
Understanding POWER Multiprocessors

Susmit Sarkar1 Peter Sewell1 Jade Alglave2,3 Luc Maranget3 Derek Williams4

1University of Cambridge 2Oxford University 3INRIA 4IBM Austin

Abstract

Exploiting today’s multiprocessors requires high-
performance and correct concurrent systems code (op-
timising compilers, language runtimes, OS kernels, etc.),
which in turn requires a good understanding of the
observable processor behaviour that can be relied on.
Unfortunately this critical hardware/software interface is
not at all clear for several current multiprocessors.

In this paper we characterise the behaviour of IBM
POWER multiprocessors, which have a subtle and highly
relaxed memory model (ARM multiprocessors have a very
similar architecture in this respect). We have conducted ex-
tensive experiments on several generations of processors:
POWER G5, 5, 6, and 7. Based on these, on published de-
tails of the microarchitectures, and on discussions with IBM
staff, we give an abstract-machine semantics that abstracts
from most of the implementation detail but explains the be-
haviour of a range of subtle examples. Our semantics is ex-
plained in prose but defined in rigorous machine-processed
mathematics; we also confirm that it captures the observ-
able processor behaviour, or the architectural intent, for our
examples with an executable checker. While not officially
sanctioned by the vendor, we believe that this model gives a
reasonable basis for reasoning about current POWER mul-
tiprocessors.

Our work should bring new clarity to concurrent systems
programming for these architectures, and is a necessary
precondition for any analysis or verification. It should also
inform the design of languages such as C and C++, where
the language memory model is constrained by what can be
efficiently compiled to such multiprocessors.

Categories and Subject Descriptors C.1.2 [Multiple
Data Stream Architectures (Multiprocessors)]: Parallel pro-
cessors; D.1.3 [Concurrent Programming ]: Parallel pro-
gramming; F.3.1 [Specifying and Verifying and Reasoning
about Programs]

General Terms Documentation, Languages, Reliability,
Standardization, Theory, Verification

Keywords Relaxed Memory Models, Semantics

1. Introduction

Power multiprocessors (including the IBM POWER 5, 6,
and 7, and various PowerPC implementations) have for
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many years had aggressive implementations, providing high
performance but exposing a very relaxed memory model,
one that requires careful use of dependencies and memory
barriers to enforce ordering in concurrent code. A priori, one
might expect the behaviour of a multiprocessor to be suffi-
ciently well-defined by the vendor architecture documenta-
tion, here the Power ISA v2.06 specification [Pow09]. For the
sequential behaviour of instructions, that is very often true.
For concurrent code, however, the observable behaviour of
Power multiprocessors is extremely subtle, as we shall see,
and the guarantees given by the vendor specification are
not always clear. We therefore set out to discover the ac-
tual processor behaviour and to define a rigorous and usable
semantics, as a foundation for future system building and
research.

The programmer-observable relaxed-memory behaviour
of these multiprocessors emerges as a whole-system prop-
erty from a complex microarchitecture [SKT+05, LSF+07,
KSSF10]. This can change significantly between generations,
e.g. from POWER 6 to POWER 7, but includes: cores
that perform out-of-order and speculative execution, with
many shadow registers; hierarchical store buffering, with
some buffering shared between threads of a symmetric multi-
threading (SMT) core, and with multiple levels of cache;
store buffering partitioned by address; and a cache protocol
with many cache-line states and a complex interconnection
topology, and in which cache-line invalidate messages are
buffered. The implementation of coherent memory and of
the memory barriers involves many of these, working to-
gether. To make a useful model, it is essential to abstract
from as much as possible of this complexity, both to make
it simple enough to be comprehensible and because the de-
tailed hardware designs are proprietary (the published lit-
erature does not describe the microarchitecture in enough
detail to confidently predict all the observable behaviour).
Of course, the model also has to be sound, allowing all be-
haviour that the hardware actually exhibits, and sufficiently
strong, capturing any guarantees provided by the hardware
that systems programmers rely on. It does not have to be
tight: it may be desirable to make a loose specification, per-
mitting some behaviour that current hardware does not ex-
hibit, but which programmers do not rely on the absence
of, for simplicity or to admit different implementations in
future. The model does not have to correspond in detail to
the internal structure of the hardware: we are capturing the
external behaviour of reasonable implementations, not the
implementations themselves. But it should have a clear ab-
straction relationship to implementation microarchitecture,
so that the model truly explains the behaviour of examples.

To develop our model, and to establish confidence that
it is sound, we have conducted extensive experiments, run-
ning several thousand tests, both hand-written and auto-
matically generated, on several generations of processors,
for up to 1011 iterations each. We present some simple tests
in §2, to introduce the relaxed behaviour allowed by Power



processors, and some more subtle examples in §6, with repre-
sentative experimental data in §7. To ensure that our model
explains the behaviour of tests in a way that faithfully ab-
stracts from the actual hardware, using appropriate con-
cepts, we depend on extensive discussions with IBM staff. To
validate the model against experiment, we built a checker,
based on code automatically generated from the mathemati-
cal definition, to calculate the allowed outcomes of tests (§8);
this confirms that the model gives the correct results for all
tests we describe and for a systematically generated family
of around 300 others.

