
Nomadic Pict: Correct Communication Infrastructure for Mobile
Computation

Asis Unyapoth and Peter Sewell∗

Computer Laboratory, University of Cambridge
{Asis.Unyapoth,Peter.Sewell}@cl.cam.ac.uk

Abstract

This paper addresses the design and verification of in-
frastructure for mobile computation. In particular, we
study language primitives for communication between mo-
bile agents. They can be classified into two groups. At a low
level there are location dependent primitives that require a
programmer to know the current site of a mobile agent in
order to communicate with it. At a high level there are
location independent primitives that allow communication
with a mobile agent irrespective of any migrations. Imple-
mentation of the high level requires delicate distributed in-
frastructure algorithms. In earlier work with Wojciechowski
and Pierce we made the two levels precise as process cal-
culi, allowing such algorithms to be expressed as encodings
of the high level into the low level; we built Nomadic Pict,
a distributed programming language for experimenting with
such encodings. In this paper we turn to semantics, giving
a definition of the core language and proving correctness of
an example infrastructure. This requires novel techniques:
we develop equivalences that take migration into account,
and reasoning principles for agents that are temporarily im-
mobile (eg. waiting on a lock elsewhere in the system).

1 Introduction

Background: Mobility and Location Independence Mo-
bile computations – units of executing computation that
can migrate between machines – are predicted to be an im-
portant enabling technology for future distributed systems
[Car97, CHK97]. To write applications involving mobility
one would like high-level location independent (LI) commu-
nication facilities, allowing the parts of an application to in-
teract without explicitly tracking each other’s movements.
Such primitives have been provided by several languages,
including Facile [TLK96], and Distributed Join [FGL+96].
Standard network technologies, however, directly support
∗Supported by a Royal Thai Government Scholarship and a Royal

Society University Research Fellowship respectively.

only location-dependent (LD) communication, so to provide
location independence one needs a distributed infrastructure
algorithm. The languages cited above have particular algo-
rithms hard-coded into their implementations, but in the
wide-area case this is problematic:

• infrastructure algorithm design must be application-
specific — any given one will only have satisfactory
performance for some range of migration and communi-
cation behaviour; it should be matched to the expected
properties (and robustness and security demands) of
applications, and of the underlying network;

• the algorithms needed are delicate and error-prone;
they are hard to reason about.

To allow more flexibility, a wide-area programming language
should provide a low-level abstraction that makes distribu-
tion and network communication clear; with higher levels –
including location independence – expressed using the mod-
ularisation facilities of the language.

Nomadic π and Pict Following the above, in earlier work
with Wojciechowski and Pierce [SWP98, Woj00], we de-
signed Nomadic Pict, a distributed programming language
intended as a vehicle for exploring infrastructure for mobil-
ity. It builds on the Pict language of Pierce and Turner
[PT00], a concurrent, though not distributed, language
based on the asynchronous π-calculus [MPW92]. Pict sup-
ports fine-grain concurrency and the communication of asyn-
chronous messages. Low-level Nomadic Pict adds primi-
tives for programming mobile computations: agent creation,
migration of agents between sites, and communication of
location-dependent asynchronous messages between agents.
High-level Nomadic Pict adds location-independent commu-
nication; we can express an arbitrary infrastructure for im-
plementing this as a user-defined translation into the low-
level language. Mobility allows infrastructures to be de-
ployed dynamically. The language has been implemented
by Wojciechowski [Woj00, WS00], and used for prototyping
a wide range of infrastructures, from a simple centralised-
server solution to federated algorithms supporting discon-
nection, suited for different applications. Our earlier work
showed how the two levels can be cleanly based on corre-
sponding high- and low-level process calculi. The opera-
tional semantics of the calculi provided a clear informal un-
derstanding of the algorithms’ behaviour, which aided our
design work.

Problem: Semantics and Verification Our focus here is on
developing semantics and proof techniques to allow formal
correctness proofs for such infrastructure algorithms. If sys-
tems involving location independence are widely deployed,
the behaviour of these algorithms will be critical. They are
highly concurrent – as we can attest, it is hard to ensure the
absence of race conditions, deadlocks and other errors. The
algorithms are small enough, though, to make verification
plausible.

New semantic technology is required, going beyond earlier
work on π-calculi and distributed algorithms, both to deal
with the new entities – sites and mobile agents – and to
capture the subtle reasons why the algorithms are correct.
This technology is worth developing in its own right: it is a
step towards a semantically-founded view of richer wide-area
distributed systems, where one wants proofs of robustness
properties in the presence of failure and malicious attack.

Outline In this paper we give the rigorous development
of a fragment of Nomadic Pict, with semantics and proof
techniques, that suffices for verification of an example al-
gorithm. For lack of space many details are omitted; they
will appear in the first author’s forthcoming PhD thesis. We
begin in Sections 2 and 3 by introducing the language and
a simple example infrastructure algorithm. This recapitu-
lates material from [SWP98], adding a type system. In Sec-
tion 4 we discuss the operational semantics, again building
on [SWP98] (which gave only an untyped reduction seman-
tics) and in Section 5 the techniques required for stating and
proving correctness. We must:

1. extend the standard π-calculus reduction and la-
belled transition semantics to deal with agent mobil-
ity, location-dependent communication, and a rich type
system;

2. consider translocating versions of behavioural equiva-
lences (bisimulation [MPW92] and expansion [SM92]
relations) that are preserved by certain spontaneous
migrations;

3. prove congruence properties of some of these, to allow
compositional reasoning;

4. deal with partially-committed choices, and hence state
the main correctness result in terms of coupled simula-
tion [PS92];

5. identify properties of agents that are temporarily im-
mobile, waiting on a lock somewhere in the system;
and,

6. as we are proving correctness of an encoding, we must
analyse the possible reachable states of the encoding
applied to an arbitrary high-level source program – in-
troducing an intermediate language for expressing the
key states, and factoring out as many ‘house-keeping’
reduction steps as possible.

A correctness proof for our example is given in Section 6.
Finally, Section 7 concludes with further discussion.

2 Language

In this section we describe the language informally, begin-
ning with an example program in the low-level language

showing how an applet server can be expressed.

***getApplet???[a s]→
createcreatecreatem b =
migrate tomigrate tomigrate to s→

(〈a@s′〉ack!!!b | B)
ininin 000

It can receive (on the channel named getApplet) requests
for an applet; the requests contain a pair (bound to a and
s) consisting of the name of the requesting agent and the
name of the site for the applet to go to. When a request is
received the server creates an applet agent with a new name
bound to b. This agent immediately migrates to site s. It
then sends an acknowledgement to the requesting agent a
(which is assumed to be on site s′) containing its name. In
parallel, the body B of the applet commences execution.

