to suffice.

In practice one would expect programs to contain only a few
marks. For ML-like languages with second-class module systems it
may be desirable to allow marks only between module declarations
– a considerable simplification.

3.5 Implementation

The reduction semantics as presented is not proposed as a realis-
tic implementation strategy. Instead of representing bindings by
nested let terms, and preserving binding scopes in the instantiation
rules by copying and α-conversion, we propose to use linked en-
vironment frames with sharing, as is done to implement function
closures. A function closure consists of the binding variable name,
function body, and a pointer to the enclosing environment. The
environment consists of frames, each containing a variable name,
value, and a link pointer to the parent frame. For λd, variables as
well as functions are values; therefore we introduce variable clo-
sures, consisting of a variable name and an environment pointer
through which to look it up. Only when the variable closure ap-
pears in a destruct context is the pointer followed to obtain its value.

For λmarsh, the marshal operation captures the linked environment
between the environment pointers of its argument and the relevant
mark, and the unmarshal operation attaches the captured environ-
ment to the current environment. We have sketched an abstract ma-
chine semantics for the above, but leave an actual implementation
for future work.

3.6 Adding Distributed Communication

We now extend λmarsh just enough to show examples of the rebind-
ing scenarios from §1, sketching a λio

marsh calculus. For lack of
space almost all details are omitted; we show just some examples
in Fig. 5, and touch on the main points.

Two extensions are required: semantics for open terms, to ad-
mit programs that use external library calls such as print ; and
communication, to support code movement. There are many de-
sign choices in combining functional and concurrent computation.
Here we adopt a simple language, just to illustrate the application
of λmarsh and demonstrate what is required – the exact choice of
primitives is therefore rather arbitrary.

We consider parallel compositions of expressions e , each with a
thread ID t . One should think of threads as partitioned among a
set of machines, although that structure has been omitted from the
formalisation. We suppose for simplicity that all machines provide
the same external library calls, with types given by a Γlib, and that
there are global channels c for communication between threads,
with types given by a ∆.

The semantics defines a transition relation P
l−→P ′ over config-

urations where the labels l are either empty, t :f u for an invocation
by thread t of library call f :T → T ′ from Γlib, with argument u ,
or t :u for a return of value u from the OS to such an invocation.
The (marshal) and (unmarshal) rules must be modified slightly to
deal with external identifiers.

Communication between threads is by asynchronous message
passing on typed channels c, with output and input forms e!e ′ and
e?e ′. Only marshalled values should be communicated, so com-
munications are typed as below.

∆,Γ ` e:Chan T
∆,Γ ` e ′:Marsh T

∆,Γ ` e!e ′:unit

∆,Γ ` e:Chan T
∆,Γ ` e ′:(Marsh T )→ T ′

∆,Γ ` e?e ′:T ′

Example P in Fig. 5 shows rebinding to an external print and an
internal (application library) here , together delimited by AppLib,



Simple Update Calculus: Syntax

Integers n Identifiers x, y, z Tags i, j, k
Types T ::= int | unit | T ∗ T ′ | T → T ′

Expressions e ::= xi | n | () | (e, e ′) | πre | λxi:T .e | ee ′ | let zk:T = e in e ′ | letrec zk:T = λxi:T .e in e | update

Simple Update Calculus: Semantics

(upd-replace-ok)
S = rebind(fv(e), hb(E3)) is defined env(E3) ` S(e):T ∀j .xj /∈ hb(E ′3)

E3.let xi:T = u in E ′3.update {x⇐e}−→ E3.let xi:T = S(e) in E ′3.()

Figure 6: Simple Update Calculus: λupdate

on a communication from the left thread to the right. It has a tran-
sition sequence with labels

t1:print“site 1”, t1:(), t2:print“site 2”, t2:()

for the invocations and returns of the two external print calls.
Our rebinding calculus is powerful enough to perform cus-

tomized linking, useful for implementing secure encapsulation. Ex-
ample Q is similar to P but the receiver defines two marks to be
linked against, TrustedAppLib and UntrustedAppLib. The for-
mer is for trusted programs, whereas the latter is an ‘encapsulated
context,’ which reimplements both print and here with ‘safe’ ver-
sions. The safe print prints the warning string “sandboxed: ” be-
fore any output; the safe here provides the fake “site 33” to the
encapsulated code, which has no way to access the true here0 =
“site 2” binding. Which context to use is determined by the hy-
pothetical function trusted , which would take into account some
security criteria, such as the origin of the message. Assuming that
trusted() returns false , Q has a transition sequence with labels

t1:print“site 1”, t1:(),
t2:print“sandboxed: ”, t2:(), t2:print“site 33”, t2:()

It is worth emphasising that without delayed instantiation, rebind-
ing in these examples would not be possible. In particular, in both
cases the construct-time (let) rule would substitute out here0 in
t1 before sending the lambda-term, thus preventing a rebinding of
here at the remote site.