Relaxed memory models are typically expressed either
in an axiomatic or an operational style. Here we adopt
the latter, defining an abstract machine in §3 and §4. We
expect that this will be more intuitive than typical axiomatic
models, as it has a straightforward notion of global time (in
traces of abstract machine transitions), and the abstraction
from the actual hardware is more direct. More particularly,
to explain some of the examples, it seems to be necessary to
model out-of-order and speculative reads explicitly, which is
easier to do in an abstract-machine setting. This work is an
exercise in making a model that is as simple as possible
but no simpler: the model is considerably more complex
than some (e.g. for TSO processors such as Sparc and x86),
but does capture the processor behaviour or architectural
intent for a range of subtle examples. Moreover, while the
definition is mathematically rigorous, it can be explained
in only a few pages of prose, so it should be accessible to
the expert systems programmers (of concurrency libraries,
language runtimes, optimising compilers, etc.) who have to
be concerned with these issues. We end with discussion of
related work (§9) and a brief summary of future directions
(§10), returning at last to the vendor architecture.

2. Simple Examples

We begin with an informal introduction to Power multipro-
cessor behaviour by example, introducing some key concepts
but leaving explanation in terms of the model to later.

2.1 Relaxed behaviour

In the absence of memory barriers or dependencies, Power
multiprocessors exhibit a very relaxed memory model, as
shown by their behaviour for the following four classic tests.

SB: Store Buffering Here two threads write to shared-
memory locations and then each reads from the other loca-
tion — an idiom at the heart of Dekker’s mutual-exclusion
algorithm, for example. In pseudocode:

Thread 0 Thread 1
x=1 y=1

r1=y r2=x

Initial shared state: x=0 and y=0

Allowed final state: r1=0 and r2=0

In the specified execution both threads read the value from
the initial state (in later examples, this is zero unless oth-
erwise stated). To eliminate any ambiguity about exactly
what machine instructions are executed, either from source-
language semantics or compilation concerns, we take the
definitive version of our examples to be in PowerPC as-
sembly (available online [SSA+11]), rather than pseudocode.
The assembly code is not easy to read, however, so here we
present examples as diagrams of the memory read and write
events involved in the execution specified by the initial and
final state constraints. In this example, the pseudocode r1

and r2 represent machine registers, so accesses to those are
not memory events; with the final state as specified, the
only conceivable execution has two writes, labelled a and c,
and two reads, labelled b and d, with values as below. They
are related by program order po (later we elide implied po
edges), and the fact that the two reads both read from the
initial state (0) is indicated by the incoming reads-from (rf)
edges (from writes to reads that read from them); the dots
indicate the initial-state writes.

Test SB : Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

This example illustrates the key relaxation allowed in Sparc
or x86 TSO models [Spa92, SSO+10]. The next three show
some ways in which Power gives a weaker model.

MP: Message passing Here Thread 0 writes data x and
then sets a flag y, while Thread 1 reads y from that flag write
and then reads x. On Power that read is not guaranteeed
to see the Thread 0 write of x; it might instead read from
‘before’ that write, despite the chain of po and rf edges:

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

In real code, the read c of y might be in a loop, repeated until
the value read is 1. Here, to simplify experimental testing,
we do not have a loop but instead consider only executions
in which the value read is 1, expressed with a constraint on
the final register values in the test source.

WRC: Write-to-Read Causality Here Thread 0 com-
municates to Thread 1 by writing x=1. Thread 1 reads
that, and then later (in program order) sends a message
to Thread 2 by writing into y. Having read that write of
y at Thread 2, the question is whether a program-order-
subsequent read of x at Thread 2 is guaranteed to see the
value written by the Thread 0 write, or might read from
‘before’ that, as shown, again despite the rf and po chain.
On Power that is possible.

Test WRC : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
po

rf

IRIW: Independent Reads of Independent Writes
Here two threads (0 and 2) write to distinct locations while
two others (1 and 3) each read from both locations. In
the specified allowed execution, they see the two writes in
different orders (Thread 1’s first read sees the write to x but
the program-order-subsequent read does not see the write of
y, whereas Thread 3 sees the write to y but not that to x).

Test IRIW : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf rf



Coherence Despite all the above, one does get a guaran-
tee of coherence: in any execution, for each location, there is
a single linear order (co) of all writes (by any processor) to
that location, which must be respected by all threads. The
four cases below illustrate this: a pair of reads by a thread
cannot read contrary to the coherence order (CoRR1); the
coherence order must respect program order for a pair of
writes by a thread (CoWW); a read cannot read from a write
that is coherence-hidden by another write program-order-
preceding the read (CoWR), and a write cannot coherence-
order-precede a write that a program-order-preceding read
read from. We can now clarify the ‘before’ in the MP and
WRC discussion above, which was with respect to the co-
herence order for x.

Test CoRR1 : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[x]=0

rf
po

rf

Test CoWW : Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

Test CoWR : Forbidden

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

Test CoRW : Forbidden

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po co

rf

2.2 Enforcing ordering

The Power ISA provides several ways to enforce stronger
ordering. Here we deal with the sync (heavyweight sync, or
hwsync) and lwsync (lightweight sync) barrier instructions,
and with dependencies and the isync instruction, leaving
load-reserve/store-conditional pairs and eieio to future work.

Regaining sequential consistency (SC) using sync
If one adds a sync between every program-order pair
of instructions (creating tests SB+syncs, MP+syncs,
WRC+syncs, and IRIW+syncs), then all the non-SC results
above are forbidden, e.g.