The example illustrates the main entities of the language:
sites, agents and channels. Sites should be thought of as
physical machines or, more accurately, as instantiations of
the Nomadic Pict runtime system on machines; each site has
a unique name. This paper does not explicitly address ques-
tions of network failure and reconfiguration, or of security.
Sites are therefore unstructured; neither network topology
nor administrative domains are represented in the language.
Agents are units of executing code; an agent has a unique
name and a body consisting of some Nomadic Pict process;
at any moment it is located at a particular site. Channels
support communication within agents, and also provide tar-
gets for inter-agent communication—an inter-agent message
will be sent to a particular channel within the destination
agent. New agents and channels can be created dynami-
cally. The language is built above asynchronous messaging,
both within and between sites; in the current implementa-
tion inter-site messages are sent on TCP connections, cre-
ated on demand, but our algorithms do not depend on the
message ordering that could be provided by TCP.

The inter-agent message 〈a@s′〉ack!!!b is characteristic of the
low-level language. It is location-dependent—if agent a is
in fact on site s′ then the message b will be delivered, to
channel ack in a; otherwise the message will be discarded.
In the implementation at most one inter-site message is sent.

Types Typing infrastructure algorithms requires an ex-
pressive type system. We take types

T ::= B base type
| [T1 . . . Tn] tuple
| ^̂̂IT channel name
| {|X|}T existential
| X type variable
| Site site name
| AgentZ agent name

where B might be int, bool etc. Existentials are needed
as an infrastructure must be able to forward messages of
any type (see the message and deliver channels in Fig. 1).
For more precise typing, and to aid reasoning, channel and
agent types are refined by annotating them with capabilities,
ranged over by I and Z respectively. As in [PS96], channels
can be used for input only r, output only w, or both rw;
these induce a subtype order. In addition, agents are either
static s, or mobile m [Sew98, CGG99].

Values and patterns Channels allow the communication of
first-order values: names, constants t, tuples and existential
packages. Patterns p are of similar shapes as value.

v ::= t | x | [v1 . . . vn] | {|T |} v
p ::= | x | [p1 . . . pn] | {|X|} p

The value grammar is extended with some basic functions,
including equality tests, to give expressions, ranged over by
ev.

Processes The syntax of the low-level language is as fol-
lows.

P ::= createcreatecreateZ a = P ininin Q

| migrate tomigrate tomigrate to s→P

| iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q

| 000 | P |Q | newnewnew c : ^̂̂IT ininin P

| c!!!v | c???p→P | ***c???p→P

| ififif v thenthenthen P elseelseelse Q | letletlet p = ev ininin P

}
π

| 〈a〉c!!!v | 〈a@s〉c!!!v sugar

Executing the construct createcreatecreateZ b = P ininin Q spawns a
new agent (with mobility capability Z and body P) on the
current site. After the creation, Q commences execution, in
parallel with the rest of of the body of the spawning agent.
The new agent has a unique name which may be referred to
both in its body and in the spawning agent (b is binding in P
and Q). Agents can migrate to named sites—the execution
of migrate tomigrate tomigrate to s→P as part of an agent results in the whole
agent migrating to site s. After the migration, P commences
execution in parallel with the rest of the body of the agent.

The body of an agent may consist of many process terms
in parallel, i.e. essentially of many threads. We include π-
calculus style interaction primitives. Execution of newnewnew c :
^̂̂IT ininin P creates a new unique channel name for carrying
values of type T (and accessible in I mode); c is binding in
P . An output c!!!v (of value v on channel c) and an input
c???p→P in the same agent may synchronise, resulting in P
with the appropriate parts of the value v bound to the formal
parameters in the pattern p. Note that outputs do not have
continuation processes – this is an asynchronous calculus.
A replicated input ***c???p→ P behaves similarly except that
it persists after the synchronisation, and so might receive
another value. In c???p→P , ***c???p→P and letletlet p = ev ininin P
the names in p are binding in P .

Finally, the low-level calculus includes a single primi-
tive for interaction between agents. The execution of
iflocaliflocaliflocal 〈a〉c!!!v thenthenthen P elseelseelse Q in the body of agent b has
two possible outcomes. If the agent a is on the same site as
agent b then the message c!!!v will be delivered to a (where
it may later interact with an input) and P will commence
execution in parallel with the rest of the body of b; other-
wise the message will not be delivered and Q will execute
as part of b. The construct is analogous to test-and-set op-
erations in shared memory systems—delivering the message
and starting P , or discarding it and starting Q, atomically.
It can greatly simplify algorithms that involve communica-
tion with agents that may migrate away at any time, yet is
still implementable locally, by the runtime systems on each

site. We can express two other useful constructs in the lan-
guage introduced so far: 〈a〉c!!!v and 〈a@s〉c!!!v attempt to
deliver c!!!v to agent a, on the current site and on s, respec-
tively. They fail silently if a is not where it is expected to
be and so are usually used only where a is predictable.

In the execution of iflocaliflocaliflocal a new channel name can escape
the agent where it was created, to be used elsewhere for
output and/or input. Synchronisation of a local output c!!!v
and an input c???x→P only occurs within an agent, however.
Consider for example the process below, executing as the
body of an agent a.

createcreatecreatem b =
c???x→ (x!!!3|x???n→000)

ininin
newnewnew d : ^̂̂rwint ininin
iflocaliflocaliflocal 〈b〉c!!!d thenthenthen 000 elseelseelse 000
| d!!!7

It has a reduction for the creation of agent b, a reduction
for the iflocaliflocaliflocal that delivers the output c!!!d to b, and then
a local synchronisation of this output with the input on c.
Agent a then has body d!!!7 and agent b has body d!!!3|d???n→000.
Only the latter output on d can synchronise with b’s input
d???n→000. For each channel name there is therefore effectively
a π-calculus-style channel in each agent. The channels are
distinct, in that outputs and inputs can only interact if they
are in the same agent. At first sight this semantics may
seem counter-intuitive, but it reconciles the conflicting re-
quirements of expressiveness and simplicity of the calculus.

The high-level language

P ::= . . .
〈a@?〉c!!!v

is obtained by extending the low-level language with a single
location-independent communication primitive 〈a@?〉c!!!v,
whose intended semantics is that its execution will reliably
deliver the message c!!!v to agent a, irrespective of the cur-
rent site of a and of any migrations. The low-level com-
munication primitives are also available for interaction with
application agents whose locations are predictable.

Located Processes The basic process terms given above
only allow the source code of the body of a single agent to
be expressed. During computation, this agent may evolve
into a system of many agents, distributed over many sites.
To denote such systems, we define located processes

LP ::= @aP | LP |LQ | newnewnew x : T@s ininin LP

Here the body of an agent a may be split into many parts,
for example written @aP1| . . . |@aPn. The construct newnewnew x :
T@s ininin LP declares a new name x (binding in LP); if this
is an agent name, with T = AgentZ , we have an annotation
@s giving the name s of the site where the agent is currently
located. Channels, on the other hand, are not located – if
T = ^̂̂IT ′ then the annotation is omitted.