3.7 Discussion

In this subsection we review some of the design choices embodied
in λmarsh and their advantages and disadvantages.

A simple alternative is to allow marshalling only of values that
are in some sense closed (with a marshal-time check that they do
not refer to, e.g., print). This would require the programmer to ex-
plicitly abstract on all the identifiers that are to be treated dynami-
cally when constructing a value to be marshalled, and to explicitly
apply to the local definitions on unmarshalling. For rebinding to a
single standard library this might be acceptable, though even there
notationally heavy, but for the richer usages we describe above it
would be prohibitively complex. One therefore needs some form
of dynamic rebinding.

To keep the semantics of local computation simple, with the nor-
mal static scoping, we choose to permit rebinding only when un-
marshalling values. The most interesting question is then which
variables in a value should be rebound after marshalling and un-
marshalling.

The main choice is between having two classes of variable (one
treated statically and one dynamically), or one class of variable,

with some other way of specifying which are rebound in any par-
ticular marshal/unmarshal instance.

Two classes were used in some related systems, though not mo-
tivated by marshalling [LLMS00, LF93, Dam98, Jag94] (discussed
further in §5). The disadvantages of the two-class choice are: (a)
it is less flexible than our use of marks, in which different mar-
shals and unmarshals can refer to different marks, e.g. in the §3.6
examples; and (b) if the types or usage-forms of the two classes dif-
fer, then changing the class of a variable would require widespread
code change (if the two classes are distinguished only by their
declaration-forms, this is not such a problem). Code would thus
be hard to maintain.

In contrast, adding marks or changing their position is syntac-
tically lightweight; it does not require any change to code ex-
cept at marshal/unmarshal points. Moreover, it will usually be
straightforward to change the let-bindings in programs that contain
marks: changing let-bindings inside marks is as usual; changing
them outside a mark may require corresponding changes outside
other marks but no change to any marshal and unmarshal expres-
sions. Taking one class has the disadvantage that it is not obvious
from a code fragment which variables might have been rebound,
but in typical cases one can simply look for enclosing marks and
marshals.

A further disadvantage of λmarsh is that programs with many
nested marks, and with marks under lambdas, can become con-
fusing. Whether this is a problem in practice remains to be seen.

With one class one could specify the variables to be rebound ei-
ther with marks or by explicitly annotating marshal with the set of
rebindable identifiers. We believe the latter would be cumbersome
in practice (with large sets of standard library identifiers). It would
also be conceptually complex and difficult to implement efficiently
– for example, consider a sequence of bindings, each depending
on the one before, around a marshal that specifies that alternate
bindings should be treated dynamically.

4. Simple Update Calculus: λd + update

We now turn from dynamic rebinding of marshalled values to the
rebinding involved in dynamic update. Dynamic updating is re-
quired for long-running systems that must provide uninterrupted
service – the canonical example is the telephone switch, with a
complex internal state, many overlapping interactions with its envi-
ronment, and a requirement for high availability. Applying updates,
however, can quickly lead to confusion – particularly if they are in
the form of binary patches. To ameliorate this, we would like high-
level update primitives: with semantics expressed in terms of the
source programming language rather than some abstract machine
or particular compilation strategy. We show this can be done for
typed CBV functional programs. Delayed instantiation is again re-
quired, now so that running code picks up any updated definitions



as it executes, and applying an update involves some explicit re-
binding. We design a λupdate calculus accordingly, again based on
our λd semantics and with tagged identifiers. It is intended as a
proof-of-concept, to demonstrate that a clean high-level semantics
can be based on λd, rather than a complete treatment of updating,
so we include only a simple update primitive. Nonetheless, the cal-
culus is still quite expressive, and unlike other work in this area is
not tied to a particular abstract machine, or to a first-order setting.

