
ARMv8-A system semantics: instruction fetch in
relaxed architectures

Ben Simner1, Shaked Flur1∗, Christopher Pulte1∗, Alasdair Armstrong1, Jean
Pichon-Pharabod1, Luc Maranget2, and Peter Sewell1

1 University of Cambridge, UK
2 INRIA Paris, France

∗ These authors contributed equally

Abstract. Computing relies on architecture specifications to decouple
hardware and software development. Historically these have been prose
documents, with all the problems that entails, but research over the
last ten years has developed rigorous and executable-as-test-oracle spec-
ifications of mainstream architecture instruction sets and “user-mode”
concurrency, clarifying architectures and bringing them into the scope of
programming-language semantics and verification. However, the system
semantics, of instruction-fetch and cache maintenance, exceptions and
interrupts, and address translation, remains obscure, leaving us without
a solid foundation for verification of security-critical systems software.
In this paper we establish a robust model for one aspect of system se-
mantics: instruction fetch and cache maintenance for ARMv8-A. Sys-
tems code relies on executing instructions that were written by data
writes, e.g. in program loading, dynamic linking, JIT compilation, de-
bugging, and OS configuration, but hardware implementations are often
highly optimised, e.g. with instruction caches, linefill buffers, out-of-order
fetching, branch prediction, and instruction prefetching, which can affect
programmer-observable behaviour. It is essential, both for programming
and verification, to abstract from such microarchitectural details as much
as possible, but no more. We explore the key architecture design ques-
tions with a series of examples, discussed in detail with senior Arm staff;
capture the architectural intent in operational and axiomatic seman-
tic models, extending previous work on “user-mode” concurrency; make
these models executable as test oracles for small examples; and experi-
mentally validate them against hardware behaviour (finding a bug in one
hardware device). We thereby bring these subtle issues into the mathe-
matical domain, clarifying the architecture and enabling future work on
system software verification.

1 Introduction

Computing relies on the architectural abstraction: the specification of an en-
velope of allowed hardware behaviour that hardware implementations should
lie within, and that software should assume. These interfaces, defined by hard-
ware vendors and relatively stable over time, notionally decouple hardware and

2 B. Simner et al.

software development; they are also, in principle, the foundation for software ver-
ification. In practice, however, industrial architectures have accumulated great
complexity and subtlety: the ARMv8-A and Intel architecture reference manuals
are now 7476 and 4922 pages [9,26], and hardware optimisations, including out-
of-order and speculative execution, result in surprising and poorly-understood
programmer-observable behaviour. Architecture specifications have historically
also been entirely informal, describing these complex envelopes of allowed be-
haviour solely in prose and pseudocode. This is problematic in many ways: do not
serve as clear documentation, with the inevitable ambiguity and incompleteness
of informal prose leaving major questions unanswered; without a specification
that is executable as a test oracle (that can decide whether some observed be-
haviour is allowed or not), hardware validation relies on test suites that must be
manually curated; without an architecturally-complete emulator (that can ex-
hibit all allowed behaviour), it is very hard for software developers to “program to
the specification” – they rely on test-and-debug development, and can only test
above the hardware implementation(s) they have; and without a mathematically
rigorous semantics, formal verification of hardware or software is impossible.

Over the last 10 years, much has been done to put architecture specifications
on a more rigorous footing, so that a single specification can serve all those
purposes. There are three main problems, two of which are now largely solved.

The first is the instruction-set architecture (ISA): the specification of the
sequential behaviour of individual instructions. This is chiefly a problem of scale:
modern industrial architectures such as Arm or x86 have large instruction sets,
and each instruction involves many details, including its behaviour at different
privilege levels, virtual-to-physical address translation, and so on – a single Arm
instruction might involve hundreds of auxiliary functions. Recent work by Reid
et al. within Arm [40,41,42] transitioned their internal ISA description into a
mechanised form, used both for documentation and testing, and with him we
automatically translated this into publicly available Sail definitions and thence
into theorem-prover definitions [11,10]. Other related work is in §7.

The second is the relaxed-memory concurrent behaviour of “user-mode” op-
erations: memory writes and reads, and the mechanisms that architectures pro-
vide to enforce ordering and atomicity (dependencies, memory barriers, load-
linked/store-conditional operations, etc.). In 2008, for ARMv7, IBM POWER,
and x86, this was poorly understood, and the architects regarded even their own
prose specifications as inscrutable. Now, following extensive work by many peo-
ple [36,37,19,18,22,8,31,45,7,46,48,35,6,2,47,13,1], ARMv8-A has a well-defined
and simplified model as part of its specification [9, B2.3], including a prose
transcription of a mathematical model [15], and an equivalence proof between
operational and axiomatic presentations [36,37]; RISC-V has adopted a similar
model [52]; and IBM POWER and x86 have well-established de-facto-standard
models. All of these are experimentally validated against hardware, and sup-
ported by tools for exhaustively running tests [17,4]. The combination of these
models and the ISA semantics above is enough to let one reason about or model-
check concurrent algorithms.

ARMv8-A system semantics: instruction fetch in relaxed architectures 3

That leaves the third part of the problem: the “system” semantics, of
instruction-fetch and cache maintenance, exceptions and interrupts, and ad-
dress translation and TLB (translation lookaside buffer) maintenance. Just as
for “user-mode” relaxed memory, these are all areas where microarchitectural op-
timisations can have surprising programmer-visible effects, especially in the con-
current context. The mechanisms are relied on by all code, but they are explicitly
managed only by systems code, in just-in-time (JIT) compilers, dynamic loaders,
operating-system (OS) kernels, and hypervisors. This is, of course, exactly the
security-critical computing base, currently trusted but not trustworthy, that is
especially in need of verification – which requires a precise and well-validated
definition of the architectural abstraction. Previous work has scarcely touched
on this: none of seL4 [27], CertiKOS [24,23], Komodo [16], or [25,12], address
realistic architecture concurrency, and they use (at best) idealised models of the
sequential systems architecture. The CakeML [51,28] and CompCert [29] verified
compilers target only sequential user-mode ISA fragments.

In this paper we focus on one aspect of system semantics: instruction fetch
and cache maintenance, for ARMv8-A. The ability to execute code that has
previously been written to data memory is fundamental to computing: fine-
grained self-modifying code is now rare, and (rightly) deprecated, but program
loading, dynamic linking, JIT compilation, debugging, and OS configuration all
rely on executing code from data writes. However, because these are relatively
infrequent operations, hardware designers have been able to optimise by partially
separating the instruction and data paths, e.g. with distinct instruction caching,
which by default may not be coherent with data accesses. This can introduce
programmer-visible behaviour analogous to that of user-mode relaxed-memory
concurrency, and require specific additional synchronisation to correctly pick up
code modifications. Exactly what these are is not entirely clear in the current
ARMv8-A architecture text, just as pre-2018 user-mode concurrency was not.

Our main contribution is to clarify this situation, developing precise abstrac-
tions that bring the instruction-fetch part of ARMv8-A system behaviour into
the domain of rigorous semantics. Arm have stated [private communication]
that they intend to incorporate a version of this into their architecture. We aim
thereby to enable future work on system software verification using the tech-
niques of programming languages research: program analysis, model-checking,
program logics, etc. We begin (§2) by recalling the informal architectural guar-
antees that Arm provide, and the ways in which real-world software systems
such as Linux, JavaScript, and WebAssembly change instruction memory. Then:

(1) We explore the fundamental phenomena and architecture de-
sign questions with a series of examples (§3). We explore the interactions
between instruction fetching, cache maintenance and the ‘usual’ relaxed mem-
ory stores and loads, showing that instruction fetches are more relaxed, and
how even fundamental coherence guarantees for data memory do not apply to
instruction fetches. Most of these questions arose during the development of our
models, in detailed ongoing discussion with the Arm Chief Architect and other
Arm staff. They include questions of several different kinds. Six are clear from

4 B. Simner et al.

the Arm prose specification. Of the others: two are not implied by the prose but
are natural choices; five involved substantive new choices by Arm that had not
previously been considered and/or documented; for two, either choice could be
reasonable, and Arm chose the simpler (and weaker) option; and for one, Arm
were independently already strengthening the architecture to accommodate ex-
isting software.

(2) We give an operational semantics for Arm instruction fetch
and icache maintenance (§4). This is in an abstract-microarchitectural style
that supports an operational intuition for how hardware actually works, while
abstracting from the mass of detail and the microarchitectural variation of actual
hardware implementations. We do so by extending the Flat model [37] with
simple abstractions of instruction caches and the coherent data cache network,
in a way that captures the architectural intent, defining the entire envelope of
behaviours that implementations should be allowed to exhibit.

(3) We give a more concise presentation of the model in an ax-
iomatic style (§5), extending the “user-mode” axiomatic model from previous
work [37,36,15,9], and intended to be functionally equivalent. We discuss how
this too matches the architectural intent.

(4) We validate all this in two ways: by the extensive discussion with
Arm staff mentioned above, and by experimental testing of hardware behaviour,
on a selection of ARMv8-A cores designed by multiple vendors (§6). We run
tests on hardware with a mild extension of the Litmus tool [5,7]. We make the
operational model executable as a test oracle by integrating it into the RMEM
tool and its web interface [17], introducing optimisations that make it possible
to exhaustively execute the examples. We make the axiomatic model executable
as a test oracle with a new tool that takes litmus tests and uses a Sail [11]
definition of a fragment of the ARMv8-A ISA to generate SMT problems for the
model. We then compare hardware and the two models for the handwritten tests
(modulo two tests not supported by the axiomatic checker), compare hardware
and the operational model on a suite of 1456 tests, automatically generated
with an extension of the diy tool [3], and check the operational and axiomatic
models against sets of previous non-ifetch tests. In all this data our models are
equivalent to each other and consistent with hardware observations, except for
one case where our testing uncovered a hardware bug on a Qualcomm device.

Finally, we discuss other related work (§7) and conclude (§8). We do all this
for ARMv8-A, but other relaxed architectures, e.g. IBM POWER and RISC-V,
face similar issues; our tests and tooling should enable corresponding work there.