3 An Example Infrastructure

In this section we present an infrastructure algorithm, ex-
pressed as a translation, based on the simplest algorithm

Daemon
def
= ***message??? {|X|} [a c v]→

lock???m→
lookuplookuplookup[Agents Site] a ininin m withwithwith
foundfoundfound(s)→newnewnew dack : ^̂̂rw[] ininin 〈a@s〉deliver!!! {|X|} [c v dack] | dack???[]→lock!!!m
notfoundnotfoundnotfound→000

| ***register???[b s rack]→
lock???m→letletlet[Agents Site] m′ = (m withwithwith b 7→ s) ininin lock!!!m′ | 〈b@s〉rack!!![]
| ***migrating???[a mack]→
lock???m→
lookuplookuplookup[Agents Site] a ininin m withwithwith
foundfoundfound(s)→newnewnew migrated : ^̂̂rw[Site ^̂̂w[]] ininin
〈a@s〉mack!!![migrated]
| migrated???[s′ ack]→letletlet m′ = (m withwithwith a 7→ s′) ininin lock!!!m′ | 〈a@s′〉ack!!![]

notfoundnotfoundnotfound→000

Φaux
def
= register : ^̂̂rw[Agents Site ^̂̂

w[]], migrating : ^̂̂rw[Agents ^̂̂w [̂^̂w[Site ^̂̂
w[]]]],

message : ^̂̂rw {|X|} [Agents ^̂̂wX X], deliver : ^̂̂rw {|X|} [̂^̂wX X ^̂̂
w[]],

D : Agents@SD, lock : ^̂̂rwMap[Agents Site], currentloc : ^̂̂rwSite

Figure 1: The Central Server Daemon and the Interface Context

from [SWP98]. It is a central-forwarding-server algorithm,
with a single daemon that keeps track of the current sites of
all agents and forwards any location-independent messages
to them. The original algorithm has been modified in several
ways to simplify the correctness proof:

• type annotations have been added and checked with
the Nomadic Pict type checker [Woj00] (although this
does not check the static/mobile subtyping);

• the algorithm is more serialised;

• fresh channels are used for transmitting acknowledge-
ments, making such channels linear [KPT96]; and

• the translation is extended to arbitrary located pro-
cesses (not just source programs containing a single
agent).

The daemon is itself implemented as a static agent;
the translation CΦ [[LP]] of a located process LP =
newnewnew ∆ ininin @a1P1 | . . . | @anPn (well-typed with respect
to Φ) then consists roughly of the daemon agent in parallel
with a compositional translation [[Pi]]ai of each source agent:

CΦ [[LP]]
def
= newnewnew ∆,Φaux ininin

@D(. . . |Daemon)
|
∏
i∈{1...n}@ai(. . . | [[Pi]]ai)

(we omit various initialisation code, and will often elide type
contexts Φ). The body of the daemon and selected clauses of
the compositional translation are shown in Figures 1 and 2.
They interact using channels of an interface context Φaux,
also defined in Figure 1, which in addition declares lock
channels and the daemon name D. It uses a map type con-
structor, which (together with the map operations) can be
translated into the core language.

The daemon consists of three replicated inputs, on the
message, register, and migrating channels, ready to re-
ceive messages from the encodings of agents. It is at a fixed
site SD. Part of the initialisation code places Daemon

in parallel with an output on lock which carries a refer-
ence to a site map: a finite map from agent names to site
names, recording the current site of every agent. The single-
threaded nature of the daemon is ensured by using lock to
enforce mutual exclusion between the three replicated in-
puts – each of them begins with an input on lock, thereby
acquiring both the lock and the site map, and does not re-
linquish the lock until the daemon finishes with the request.
The code preserves the invariant that at any time there is
at most one output on lock.

Turning to the compositional translation [[.]], it is defined by
induction on type derivations.Only three clauses are non-
trivial: for the location-independent output, agent creation
and agent migration primitives. For the rest, [[.]] acts ho-
momorphically. We discuss only LI output and creation;
migration is similar.

Location-Independent Output An LI output in an agent a
(of message c!!!v to agent b) is implemented simply by using
a location-dependent output 〈b@?〉c!!!v to send the message
to channel message at the daemon, as an existential package
with a triple [b c v]. Reacting to this, the daemon acquires
its lock and looks up b’s site in the acquired site map. It
then creates a fresh channel dack and forwards the message
in LD mode (together with dack) to the deliver channel of
agent b. In each agent the deliver channel is handled by a
Deliverer process, as in Figure 2. This reacts to deliver
messages by emitting a local c!!!v message and acknowledg-
ing the daemon (again using LD communication) via dack.
Meanwhile no agent may migrate before the deliver mes-
sage arrives, since the daemon is single-threaded and waits
for such an acknowledgement before releasing lock. Note
that the notfoundnotfoundnotfound branch of the daemon’s lookup will never
be taken as the algorithm ensures that all agents register
before messages can be sent to them.

Creation In order for the daemon’s site map to be kept
up to date, agents must register with the daemon, telling it

[[〈b@?〉c!!!v]]a
def
= 〈D@SD〉message!!! {|T |} [b c v] where c : ^̂̂IT[[

createcreatecreateZ b = P ininin Q
]]
a

def
= currentloc???s→newnewnew pack : ^̂̂rw[], rack : ^̂̂rw[] ininin

createcreatecreateZ b =
〈D@SD〉register!!![b s rack]
| rack???[]→
iflocaliflocaliflocal 〈a〉pack!!![] thenthenthen currentloc!!!s | [[P]]b | Deliverer elseelseelse 000

ininin

pack???[]→
(
currentloc!!!s | [[Q]]a

)
where Deliverer

def
= ***deliver??? {|X|} [c v dack]→(〈D@SD〉dack!!![] | c!!!v)

[[migrate tomigrate tomigrate to s → P]]a
def
= currentloc??? →newnewnew mack : ^̂̂rw [̂^̂w[Site ^̂̂w[]]] ininin

〈D@SD〉migrating!!![a mack]
| mack???[migrated]→
migrate tomigrate tomigrate to s →
newnewnew ack : ^̂̂rw[] ininin
〈D@SD〉migrated!!![s ack] | ack???[]→

(
currentloc!!!s | [[P]]a

)
[[P |Q]]a

def
= [[P]]a | [[Q]]a

Figure 2: The Compositional Encoding (selected clauses)

their site, both when they are created and when they mi-
grate. Each agent records its current site internally as an
output on its currentloc channel. This channel is also used
as a lock, to enforce mutual exclusion between the encod-
ings of all agent creation and migration commands within
the body of the agent. The encoding (in Figure 2) first
acquires the local lock and current site s and then creates
the new agent b, as well as channels pack and rack. The
body of b sends a register message to the daemon, sup-
plying rack; the daemon uses rack to acknowledge that it
has updated its site map. After the acknowledgement is re-
ceived from the daemon, b sends an acknowledgement to a
using pack, initialises the local lock of b with s, installs a
Deliverer, and allows the encoding of the body P of b to
proceed. Meanwhile, the local lock of a and the encoding of
the continuation process Q are blocked until the acknowl-
edgement via pack is received.