Test MP+syncs : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

sync

rf

Using dependencies Barriers can incur a significant
runtime cost, and in some cases enough ordering is guaran-
teed simply by the existence of a dependency from a memory
read to another memory access. There are various kinds:

• There is an address dependency (addr) from a read to
a program-order-later memory read or write if there
is a data flow path from the read, through registers
and arithmetic/logical operations (but not through other
memory accesses), to the address of the second read or
write.

• There is a data dependency (data) from a read to a
memory write if there is such a path to the value written.
Address and data dependencies behave similarly.

• There is a control dependency (ctrl) from a read to a
memory write if there is such a dataflow path to the
test of a conditional branch that is a program-order-
predecessor of the write. We also refer to control depen-
dencies from a read to a read, but ordering of the reads
in that case is not respected in general.

• There is a control+isync dependency (ctrlisync) from a
read to another memory read if there is such a dataflow
path from the first read to the test of a conditional branch
that program-order-precedes an isync instruction before
the second read.

Sometimes one can use dependencies that are naturally
present in an algorithm, but it can be desirable to introduce
one artificially, for its ordering properties, e.g. by XOR’ing a
value with itself and adding that to an address calculation.

Dependencies alone are usually not enough. For exam-
ple, adding dependencies between read/read and read/write
pairs, giving tests WRC+data+addr (with a data depen-
dency on Thread 1 and an address dependency on Thread
2), and IRIW+addrs (with address dependencies on Threads
1 and 3), leaves the non-SC behaviour allowed. One cannot
add dependencies to SB, as that only has write/read pairs,
and one can only add a dependency to the read/read side
of MP, leaving the writes unconstrained and the non-SC be-
haviour still allowed.

In combination with a barrier, however, dependencies can
be very useful. For example, MP+sync+addr is SC:

Test MP+sync+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

addr

rf

Here the barrier keeps the writes in order, as seen by any
thread, and the address dependency keeps the reads in order.

Contrary to what one might expect, the combination of
a thread-local reads-from edge and a dependency does not
guarantee ordering of a write-write pair, as seen by another
thread; the two writes can propagate in either order (here
[x]=z initially):

Test MP+nondep+sync : Allowed

Thread 0

a: W[x]=y

b: R[x]=y

c: W[y]=1

d: R[y]=1

Thread 1

e: R[x]=z

rf

addr
rf

sync

rf

Control dependencies, observable speculative reads,
and isync Recall that control dependencies (without
isync) are only respected from reads to writes, not from
reads to reads. If one replaces the address dependency
in MP+sync+addr by a dataflow path to a conditional
branch before the second read (giving the test named
MP+sync+ctrl below), that does not ensure that the reads
on Thread 1 bind their values in program order.

Test MP+sync+ctrl : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

ctrl

rf



Adding an isync instruction between the branch and the
second read (giving test MP+sync+ctrlisync) suffices.

The fact that data/address dependencies to both reads
and writes are respected while control dependencies are only
respected to writes is important in the design of C++0x
low-level atomics [BA08, BOS+11], where release/consume
atomics let one take advantage of data dependencies without
requiring barriers (and limiting optimisation) to ensure that
all source-language control dependencies are respected.

Cumulativity For WRC it suffices to have a sync on
Thread 1 with a dependency on Thread 2; the non-SC
behaviour is then forbidden:

Test WRC+sync+addr : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
sync

rf
addr

rf

This illustrates what we call A-cumulativity of Power barri-
ers: a chain of edges before the barrier that is respected. In
this case Thread 1 reads from the Thread 0 write before (in
program order) executing a sync, and then Thread 1 writes
to another location; any other thread (here 2) is guaranteed
to see the Thread 0 write before the Thread 1 write. How-
ever, swapping the sync and dependency, e.g. with just an
rf and data edge between writes a and c, does not guarantee
ordering of those two writes as seen by another thread:

Test WRC+data+sync : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
data

rf
sync

rf

In contrast to that WRC+data+sync, a chain of reads-
from edges and dependencies after a sync does ensure that
ordering between a write before the sync and a write after
the sync is respected, as below. Here the reads e and f of z
and x cannot see the writes a and d out of order. We call
this a B-cumulativity property.

Test ISA2+sync+data+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

sync
rf

data
rf

addr

rf

Using lwsync The lwsync barrier is broadly similar to
sync, including cumulativity properties, except that does not
order store/load pairs and it is cheaper to execute; it suf-
fices to guarantee SC behaviour in MP+lwsyncs (MP with
lwsync in each thread), WRC+lwsync+addr (WRC with
lwsync on Thread 1 and an address dependency on Thread
2), and ISA2+lwsync+data+addr, while SB+lwsyncs and
IRIW+lwsyncs are still allowed. We return later to other
differences between sync and lwsync.

3. The Model Design

We describe the high-level design of our model in this sec-
tion, giving the details in the next. We build our model as

a composition of a set of (hardware) threads and a single
storage subsystem, synchronising on various messages:

Write request

Read request

Barrier request

 

Read response

Barrier ack

Storage Subsystem

ThreadThread

Read-request/read-response pairs are tightly coupled, while
the others are single unidirectional messages. There is no
buffering between the two parts.