The models are too large to include or explain in full here, so we focus
on explaining the motivating examples, the main intuition and style of the
operational model, in a prose rendering of its executable mathematics, and
the definition of the axiomatic model. Appendices provide additional exam-
ples, a complete prose description of the operational model, and additional ex-
planation of the axiomatic model. The complete executable mathematics ver-
sion, the web-interface tool for running it, and our test results are at https:

//www.cl.cam.ac.uk/~pes20/iflat/.

https://www.cl.cam.ac.uk/~pes20/iflat/
https://www.cl.cam.ac.uk/~pes20/iflat/

ARMv8-A system semantics: instruction fetch in relaxed architectures 5

Caveats and Limitations Our executable models are integrated with a substan-
tial fragment of the Sail ARMv8-A ISA (similar to that used for CakeML), but
not yet with the full ISA model [11,40,41,42]; this is just a matter of additional
engineering. We only handle the 64-bit AArch64 part of ARMv8-A, not AArch32.
We do not handle the interaction between instruction fetch and mixed-size ac-
cesses, or other variants of the cache maintenance instructions, e.g. those used for
interaction with DMA engines, and variants by set or way instead of by virtual
address. Finally, the equivalence between our operational and axiomatic models
is validated experimentally. A proof of this equivalence is essential in the long
term, but would be a major work in itself: the complexity makes mechanisation
essential, but the operational model (in all its scale and complexity) has not yet
been subject to mechanised proof. Without instruction fetch, a non-mechanised
proof was the main result of an entire PhD thesis [36], and we expect the addition
of instruction fetch to require global changes to the argument.

2 Industry Practice and the Existing ARMv8-A Prose

Computer architecture relies on a host of sophisticated techniques, including
buffering, caching, prediction, and pipelining, for performance. For the normal
memory reads and writes of “user-mode” concurrency, the programmer-visible
relaxed-memory effects largely arise from store buffering and from out-of-order
and speculative pipeline behaviour, not from the cache hierarchy (though some
IBM POWER phenomena do arise from the interconnect, and from late process-
ing of cache invalidates). All major architectures provide a strong per-location
guarantee of coherence: for each memory location, different threads cannot ob-
serve the writes to that location in different orders. This is implemented in
hardware by coherent cache protocols, ensuring (roughly) that each cache line is
writable by at most one hardware thread at a time, and by additional machinery
restricting store buffer and pipeline behaviour. Then each architecture provides
additional synchronisation mechanisms to let the programmer enforce ordering
properties involving multiple locations.

At first sight, one might expect instruction fetches to act like other memory
reads but, because writes to instruction memory are relatively rare, hardware de-
signers have adopted different caching mechanisms. The Arm architecture care-
fully does not mandate exactly what these must be, to allow a wide range of
possible hardware implementations, but, for example, a high-performance Arm
processor might have per-core separate L1 instruction and data caches, above
a unified per-core L2 cache and an L3 cache shared between cores. There may
also be additional structures, e.g. per-core fetch queues, and caching of decoded
micro-operations. This instruction caching is not necessarily coherent with data
memory accesses: “the architecture does not require the hardware to ensure co-
herency between instruction caches and memory” [9, B2.4.4 (B2-114)]; instead,
programmers must use explicit cache maintenance instructions. The documenta-
tion gives a particular sequence of these: “If software requires coherency between
instruction execution and memory, it must manage this coherency using Context

6 B. Simner et al.

synchronization events and cache maintenance instructions. The following code
sequence can be used to allow a processing element (PE) to execute code that the
same PE has written.”

; Coherency example for data and instruction accesses [...]

; Enter this code with <Wt> containing a new 32-bit instruction,

; to be held in Cacheable space at a location pointed to by Xn.

STR Wt, [Xn]; Store new instruction

DC CVAU, Xn ; Clean data cache by virtual address (VA) to PoU

DSB ISH ; Ensure visibility of the data cleaned from cache

IC IVAU, Xn ; Invalidate instruction cache by VA to PoU

DSB ISH ; Ensure completion of the invalidations

ISB ; Synchronize the fetched instruction stream

At first sight, this may be entirely mysterious. The remainder of the paper es-
tablishes precise semantics for each instruction, explaining why each is required,
but as a rough intuition:

1. The DC CVAU,Xn cleans this core’s data cache for address Xn, pushing the new
write far enough down the hierarchy for an instruction fetch that misses in
the instruction cache to be guaranteed to see the new value. This point is the
Point of Unification (PoU) and is usually the point where the instruction
and data caches become unified (L2 for most modern devices).

2. The DSB ISH waits for the clean to have happened before letting the later
instructions execute (without this, the sequence itself can execute out-of-
order, and the clean might not have pushed the write down far enough before
the instruction cache is updated). The ISH makes this specific to the Inner
Shareable Domain: the processor itself, not the system-on-chip. We do not
model shareability domains in this paper, so this is equivalent to a DSB SY.

3. The IC IVAU,Xn invalidates any entry for that address in the instruction
caches for all cores, forcing any future fetch to miss in the instruction cache,
and instead read the new value from the data memory hierarchy; it also
touches some fetch queue machinery.

4. The second DSB ISH ensures the invalidation completes.
5. The final ISB flushes this core’s pipeline, forcing a re-fetch of all program-

order-later instructions.

Some hardware implementations provide extra guarantees, rendering the DC or
IC instructions unnecessary. Arm allow software to discover this in an archi-
tectural way, by reading the CTR_EL0 register’s DIC and IDC bits. Our mod-
elling handles this, but for brevity we only discuss the weakest case, with
CTR_EL0.DIC=CTR_EL0.IDC=0, that requires full cache maintenance.

Arm make clear that instructions can be prefetched (perhaps speculatively):
“How far ahead of the current point of execution instructions are fetched from
is IMPLEMENTATION DEFINED. Such prefetching can be either a fixed or a
dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory, the PE might have fetched the
instructions from memory at any time since the last Context synchronization
event on that PE.”

ARMv8-A system semantics: instruction fetch in relaxed architectures 7

Concurrent modification and instruction fetch require the same sequence,
with an ISB on each thread that executes the new instructions, and the rest of
the sequence on the modifying thread [9, B2.2.5 (B2-94)]. Concurrent modifica-
tion without synchronisation is restricted to particular instructions (B (branch),
BL (branch-and-link), BRK (break), SMC, HVC, SVC (secure monitor, hypervisor,
and supervisor calls), ISB, and NOP), otherwise there could be constrained unpre-
dictable behaviour : “any behavior that can be achieved by executing any sequence
of instructions that can be executed from the same Exception level”. Concurrent
modification of conditional branches is allowed but can result in the old condition
with the new target address or vice versa.

All this gives some guidance for programmers, but it leaves the exact seman-
tics of instruction fetch and those cache maintenance instructions unclear, and in
practice software typically does not use the above sequence verbatim. For exam-
ple, it may synchronise a range of addresses at once, looping the DC and IC parts,
or the final ISB may be subsumed by instruction synchronisation from exception
entry or return. Linux has many places where it modifies code at runtime: in
boot-time patching of alternatives, modifying kernel code to specialise it to the
particular hardware being run on; when the kernel loads code (e.g. when the user
calls dl_open); and in the ptrace system call, used e.g. by the GDB debugger to
patch arbitrary instructions with breakpoints at runtime. In Google’s Chrome
web browser, its WebAssembly and JavaScript just-in-time (JIT) compilers are
required to both write new code during execution and modify existing code at
runtime. In JavaScript, this modification happens inside a single thread and so is
quite straightforward. The WebAssembly case is more complex, as one thread is
modifying the code of another. A software thread can also be moved (by the OS
or hypervisor) from one hardware thread to another, perhaps while it is in the
middle of some instruction cache maintenance. Moreover, for security reasoning,
we have to be able to bound the possible behaviour of arbitrary code.

All this means that we cannot treat the above sequence as a whole, as an
opaque black box. Instead, we need a precise semantics for each individual in-
struction, but the existing prose documentation does not provide that.

The problem we face is to give such a semantics, that correctly defines be-
haviour in arbitrary concurrent contexts, that captures the Arm architectural
intent, that is strong enough for software, and that abstracts from the variety
of hardware implementations (e.g. with differing cache structures) that the ar-
chitecture intends to allow – but which programmers should not have to think
about.

3 Instruction Fetch Phenomena and Examples

We now describe the main instruction-fetch phenomena and architecture design
questions for ARMv8-A, illustrated by handwritten litmus tests, to guide the
following model design.

8 B. Simner et al.

3.1 Instruction-Fetch Atomicity

The first point, as mentioned in §2, is that concurrent modification and fetch
is only permitted if the original and modified instructions are in a particular
set: various branches, supervisor/hypervisor/secure-monitor calls, the ISB in-
struction synchronisation barrier, and NOP. Otherwise, the architecture permits
constrained unpredictable behaviour, meaning that the resulting machine state
could be anything that would be reachable by arbitrary instructions at the same
exception level. The following W+F test illustrates this.

STR W0,[X1] // modify Thread 1 at l

Thread 0
l: ADD X0,X0,#1 // initial code

Thread 1
Initial state: 0:W0="SUB X0,X0,#1", 0:X1=l

W+F AArch64

Allowed: constrained-unpredictable final state

In this test Thread 0 performs a memory store (with the STR instruction)
to the code that Thread 1 is executing; overwriting the ADD X0,X0,#1 instruc-
tion with the 32-bit encoding of the SUB X0,X0,#1 instruction. If the fetch were
atomic, the outcome of this test would be the result of executing either the ADD

or the SUB instruction, but, since at least one of those is not in the set of the
8 atomically-fetchable instructions given previously, Thread 1 has constrained-
unpredictable behaviour and the final state is very loosely constrained. Note,
however, that this is nonetheless much stronger than the C/C++ whole-program
undefined behaviour in the presence of a data race: unlike C/C++, a hardware
architecture has to define a useful envelope of behaviour for arbitrary code, to
provide guarantees for the rest of the system when one user thread has a race.

Conditional Branches For conditional branches, the Arm architecture pro-
vides a specific non-single-copy-atomic fetch guarantee: the execution will be
consistent with either the old or new target, and either the old or new condition.

STR W0,[X1]

Thread 0
l: B.EQ g

Thread 1
Initial state: 0:W0="B.NE h", 0:X1=l

W+F+branches AArch64

Allowed: execute "B.NE g"

For example, this W+F+branches
test can overwrite a B.EQ g with
a B.NE h, and end up executing
B.NE g or B.EQ h instead of one
of those. Our future examples will
only modify NOPs and unconditional
branch instructions.

3.2 Coherence

Data writes and reads are coherent, in Arm and in other major architectures:
in any execution, for each address, the reads of each hardware thread must see
a subsequence of the total coherence order of all writes to that address. The
plain-data CoRR test [46] illustrates one case of this: it is forbidden for a thread
to read a new write of x and then the initial state for x. However, instruction
fetches are not necessarily coherent: one instruction fetch may be inconsistent

ARMv8-A system semantics: instruction fetch in relaxed architectures 9

with a program-order-previous fetch, and the data and instruction streams can
become out-of-sync with each other. We explore three kinds of coherence:

– Instruction-to-Instruction Coherence: whether fetches of the same location
must observe writes to the same location coherently.