The λupdate-calculus is given in Fig. 6 (the λd rules and error rules
are elided). As in §3 it is convenient to use tagged identifiers and
explicitly-typed lets, but the types are omitted in examples. We
allow the programmer to place an expression update at points in
the code where an update could occur; defining such updating ‘safe
points’ is useful for ensuring programs behave properly [Hic01].
The intended semantics is that this expression will block, waiting
for an update (possibly null) to be fed in. An update can modify
any identifier that is within its scope (at update-time), for example
in

let x1 = (let w1 = 4 in w1) in
let y1 = update in
let z1 = 2 in
(x1, z1)

x1 may be modified by the update, but w1, y1 and z1 may not.
For simplicity we only allow a single identifier to be rebound to an
expression of the same type, and we do not allow the introduction
of new identifiers.

We define the semantics of the update primitive using a labelled
transition system, where the label is the updating expression. For
example, supplying the label {x ⇐ π1(3, 4)} means that the near-
est enclosing binding of x is replaced with a binding to π1(3, 4).
Note that updates can be expressions, not just values – after an up-
date the new expression, if not a value, will be in redex position.
Further, they can be open, with free variables that become bound
by the context of the update.

The static typing rule for update is trivial, as it is simply an
expression of type unit. Naturally we have to perform some type
checking at run-time; this is the second condition in the transition
rule in Fig. 6. Notice however, that we do not have to type-check
the whole program; it suffices to check that the expression to be
bound to the given identifier has the required type in the context
that it will evaluate in. The other conditions of the transition rule
are similarly straightforward. The first ensures that a rebinding sub-
stitution is defined, i.e. that the context E3 has hole binders that are
alpha-equivalent to the free variables of e . Here rebind(V ,L), for
a set V and list L of variables, is defined if for all xi ∈ V there is
some j with xj ∈ L, in which case it is the the substitution taking
each such xi to the rightmost such xj . The third condition ensures
that the binding being updated, xi, is the closest such binding oc-
currence for x (notice that an equivalence class x is specified for
the update, but that the closest enclosing member, xi, of this class
is chosen as the updated binding). These conditions are sufficient
to ensure that the following theorem holds.

THEOREM 8 (TYPE PRESERVATION FOR UPDATES).

If ` e:T and e
{x⇐e′}−→ e ′′ then ` e ′′:T

We have safety and unique decomposition results that follow the
form of Theorems 1 and 3.

Our use of delayed instantiation cleanly supports updating

higher-order functions. Consider the following program:

let f1 = λy1.(π2y1, π1y1) in
let w1 =λg1.let = update in g1(5, 6) in
let y1 = f1(3, 4) in
let z1 = w1f1 in
(y1, z1)

which contains an occurrence of update in the body of w1. If,
when w1 is evaluated, we update the function f :

e −→∗ {f⇐λp1.p1}−−−−−−−−→−→∗ u

we have [| u |] = ((4, 3), (5, 6)). Delayed instantiation plays a
key role here: with the λc semantics, the result would be [| u |] =
((4, 3), (6, 5)); i.e. the update would not take effect because the
g1 in the body of w1 would be substituted away by the (app) rule
before the update occurs. Our semantics preserves both the struc-
ture of contexts and the names of variables so that updates can be
expressed.

Erlang [AVWW96] has a simple update mechanism where mod-
ules can be replaced at runtime. The transition to a new module,
or the continued use of the old module, is specified at each call
site. A semantics for a (higher-order, typed) version of the Erlang
update mechanism extended to support multiple coexisting mod-
ule versions can easily be expressed using the ideas in this paper
[BHSS03].

5. Related Work

5.1 Lambda Calculi

As discussed in §2.2, our approach in λr and λd of using lets to
record the arguments of functions has some similarities to prior
work on explicit substitutions [ACCL90] and on sharing in call-by-
need languages [AFM+95].

There are also similarities with Felleisen and Hieb’s syntactic
theory of state [FH92]. Their ΛS models late (redex-time) resolu-
tion of state variables in a substitution-based system by labelling
the substituted-in values with the name of the variable; assignment
to a variable triggers a global replacement of all values labelled
with that variable throughout the program with the new value. This
is then revised to an equivalent store-based model.