4 Semantic Definition

Type System We highlight only the non-standard aspects
of the type system. Firstly, we work with located type con-
texts Γ, which include data specifying the site where each
declared agent is located; the operational semantics updates
this when agents move.

Γ ::= • | Γ, X | Γ, x : AgentZ@s | Γ, x : T T 6= Agent
Z

A type context is closed if it declares no type variables or
term variables of base type, and extensible if all term vari-
ables are of agent or channel types, and therefore may be
new-bound.

The main judgements, for well-formedness of a basic process
as part of agent a, and for located processes, have the forms
Γ `a P and Γ ` LP ; there is also a judgement Γ ` x@z
giving the location z of x. Subtyping is as in [PS96] but

with also Agents ≤ Agentm; there is a standard subsumption
rule

Γ ` e ∈ S Γ ` S ≤ T
Γ ` e ∈ T

The most interesting rules are below.

Γ ` a ∈ Agentm

Γ ` s ∈ Site
Γ `a P

Γ `a migrate tomigrate tomigrate to s→P

a 6= b
Γ, b : AgentZ `b P
Γ, b : AgentZ `a Q

Γ `a createcreatecreate
Z b = P ininin Q

Γ ` a, b ∈ Agents

Γ ` s ∈ Site
Γ ` c ∈ ^̂̂wT
Γ ` v ∈ T

Γ `a 〈b@s〉c!!!v
Γ `z P

Γ ` @zP

Operational Semantics To capture our informal under-
standing of the language in as lightweight a way as possible,
we give a reduction semantics. It is defined with a struc-
tural congruence and reduction axioms, extending that for
the π-calculus [Mil93]. Reductions are over configurations,
which are pairs Γ
 LP of a located typing context Γ and
a located process LP . The most interesting axioms for the
low-level language are given in Figure 3.

Note that the only inter-site communication in an imple-
mentation will be for the migrate tomigrate tomigrate to reduction, in which
the body of the migrating agent a must be sent from its
current site to site s. The high-level language has the addi-
tional axiom

Γ
 @a〈b@?〉c!!!v −→ Γ
 @bc!!!v

Γ
 @acreatecreatecreateZ b = P ininin Q −→ Γ
 newnewnew b : AgentZ@s ininin (@bP | @aQ) where Γ ` a@s

Γ
 @amigrate tomigrate tomigrate to s → P −→ (Γ⊕ a 7→ s)
 @aP

Γ
 @a (c!!!v|c???p→P) −→ Γ
 @amatch(p, v)P

Γ
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ
 @aP | @bc!!!v where Γ ` a@s ∧ Γ ` b@s
Γ
 @aiflocaliflocaliflocal 〈b〉c!!!v thenthenthen P elseelseelse Q −→ Γ
 @aQ where Γ ` a@s ∧ Γ ` b@s′ ∧ s 6= s′

Figure 3: Selected Reduction Rules

Γ
a c!!!v
c!!!v−→ @a000

Γ ` c ∈ ^̂̂rT Γ,∆ ` v ∈ T dom(∆) ⊆ fv(v) ∆ is extensible.

Γ
a c???p→P
c???v−→
∆

@amatch(p, v)P

Γ
a P
c!!!v−→
∆

LP Γ
a Q
c???v−→
∆

LQ

Γ
a P | Q τ−→ newnewnew ∆ ininin LP | LQ

(Γ, x : T)
a P
c!!!v−→
∆

LP x ∈ fv(v) x 6= c

Γ
a newnewnew x : T ininin P
c!!!v−→

∆,x:T
LP

Γ
a migrate tomigrate tomigrate to s → P
migrate to s−→ @aP

(Γ, a : Agentm@s)
 LP
@amigrate to s′−→ LQ

Γ
 newnewnew a : Agentm@s ininin LP
τ−→ newnewnew a : Agentm@s′ ininin LQ

Figure 4: Selected LTS Rules

for delivering location-independent messages to their desti-
nation agent.

The reduction semantics describes only the internal be-
haviour of processes – for compositional reasoning we need
also a typed labelled transition semantics, expressing how
processes can interact with their environment. Transitions
are defined inductively on process structure, without the
structural congruence. The transition relations have the fol-
lowing forms, for basic and located process:

Γ
a P
α−→
∆

LP Γ
 LP
β−→
∆

LQ

Here the unlocated labels α are of the following forms:

τ internal computation
migrate to s migrate to the site s
c!!!v send value v along channel c
c???v receive value v from channel c

The located labels β are of the form τ or @aα for α 6= τ .
Private names (together with their types, which may be an-
notated with an agent’s current site) may be exchanged in
communication and are made explicit in the transition rela-
tion by the extruded context ∆. Selected rules are given in
Figure 4.

Theorem 4.1 (Reduction/LTS Correspondence)
For any well-formed located type context Γ and located pro-
cess LP such that Γ ` LP , we have: Γ
 LP −→ Γ′
 LQ

if and only if either

• Γ
 LP
τ−→ LQ with Γ′ = Γ, or

• Γ
 LP
@amigrate to s−→ LQ with Γ′ = Γ⊕ a 7→ s.

Theorem 4.2 (Subject Reduction)
For any well-formed closed located type context Γ, if

Γ
 LP
β−→
∆

LQ then Γ,∆ ` LQ.

5 Semantic Techniques

In this section we describe the tools used for stating and
proving correctness. We are expressing distributed infras-
tructure algorithms as encodings from a high-level language
to its low-level fragment, so the behaviour of a source pro-
gram and its encoding can be compared directly with some
notion of operational equivalence – our main theorem will
be roughly of the form

∀P . P ' C [[P]] (†)

where P ranges over well-typed programs of the high-level
language (P may use LI communication whereas C [[P]] will
not). Now, what equivalence ' should we take? The
stronger it is, the more confidence we gain that the encod-
ing is correct. At first glance, one might take some form of
weak bisimulation since (modulo divergence) it is finer than
most notions of testing [dH84, Sew97] and is easier to work
with. However, as in Nestmann’s work on choice encodings
[NP96], (†) would not hold, as the encoding C [[P]] involves
partial commitment of some nondeterministic choices. An
example is given in §6. We therefore take ' to be an adap-
tation of coupled simulation [PS92] to our language. This
is a slightly coarser relation, but it is expected to be finer
than any reasonable notion of observational equivalence for
Nomadic π (modulo questions of divergence and fairness).