– Data-to-Instruction Coherence: whether fetches and then reads to the same
location must observe writes to the same location coherently.

– Instruction-to-Data Coherence: whether reads and then fetches of the same
location must observe writes to the same location coherently.

Instruction-to-Instruction Coherence Arm explicitly do not guarantee any
consistency between fetches of the same location: fetching an instruction does
not mean that a later fetch of that location will not see an older instruction [9,
B2.4.4]. This is illustrated by CoFF, like CoRR but with fetches instead of reads.

STR W0,[X1] //a

Thread 0
BL f
MOV X0,X10
BL f
MOV X1,X10

Thread 1
f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common
Initial state: 0:W0="B l1", 0:X1=f

CoFF AArch64

Allowed: 1:X0=2, 1:X1=1

write f=B l1a:
Thread 0

fetch f=B l1b:

fetch f=B l0c:

Thread 1

irf
fpo

irf

Here Thread 1 makes two calls to address f (BL is branch-and-link), while
Thread 0 overwrites the instruction at that address. The interesting potential
execution is that in which the first call to f fetches and executes the newly-
written B l1, but the second call fetches and executes the original B l0. We can
view such executions as graphs, similar to previous axiomatic-model candidate
executions but with new fetch events, one per instruction, and new edges. As
usual, we use po and rf edges for the program-order and reads-from relations,
together with:

– fe (fetch-to-execute), which relates the fetch event of an instruction to all
the execution events (memory writes, reads or barriers) of the instruction;

– irf (instruction-read-from), relating a write to all fetches that read from it
(analogous to reads-from, rf); and

– fpo (fetch-program-order), relating fetches of instructions that are in pro-
gram order (analogous to program order, po).

Edges from the initial state are drawn from a small circle. Since we do not modify
the code of most locations, we usually omit the fetch events for those instructions,
showing only a subgraph of the interesting events, e.g. as on the right above. For
Arm, this execution is both architecturally allowed and experimentally observed.

Here, and in future tests, we assume some common code consisting of a
function at address f which always has the same shape: a branch that might
be overwritten, which selects a block that writes a value to register X10 before

10 B. Simner et al.

returning. This is sometimes duplicated at different addresses (f1, f2, ...) or
extended to g, with three cases. We sometimes elide the common code.

Data-to-Instruction Coherence Fetching from a particular write does imply
that program-order-later reads from the same address will see that write (or a
coherence successor thereof). This is a data-to-instruction coherence property,
illustrated by CoFR below. Here Thread 1 fetches the newly-written B l1 at f

and then, when reading from f with its LDR load instruction, cannot read the
original B l0 instruction (it can only read the new B l1).

STR W0,[X1]

Thread 0
BL f
MOV X0,X10
LDR X1,[X2]

Thread 1
f: B l0
l1: MOV X10,#2
RET
l0: MOV X10,#1
RET

Common
Initial state: 0:W0="B l1", 0:X1=f, 1:X2=f

CoFR AArch64

Forbidden: 1:X0=2, 1:X1="B l0"

write f=B l1a:
Thread 0

fetch f=B l1b:

fetch LDR X1,[X2]c:

read f=B l0d:

Thread 1
irf

fpo

ferf

This is not clear in the existing prose specification, but the architectural
intent that emerged during discussion with Arm is that the given execution
should be forbidden, reflecting microarchitectural choices that (1) instructions
decode in order, so the fetch b must occur before the read d, and (2) fetches that
miss in the instruction cache must read from data storage, so the instruction
cache cannot be ahead of the available data. This ensures that fetching from a
write means that all threads are now guaranteed to read from that write (or
another coherence-after it).

Instruction-to-Data Coherence In the other direction, reading from a par-
ticular write to some location does not imply that later fetches of that location
will see that write (or a coherence successor), as in the following CoRF+ctrl-isb.

STR W0,[X1]

Thread 0
LDR X0,[X2]
CBNZ X0,l
l: ISB
BL f
MOV X1,X10

Thread 1
f: B l0
l1: MOV X10,#2
RET
l0: MOV X10,#1
RET

Common
Initial state: 0:W0="B l1", 0:X1=f, 1:X2=f

CoRF+ctrl-isb AArch64

Allowed: 1:X0="B l1", 1:X1=1

write f=B l1a:
Thread 0

read f=B l1b:

fetch f=B l0c:

Thread 1
rf

ctrl+isb
irf

Here Thread 1 has a control dependency and an instruction synchronisation
barrier (the CBNZ conditional branch, dependent on the value read by its LDR

load, and ISB), abbreviated to ctrl+isb, between its load and the fetch from f. If
the latter were a data load, this would ensure the two loads are satisfied in order.
This is not explicit in the existing prose, but it is what one would expect, and it
is observed in practice. Microarchitecturally, it is easily explained by an out-of-
date entry for f in the instruction cache of Thread 1: if Thread 1 had previously
fetched f (perhaps speculatively), and that instruction cache entry has not been
evicted or explicitly invalidated since, then this fetch of f will simply read the

ARMv8-A system semantics: instruction fetch in relaxed architectures 11

old value from the instruction cache without going out to data memory. The ISB
ensures that f is freshly fetched, but does not ensure that Thread 1’s instruction
cache is up-to-date with respect to data memory.

3.3 Instruction Synchronisation

Instruction fetches satisfy few guarantees, so explicit synchronisation must be
performed when modifying the instruction stream.

Same-Thread Synchronisation Test SM below shows the simplest self-
modifying code case: without additional synchronisation, a write to program
memory can be ignored by a program-order-later fetch.

STR W0,[X1] // a
BL f
MOV X0,X10

Thread 0
f: B l0
l1: MOV X10,#2

RET
l0: MOV X10,#1

RET

Common
Initial state: 0:W0="B l1", 0:X1=f

SM AArch64

Allowed: 1:X0=1

write f=B l1a:

fetch f=B l0b:

Thread 0

ifr
irf

In this execution, the fetch b, fetching the instruction at f, fetches a value
from a write coherence-before a, even though b is the fetch of an instruction
program-order after a. We illustrate this with an instruction from-reads (ifr)
edge. This is a derived relation, analogous to the usual from-reads (fr) relation,
that relates each fetch to all writes that are coherence-after the write it read
from; it is defined as ifr = irf−1;co. If the fetch were a data read, this would
be a forbidden coherence shape (COWR). As it is, it is architecturally allowed,
as described explicitly by Arm [9, B2.4.4], and it is experimentally observed on
all devices we have tested. Microarchitecturally, this too is simply due to fetches
from old instruction cache entries.

Cache Maintenance As we saw in §2, the Arm architecture provides cache
maintenance instructions to synchronise the instruction and data streams: the
DC data-cache clean and IC instruction-cache invalidate instructions. To forbid
the relaxed outcome of SM, by forcing a fetch of the modified code, the specified
sequence of cache maintenance instructions must be inserted, with an ISB.

STR W0,[X1] //overwrite f with branch
DC CVAU,X1 //clean data cache
DSB ISH
IC IVAU,X1 //invalidate instruction cache
DSB ISH
ISB //flush pipeline
BL f
MOV X0,X10

Thread 0
Initial state: 0:W0="B l1", 0:X1=f

SM+cachesync-isb AArch64

Forbidden: 1:X0=1

write f=B l1a:

ISBb:

fetch f=B l0c:

Thread 0

cachesync

isb
irf

12 B. Simner et al.

Now the outcome is forbidden. The cache synchronisation sequence DC CVAU;

DSB ISH; IC IVAU; DSB ISH (which we abbreviate to a single cachesync edge)
ensures that by the time the ISB executes, the instruction and data memory have
been made coherent with each other for f. The ISB then ensures the final fetch
of f is ordered after this sequence. The microarchitectural intuition for this was
in §2; our §4 operational model will describe the semantics of each instruction.

Cross-Thread Synchronisation We now consider modifying code that can be
fetched by other threads, using variants of the standard message-passing shape
MP. That checks whether two writes (to different locations) on one thread can
be seen out-of-order by two reads on another thread; here we replace one or both
of those reads by fetches, and ask what synchronisation is required to ensure that
the relaxed outcome is forbidden. Consider first an MP variant where the first
write is of a new instruction, and the second is just a simple data memory flag:

STR W0,[X1]
DMB ISH
STR X2,[X3]

Thread 0
LDR X0,[X2]
CBNZ X0,l

l: ISB
BL f
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f,

0:X2=1, 0:X3=x, 1:X2=x, [x]=0

MP.RF+dmb+ctrl-isb AArch64

Allowed: 1:X0=1, 1:X1=1

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

ISBd:

fetch f=B l0e:

Thread 1

dmb rf ctrl

isb
irf

This test includes sufficient synchronisation on each thread to enforce thread-
local ordering of data accesses: the DMB in Thread 0 ensures the writes a and b
propagate to memory in program order, and the control-dependency into an ISB

on Thread 1 ensures the read c and the fetch e happen in program order. How-
ever, as we saw in §2, this is not enough to synchronise concurrent modification
and execution of code in ARMv8-A. Thread 0 needs the entire cache synchro-
nization sequence (giving test MP.RF+cachesync+ctrl-isb, not shown), not just
a DMB, to forbid this outcome.

Another variant of this MP-shape test where the message passing itself is
done using modification of code gives a much stronger guarantee, as can be
seen from the following MP.FR+dmb+fpo-fe test. This is not clear from the

STR X0,[X1]
DMB ISH
STR W2,[X3]

Thread 0
BL f
MOV X0,X10
LDR X1,[X2]

Thread 1

Initial state: 0:X0=1, 0:X1=x,

1:X2=x, [x]=0,

0:W2="B l1", 0:X3=f

MP.FR+dmb+fpo-fe AArch64

Forbidden: 1:X0=2, 1:X1=0

write x=1a:

write f=B l1b:

Thread 0
fetch f=B l1c:

fetch LDR X1,[X2]d:

read x=0e:

Thread 1

dmb irf fpo

fe

architecture manual, but this outcome is already forbidden with only the DMB.

ARMv8-A system semantics: instruction fetch in relaxed architectures 13

This is for similar reasons to the above CoFR test: since Thread 1 fetched the
updated value for f, we know that value must have reached at least the data
caches (since that is where the instruction cache reads from) and therefore multi-
copy atomicity guarantees that a normal load instruction will observe it.

The final variant of these MP-shaped tests has both Thread 0 writes be of new
instructions. This idiom is very common in practice; it is currently how Chrome’s
WebAssembly JIT synchronises the modified thread with the new code.