5.2 Dynamic Rebinding and λmarsh

Dynamic Binding Work on dynamic binding can be roughly
classified along three dimensions. First, one can have either dy-
namic scoping, in which variable occurrences are resolved with re-
spect to their dynamic environment, or static scoping with explicit
rebinding, where variables are resolved with respect to their static
environment, but additional primitives allow explicit modification
of these environments. Second, one can work either with one class
of variables or split into two: one treated statically and one dynam-
ically. Third, for explicit rebinding the variables to be rebound can
be specified either individually, per name, or as all those bound by a
certain term context. We identify some points in this space below,
and refer the reader to the surveys of Moreau and Vivas [Mor98,
VF01] for further discussion.

Dynamic scoping first appeared in McCarthy’s Lisp 1.0 as a bug,
and has survived in most modern Lisp dialects in some form. It
is there usually referred to as “dynamic binding.” Lisp 1.0 had
one class of variables. MIT Scheme’s [MIT] fluid-let form and
Perl’s local declaration similarly perform dynamically-scoped re-
binding of variables. Modern Lisp distinguishes at declaration



time between dynamically and statically scoped variables, as for-
malised in the λd-calculus of Moreau [Mor98]. Lewis et al. pro-
pose to add syntactically-distinct, dynamically-scoped implicit pa-
rameters [LLMS00] to statically-scoped Haskell. While flexible,
dynamic scoping can result in unpredictable behaviour, since vari-
ables can be inadvertently captured; this was referred to as the
downward funarg problem in the Lisp community (to avoid this in
a typed setting Lewis et al. forbid arguments of higher-order func-
tions from using dynamically scoped variables).

Turning to static scoping with explicit rebinding, the quasi-static
scoping Scheme extension of Lee and Friedman [LF93] and the
λN -calculus of Dami [Dam98] both have two classes of variable
with a rebinding primitive that specifies new bindings for individual
variables. Jagannathan’s Rascal language [Jag94] maintains both a
static environment and a public environment, corresponding again
to two variable classes. The barrier, reify, and reflect operations
allow explicit manipulation of the variables bound by an entire term
context.

Outside the above classification, MIT Scheme also permits ex-
plicit manipulation of top-level environments. Hashimoto and
Ohori introduce a typed context calculus [HO01] for expressing
first-class evaluation contexts within the lambda calculus. Con-
text holes can be ‘filled in’ with terms having free variables which
are captured by the surrounding context. This allows binding at
context-application time, but does not support rebinding. It is de-
veloped in the MobileML language [HY00]. Garrigue [Gar95]
presents a calculus based on streams that can be used to encode
dynamic binding for particular, scope-free variables.

Locating our λmarsh calculus in this space, it adopts static scoping
with explicit rebinding, has a single class of variables, and supports
rebinding with respect to named contexts (not of individual vari-
ables). Use of the destruct-time strategy delays variable resolution
until the last possible moment to give the most useful semantics,
e.g., for repeatedly-mobile code. As argued in §3, we believe these
choices will lead to code that is easier to write and maintain, par-
ticularly for large systems.

We conjecture that λmarsh could be encoded in Rascal, and also
that it could be given semantics either in an environment-passing
style or using an abstract machine with concrete environments. We
believe, however, that our reduction semantics, with small-step re-
ductions over the source syntax, is more perspicuous.

Partial Continuations The context-marking operator mark
is reminiscent of Felleisen and Friedman’s [FF87] prompt opera-
tor #, and marshal/unmarshal of their control operator F . Their
operators capture partial continuations, whereas our operators may
be seen as capturing partial environments: whereas mark marks a
binding context, # marks an evaluation context. In fact, λmarsh fil-
ters the captured context to retain only the binding structure (E2),
whereas Felleisen et al.’s semantics exhibits the behaviour of our
λc, eagerly substituting out bindings and leaving only the control
structure (E1) to be captured.

Another interesting connection is between abstract continua-
tions [FWFD88], as used by Queinnec [Que93], and the reduction
contexts E3 used in our operational semantics. Each A1 or A2 cor-
responds to a frame of the continuation, except that the semantics
of ACPS substitutes the A2 binding frames away.

Gunter et al. [GRR95] have studied # and F in a typed setting.
It is interesting to note that although they state a type safety result,
this does not exclude the possibility that a well-typed program can
get ‘stuck’ if an appropriate prompt does not exist (c.f. §3.4).