Coherence-by-fiat Our storage subsystem abstracts
completely from the processor implementation store-
buffering and cache hierarchy, and from the cache protocol:
our model has no explicit memory, either of the system as
a whole, or of any cache or store queue (the fact that one
can abstract from all these is itself interesting). Instead, we
work in terms of the write events that a read can read from.
Our storage subsystem maintains, for each address, the cur-
rent constraint on the coherence order among the writes it
has seen to that address, as a strict partial order (transitive
but irreflexive). For example, suppose the storage subsystem
has seen four writes, w0, w1, w2 and w3, all to the same ad-
dress. It might have built up the coherence constraint on the
left below, with w0 known to be before w1, w2 and w3, and
w1 known to be before w2, but with as-yet-undetermined
relationships between w1 and w3, and between w2 and w3.

w0

w2 w3

w1

w0

w2 w3

w1

The storage subsystem also records the list of writes that
it has propagated to each thread: those sent in response
to read-requests, those done by the thread itself, and those
propagated to that thread in the process of propagating a
barrier to that thread. These are interleaved with records
of barriers propagated to that thread. Note that this is a
storage-subsystem-model concept: the writes propagated to
a thread have not necessarily been sent to the thread model
in a read-response.

Now, given a read request by a thread tid, what writes
could be sent in response? From the state on the left above,
if the writes propagated to thread tid are just [w1], perhaps
because tid has read from w1, then:

• it cannot be sent w0, as w0 is coherence-before the w1

write that (because it is in the writes-propagated list) it
might have read from;

• it could re-read from w1, leaving the coherence constraint
unchanged;

• it could be sent w2, again leaving the coherence constraint
unchanged, in which case w2 must be appended to the
events propagated to tid; or

• it could be sent w3, again appending this to the events
propagated to tid, which moreover entails committing to
w3 being coherence-after w1, as in the coherence con-
straint on the right above. Note that this still leaves the
relative order of w2 and w3 unconstrained, so another



thread could be sent w2 then w3 or (in a different run)
the other way around (or indeed just one, or neither).

In the model this behaviour is split up into separate storage-
subsystem transitions: there is one rule for making a new co-
herence commitment between two hitherto-unrelated writes
to the same address, one rule for propagating a write to a
new thread (which can only fire after sufficient coherence
commitments have been made), and one rule for returning a
read value to a thread in response to a read-request. The last
always returns the most recent write (to the read address)
in the list of events propagated to the reading thread, which
therefore serves essentially as a per-thread memory (though
it records more information than just an array of bytes). We
adopt these separate transitions (in what we term a partial
coherence commitment style) to make it easy to relate model
transitions to actual hardware implementation events: co-
herence commitments correspond to writes flowing through
join points in a hierarchical-store-buffer implementation.

Out-of-order and Speculative Execution As we shall
see in §6, many of the observable subtleties of Power be-
haviour arise from the fact that the threads can perform
read instructions out-of-order and speculatively, subject to
an instruction being restarted if a conflicting write comes
in before the instruction is committed, or being aborted if a
branch turns out to be mispredicted. However, writes are not
sent to the storage subsystem before their instructions are
committed, and we do not see observable value speculation.
Accordingly, our thread model permits very liberal out-of-
order execution, with unbounded speculative execution past
as-yet-unresolved branches and past some barriers, while our
storage subsystem model need not be concerned with spec-
ulation, retry, or aborts. On the other hand, the storage
subsystem maintains the current coherence constraint, as
above, while the thread model does not need to have ac-
cess to this; the thread model plays its part in maintaining
coherence by issuing requests in reasonable orders, and in
aborting/retrying as necessary.

For each thread we have a tree of the committed and
in-flight instruction instances. Newly fetched instructions
become in-flight, and later, subject to appropriate precondi-
tions, can be committed. For example, below we show a set of
instruction instances {i1, . . . , i13} with the program-order-
successor relation among them. Three of those ({i1, i3, i4},
boxed) have been committed; the remainder are in-flight.

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Instruction instances i5 and i9 are branches for which the
thread has fetched multiple possible successors; here just
two, but for a branch with a computed address it might
fetch many possible successors. Note that the committed
instances are not necessarily contiguous: here i3 and i4

have been committed even though i2 has not, which can
only happen if they are sufficiently independent. When a
branch is committed then any un-taken alternative paths are
discarded, and instructions that follow (in program order) an
uncommitted branch cannot be committed until that branch
is, so the tree must be linear before any committed (boxed)
instructions.

In implementations, reads are retried when cache-line
invalidates are processed. In the model, to abstract from
exactly when this happens (and from whatever tracking
the core does of which instructions must be retried when
it does), we adopt a late invalidate semantics, retrying
appropriate reads (and their dependencies) when a read
or write is committed. For example, consider two reads
r1 and r2 in program order that have been satisfied from
two different writes to the same address, with r2 satisfied
first (out-of-order), from w1, and r1 satisfied later from
the coherence-later w2. When r1 is committed, r2 must be
restarted, otherwise there would be a coherence violation.
(This relies on the fact that writes are never provided by the
storage subsystem out of coherence order; the thread model
does not need to record the coherence order explicitly.)

Dependencies are dealt with entirely by the thread
model, in terms of the registers read and written by each
instruction instance (the register footprints of instructions
are known statically). Memory reads cannot be satisfied
until their addresses are determined (though perhaps still
subject to change on retry), and memory writes cannot be
committed until their addresses and values are fully deter-
mined. We do not model register renaming and shadow regis-
ters explicitly, but our out-of-order execution model includes
their effect, as register reads take values from program-order-
preceding register writes.