STR W0,[X1]
DMB ISH
STR W2,[X3]

Thread 0
BL f2
MOV X0,X10
BL f1
MOV X1,X10

Thread 1

Initial state: 0:W0="B l1", 0:X1=f1,

0:W2="B l1", 0:X3=f2

MP.FF+dmb+fpo AArch64

Allowed: 1:X0=2, 1:X1=1

write f1=B l1a:

write f2=B l1b:

Thread 0
fetch f2=B l1c:

fetch f1=B l0d:

Thread 1

dmb fpoirf

irf

Without the full cachesync sequence on Thread 0, this is an allowed
outcome. Interestingly, adding the cachesync sequence to Thread 0 (Test
MP.FF+cachesync+fpo, not shown) is sufficient to make the outcome forbid-
den, without an ISB in Thread 1, as the cachesync sequence is intended to make
it appear that fetches occur in program order. Microarchitecturally, that could
be ensured in two ways: either by actually fetching in-order, or by making the
IC instruction not only invalidate all the instruction caches (for this address)
but also clean any core’s pre-fetch buffer stale entries (for this address). Archi-
tecturally, this is not clear in the current prose, but, concurrent with this work,
Arm were independently strengthening their definition to make it so.

Incremental Synchronisation The cache synchronisation sequence need not
be contiguous, or even all in the same thread. So long as the sequence in its
entirety has been performed by the time the fetch happens, then the instruction
stream will have been made consistent with the data stream for that address.

This is demonstrated by the following test, where Thread 0 performs a write
to f and then only a DC before synchronizing with Thread 1, which performs the
IC, while Thread 2 observes the modified code. This can happen in practice when
a software thread is migrated between hardware threads at runtime, by a hyper-
visor or OS. Thread 0 and Thread 1 may just represent the runtime scheduling
of a single process, beginning execution on hardware Thread 0 but migrated to
hardware Thread 1 between the DC and IC instructions. In the graph, the dcsync
and icsync represent the DC;DSB ISH and DSB ISH;IC;DSB ISH combinations. The
DC does not need a preceding DSB ISH because it is ordered w.r.t. the preceding
store to the same cache line.

Here the IC gets broadcast to all threads [9, B2.2.5p3], and so the fact that
it happens on a different thread to the DC does not affect the outcome. Similarly,
if the DC were to happen on another thread first (to get the test MP.RF+[dc]-
ic+ctrl-isb, not shown), then it would have the effect of ensuring consistency
globally, for all threads.

14 B. Simner et al.

STR W0,[X1]
DC CVAU, X1
DSB ISH
STR X2,[X3]

Thread 0
LDR X0,[X1]
DSB ISH
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1
LDR X0,[X2]
CBZ X0,l
l:ISB
BL f
MOV X1,X10

Thread 2

Initial state: 0:W0="B l1", 0:X1=f,

0:X2=1, 0:X3=x, [x]=0, 1:X4=f,

1:X1=x, 1:X2=1, 1:X3=y, [y]=0, 2:X2=y

ISA2.F+dc+ic+ctrl-isb AArch64

Forbidden: 1:X0=1, 1:X1=1

write f=B l1a:

write x=1b:

Thread 0
read x=1c:

write y=1d:

Thread 1
read y=1e:

ISBf:

fetch f=B l0g:

Thread 2

dcsync icsync ctrl

isb

rf rf

ifr

3.4 Multi-Copy Atomicity

For data accesses, the question of whether they are multi-copy atomic is a crucial
one for relaxed architectures. IBM POWER, ARMv7, and pre-2018 ARMv8-A
are/were non-multi-copy atomic: two writes to different addresses could become
visible to distinct other threads in different orders. Post-2018 ARMv8-A and
RISC-V are multi-copy atomic (or “other multi-copy-atomic” in Arm terminol-
ogy) [37,36,9]: the programmer can assume there is a single shared memory, with
all relaxed-memory effects due to thread-local out-of-order execution.

However, for fetches, due to the lack of any fetch atomicity guarantee for most
instructions (§3.1), and the lack of coherent fetches for the others (§3.2), the
question of multi-copy atomicity is not particularly interesting. Tests are either
trivially forbidden (by data-to-instruction coherence) or are allowed but only the
full cache synchronisation sequence provides enough guarantees to forbid it, and
(§3.3) this ensures all cores will share the same consistent view of memory.

3.5 Strength of the IC Instruction

Multiple Points of Unification Cleaning the data cache, using the DC in-
struction, makes a write visible to instruction memory. It does this by pushing
the write past the Point of Unification. However, there may be multiple Points
of Unification: one for each core, where its own instruction and data memory
become unified, and one for the entire system (or shareability domain) where all
the caches unify. Fetching from a write implies that it has reached the closest
PoU, but does not imply it has reached any others, even if the write originated
from a distant core. Consider: Here Thread 0 modifies f, Thread 1 fetches the
new value and performs just an IC and DSB, before signalling Thread 0 which
also fetches f. That IC is not strong enough to ensure that the write is pulled
into the instruction cache of Thread 0.

This is not clear in the existing prose, but the architectural intent is that it
be allowed (i.e., that IC is weak in this respect). We have not so far observed it
in practice. The write may have passed the Point of Unification for Thread 1,
but not the shared Point of Unification for both threads. In other words, the
write might reach Thread 1’s instruction cache without being pushed down from
Thread 0’s data cache. Microarchitecturally this can be explained by direct data

ARMv8-A system semantics: instruction fetch in relaxed architectures 15

STR W0,[X4]
LDR X2,[X3]
CBZ X2,l

l: ISB
BL f
MOV X1,X10

Thread 0
BL f
MOV X0,X10
IC IVAU, X4
DSB ISH
STR X2,[X3]

Thread 1

Initial state: 0:W0="B l1", 0:X4=f,

0:X3=x, [x]=0, 1:X4=f, 1:X2=1, 1:X3=x

SM.F+ic AArch64

Allowed: 1:X0=2, 0:X2=1, 0:X1=1

write f=B l1a:

read x=1b:

ISBc:

fetch f=B l0d:

Thread 0
fetch f=B l1e:

write x=1f:

Thread 1

po

ctrl

isb

irf

icsync

rf

irf

intervention (DDI), an optimisation allowing cache lines to be migrated directly
from one thread’s (data) cache to another. The line could be migrated from
Thread 0 to Thread 1, then pushed past Thread 1’s Point of Unification, making
it visible to Thread 1’s instruction memory without ever making it visible to
Thread 0’s own instruction memory. The lack of coherence between instruction
and data caches would make this observable, even in multi-copy atomic machines.

Stale Fetches So far, we have only talked about fetching from two distinct
writes. But theoretically there is no limit to how far back we can fetch from,
with insufficient synchronization. The MP.RF+dmb+ctrl-isb test (§3.3) required
the full cachesync sequence to forbid the given behaviour. Below we give a test,
FOW, similar to that MP-shaped test but allowing many consumer threads
to independently and simultaneously see different values in their instruction
memory, even after invalidating their caches.

STR W0,[X2]
STR W1,[X2]
DSB ISH
IC IVAU, X2
DSB ISH
STR X3,[X4]

Thread 0
LDR X0, [X4]
CBNZ X0, la

la: ISB
BL g
MOV X1,X10

Thread 1
LDR X0, [X4]
CBNZ X0, lb

lb: ISB
BL g
MOV X1,X10

Thread 2
g: B l0
l2: MOV X10, #3

RET
l1: MOV X10, #2

RET
l0: MOV X10, #1

RET

Common

Initial state: 0:W0="B l1", 0:X2=g, 0:W1="B l2", 0:X3=1, 0:X4=x, [x]=0,

1:X4=x, 2:X4=x

FOW AArch64

Allowed: 1:X0=1, 1:X1=2, 2:X0=1, 2:X1=1

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0
read x=1d:

fetch g=B l1e:

Thread 1
read x=1f:

fetch g=B l0g:

Thread 2

po

icsync

ctrl+isb ctrl+isbirf

rf

rf

irf

This is not clear in the existing architecture text. It is a case where the architec-
ture design is not very constrained. On the one hand, it has not been observed,
and it is thought unlikely that hardware will ever exhibit this behaviour: it would

16 B. Simner et al.

require keeping multiple writes in the coherent part of the data caches, rather
than a single dirty line, which would require more complex cache coherence pro-
tocols. On the other hand, there does not seem to be any benefit to software from
forbidding it. Arm therefore prefer the choice that gives a simpler and weaker
model (here the two happen to coincide), to make it easier to understand and to
provide more flexibility for future microarchitectural optimisations. We therefore
design our models to allow the above behaviour.

3.6 Strength of the DC Instruction

Instruction Cache depth Test CoFF (§3.2) showed that fetches can see “old”
writes. In principle, there is no limit to the depth of the instruction-cache hier-
archy: there could be many values for a single location cached in the instruction
memory for each core, even if the data cache has been cleaned. The test below
illustrates this, with Thread 1 able to see all three values for g.

STR W0,[X2]
STR W1,[X2]
DSB ISH
DC CVAU,X2
DSB ISH
STR X3,[X4]

Thread 0
LDR X0, [X4]
CBNZ X0, l
l:ISB
BL g
MOV X1,X10
ISB
BL g
MOV X2,X10
ISB
BL g
MOV X3,X10

Thread 1
g: B l0
l2:MOV X10,#3
RET
l1:MOV X10,#2
RET
l0:MOV X10,#1
RET

Common

Initial state: 0:W0="B l1", 0:X2=g,

0:W1="B l2", 0:X3=1, 0:X4=x, [x]=0, 1:X4=x

MP.RF+dc+ctrl-isb-isb AArch64

Allowed: 1:X0=1, 1:X1=3, 1:X2=2, 1:X3=1

write g=B l1a:

write g=B l2b:

write x=1c:

Thread 0
read x=1d:

fetch g=B l2e:

fetch g=B l1f:

fetch g=B l0g:

Thread 1

po

dcsync

ctrl+isb

isb

isb

rf

irf

irf

irf

This is similar to the preceding FOW case: it is thought unlikely that hardware
will exhibit this in practice, but the desire for the simpler and weaker option
means the architectural intent is to allow it, and we follow that in our models.