Translocating Equivalences To prove (†) we need compo-
sitional techniques, allowing separate parts of the protocols
to be treated separately. In particular, we need operational
congruences (both equivalences and preorders) that are pre-
served by program contexts involving parallel composition
and new-binding. In Nomadic π the behaviour of LD com-
munications depends on the relative location of agents: if a
and b are at the same site then the LD message @b〈a@s〉c!!!v
reduces to (and in fact is weakly equivalent to) the local out-
put @ac!!!v, whereas if they are at different sites then the LD
message is weakly equivalent to 000. A parallel context, eg.
[.]|@amigrate tomigrate tomigrate to s, can migrate the agent a, so to obtain
a congruence we need refined equivalences, taking into ac-
count the possibility of such changes of agent location caused
by the environment. Allowing arbitrary relocations would
give too strong a notion, though. We introduce translocating
relations that are parameterised by a set of agents that the
environment may move.

Channel communication introduces further problems since
it allows extrusion of new agent names to and from the en-
vironment. Consider an output of a new-bound agent name
a to the environment. Other components in the environ-
ment may then send messages to a, but cannot migrate it,
so when checking a translocating equivalence we do not need
to consider relocation of a. On the other hand, a new agent
name received from the environment by an input process is
the name of an agent created in the environment, so (if cre-
ated with the mobile capability) it may be migrated at any
time.

We define a translocating strong simulation S to be a relation
over located processes, indexed by pairs of a type context Γ
and a set of names M , with (LP,LQ) ∈ SMΓ implying

• Γ ` LP and Γ ` LQ.

• M ⊆ movable(Γ).

• For any δ valid for (Γ,M), if Γδ
 LP
β−→
∆

LP ′ then for

some LQ′ we have Γδ
 LQ
β−→
∆

LQ′ and (LP ′, LQ′) ∈

SM]βmovable(∆)

Γ(δ⊕β),∆ .

Here movable(Γ) is the set of names of type Agentm in Γ and
a valid relocator δ for (Γ,M) is a partial function from M to
the site names of Γ. We write Γδ for the result of applying
δ to Γ. The set M]β S is M ∪ S whenever β is an input
and is M otherwise.

A symmetric strong translocating bisimulation, denoted ∼̇,
and weak version can be defined analogously.

We prove congruence results for both strong and weak
translocating bisimulation, stating the result only for the
strong. It uses a further auxiliary definition: the set
mayMove(LP) is the set of agents in LP syntactically con-
taining migrate tomigrate tomigrate to.

Theorem 5.1 (Translocating Congruence)
Given a closed located type context Γ,Θ with Θ extensible,
if

• LP ∼̇MPΓ,Θ LP ′ and LQ ∼̇MQΓ,Θ LQ′, and

• mayMove(LQ,LQ′) ⊆MP and
mayMove(LP,LP ′) ⊆MQ, and

• M def
= MP ∩MQ ∩ agentIn(Γ)

then

newnewnew Θ ininin (LP | LQ) ∼̇MΓ newnewnew Θ ininin
(
LP ′ | LQ′

)
.

Intuitively, the first premise (LP ∼̇MPΓ,Θ LP ′) of the theorem
must allow all the potential agent movements of LQ and
LQ′, and symmetrically.

Expansion To construct the coupled simulation, we use an
expansion relation �̇ [NP96] and the “up to” technique of
[SM92], adapted with translocation, to allow elimination
of target processes that are in intermediate/housekeeping
stages. The definitions are omitted. We depend on a con-
gruence result, analogous to that above, for expansion.

Temporary Immobility At many points in the execution
of an encoded program, it is intuitively clear that an agent
cannot migrate – while waiting for an acknowledgement from
the daemon, or for either currentloc or lock to be released
in the agent or daemon. To capture such an intuition, we
consider derivatives of a process LP — if an input action on
a lock channel l always precedes any (observable) migration
action then LP can be said to be temporarily immobile,
blocked by l. Care must be taken, however, to ensure that
the lock l is not released by the environment. This can be
made precise by the following definitions.

As in the case of translocating equivalences, we need to con-
sider the possibility of agents being moved by the environ-
ment.

Definition 5.1 (Translocating Path)
A translocating path of LP0 wrt (Γ,M) is a sequence

β1−→
∆1

. . .
βn−→
∆n

for which there exist LP1, . . . , LPn and δ0, . . . , δn−1 such
that for each i ∈ 0 . . . n− 1:

• δi is a valid relocator for (Γ̂, M̂), where

Γ̂
def
= Γ,∆1, . . . ,∆i

M̂
def
= M]β1 movable(∆1) . . .]βi movable(∆i), and

• ((Γδ0,∆1)δ1β1,∆2 . . . βi,∆i)δi
 LPi
βi+1−→
∆i+1

LPi+1.

Definition 5.2 (Temporary Immobility)
Given a closed located type context Γ, a located process LP
with Γ ` LP , and a translocating index M ⊆ agentIn(Γ),
LP is temporarily immobile under lock l wrt (Γ,M) if, for
all translocating paths

β1−→
∆1

. . .
βn−→
∆n

of LP wrt (Γ,M) which do not contain an input action
βi = @ac???v with l ∈ fv(c, v), the following hold for all i ≤ n,
b, c, v and s:

• βi = @bc!!!v implies l 6∈ fv(βi); and

• βi 6= @bmigrate to s.

Consider for example the process below.

LQ
def
= newnewnew Ωaux ininin

@DDaemon
| @a([[P]]a |currentloc!!!s|Deliverer)

Here agent a cannot migrate until the daemon lock lock is
successfully acquired, so LQ is temporarily immobile under
lock with respect to any type-correct (Γ,M) that does not
admit environmental relocation of a, ie. with a 6∈ M . As-
sume further that a is at s and that the daemon is forwarding
an LI message to a, ie. the above is in parallel with

LP
def
= @D〈a@s〉deliver!!![c v ack]

This parallel composition, with a surrounding new-binder
for lock, expands to

newnewnew lock : ^̂̂rwMap[Agents Site] ininin
LQ | @adeliver!!![c v ack]

The proof of this expansion relies on the fact that the re-
ductions of LP cannot release lock, so a cannot migrate,
and hence the reductions of LP are deterministic, success-
fully delivering the message to a at s. It uses the following
lemma.

Lemma 5.1
Given that LQ is temporarily immobile under l with re-
spect to Γ,∆ and M , with ∆ extensible and l ∈ dom(∆), if

Γ,∆
 LP1
det−→
M

LP2 then

newnewnew ∆ ininin LP1 | LQ �̇M∩dom(Γ)
Γ newnewnew ∆ ininin LP2 | LQ

where LP1 τ -deterministically reduces to LP2 wrt (Γ,M),

written Γ
 LP
det−→
M

LP1, if it has a reduction and, for any

valid relocator δ for (Γ,M), Γδ
 LP
β−→
∆

LP ′1 implies β = τ

and LP1∼̇MΓ LP ′1.