Barriers (sync and lwsync) and cumulativity-by-fiat
The semantics of barriers involves both parts of the model,
as follows.

When the storage subsystem receives a barrier request, it
records the barrier as propagated to its own thread, marking
a point in the sequence of writes that have been propagated
to that thread. Those writes are the Group A writes for this
barrier. When all the Group A writes (or some coherence-
successors thereof) of a barrier have been propagated to an-
other thread, the storage subsystem can record that fact
also, propagating the barrier to that thread (thereby mark-
ing a point in the sequence of writes that have been prop-
agated to that thread). A write cannot be propagated to a
thread tid until all relevant barriers are propagated to tid,
where the relevant barriers are those that were propagated
to the writing thread before the write itself. In turn (by the
above), that means that the Group A writes of those barri-
ers (or some coherence successors) must already have been
propagated to tid. This models the effect of cumulativity
while abstracting from the details of how it is implemented.

Moreover, a sync barrier can be acknowledged back to the
originating thread when all of its Group A writes have been
propagated to all threads.

In the thread model, barriers constrain the commit order.
For example, no memory load or store instruction can be
committed until all previous sync barriers are committed
and acknowledged; and sync and lwsync barriers cannot
be committed until all previous memory reads and writes
have been. Moreover, memory reads cannot be satisfied until
previous sync barriers are committed and acknowledged.
There are various possible modelling choices here which
should not make any observable difference — the above
corresponds to a moderately aggressive implementation.

4. The Model in Detail

We now detail the interface between the storage subsystem
and thread models, and the states and transitions of each.
The transitions are described in §4.3 and §4.5 in terms of



their precondition, their effect on the relevant state, and
the messages sent or received. Transitions are atomic, and
synchronise as shown in Fig. 1; messages are not buffered.
This is a prose description of our mathematical definitions,
available on-line [SSA+11].

4.1 The Storage Subsystem/Thread Interface

The storage subsystem and threads exchange messages:

• a write request (or write) w specifies the writing thread
tid, unique request id eid, address a, and value v.

• a read request specifies the originating thread tid, request
id eid, and address a.

• a read response specifies the originating thread tid, re-
quest id eid, and a write w (itself specifying the thread
tid′ that did the write, its id eid ′, address a, and value
v). This is sent when the value read is bound.

• a barrier request specifies the originating thread tid,
request id eid, and barrier type b (sync or lwsync).

• a barrier ack specifies the originating thread tid and
request id eid (a barrier ack is only sent for sync barriers,
after the barrier is propagated to all threads.

4.2 Storage Subsystem States

A storage subsystem state s has the following components.

• s.threads is the set of thread ids that exist in the system.
• s.writes seen is the set of all writes that the storage
subsystem has seen.

• s.coherence is the current constraint on the coherence
order, among the writes that the storage subsystem has
seen. It is a binary relation: s.coherence contains the pair
(w1, w2) if the storage subsystem has committed to write
w1 being before write w2 in the coherence order. This
relation grows over time, with new pairs being added, as
the storage subsystem makes additional commitments.
For each address, s.coherence is a strict partial order over
the write requests seen to that address. It does not relate
writes to different addresses, or relate any write that has
not been seen by the storage subsystem to any write.

• s.events propagated to gives, for each thread, a list of:
1. all writes done by that thread itself,
2. all writes by other threads that have been propagated

to this thread, and
3. all barriers that have been propagated to this thread.
We refer to those writes as the writes that have been
propagated to that thread. The Group A writes for a
barrier are all the writes that have been propagated to
the barrier’s thread before the barrier is.

• s.unacknowledged sync requests is the set of sync bar-
rier requests that the storage subsystem has not yet ac-
knowedged.

An initial state for the storage subsystem has the set of
thread ids that exist in the system, exactly one write for
each memory address, all of which have been propagated to
all threads (this ensures that they will be coherence-before
any other write to that address), an empty coherence order,
and no unacknowledged sync requests.

4.3 Storage Subsystem Transitions

Accept write request A write request by a thread tid
can always be accepted. Action:

1. add the new write to s.writes seen, to record the new
write as seen by the storage subsystem;

2. append the new write to s.events propagated to (tid), to
record the new write as propagated to its own thread;
and

3. update s.coherence to note that the new write is
coherence-after all writes (to the same address) that have
previously propagated to this thread.

Partial coherence commitment The storage subsys-
tem can internally commit to a more constrained coherence
order for a particular address, adding an arbitrary edge (be-
tween a pair of writes to that address that have been seen
already that are not yet related by coherence) to s.coherence,
together with any edges implied by transitivity, if there is no
cycle in the union of the resulting coherence order and the
set of all pairs of writes (w1, w2), to any address, for which
w1 and w2 are separated by a barrier in the list of events
propagated to the thread of w2.
Action: Add the new edges to s.coherence.

Propagate write to another thread The storage sub-
system can propagate a write w (by thread tid) that it has
seen to another thread tid ′, if:

1. the write has not yet been propagated to tid ′;
2. w is coherence-after any write to the same address that

has already been propagated to tid ′; and
3. all barriers that were propagated to tid before w (in

s.events propagated to (tid)) have already been propa-
gated to tid′.

Action: append w to s.events propagated to (tid ′).

Send a read response to a thread The storage subsys-
tem can accept a read-request by a thread tid at any time,
and reply with the most recent write w to the same address
that has been propagated to tid. The request and response
are tightly coupled into one atomic transition. Action: send
a read-response message containing w to tid.