4 An Operational Semantics for Instruction Fetch

Previous work on operational models for IBM POWER and Arm “user-
mode” concurrency [46,45,22,18,19,37] has shown, surprisingly, that as far as
programmer-visible behaviour is concerned, one can abstract from almost all
hardware implementation details of data memory (store queues, the cache hi-
erarchy, the cache protocol, etc.). For ARMv8-A, following their 2018 shift to
a multicopy-atomic architecture, one can do so completely: the Flat model of
[37] has a shared flat memory, with a per-thread out-of-order thread subsystem,
modelling pipeline effects, responsible for all observable relaxed behaviour. For
instruction-fetch, it is no longer possible to abstract completely from the data
and instruction cache hierarchy, but we can still abstract from much of it.

The Flat Model is a small-step operational semantics for multi-copy atomic
ARMv8-A, including the relaxed behaviours of loads and stores [37]. Its states are

ARMv8-A system semantics: instruction fetch in relaxed architectures 17

abstract machine states consisting of a tree of instructions for each thread, and
a flat memory subsystem shared by all threads. Each instruction in each thread
corresponds to a sequence of transitions, with some guards and a potential effect
on the shared memory state. The Flat model is made executable in our RMEM
tool, which can exhaustively interleave transitions to enumerate all the possible
behaviours. The tree of instructions for each thread models out-of-order and
speculative execution explicitly. Below we show an example for a thread that is
executing 10 instruction instances.
Some (grey) are finished, no longer
subject to restart; others (pink)
have run some but perhaps not all
of their instruction semantics; in-
structions are not necessarily atomic. Those with multiple children are branch
instructions with multiple potential successors speculated simultaneously.

For each state, the model defines the set of allowed transitions, each of which
steps to a new machine state. Transitions correspond to steps of single instruc-
tions, and individual instructions may give rise to many. Example transitions
include Register Write, Propagate Write to Memory, etc.

pe
r-
th
re
ad

Thread

Fetch Queue

Abstract I$

new
fetch
request

decode

Abstract
D$

Memory

write data

re
ad

da
ta

most
recent

ad
d
to

I$

any

fetch

gl
ob

al

iFlat Extension Originally, Flat
had a fixed instruction mem-
ory, with a single transition that
can speculate the address of any
program-order successor of any in-
struction in flight, fetch it from
the fixed instruction memory, and
decode it. We now remove that
fixed instruction memory, so that
instructions can be fetched from
data writes, and add the additional
structures as shown on the right.
These are all of unbounded size, as
is appropriate for an architecture
definition.

Fetch Queues (per-thread) These are ordered buffers of pre-fetched entries,
waiting to be decoded and begin execution. Entries are either a fetched 32-bit
opcode, or an unfetched request. The fetch queues allow the model to speculate
and pre-fetch many instructions ahead of where the thread is currently executing.
The model’s fetch queues abstract from multiple real-hardware structures: in-
struction queues, line-fill buffers, loop buffers, and slots objects. We keep a close
relation to this underlying microarchitecture by allowing out-of-order fetches,
but we believe this is not experimentally observable on real hardware.

Abstract Instruction Cches (per-thread) These are just sets of writes.
When the fetch queue requests a new entry, it gets satisfied from the instruction
cache, either immediately (a hit) or at some later point in time (a miss). The

18 B. Simner et al.

instruction cache can contain many possible writes for each location (§3.6), and
it can be spontaneously updated with new writes in the system at any time ([9,
B2.4.4]). To manage IC instructions, each thread keeps a list of addresses yet to
be invalidated by in-flight ICs.

Data Cache (global) Above the single shared flat memory for the entire sys-
tem, which sufficed for the multi-copy-atomic ARMv8-A data memory, we insert
a shared buffer which is just a list of writes; abstracting from the many possible
coherent data cache hierarchies. Data reads must be coherent, reading from the
most recent write to the same address in the buffer, but instruction fetches are
allowed to read from any such write in the buffer (§3.2).

Transitions To accommodate instruction fetch and cache maintenance, we in-
troduce new transitions: Fetch Request, Fetch Instruction, Fetch Instruction
(Unpredictable), Fetch Instruction (B.cond), Decode Instruction, Begin IC,
Propagate IC to Thread, Complete IC, Perform DC, and Update Instruction
Cache. We also have to modify some Flat transitions: Commit ISB, Wait for
DSB, Commit DSB, Propagate Memory Write, and Satisfy Read from Memory.
These transitions define the lifecycle of each instruction: a request gets issued
for the fetch, then at some later point the fetch gets satisfied from the instruc-
tion cache, the instruction is then decoded (in program-order) and then handed
to the existing semantics to be executed. To give a flavour, we show just one,
the Propagate IC to Thread transition, which is responsible for invalidation of
the abstract instruction caches. This is a prose rendering of the rule in our exe-
cutable mathematical model, which is expressed in the typed functional subset
of Lem [32].

Propagate IC to Thread An instruction i (with ID iiid) in state
Wait_IC(address, state_cont) can do the relevant invalidate for any thread
tid’, modifying that thread’s instruction cache and fetch queue, if there exists
a pending entry (iiid, address) in that thread’s ic_writes. Action:

1. for any entry in the fetch queue for thread tid, whose program_loc is
in the same minimum-size instruction cache line as address, and is in
Fetched(_) state, set it to the Unfetched state;

2. for the instruction cache of thread tid, remove any write-slices which are
in the same instruction cache line of minimum size as address.

This rule can be found under the same name in the full prose description,
and in the handle_ic_ivau and flat_propagate_cache_maintenance functions
in machineDefThreadSubsystem.lem and machineDefFlatStorageSubsystem.lem

in the executable mathematics. Cache maintenance operations work over entire
cache lines, not individual addresses. Each address is associated with at least one
cache line for the data (and unified) caches, and one for the instruction caches.
The cache line of minimum size is the (architected) smallest possible cache line
for each of these.

Example This model correctly explains all the behaviours of §3. We illustrate
this by revisiting the cache synchronization explanation of §2, which can now

ARMv8-A system semantics: instruction fetch in relaxed architectures 19

be re-interpreted w.r.t. our precise model, and using this to explain the thread
migration case of §3.3. Given DC Xn; DSB; IC Xn; DSB we can use this model
to give meaning to it (omitting uninteresting transitions): First the DC CVAU

causes a Perform DC transition. This pushes any write that might have been
in the abstract data cache into memory. Now the first DSB’s Commit DSB can
be taken, allowing Begin IC to happen. This creates entries for each thread,
which are discharged by each Propagate IC to Thread (see above). Once all
entries are invalidated, a Complete IC can happen. Now, if any thread decodes
an instruction for that address, it must have been fetched from the write the
DC pushed, or something coherence-after it. If the software thread performing
this sequence is interrupted and migrated (by the OS) to a different hardware
thread, then, so long as the OS includes the DSB to maintain the thread-local DC
ordering, the DC will push the write in an identical way, since it only affects the
global abstract data cache. The IC transitions can all be taken, and the sequence
continues as before, just on a new hardware thread. So when the second DSB

finishes, and the final Commit DSB transitions is taken, the effect of the full
sequence will be seen system-wide even if the thread was migrated.

5 An Axiomatic Semantics for Instruction Fetch

Based on the operational model, we develop an axiomatic semantics, as an ex-
tension of the ARMv8 axiomatic reference model [15,37]. Since that does not
have mixed-size support, we do not model the concurrent modification of condi-
tional branches (§3.1), as this would require mixed-size machinery. The existing
axiomatic model is a predicate on candidate executions, hypothetical complete
executions of the given program that satisfy some basic well-formedness condi-
tions, defining the set of valid executions to be those satisfying its axioms. Each
candidate execution abstractly captures a particular concrete execution of the
program in terms of events and relations over them. This model is expressed in
the herd language [8,6,4]. The events of these executions are memory reads (the
set R), memory writes (W), and memory barrier/fence events (F). The relations
are: program order (po), capturing the sequencing of events by the same thread in
the execution’s control-flow unfolding; reads-from (rf), relating a write event w
with any read event r that reads from it; the coherence order (co), recording the
execution’s sequencing of same-address writes in memory; and read-modify-write
(rmw), capturing which load/store exclusive instructions form a successful exclu-
sive pair in the execution. The derived relation from-reads fr = rf−1;co relates
a read r with a write w′ if r reads from a write w coherence before w′. In addition,
candidate executions also have relations capturing dependencies between events:
address (addr), data (data), and control dependencies (ctrl). The relation loc

relates any two read/write events that are to the same memory address. The
model also has relations suffixed “i” and “e”: rfi/rfe, coi/coe, fri/fre. These
are the restrictions of the relations rf, co, and fr, to same-thread/“internal”
event pairs or different-thread/“external” event pairs. The model is defined in
relational algebra. In herd, R;S stands for sequential composition of relations R

20 B. Simner et al.

and S, R−1 for the inverse of relation R, R|S and R&S for the union and intersection
of R and S, and [A];R;[B] for the restriction of R to the domain A and range B.

Handling instruction fetch requires extending the notion of candidate ex-
ecution. We add new events: an instruction-fetch (IF) event for each executed
instruction; a DC event for each DC CVAU instruction; an IC event for each IC IVAU

and IC IALLU instruction. We replace po with fetch-program-order (fpo) which
orders the IF event of an instruction before any program-order later IF events.
We add a relation same-cache-line (scl), relating reads, writes, fetches, DC and
IC events to addresses in the same cache line. We add an acyclic transitively
closed relation wco, which extends co with orderings for cache maintenance (DC
or IC) events: it includes an ordering (e, e′) or (e′, e) for any cache maintenance
event e and same-cache-line event e′ if e′ is a write or another cache mainte-
nance event; where co = ([W];wco;[W]) & loc. The loc, addr, and ctrl are all
extended to include DC and IC events. We add a fetch-to-execute relation (fe),
relating an IF event to any event generated by the execution of that instruction;
and an instruction-read-from relation (irf), which relates a write to any IF event
that fetches from it. Finally, we add a boolean constrained-unpredictable (CU) to
detect badly behaved programs. Now we derive the following relations: the stan-
dard po relation, as po = fe−1;fpo;fe (two events e and e′ are po-related if their
fetch-events are fpo-related); and instruction-from-reads (ifr), the analogue of
fr for instruction fetches, relating a fetch to all writes coherence-after the one it
fetched from: ifr = irf−1;co.

We then make two semantics-preserving rewrites of the existing model to
make adding instruction fetches easier (described in the appendix); and make
the following changes and additions to the model. The full model is shown in
Figure 1, with comments pointing to the relevant locations in the model defini-
tion. For lack of space we only describe the main addition, the iseq relation, in
detail (including its correspondence with the operational model of §4); for the
others we give an overview and refer to the appendix for the full description.