In the λmarsh calculus, marks are named (not anonymous), are not
bound, and are preserved by marshal/unmarshal operations. Some

other choices have been investigated in the context of partial con-
tinuations by Moreau and Queinnec [MQ94, Que93].

Dynamic Linking Dynamic linking is a ubiquitous simple form
of dynamic binding, allowing program bindings to be resolved ei-
ther at load-time or run-time, rather than statically. However, once
dynamically bound, a variable’s definition is fixed, precluding re-
binding for marshalling or update.

Rebinding in Distributed Calculi A number of distributed
process calculi provide implicit rebinding of names, adopting in-
teraction primitives with meanings that depend on where they are
used in a location structure [CG98, SV00, RH99, Sch02, SWP99,
CS00]. This allows a form of rebinding to application libraries, but
these works do not address the problem of integrating this rebind-
ing with local functional computation.

The JoCaml and Nomadic Pict languages for mobile computa-
tion [FGL+96, SWP99] provide rebinding to external functions,
but the details are matters of implementation, not semantically
specified – though a more principled proposal for JoCaml has been
made by Schmitt in a Join-calculus setting [Sch02].

5.3 Dynamic Update

There are a number of implemented systems for dynamic updating
surveyed in [Hic01], notably including Erlang [AVWW96]. There
is very little rigorous semantics, however. Duggan [Dug01] has a
formal framework for updating types, but updating code is consid-
ered only informally, based on arguments around reference types.
Gilmore et al. [GKW97, Wal01] have a formal description of up-
dating, but it is centred on abstract types, and is tied to their par-
ticular abstract machine. Neither of these systems properly handles
updating first-class functions. Gilmore et al. require that a function
not be active when it is updated; closures in activation records are
active, and cannot thus be updated. Reference-based indirections
require that the types of function arguments change in a way that
interacts poorly with polymorphism [Hic01].

6. Conclusions and Future Work

We have established a clean semantic foundation for dynamic re-
binding and update. In particular, we

• reconciled the dynamic-rebinding need for delayed instanti-
ation with standard CBV semantics via novel redex-time and
destruct-time reduction strategies;
• introduced the λmarsh calculus, providing core mechanisms

for dynamic rebinding of marshalled values, with a clean
destruct-time operational semantics, and argued that our de-
sign choices are appropriate for a distributed programming
language;
• showed how to extend λmarsh with communication and exter-

nal functions, to express dynamic rebinding and secure en-
capsulation of transmitted code; and
• demonstrated that dynamic update of programs with higher-

order functions can be expressed using similar mechanisms,
by introducing the λupdate calculus – again with a simple
destruct-time semantics.

There are several directions that are worth pursuing. Part of the
motivation for this work is to cope with marshalling of values in
distributed functional languages, but this paper does not deal with
issues of type coherence between separately-compiled run-times.
One might combine λio

marsh with the hash types of [LPSW03].
The λio

marsh calculus has communication on channels but not π-
calculus-style new channel generation. Adding these is an inter-



esting problem, as the usual π semantics allows scope extrusion of
new-binders but for marshal/unmarshal we require a semantics
that preserves the shape of the binding environment outside marks.

This paper has focussed on semantics for small calculi, but ulti-
mately dynamic rebinding mechanisms should be integrated with
full-scale programming languages. For ML-like languages with
second-class module systems it may be natural to have mark only
at the module level (loosely analogous to the allowing marks only
between top-level λmarsh lets). Generalising, one might wish to
marshal/unmarshal with respect to a set of structures rather than
a single mark. Libraries may need careful design to work well with
mobile code, to delimit any hard-to-move OS or library state. There
are obvious problems with optimised implementation of calculi
with redex- or destruct-time semantics, as dynamic rebinding or
update primitives invalidate general use of standard optimisations,
e.g., inlining, and perhaps also environment-sharing schemes. For
performance it will be important to identify conditions under which
such optimisations are still valid – perhaps via a characterisation of
contextual equivalence for λmarsh. A full implementation should
obviously be carried out.

Finally, for dynamic update the λupdate calculus is only the begin-
ning of a rigorous treatment. The full story must address correct-
ness of updates with state transformation, abstract types, changing
the types of variables, multi-threading, and so on.
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