Accept barrier request A barrier request from a thread
tid can always be accepted. Action:

1. append it to s.events propagated to (tid), to record the
barrier as propagated to its own thread (and thereby fix
the set of Group A writes for this barrier); and

2. (for sync) add it to s.unacknowledged sync requests.

Propagate barrier to another thread The storage
subsystem can propagate a barrier it has seen to another
thread if:

1. the barrier has not yet been propagated to that thread;
and

2. for each Group A write, that write (or some coherence
successor) has already been propagated to that thread

Action: append the barrier to s.events propagated to (tid).

Acknowledge sync barrier A sync barrier b can be ac-
knowledged if it has been propagated to all threads. Action:

1. send a barrier-ack message to the originating thread; and
2. remove b from s.unacknowledged sync requests.



Storage Subsystem Rule Message(s) Thread Rule
Accept write request write request Commit in-flight instruction
Partial coherence commitment
Propagate write to another thread
Send a read response to a thread read request/read response Satisfy memory read from storage subsystem

Satisfy memory read by forwarding an in-flight write
Accept barrier request barrier request Commit in-flight instruction
Propagate barrier to another thread
Acknowledge sync barrier barrier ack Accept sync barrier acknowledgement

Fetch instruction
Register read from previous register write
Register read from initial register state
Internal computation step

Figure 1. Storage Subsystem and Thread Synchronisation

4.4 Thread States

The state t of a single hardware thread consists of:

• its thread id.
• the initial values for all registers, t.initial register state.
• a set t.committed instructions of committed instruction
instances. All their operations have been executed and
they are not subject to restart or abort.

• a set t.in flight instructions of in-flight instruction in-
stances. These have been fetched and some of the asso-
ciated instruction-semantics micro-operations may have
been executed. However, none of the associated writes or
barriers have been sent to the storage subsystem, and any
in-flight instruction is subject to being aborted (together
with all of its dependents).

• a set t.unacknowledged syncs of sync barriers that have
not been acknowledged by the storage subsystem.

An initial state for a thread has no committed or in-flight
instructions and no unacknowledged sync barriers.

Each instruction instance i consists of a unique id, a rep-
resentation of the current state of its instruction seman-
tics, the names of its input and output registers, the set
of writes that it has read from, the instruction address,
the program-order-previous instruction instance id, and any
value constraint required to reach this instruction instance
from the previous instance. The instruction semantics ex-
ecutes in steps, doing internal computation, register reads
and writes, memory reads, and, finally, memory writes or
barriers.

4.5 Thread Transitions

Fetch instruction An instruction inst can be fetched, fol-
lowing its program-order predecessor iprev and from address
a, if

1. a is a possible next fetch address for iprev; and
2. inst is the instruction of the program at a.

The possible next fetch addresses allow speculation past
calculated jumps and conditional branches; they are defined
as:

1. for a non-branch/jump instruction, the successor instruc-
tion address;

2. for a jump to a constant address, that address;
3. for a jump to an address which is not yet fully determined

(i.e., where there is an uncommitted instruction with a
dataflow path to the address), any address; and

4. for a conditional branch, the possible addresses for a
jump together with the successor.

Action: construct an initialized instruction instance and add
it to the set of in-flight instructions. This is an internal action
of the thread, not involving the storage subsystem, as we
assume a fixed program rather than modelling fetches with
reads; we do not model self-modifying code.

Commit in-flight instruction An in-flight instruction
can be committed if:

1. its instruction semantics has no pending reads (memory
or register) or internal computation (data or address
arithmetic);

2. all instructions with a dataflow dependency to this in-
struction (instructions with register outputs feeding to
this instruction’s register inputs) are committed;

3. all program-order-previous branches are committed;
4. if a memory load or store is involved, all program-order-

previous instructions which might access its address (i.e.,
which have an as-yet-undetermined address or which
have a determined address which equals that one) are
committed;

5. if a memory load or store is involved, or this instruction
is a sync, lwsync, or isync, then
(a) all previous sync, lwsync and isync instructions are

committed, and
(b) there is no unacknowledged sync barrier by this

thread;
6. if a sync or lwsync instruction, all previous memory

access instructions are committed;
7. if an isync, then all program-order-previous instructions

which access memory have their addresses fully deter-
mined, where by ‘fully determined’ we mean that all in-
structions that are the source of incoming dataflow de-
pendencies to the relevant address are committed and
any internal address computation is done.

Action: note that the instruction is now committed, and:

1. if a write instruction, restart any in-flight memory reads
(and their dataflow dependents) that have read from
the same address, but from a different write (and where
the read could not have been by forwarding an in-flight
write);

2. if a read instruction, find all in-flight program-order
successors that have read from a different write to the
same address, or which follow a lwsync barrier program-
order after this instruction, and restart them and their
dataflow dependents;



3. if this is a branch, abort any untaken speculative paths
of execution, i.e., any instruction instances that are not
reachable by the branch taken; and

4. send any write requests or barrier requests as required
by the instruction semantics.

Accept sync barrier acknowledgement A sync bar-
rier acknowledgement can always be accepted (there will
always be a committed sync whose barrier has a match-
ing eid). Action: remove the corresponding barrier from
t.unacknowledged syncs.