We define the relation iseq, relating some write w to address x to an IC

event completing a cache synchronisation sequence (not necessarily on a single
thread): w is followed by a same-cache line DC event, which is in turn followed
by a same-cache line IC event. In operational model terms, this captures traces
that propagated w to memory, subsequently performed a same-cache-line DC,
and then began an IC (and eagerly propagated the IC to all threads). In any
state after this sequence it is guaranteed that w, or a coherence-newer same-
address write, is in the instruction cache of all threads: performing the DC has
cleared the abstract data cache of writes to x, and the subsequent IC has re-
moved old instructions for location x from the instruction caches, so that any
subsequent updates to the instruction caches have been with w, or co-newer
writes. Adding ifr;iseq to the observed-by relation (obs) (4) relates an instruc-
tion fetch i to location x to an IC ic if: i fetched from a write w to x, some
write w′ to x is coherence-after w, and ic completes a cache synchronisation se-
quence (iseq) starting from w′. Then the irreflexive ob axiom requires that i
must be ordered-before ic (because it would otherwise have fetched w′).We now

ARMv8-A system semantics: instruction fetch in relaxed architectures 21

let iseq = [W];(wco&scl);[DC]; (*1*)
(wco&scl);[IC]

(* Observed-by *)
let obs = rfe | fr | wco (*2*)

| irf | (ifr;iseq) (*3, 4*)

(* Fetch-ordered-before *)
let fob = [IF]; fpo; [IF] (*5*)
| [IF]; fe (*6*)

| [ISB]; fe−1; fpo (*7*)

(* Dependency-ordered-before *)
let dob = addr | data
| ctrl; [W]
| (ctrl | (addr; po)); [ISB]

(*| [ISB]; po; [R] *) (*8*)
| addr; po; [W]
| (addr | data); rfi

(* Atomic-ordered-before *)
let aob = rmw
| [range(rmw)]; rfi; [A|Q]

(* Barrier-ordered-before *)
let bob = [R|W]; po; [dmb.sy]
| [dmb.sy]; po; [R|W]
| [L]; po; [A]
| [R]; po; [dmb.ld]

| [dmb.ld]; po; [R|W]
| [A|Q]; po; [R|W]
| [W]; po; [dmb.st]
| [dmb.st]; po; [W]
| [R|W]; po; [L]
| [R|W|F|DC|IC]; po; [dsb.ish] (*9*)
| [dsb.ish]; po; [R|W|F|DC|IC] (*10*)
| [dmb.sy]; po; [DC] (*11*)

(* Cache-op-ordered-before *)
let cob = [R|W]; (po&scl); [DC] (*12*)
| [DC]; (po&scl); [DC] (*13*)

(* Ordered-before *)
let ob = (obs|fob|dob|aob|bob|cob)+

(* Internal visibility requirement *)
acyclic (po-loc|fr|co|rf) as internal

(* External visibility requirement *)
irreflexive ob as external

(* Atomic *)
empty rmw & (fre; coe) as atomic

(* Constrained unpredictable *)
let cff = ([W];loc;[IF]) \ (*14*)

ob−1 \ (co;iseq;ob)
cff_bad cff ≡ CU (*15*)

Fig. 1. Axiomatic model

briefly overview other changes made to the axiomatic model and their intuition.
We include irf in obs (3): for an instruction to be fetched from a write, the
write has to have been done before. We add a relation fetch-ordered-before (fob)
(5-7), which is included in ordered-before. The relation fob includes fpo and fe;
including fpo (5) requires fetches to be ordered according to their position in the
control-flow unfolding of the execution. and including the fe (fetch-to-execute)
relation (6) captures the idea that an instruction must be fetched before it can
execute; fetches program-order-after an ISB happen after the ISB (or else are
restarted) (7). For DSB ISH instructions the edge [R|W|F|DC|IC];po;[dsb.ish]

is included in ob (9): DSB ISHs are ordered with all program-order-preceding
non-fetch events. Symmetrically, all non-IF events are ordered after program-
order-preceding dsb.ish events (10). DCs wait for preceding dmb.sy events (11).
We include the relation cache-op-ordered-before (cob) in ob. This relation orders
DC instructions with program-order previous reads/writes and other DCs to the
same cache line (12,13).

Finally, could-fetch-from (cff) (14) captures, for each fetch i, the writes it
could have fetched from (including the one it did fetch from), which we use to
define the constrained unpredictable axiom cff_bad (not given) (15).

22 B. Simner et al.

6 Validation

To gain confidence in the presented models we validated the models against the
Arm architectural intent, against each other, and against real hardware.

Validation against the Architecture To ensure our models correctly cap-
tured the architectural intent we engaged in detailed discussions with Arm, in-
cluding the Arm chief architect. These involved inventing litmus tests (including,
those described in §3 and many others) and discussing what the architecture
should allow in each case.

Validating against hardware To run instruction-fetch tests on hardware, we
extended the litmus tool [7]. The most significant extension consists in handling
code that can be modified, and thus has to be restored between experiments. To
that end, code copies are executed, those copies reside in mmap’d memory with
(execute permission granted. Copies are made from “master” copies, in effect
C functions whose contents basically consist of gcc extended inline assembly. Of
course, such code has to be position independent, and explicit code addresses in
test initialisation sections (such as in 0:X1=l in the test of §3.1) are specific to
each copy. All the cache handling instructions used in our experiments are all
allowed to execute at exception level 0 (user-mode), and therefore no additional
privilege is needed to run the tests.

To automatically generate families of interesting instruction-fetch tests, we
extended the diy test generation tool [3] to support instruction-fetch reads-
from (irf) and instruction-fetch from-reads (ifr) edges, in both internal (same-
thread) and external (inter-thread) forms, and the cachesync edge. We used this
to generate 1456 tests involving those edges together with po, rf, fr, addr, ctrl,
ctrlisb, and dmb.sy. diy does not currently support bare DC or IC instructions,
locations which are both fetched and read from, or repeated fetches from the
same location.

We then ran the diy-generated test suite on a range of hardware implemen-
tations, to collect a substantial sample of actual hardware behaviour.

Correspondence between the models We experimentally test the equiva-
lence of the operational and axiomatic models on the above hand-written and
diy-generated tests, checking that the models give the same sets of allowed final
states, and that these are consistent with the hardware observations.

Making the models executable as a test oracle To make the operational
model executable as a test oracle, capable of computing the set of all allowed
executions of a litmus test, we must be able to exhaustively enumerate all possible
traces. For the model as presented, doing this naively is infeasible: for each
instruction it is theoretically possible to speculate any of the 264 addresses as
potential next address, and the interleaving of the new fetch transitions with
others leads to an additional combinatorial explosion.

We address these with two new optimisations. First, we extend the fixed-point
optimisation in RMEM (incrementally computing the set of possible branch tar-
gets) [37] to keep track not only of indirect branches but also the successors of

ARMv8-A system semantics: instruction fetch in relaxed architectures 23

every program location, and only allow speculating from this set of successors.
Additionally, we track during a test which locations were both fetched and mod-
ified during the test, and eagerly take fetch and decode transitions for all other
locations. As before, the search then runs until the set of branch targets and
the set of modified program-locations reaches a fixed point. We also take some
of the transitions eagerly to reduce the search space, in cases where this cannot
remove behaviour: Wait for IC, Complete IC, Fetch Request, and Update
Instruction Cache.

Making the axiomatic model executable as a test oracle The axiomatic
model is expressed in a herd-like form, but the herd tool does not support instruc-
tion fetch and cache maintenance instructions. To make the model executable
as a test oracle, we built a new tool that takes litmus tests and uses a Sail [11]
definition of a fragment of the ARMv8-A ISA to generate SMT problems for the
model. Using the Sail instruction semantics, we generate a Sail program that cor-
responds to each thread within a litmus test. The tool then partially evaluates
these programs using the concrete values for addresses and registers specified in
the litmus file, while allowing memory values and arbitrary addresses to remain
symbolic. Using a Sail to SMT-LIB backend, these are translated into SMT defi-
nitions that include all possible behaviours of each thread as satisfiable solutions.
The rules for the axiomatic model are then applied as assertions restricting the
possible behaviours to just those allowed by the axiomatic model. The tool also
derives the addr and data relations, using the syntactic dependencies within the
instruction semantics to derive the syntactic dependencies between instructions.

For litmus tests, where we can know up-front which instructions may be
modified, we would like to avoid generating IF events for instructions that cannot
be modified. If we naively removed certain IF events, however, we would break
the correspondence between po and fe−1;fpo;fe. This can be worked around
by ensuring that every modifiable instruction generates an event which appears
in po, allowing fpo between the modifiable instructions to instead be derived
as fe;po;fe−1. Branches emit a special branch address announce event for this
purpose, which is also used to derive the ctrl relation. The fpo relation can
then be modified, replacing [ISB];fe−1;fpo with [ISB];po;fe−1 and adding
[ISB];po. The second change ensures that all the transitive edges generated by
[ISB];fe−1;fpo followed by [IF];fe remain with fob and hence ob.

A limitation of this approach is it cannot support cases where two threads
both attempt to execute the same possibly-modified instruction, as in the
SM.F+ic and FOW tests.

Validation results First, to check for regressions, we ran the operational model
on all the 8950 non-mixed-size tests used for developing the original Flat model
(without instruction fetch or cache maintenance). The results are identical, ex-
cept for 23 tests which did not terminate within two hours. We used a 160
hardware-thread POWER9 server to run the tests.

We have also run the axiomatic model on the 90 basic two-thread tests that
do not use Arm release/acquire instructions (not supported by the ISA semantics

24 B. Simner et al.

used for this); the results are all as they should be. This takes around 30 minutes
on 8 cores of a Xeon Gold 6140.

Then, for the key handwritten tests mentioned in this paper, together with
some others (that have also been discussed with Arm), we ran them on various
hardware implementations and in the operational and axiomatic models. The
models’ results are identical to the Arm architectural intent in all cases, except
for two tests which are not currently supported by the axiomatic checker.