Proofs of temporary immobility can be hard, since they in-
volve quantification over derivatives. However we may apply
“up to” techniques to simplify processes under transitions.

Finite maps and functional computation We also prove the
correctness of the encoding of finite maps (and so can omit
maps from the basic calculus), and use uniform receptiveness
[San99] to derive expansions from computation steps that
are essentially functional.

Coupled Simulation Coupled simulation [PS92] relaxes the
bisimulation clauses somewhat. A pair (S1,S2), of type-
context-indexed relations, is a coupled simulation if:

• S1 and (S2)−1 are weak simulations (not translocat-
ing).

• if (LP,LQ) ∈ (S1)Γ then there exists LQ′ such that

Γ
 LQ
τ

=⇒ LQ′ and (LP,LQ′) ∈ (S2)Γ.

• if (LP,LQ) ∈ (S2)Γ then there exists LP ′ such that

Γ
 LP
τ

=⇒ LP ′ and (LP ′, LQ) ∈ (S1)Γ.

Two processes LP,LQ are coupled similar wrt Γ, written
LP �Γ LQ, if they are related by both components of some
coupled simulation.

Intuitively “LQ coupled simulates LP” means that “LQ is at
most as committed as LP” with respect to internal choices
and that LQ may internally evolve to a state LQ′ where
it is at least as committed as LP , i.e. where LP coupled
simulates LQ′.

In this paper, coupled simulation will be used for relating
whole systems, which cannot be placed in any program con-
text. For this reason, we do not need to incorporate translo-
cation into the definition above.

6 Correctness of the Infrastructure

This section outlines the strategies taken in order to prove
the correctness of the example encoding, using the tech-
niques from §5.

Partial Commitment Our example infrastructure intro-
duces many τ steps, each of which induces an intermediate
state — a target level term which is not a literal translation
of any source level term. Some of these steps are determinis-
tic house-keeping steps; they can be reduced to (and related
by expansions to) normal forms. Some, however (migration
steps and acquisitions of the daemon lock or of local agent
locks), are partial commitment steps. They involve nonde-
terministic internal choices and lead to partially committed
states – target level terms which are not bisimilar to any
source level term, but must be related to them by coupled
simulation.

As an example, consider the encoding C [[LP]] of an agent a
which sends message c!!!v to agent b at the current site of a,
and in parallel visits the sites s1 and s2 (in any order).

LP
def
= @a

(
〈a〉c!!!v | migrate tomigrate tomigrate to s1 | migrate tomigrate tomigrate to s2

)
Assume a and b are initially at the same site. If the
migrate tomigrate tomigrate to s1 process in C [[LP]] successfully acquires the
local lock (a partial commitment step) the resulting state
does not correspond exactly to any state of LP – we know
that a will eventually end up in s2, yet, as the first migration
has not taken place, the message from a will reach b.

Intermediate Language We factor the construction of the
main coupled simulation (between source program and its
encoding) by introducing an intermediate language IL, with
states ranged over by Sys. This helps us manage the com-
plexity of the state-space of the encoding, by:

1. reducing the size of the coupled simulation relations,
omitting states which reduce by house-keeping steps
to certain normal forms (which have no house-keeping
steps); and

2. dealing with states in which many agents may be par-
tially committed simultaneously; and

nπLD,LI LP
τ //

L

LQ

L

IL · τ //

U

· τ //

U

·

U

nπLD · currentloc// · createcreatecreatem // · +3 ·
register// · lock // · +3 · +3 · rack // · τ // ·

pack // ·

where LP = @acreatecreatecreatem b = P ininin Q and LQ = newnewnew b ininin @aQ|@bP .

Figure 5: Relationships Between Source, Intermediate, and Target

3. capturing some invariants, eg. that the daemon’s site-
map is correct, in a type system for IL.

The cost is that the typing and labelled transition rules for
IL must be defined; for lack of space we shall only outline
some of the details.

Each term of the intermediate language therefore represents
a normal form of target-level derivatives, possibly in a par-
tially committed state. It describes the state of the daemon
as well as that of the encoded agent. The syntax is:

Sys ::= eProg(∆;D;A)

Each term eProg(∆;D;A) is parameterised by ∆, a located
type context corresponding to all names dynamically cre-
ated during the execution of the program, and D and A,
the state of the daemon and of the agents. ∆ is binding in
eProg(∆;D;A) and is therefore subject to alpha-conversion.
The latter two parameters are described in more detail be-
low:

• The stateD of the daemon is described by the following
syntax:

D ::= [map mesgQ]
mesgQ ::=

∏
i∈I mesgReq({|Ti|} [ai ci vi])

Each daemon state [map mesgQ] consists of a site map
map, expressed as a list of pairs, and an unordered
queue of message forwarding requests mesgQ. A mes-
sage forwarding request mesgReq({|T |} [a c v]) requires
the daemon to forward c!!!v to the agent a, where T is
the type of v.

• The state A of the agents is a partial function map-
ping agent names to agent states. Each agent state,
represented as [P E], consists of a main body P and a
pending state E. The syntax of E is given below:

E ::= FreeA(s) | RegA(b Z s P Q)

| MtingA(s P) | MtedA(s P)

If an agent a has pending state FreeA(s), the local
lock of a is free and is ready to initiate a createcreatecreate or
migrate tomigrate tomigrate to process from its main body. Otherwise,
a is in a partially committed state, with a pending
execution of createcreatecreateZ b = P ininin Q (when its state
is RegA(b Z s P Q)) or migrate tomigrate tomigrate to s→ P (when its
state is MtingA(s P) or MtedA(s P)). In FreeA(s) and
RegA(b Z s P Q), s denotes the current site of a, in-
ternally recorded and maintained by the agent itself.

In RegA(b Z s P Q), the name b is bound in P and Q
and is subject to alpha-conversion.

Informally, each transition of a system originates either from
an agent or the daemon. A process from the main body
of an agent may be executed immediately if it is either an
iflocaliflocaliflocal, ififif, letletlet or a pair of an output and a (replicated)
input on the same channel. The result of such an execution
(governed by nπLD,LI LTS rules) is placed in parallel with
other processes in the main body, except for execution of an
LI output 〈b〉c!!!v, which results in the message forwarding re-
quest mesgReq({|T |} [b c v]) being added to the message queue
of the daemon (T is the type of v). These steps correspond
exactly to those taken by source- and target-level terms. A
process createcreatecreateZ b = P ininin Q or migrate tomigrate tomigrate to s→P from the
main body of a may proceed (in fact initiate) if the local
lock is free, ie. the pending state is FreeA(s′). The result of
such initiation turns the pending state to RegA(b Z s′ P Q)
or MtingA(s P) respectively. Translating into target-level
terms, an agent in such a state has successfully acquired its
local lock and sent a registration or migrating request to the
daemon.