Satisfy memory read from storage subsystem A
pending read request in the instruction semantics of an in-
flight instruction can be satisfied by making a read-request
and getting a read-response containing a write from the
storage subsystem if:

1. the address to read is determined (i.e., any other reads
with a dataflow path to the address have been satisfied,
though not necessarily committed, and any arithmetic on
such a path completed);

2. all program-order-previous syncs are committed and ac-
knowledged; and

3. all program-order-previous isyncs are committed.

Action:

1. update the internal state of the reading instruction; and
2. note that the write has been read from by that instruc-

tion.

The remaining transitions are all thread-internal steps.

Satisfy memory read by forwarding an in-flight write
directly to reading instruction A pending memory
write w from an in-flight (uncommitted) instruction can be
forwarded directly to a read of an instruction i if

1. w is an uncommitted write to the same address that is
program-order before the read, and there is no program-
order-intervening memory write that might be to the
same address;

2. all i’s program-order-previous syncs are committed and
acknowledged; and

3. all i’s program-order-previous isyncs are committed.

Action: as in the satisfy memory read from storage subsystem
rule above.

Register read from previous register write A register
read can read from a program-order-previous register write if
the latter is the last write to the same register program-order
before it. Action: update the internal state of the in-flight
reading instruction.

Register read from initial register state A register
read can read from the initial register state if there is no
write to the same register program-order before it. Action:
update the internal state of the in-flight reading instruction.

Internal computation step An in-flight instruction can
perform an internal computation step if its semantics has a
pending internal transition, e.g. for an arithmetic operation.
Action: update the internal state of the in-flight instruction.

4.6 Final states

The final states are those with no transitions. It should
be the case that for all such, all instruction instances are
committed.

5. Explaining the simple examples

The abstract machine explains the allowed and forbidden
behaviour for all the simple tests we saw before. For example,
in outline:

MP The Thread 0 write-requests for x and y could be
in-order or not, but either way, because they are to different
addresses, they can be propagated to Thread 1 in either
order. Moreover, even if they are propagated in program
order, the Thread 1 read of x can be satisfied first (seeing
the initial state), then the read of y, and they could be
committed in either order.

MP+sync+ctrl (control dependency) Here the sync
keeps the propagation of the writes to Thread 1 in order,
but the Thread 1 read of x can be satisfied speculatively,
before the conditional branch of the control dependency is
resolved and before the program-order-preceding Thread 1
read of y is satisfied; then the two reads can be committed
in program order.

MP+sync+ctrlisync (isync) Adding isync between
the conditional branch and the Thread 1 read of x prevents
that read being satisfied until the isync is committed, which
cannot happen until the program-order-previous branch is
committed, which cannot happen until the first read is
satisfied and committed.

WRC+sync+addr (A-cumulativity) The Thread 0
write-request for a:W[x]=1 must be made, and the write
propagated to Thread 1, for b to read 1 from it. Thread 1
then makes a barrier request for its sync, and that is prop-
agated to Thread 1 after a (so the write a is in the Group
A set for this barrier), before making the write-request for
c:W[y]=1. That write must be propagated to Thread 2 for d
to read from it, but before that is possible the sync must be
propagated to Thread 2, and before that is possible a must
be propagated to Thread 2. Meanwhile, the dependency on
Thread 2 means that the address of the read e is not known,
and so e cannot be satisfied, until read d has been satisfied
(from c). As that cannot be until after a is propagated to
Thread 2, read e must read 1 from a, not 0 from the initial
state.

WRC+data+sync Here, in contrast, while the
Thread 0/Thread 1 reads-from relationship and the
Thread 1 dependency ensure that the write-requests for
a:W[x]=1 and c:W[y]=1 are made in that order, and the
Thread 2 sync keeps its reads in order, the order that the
writes are propagated to Thread 2 is unconstrained.

ISA2 (B-cumulativity) In the ISA2+sync+data+addr
B-cumulativity example, the Thread 0 write requests and
barrier request must reach the storage subsystem in program
order, so Group A for the sync is {a} and the sync is
propagated to Thread 0 before the b write request reaches
the storage subsystem. For c to read from b, the latter must
have been propagated to Thread 1, which requires the sync
to be propagated to Thread 1, which in turn requires the
Group A write a to have been propagated to Thread 1. Now,
the Thread 1 dependency means that d cannot be committed
before the read c is satisfied (and committed), and hence d
must be after the sync is propagated to Thread 1. Finally,
for e to read from d, the latter must have been propagated
to Thread 2, for which the sync must be propagated to
Thread 2, and hence the Group A write a propagated to
Thread 2. The Thread 2 dependency means that f cannot



be satisfied until e is, so it must read from a, not from the
initial state.

The same result and reasoning hold for the lwsync variant
of this test (note that the reasoning did not involve sync acks
or any memory reads program-order-after the sync).

IRIW+syncs Here the two syncs (on Threads 1 and
3) have the corresponding writes (a and d) in their Group
A sets, and hence those writes must be propagated to all
threads before the respective syncs are acknowledged, which
must happen before the program-order-subsequent reads c
and f can be be satisfied. But for those to read 0, from
coherence-predecessors of a and d, the latter must not have
been propagated to all threads (in particular, they must not
have been propagated to Threads 3 and 1 respectively). In
other words, for this to happen there would have to be a
cycle in abstract-machine execution time:

Thread 1 sync acknowledgement

Thread 1 c: R[y]=0 is satisfied

a: W[x]=1 propagated to last thread d: W[y]=1 propagated to last thread

Thread 3 sync acknowledgement

Thread 3 d: R[x]=0 is satisfied

With lwsyncs instead of syncs, the behaviour is allowed,
because lwsyncs do not have an analogous acknowledgement
when their Group A writes have been propagated to all
threads, and memory reads do not wait for previous lwsyncs
to reach that point.