Test Arm intent op. model ax. model hardware obs.
CoFF allow = = 42.6k/13G
CoFR forbid = = 0/13G
CoRF+ctrl-isb allow = = 3.02G/13G
SM allow = = 25.8G/25.9G
SM+cachesync-isb forbid = = 0/25.9G
MP.RF+dmb+ctrl-isb allow = = 480M/6.36G
MP.RF+cachesync+ctrl-isb forbid = = 0/13G
MP.FR+dmb+fpo-fe forbid = = 0/13G
MP.FF+dmb+fpo allow = = 447M/13G
MP.FF+cachesync+fpo forbid = = F2.3k/13G
ISA2.F+dc+ic+ctrl-isb forbid = = 0/6.98G
SM.F+ic allow = unsupported U0/12.9G
FOW allow = unsupported U0/7G
MP.RF+dc+ctrl-isb-isb allow = = U0/12.94G
MP.R.RF+addr-cachesync+dmb+ctrl-isb forbid = = 0/6.97G
MP.RF+dmb+addr-cachesync allow = = U0/6.34G

[The hardware observations are the sum of testing seven devices: a Snapdragon 810
(4x Arm A53 + 4x Arm A57 cores), Tegra K1 (2x NVIDIA Denver cores), Snapdragon
820 (4x Qualcomm Kryo cores), Exynos 8895 (4x Arm A53 + 4x Samsung Mongoose 2
cores), Snapdragon 425 (4x Arm A53), Amlogic 905 (4x Arm A53 cores), and Amlogic
922X (4x Arm A73 + 2x Arm A53 cores). U: allowed but unobserved. F: forbidden but
observed.]

Our testing revealed a hardware bug in a Snapdragon 820 (4 Qualcomm Kryo
cores). A version of the first cross-thread synchronisation test of §3.3 but with
the full cache synchronisation (MP.RF+cachesync+ctrl-isb) exhibited an illegal
outcome in 84/1.1G runs (not shown in the table), which we have reported. We
have also seen an anomaly for MP.FF+cachesync+fpo, currently under investi-
gation by Arm. Apart from these, the hardware observations are all allowed by
the models. As usual, specific hardware implementations are sometimes stronger.

Finally, we ran the 1456 new instruction-fetch diy tests on a variety of hard-
ware, for around 10M iterations each, and in the operational model. The model
is sound with respect to the observed hardware behaviour except for that same
Snapdragon 820 device.

7 Related Work

To the best of our knowledge, no previous work establishes well-validated rigor-
ous semantics for any systems aspects, of any current production architecture,
in a realistic concurrent setting.

ARMv8-A system semantics: instruction fetch in relaxed architectures 25

The closest is Raad et al.’s work on non-volatile memory, which models the
required cache maintenance for persistent storage in ARMv8-A [39], as an ex-
tension to the ARMv8-A axiomatic model, and for Intel x86 [38] as an oper-
ational model, but neither are validated against hardware. In the sequential
case, Myreen’s JIT compiler verification [33] models x86 icache behaviour with
an abstract cache that can be arbitrarily updated, cleared on a jmp. For ad-
dress translation, the authoritative Arm-internal ASL model [40,41,42], and Sail
model derived from it [11] cover this, and other features sufficient to boot an OS
(Linux), as do the handwritten Sail models for RISC-V (Linux and FreeBSD)
and MIPS/CHERI-MIPS (FreeBSD, CheriBSD), but without any cache effects.
Goel et al. [21,20] describe an ACL2 model for much of x86 that covers address
translation; and the Forvis [34] and RISCV-PLV [14] Haskell RISC-V ISA mod-
els are also complete enough to boot Linux. Syeda and Klein [49,50] provide
an somewhat idealised model for ARMv7 address translation and TLB mainte-
nance. Komodo [16] uses a handwritten model for a small part of ARMv7, as
do Guanciale et al. [25,12]. Romanescu et al. [44,43] do discuss address trans-
lation in the concurrent setting, but with respect to idealised models. Lustig et
al. [30] describe a concurrent model for address translation based on the Intel
Sandy Bridge microarchitecture, combined with a synopsis of some of the rele-
vant Linux code, but not an architectural semantics for machine-code programs.

8 Conclusion

The mainstream architectures are the most important programming languages
used in practice, and their systems aspects are fundamental to the security (or
lack thereof) of our computing infrastructure. We have established a robust
semantics for one of those systems aspects, soundly abstracting the hardware
complexities to a manageable model that captures the architectural intent. This
enables future work on reasoning, model-checking, and verification for real sys-
tems code.

Acknowledgements This work would not have been possible without generous
technical assistance from Arm. We thank Richard Grisenthwaite, Will Deacon,
Ian Caulfield, and Dave Martin for this. We also thank Hans Boehm, Stephen
Kell, Jaroslav Ševčík, Ben Titzer, and Andrew Turner, for discussions of how in-
struction cache maintenance is used in practice, and Alastair Reid for comments
on a draft. This work was partially supported by EPSRC grant EP/K008528/1
(REMS), ERC Advanced Grant 789108 (ELVER), an ARM iCASE award, and
ARM donation funding. This work is part of the CIFV project sponsored by
the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8650-18-C-7809. The views,
opinions, and/or findings contained in this paper are those of the authors and
should not be interpreted as representing the official views or policies, either
expressed or implied, of the Department of Defense or the U.S. Government.

26 B. Simner et al.

References

1. Adir, A., Attiya, H., Shurek, G.: Information-flow models for shared memory with
an application to the PowerPC architecture. IEEE Trans. Parallel Distrib. Syst.
14(5), 502–515 (2003). https://doi.org/10.1109/TPDS.2003.1199067

2. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P.,
Zappa Nardelli, F.: The semantics of Power and ARM multiprocessor machine
code. In: Proc. DAMP 2009 (Jan 2009)

3. Alglave, J., Maranget, L.: The diy7 tool. http://diy.inria.fr/ (2019), accessed
2019-07-08

4. Alglave, J., Maranget, L.: The herd7 tool. http://diy.inria.fr/doc/herd.html/
(2019), accessed 2019-07-08

5. Alglave, J., Maranget, L., Deplaix, K., Didier, K., Sarkar, S.: The litmus7 tool.
http://diy.inria.fr/doc/litmus.html/ (2019), accessed 2019-07-08

6. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in weak memory models.
In: Proc. CAV (2010)

7. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: running tests against
hardware. In: Proceedings of TACAS 2011: the 17th international conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 41–44.
Springer-Verlag, Berlin, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=
1987389.1987395

8. Alglave, J., Maranget, L., Tautschnig, M.: Herding Cats: Modelling, Simulation,
Testing, and Data Mining for Weak Memory. ACM TOPLAS 36(2), 7:1–7:74 (Jul
2014). https://doi.org/10.1145/2627752

9. ARM Limited: ARM architecture reference manual. ARMv8, for ARMv8-A archi-
tecture profile (Oct 2018), v8.4. ARM DDI 0487D.a (ID103018)

10. Armstrong, A., Bauereiss, T., Campbell, B., Gray, S.F.J.F.K.E., Kerneis, G., Kr-
ishnaswami, N., Mundkur, P., Norton-Wright, R., Pulte, C., Reid, A., Sewell, P.,
Stark, I., Wassell, M.: Sail. https://www.cl.cam.ac.uk/~pes20/sail/ (2019)

11. Armstrong, A., Bauereiss, T., Campbell, B., Reid, A., Gray, K.E., Norton, R.M.,
Mundkur, P., Wassell, M., French, J., Pulte, C., Flur, S., Stark, I., Krishnaswami,
N., Sewell, P.: ISA semantics for ARMv8-A, RISC-V, and CHERI-MIPS. In: Proc.
46th ACM SIGPLAN Symposium on Principles of Programming Languages (Jan
2019). https://doi.org/10.1145/3290384, proc. ACM Program. Lang. 3, POPL, Ar-
ticle 71

12. Baumann, C., Schwarz, O., Dam, M.: Compositional verification of security prop-
erties for embedded execution platforms. In: PROOFS@CHES 2017, 6th Interna-
tional Workshop on Security Proofs for Embedded Systems, Taipei, Taiwan, Friday
September 29th, 2017. pp. 1–16 (2017), http://www.easychair.org/publications
/paper/wkpS

13. Chong, N., Ishtiaq, S.: Reasoning about the ARM weakly consistent memory
model. In: MSPC (2008)

14. Clester, I.J., Bourgeat, T., Wright, A., Gruetter, S., Chlipala, A.: riscv-plv risc-v
isa formal specification. https://github.com/mit-plv/riscv-semantics (2019),
accessed 2019-07-01

15. Deacon, W.: The ARMv8 application level memory model. https://github.com
/herd/herdtools7/blob/master/herd/libdir/aarch64.cat (accessed 2019-07-01)
(2016)

16. Ferraiuolo, A., Baumann, A., Hawblitzel, C., Parno, B.: Komodo: Using verification
to disentangle secure-enclave hardware from software. In: Proceedings of the 26th

https://doi.org/10.1109/TPDS.2003.1199067
http://diy.inria.fr/
http://diy.inria.fr/doc/herd.html/
http://diy.inria.fr/doc/litmus.html/
http://dl.acm.org/citation.cfm?id=1987389.1987395
http://dl.acm.org/citation.cfm?id=1987389.1987395
https://doi.org/10.1145/2627752
https://www.cl.cam.ac.uk/~pes20/sail/
https://doi.org/10.1145/3290384
http://www.easychair.org/publications/paper/wkpS
http://www.easychair.org/publications/paper/wkpS
https://github.com/mit-plv/riscv-semantics
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat

ARMv8-A system semantics: instruction fetch in relaxed architectures 27

Symposium on Operating Systems Principles, Shanghai, China, October 28-31,
2017. pp. 287–305 (2017). https://doi.org/10.1145/3132747.3132782

17. Flur, S., French, J., Gray, K., Pulte, C., Sarkar, S., Sewell, P.: rmem. www.cl.cam
.ac.uk/~pes20/rmem/ (2017)

18. Flur, S., Gray, K.E., Pulte, C., Sarkar, S., Sezgin, A., Maranget, L., Deacon, W.,
Sewell, P.: Modelling the ARMv8 architecture, operationally: Concurrency and
ISA. In: Proceedings of POPL: the 43rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (2016)

19. Flur, S., Sarkar, S., Pulte, C., Nienhuis, K., Maranget, L., Gray, K.E., Sezgin,
A., Batty, M., Sewell, P.: Mixed-size concurrency: ARM, POWER, C/C++11,
and SC. In: The 44st Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Paris, France. pp. 429–442 (Jan 2017).
https://doi.org/10.1145/3009837.3009839

20. Goel, S.: The x86isa books: Features, usage, and future plans. In: Pro-
ceedings 14th International Workshop on the ACL2 Theorem Prover and
its Applications, Austin, Texas, USA, May 22-23, 2017. pp. 1–17 (2017).
https://doi.org/10.4204/EPTCS.249.1, arXiv version: https://arxiv.org/abs/

1705.01225

21. Goel, S., Hunt, W.A., Kaufmann, M., Ghosh, S.: Simulation and formal verifica-
tion of x86 machine-code programs that make system calls. In: Proceedings of the
14th Conference on Formal Methods in Computer-Aided Design. pp. 18:91–18:98.
FMCAD ’14, FMCAD Inc, Austin, TX (2014), http://dl.acm.org/citation.cf
m?id=2682923.2682944