A system with registration request RegA(b Z s P Q) is exe-
cuted in a single reduction step, corresponding in the target-
level to acquiring the daemon lock, updating the site map
and sending the acknowledgement to b. After completion,
the declaration b : AgentZ@s is placed at the top level and,
at the same time, the site map is extended with the new
entry (b, s). The new agent b with state [P FreeA(s)] now
commences its execution, and so does its parent. Figure 5
gives the correspondences between steps in the source, in-
termediate and the target languages in the creation case. In
the figure, some τ communication steps are annotated with
the command or the name of the channel involved.

Likewise, a system with a message forwarding request
mesgReq({|T |} [b c v]) is executed in a single reduction step,
corresponding in the target-level to acquiring the daemon
lock, looking up the site of b, delivering the message, and
receiving an acknowledgement from b. After completion, the
message c!!!v is added to the main body of b.

Serving a migrating request MtingA(s P) from an agent a,
however, involves two steps. The first step acquires the dae-
mon lock, initialising the request and turning the pending
state of a to MtedA(s P). In the second step, the agent a
migrates to s (hence changes the top-level declaration) and
the site map updates a with the entry (a, s). The first step
corresponds in the target-level to acquiring the daemon lock,
looking up the site of a in the site map, and sending an ac-

knowledgement, permitting a to migrate. The second step
corresponds to a migrating to s and sending an acknowl-
edgement back to the daemon, which updates its site map
and then sends the final acknowledgement to a, allowing it
to proceed.

Factoring the proof The infrastructure encoding is fac-
tored into the composition of a loading encoding L, mapping
source terms to corresponding systems in the intermediate
language, and an unloading encoding U , mapping systems
in the intermediate language to their corresponding target
terms.

nπLD,LI

C[[·]] $$IIIIIIIII
L[[·]] // IL

U[[·]]

��
nπLD

Note that our encoding is not uniform [Pal97], as it intro-
duces a centralised daemon at top level. This means that our
reasoning must largely be about the whole system, dealing
with interactions between encoded agents and the daemon.
We cannot use simple induction on source program syntax.

We prove the coupled simulation over programs which are
well-typed with respect to a valid system context : a type
context in which all agents are declared as static (in order
to use the standard definition of coupled simulation) and
channels are not used for sending or receiving agent names
(in order to make sure the daemon has a record of all agents
in the system). Dynamically created new-bound agents may
be mobile, of course.

We use two functions mapping intermediate language states
back into the source language. The undo and commit de-
coding functions, D[and D] respectively, undo and com-
plete partially committed migrations (it suffices to have both
functions commit creations and LI messages, as these are
somewhat confluent).

nπLD,LI IL
D][[·]]
ooD
[[[·]]oo

The main lemmas can now be stated.

Lemma 6.1 (Syntactic Factorisation)
For any LP well-typed wrt a valid system context Φ

• CΦ [[LP]] ≡ U [[LΦ [[LP]]]], and

• LP ≡ D[[[LΦ [[LP]]]] ≡ D] [[LΦ [[LP]]]].

Lemma 6.2 (Semantic Correctness of IL)
For any Sys well-formed wrt Φ, U [[Sys]] �̇∅ΦSys.

The proof of this uses expansion up to expansion to relate
each well-formed term in the intermediate language with
its corresponding target term. Here we heavily employ the
congruence properties of translocating expansion for factor-
ing out program contexts which are not involved in house-
keeping reductions of the target terms. Temporary immobil-
ity is used whenever we need to guarantee that LD messages
to partially-committed agents are safely delivered.

The following two lemmas relate intermediate language
states to source terms, by weak simulation relations using
either the undo or commit decodings. Their proofs are rel-
atively straightforward.

Lemma 6.3 (D[is a strict simulation)
For any Sys well-formed wrt Φ, if Φ
 Sys

β−→
Ξ

Sys′ then

Φ
 D[[[Sys]]
β̂−→
Ξ
D[[[Sys′]].

Lemma 6.4 (D]−1
is a progressing simulation)

For any Sys well-formed wrt Φ, if Φ
 D] [[Sys]]
β−→
Ξ

LP

then there exists a well-formed state Sys′ such that LP ≡
D] [[Sys′]] and Φ
 Sys

β
=⇒

Ξ
Sys′.

These results are combined to give a direct relation between
the source and the target terms (using weak simulation up
to expansion), proving that a source term LP and its trans-
lation C [[LP]] are related by a coupled simulation.

Theorem 6.1 (Encoding Correctness)
For any LP well-formed wrt a valid system context Φ,
LP �Φ CΦ [[LP]].

The use of coupled simulation makes this a rather strong
result, but it does not take the external I/O of a whole pro-
gram into account. That could be done by tuning a notion
of testing [dH84] to this setting, generalising [Sew97] from
Pict to the distributed case.

7 Conclusion

Related Work A wide range of other aspects of distributed
and mobile computation have been studied via particular
process calculi, eg. in [FGL+96, CG98, RH98, Sew98, VC98]
among others – space prevents a detailed comparison, but
see [Sew00].

There is a large body of semantic work on concurrent and
distributed algorithms. Crudely, it can be subdivided into
work taking an automata-theoretic approach and work on
encodings of high-level primitives. The former includes
[AP98, JNW98], addressing Mobile IP, and [Mor99], which
studies an infrastructure providing a similar abstraction to
that of this paper. All involve more-or-less idealised models
of algorithms rather than directly executable code. The lat-
ter includes encodings of choice [NP96], π/join communica-
tion [FG96], and authenticated communication [AFG00], all
in terms of some code that in principle is executable. There
is a trade-off here: the idealised models can be expressed in
a simpler formal framework, greatly simplifying correctness
proofs, but they are further removed from implementation,
increasing the likelihood that important details have been
abstracted away. This is discussed further in [Woj00]. Much
of the latter work uses correctness results stated in terms of
full abstraction wrt. some barbed congruence. Here, as the
target language is a sublanguage of the source, we could
state a more direct correspondence between the behaviour
of source and target. Verification of mobile communication
infrastructures has also been considered in the Mobile Unity
setting [MR97].

Summary and Future Work We have addressed the dis-
tributed infrastructure algorithms required for location-
independent communication between mobile agents. We
have developed semantics and proof techniques for prov-
ing correctness of such algorithms, expressed as translations
from high-level to low-level Nomadic Pict. The techniques
were illustrated by a proof that an example algorithm is cor-
rect wrt. coupled simulation. This algorithm, though non-
trivial, is one of the simplest possible. We believe that more
sophisticated algorithms can be dealt with using the same
techniques, albeit with new intermediate languages (tailored
to particular algorithms).

By expressing infrastructure algorithms as Nomadic Pict en-
codings, we have descriptions of them that are:

• executable – one can rapidly prototype both algorithms
and applications written above them in the high-level
language; and

• concise – with the details of concurrency, locking,
name-generation etc. made clear; and

• precise – with a semantics that we can use for formal
reasoning and that gives a solid understanding of the
primitives for informal reasoning.