22. Gray, K.E., Kerneis, G., Mulligan, D., Pulte, C., Sarkar, S., Sewell, P.: An in-
tegrated concurrency and core-ISA architectural envelope definition, and test or-
acle, for IBM POWER multiprocessors. In: Proc. MICRO-48, the 48th Annual
IEEE/ACM International Symposium on Microarchitecture (Dec 2015)

23. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjöberg, V., Costanzo, D.: Cer-
tiKOS: An extensible architecture for building certified concurrent OS kernels.
In: 12th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2016, Savannah, GA, USA, November 2-4, 2016. pp. 653–669 (2016), https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/gu

24. Gu, R., Shao, Z., Kim, J., Wu, X.N., Koenig, J., Sjöberg, V., Chen, H., Costanzo,
D., Ramananandro, T.: Certified concurrent abstraction layers. In: Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018. pp. 646–
661 (2018). https://doi.org/10.1145/3192366.3192381

25. Guanciale, R., Nemati, H., Dam, M., Baumann, C.: Provably secure memory iso-
lation for linux on ARM. Journal of Computer Security 24(6), 793–837 (2016).
https://doi.org/10.3233/JCS-160558

26. Intel Corporation: Intel 64 and ia-32 architectures software developer’s manual
combined volumes: 1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d and 4. https://software.i
ntel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-

volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4, accessed 2019-06-30 (May 2019),
325462-070US

27. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolan-
ski, R., Heiser, G.: Comprehensive formal verification of an OS microker-
nel. ACM Transactions on Computer Systems 32(1), 2:1–2:70 (Feb 2014).
https://doi.org/10.1145/2560537

https://doi.org/10.1145/3132747.3132782
www.cl.cam.ac.uk/~pes20/rmem/
www.cl.cam.ac.uk/~pes20/rmem/
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.4204/EPTCS.249.1
https://arxiv.org/abs/1705.01225
https://arxiv.org/abs/1705.01225
http://dl.acm.org/citation.cfm?id=2682923.2682944
http://dl.acm.org/citation.cfm?id=2682923.2682944
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.3233/JCS-160558
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://doi.org/10.1145/2560537

28 B. Simner et al.

28. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified imple-
mentation of ML. In: The 41st Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014. pp. 179–192 (2014). https://doi.org/10.1145/2535838.2535841

29. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–
446 (2009). https://doi.org/10.1007/s10817-009-9155-4

30. Lustig, D., Sethi, G., Martonosi, M., Bhattacharjee, A.: COATCheck: Verifying
memory ordering at the hardware-OS interface. SIGOPS Oper. Syst. Rev. 50(2),
233–247 (Mar 2016). https://doi.org/10.1145/2954680.2872399

31. Maranget, L., Sarkar, S., Sewell, P.: A tutorial introduction to the ARM and
POWER relaxed memory models. Draft available from http://www.cl.cam.ac.

uk/~pes20/ppc-supplemental/test7.pdf (2012)
32. Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T., Sewell, P.: Lem: reusable engi-

neering of real-world semantics. In: Proceedings of ICFP 2014: the 19th ACM SIG-
PLAN International Conference on Functional Programming. pp. 175–188 (2014).
https://doi.org/10.1145/2628136.2628143

33. Myreen, M.O.: Verified just-in-time compiler on x86. In: Proceedings of the
37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. pp. 107–118. POPL ’10, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1706299.1706313

34. Nikhil, R.S., Sharma, N.N.: Forvis: A formal RISC-V ISA specification. https:
//github.com/rsnikhil/Forvis_RISCV-ISA-Spec (2019), accessed 2019-07-01

35. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Pro-
ceedings of TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS 5674.
pp. 391–407 (2009)

36. Pulte, C.: The Semantics of Multicopy Atomic ARMv8 and RISC-V. Ph.D. thesis,
University of Cambridge (2019), https://doi.org/10.17863/CAM.39379

37. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
Concurrency: Multicopy-atomic Axiomatic and Operational Models for ARMv8.
In: Proceedings of the 45th ACM SIGPLAN Symposium on Principles of Program-
ming Languages (Jan 2018). https://doi.org/10.1145/3158107

38. Raad, A., Wickerson, J., Neiger, G., Vafeiadis, V.: Persistency seman-
tics of the Intel-x86 architecture. PACMPL 4(POPL), 11:1–11:31 (2020).
https://doi.org/10.1145/3371079

39. Raad, A., Wickerson, J., Vafeiadis, V.: Weak persistency semantics from the
ground up: Formalising the persistency semantics of ARMv8 and transactional
models. Proc. ACM Program. Lang. 3(OOPSLA), 135:1–135:27 (Oct 2019).
https://doi.org/10.1145/3360561

40. Reid, A.: Trustworthy specifications of ARM v8-A and v8-M system level archi-
tecture. In: FMCAD 2016. pp. 161–168 (October 2016), https://alastairreid.g
ithub.io/papers/fmcad2016-trustworthy.pdf

41. Reid, A.: ARM releases machine readable architecture specification. https://alas
tairreid.github.io/ARM-v8a-xml-release/ (Apr 2017)

42. Reid, A., Chen, R., Deligiannis, A., Gilday, D., Hoyes, D., Keen, W., Pathirane,
A., Shepherd, O., Vrabel, P., Zaidi, A.: End-to-end verification of processors with
ISA-Formal. In: Chaudhuri, S., Farzan, A. (eds.) Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 9780, pp. 42–58.
Springer (2016)

https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-009-9155-4
https://doi.org/10.1145/2954680.2872399
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf
https://doi.org/10.1145/2628136.2628143
https://doi.org/10.1145/1706299.1706313
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://github.com/rsnikhil/Forvis_RISCV-ISA-Spec
https://doi.org/10.17863/CAM.39379
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3371079
https://doi.org/10.1145/3360561
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/papers/fmcad2016-trustworthy.pdf
https://alastairreid.github.io/ARM-v8a-xml-release/
https://alastairreid.github.io/ARM-v8a-xml-release/

ARMv8-A system semantics: instruction fetch in relaxed architectures 29

43. Romanescu, B., Lebeck, A., Sorin, D.J.: Address translation aware
memory consistency. IEEE Micro 31(1), 109–118 (Jan 2011).
https://doi.org/10.1109/MM.2010.99

44. Romanescu, B.F., Lebeck, A.R., Sorin, D.J.: Specifying and dynamically verifying
address translation-aware memory consistency. In: Proceedings of the Fifteenth
Edition of ASPLOS on Architectural Support for Programming Languages and
Operating Systems. pp. 323–334. ASPLOS XV, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1736020.1736057

45. Sarkar, S., Memarian, K., Owens, S., Batty, M., Sewell, P., Maranget, L.,
Alglave, J., Williams, D.: Synchronising C/C++ and POWER. In: Pro-
ceedings of PLDI 2012, the 33rd ACM SIGPLAN conference on Program-
ming Language Design and Implementation (Beijing). pp. 311–322 (2012).
https://doi.org/10.1145/2254064.2254102

46. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: Proceedings of PLDI 2011: the 32nd ACM SIGPLAN
conference on Programming Language Design and Implementation. pp. 175–186
(2011). https://doi.org/10.1145/1993498.1993520

47. Sarkar, S., Sewell, P., Zappa Nardelli, F., Owens, S., Ridge, T., Braibant,
T., Myreen, M., Alglave, J.: The semantics of x86-CC multiprocessor machine
code. In: Proceedings of POPL 2009: the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages. pp. 379–391 (Jan 2009).
https://doi.org/10.1145/1594834.1480929

48. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.O.: x86-TSO: A
rigorous and usable programmer’s model for x86 multiprocessors. Communications
of the ACM 53(7), 89–97 (Jul 2010), (Research Highlights)

49. Syeda, H., Klein, G.: Reasoning about translation lookaside buffers. In: LPAR-21,
21st International Conference on Logic for Programming, Artificial Intelligence and
Reasoning, Maun, Botswana, May 7-12, 2017. pp. 490–508 (2017), http://www.ea
sychair.org/publications/paper/340347

50. Syeda, H.T., Klein, G.: Program verification in the presence of cached address
translation. In: Interactive Theorem Proving - 9th International Conference, ITP
2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 9-12, 2018, Proceedings. pp. 542–559 (2018). https://doi.org/10.1007/978-3-
319-94821-8_32

51. Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish, M.:
The verified CakeML compiler backend. J. Funct. Program. 29, e2 (2019).
https://doi.org/10.1017/S0956796818000229

52. Waterman, A., Asanović, K. (eds.): The RISC-V Instruction Set Manual Vol-
ume I: Unprivileged ISA (Dec 2018), document Version 20181221-Public-Review-
draft. Contributors: Arvind, Krste Asanović, Rimas Avižienis, Jacob Bachmeyer,
Christopher F. Batten, Allen J. Baum, Alex Bradbury, Scott Beamer, Preston
Briggs, Christopher Celio, Chuanhua Chang, David Chisnall, Paul Clayton, Palmer
Dabbelt, Roger Espasa, Shaked Flur, Stefan Freudenberger, Jan Gray, Michael
Hamburg, John Hauser, David Horner, Bruce Hoult, Alexandre Joannou, Olof
Johansson, Ben Keller, Yunsup Lee, Paul Loewenstein, Daniel Lustig, Yatin Man-
erkar, Luc Maranget, Margaret Martonosi, Joseph Myers, Vijayanand Nagarajan,
Rishiyur Nikhil, Jonas Oberhauser, Stefan O’Rear, Albert Ou, John Ousterhout,
David Patterson, Christopher Pulte, Jose Renau, Colin Schmidt, Peter Sewell,
Susmit Sarkar, Michael Taylor, Wesley Terpstra, Matt Thomas, Tommy Thorn,
Caroline Trippel, Ray VanDeWalker, Muralidaran Vijayaraghavan, Megan Wachs,

https://doi.org/10.1109/MM.2010.99
https://doi.org/10.1145/1736020.1736057
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1594834.1480929
http://www.easychair.org/publications/paper/340347
http://www.easychair.org/publications/paper/340347
https://doi.org/10.1007/978-3-319-94821-8_32
https://doi.org/10.1007/978-3-319-94821-8_32
https://doi.org/10.1017/S0956796818000229

30 B. Simner et al.

Andrew Waterman, Robert Watson, Derek Williams, Andrew Wright, Reinoud
Zandijk, and Sizhuo Zhang

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	ARMv8-A system semantics: instruction fetch in relaxed architectures