More generally, the work is a step towards a semantically-
founded view of richer wide-area distributed systems – here
we dealt with the combination of migration and location-
dependent communication; ultimately one must also simul-
taneously address failure and malicious attack.

References

[ACM96] ACM. 23rd Annual Symposium on Principles of
Programming Languages (POPL) (St. Petersburg
Beach, Florida), 1996.

[AFG00] Mart́ın Abadi, Cédric Fournet, and Georges
Gonthier. Authentication primitives and their
compilation. In Proceedings of POPL ’00. ACM,
2000.

[AP98] Roberto M. Amadio and Sanjiva Prasad. Mod-
elling IP mobility. In Proceedings of CON-
CUR ’98, volume 1466 of LNCS, pages 301–316.
Springer, September 1998.

[Car97] Luca Cardelli. Global computation. ACM SIG-
PLAN Notices, 32(1):66–68, January 1997.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile
ambients. In Proceedings of FoSSaCS ’98, volume
1378 of LNCS, pages 140–155. Springer, 1998.

[CGG99] Luca Cardelli, Giorgio Ghelli, and Andrew D.
Gordon. Mobility types for mobile ambients. In
Proceedings of ICALP ’99, volume 1644 of LNCS,
pages 230–239. Springer, July 1999.

[CHK97] D. Chess, C. G. Harrison, and A. Kershenbaum.
Mobile agents: Are they a good idea? In Mo-
bile Object Systems - Towards the Programmable
Internet, LNCS, pages 25–47. Springer-Verlag,
Berlin Germany, 1997.

[CON96] CONCUR ’96: Concurrency Theory, 7th Inter-
national Conference, volume 1119 of LNCS, Pisa,
Italy, August 1996. Springer-Verlag.

[dH84] R. de Nicola and M. C. B. Hennessy. Testing
equivalences for processes. Theoretical Computer
Science, 34(1-2):83–133, November 1984.

[FG96] Cédric Fournet and Georges Gonthier. The re-
flexive chemical abstract machine and the join-
calculus. In Proceedings of POPL ’96 [ACM96],
pages 372–385.

[FGL+96] Cédric Fournet, Georges Gonthier, Jean-Jacques
Lévy, Luc Maranget, and Didier Rémy. A calcu-
lus of mobile agents. [CON96], pages 406–421.

[JNW98] Daniel Jackson, Yuchung Ng, and Jeannette
Wing. A Nitpick analysis of mobile IPv6. Tech-
nical Report CMU-CS-98-113, Computer Science
Department, CMU, March 1998.

[KPT96] Naoki Kobayashi, Benjamin C. Pierce, and
David N. Turner. Linearity and the pi-calculus.
In Proceedings of POPL ’96 [ACM96], pages
358–371.

[Mil93] Robin Milner. The polyadic π-calculus: A tuto-
rial. volume 94 of Series F: Computer and System
Sciences. Springer, 1993. Available as Techni-
cal Report ECS-LFCS-91-180, University of Ed-
inburgh, October 1991.

[Mor99] Luc Moreau. Distributed Directory Service and
Message Router for Mobile Agents. Technical Re-
port ECSTR M99/3, University of Southampton,
1999.

[MPW92] Robin Milner, Joachim Parrow, and David
Walker. A calculus of mobile processes, part
I/II. Information and Computation, 100:1–77,
September 1992.

[MR97] P. J. McCann and G.-C. Roman. Mobile UNITY
coordination constructs applied to packet for-
warding for mobile hosts. In Proceedings of CO-
ORDINATION 97, LNCS 1282, 1997.

[NP96] Uwe Nestmann and Benjamin C. Pierce. Decod-
ing choice encodings. [CON96], pages 179–194.

[Pal97] Catuscia Palamidessi. Comparing the expressive
power of the synchronous and the asynchronous
π-calculus. In Proceedings of POPL ’97, pages
256–265. ACM, January 1997.

[PS92] J. Parrow and P. Sjodin. Multiway synchroniza-
tion verified with coupled simulation. In Proceed-
ings CONCUR 92, LNCS 630, 1992.

[PS96] Benjamin C. Pierce and Davide Sangiorgi.
Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science,
6(5):409–454, 1996. An extract appeared in Proc.
LICS ’93: 376–385.

[PT00] Benjamin C. Pierce and David N. Turner. Pict:
A programming language based on the pi-
calculus. In Gordon Plotkin, Colin Stirling, and
Mads Tofte, editors, Proof, Language and Inter-
action: Essays in Honour of Robin Milner. MIT
press, May 2000.

[RH98] James Riely and Matthew Hennessy. A typed
language for distributed mobile processes. In
Proceedings of POPL ’98, January 1998.

[San99] Davide Sangiorgi. The name discipline of uni-
form receptiveness. Theoretical Computer Sci-
ence, 221(1–2):457–493, 1999. An abstract ap-
peared in the Proceedings of ICALP ’97 , LNCS
1256.

[Sew97] Peter Sewell. On implementations and seman-
tics of a concurrent programming language. In
Proceedings of CONCUR 97, LNCS 1243, pages
391–405, 1997.

[Sew98] Peter Sewell. Global/local subtyping and capa-
bility inference for a distributed pi-calculus. In
Proceedings of ICALP ’98, volume 1443 of LNCS,
pages 695–706. Springer, July 1998.

[Sew00] Peter Sewell. Applied π – a brief tutorial. Tech-
nical Report 498, Computer Laboratory, Univer-
sity of Cambridge, August 2000.

[SM92] D. Sangiorgi and R. Milner. The problem of
“weak bisimulation up to”. In Proceedings CON-
CUR 92, LNCS 630, 1992.

[SWP98] Peter Sewell, Pawe l T. Wojciechowski, and Ben-
jamin C. Pierce. Location independence for mo-
bile agents. In Proceedings of the Workshop
on Internet Programming Languages (Chicago),
May 1998. Full version appeared in LNCS 1686.

[TLK96] Bent Thomsen, Lone Leth, and Tsung-Min Kuo.
A Facile tutorial. [CON96], pages 278–298.

[VC98] Jan Vitek and Giuseppe Castagna. Towards a
calculus of secure mobile computations. In IEEE
Workshop on Internet Programming Languages,
Chicago, Illinois, May 1998. Full version ap-
peared in LNCS 1686.

[Woj00] Pawe l T. Wojciechowski. Nomadic Pict: Lan-
guage and Infrastructure Design for Mobile Com-
putation. PhD thesis, Computer Laboratory,
University of Cambridge, 2000. Available as
Technical Report 492, June 2000.

[WS00] Pawe l T. Wojciechowski and Peter Sewell. No-
madic Pict: Language and infrastructure design
for mobile agents. IEEE Concurrency, 8(2):42–
52, April–June 2000.