6. Not-so-simple examples

We now discuss some more subtle behaviours, explaining
each in terms of our model.

Write forwarding In the PPOCA variant of MP below,
f is address-dependent on e, which reads from the write d,
which is control-dependent on c. One might expect that
chain to prevent read f binding its value (with the satisfy
memory read from storage subsystem rule) before c does,
but in fact in some implementations f can bind out-of-order,
as shown — the write d can be forwarded directly to e
within the thread, before the write is committed to the
storage subsystem. The satisfy memory read by forwarding
an in-flight write rule models this. Replacing the control
dependency with a data dependency (test PPOAA, not
shown) removes that possibility, forbidding the given result
on current hardware, as far as our experimental results show,
and in our model. The current architecture text [Pow09]
leaves the PPOAA outcome unspecified, but we anticipate
that future versions will explicitly forbid it.

Test PPOCA : Allowed

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

sync
rf

ctrl

rf

addr

rf

Test RSW : Allowed

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=0

f: R[z]=0

sync
rf

addr

po

addr

rf

rf

rf

Aggressively out-of-order reads In the reads-from-
same-writes (RSW) variant of MP above, the two reads of
x, d and e, happen to read from the same write (the initial
state). In this case, despite the fact that d and e are reading

from the same address, the e/f pair can satisfy their reads
out-of-order, before the c/d pair, permitting the outcome
shown. The address of e is known, so it can be satisfied
early, while the address of d is not known until its address
dependency on c is resolved. In contrast, in an execution
in which d and e read from different writes to x (test RDW,
not shown), with another write to x by another thread), that
is forbidden — in the model, the commit of the first read
(d) would force a restart of the second (e), together with
its dependencies (including f), if e had initially read from
a different write to d. In actual implementations the restart
might be earlier, when an invalidate is processed, but will
have the same observable effect.

Coherence and lwsync: blw-w-006 This example
shows that one cannot assume that the transitive closure
of lwsync and coherence edges guarantees ordering of write
pairs, which is a challenge for over-simplified models. In our
abstract machine, the fact that the storage subsystem com-
mits to b being before c in the coherence order has no effect
on the order in which writes a and d propagate to Thread 2.
Thread 1 does not read from either Thread 0 write, so they
need not be sent to Thread 1, so no cumulativity is in play.

Test blw-w-006 : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

lwsync
co

lwsync
rf

addr

rf

In some implementations, and in the model, replacing both
lwsyncs by syncs (bsync-w-006) forbids this behaviour. In
the model, it would require a cycle in abstract-machine
execution time, from the point at which a propagates to its
last thread, to the Thread 0 sync ack, to the b write accept,
to c propagating to Thread 0, to c propagating to its last
thread, to the Thread 1 sync ack, to the d write accept, to
d propagating to Thread 2, to e being satisfied, to f being
satisfied, to a propagating to Thread 2, to a propagating to
its last thread. The current architecture text again leaves
this unspecified, but one would expect that adding sync
everywhere (or, in this case, an address dependency between
two reads) should regain SC.

Coherence and lwsync: 2+2W and R01 The
2+2W+lwsyncs example below is a case where the interac-
tion of coherence and lwsyncs does forbid some behaviour.
Without the lwsyncs (2+2W), the given execution is al-
lowed. With them, the writes must be committed in program
order, but after one partial coherence commitment (say d be-
fore a) is done, the other (b before c) is no longer permitted.
(As this test has only writes, it may be helpful to note that
the coherence order edges here could be observed either by
reading the final state or with additional threads reading x
twice and y twice. Testing both versions gives the same re-
sult.) This example is a challenge for axiomatic models with
a view order per thread, as something is needed to break
the symmetry. The given behaviour is also forbidden for the
version with syncs (2+2W+syncs).

Test 2+2W+lwsyncs : Forbidden

Thread 0

a: W[x]=1

b: W[y]=2

c: W[y]=1

Thread 1

d: W[x]=2

lwsync lwsync

coco

Test R01 : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: R[x]=0

lwsync
co

sync

rf



The R01 test on the right above is a related case where we
have not observed the given allowed behaviour in practice,
but it is not currently forbidden by the architecture, and our
model permits it. In the model, the writes can all reach the
storage subsystem, the b/c partial coherence commitment be
made, c be propagated to Thread 0, the sync be committed
and acknowledged, and d be satisfied, all before a and the
lwsync propagate to Thread 1.

LB and (no) thin-air reads This LB dual of the SB
example is another case where we have not observed the
given allowed behaviour in practice, but it is clearly archi-
tecturally intended, so programmers should assume that fu-
ture processors might permit it, and our model does. Adding
data or address dependencies (e.g. in LB+datas) should for-
bid the given behaviour (the data dependency case could
involve out-of-thin-air reads), but experimental testing here
is vacuous, as LB itself is not observed.

Test LB : Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po po

rfrf

Register shadowing Adir et al. [AAS03] give another
variant of LB (which we call LB+rs, for Register Shadow-
ing), with a dependency on Thread 1 but re-using the same
register on Thread 0, to demonstrate the observability of
shadow registers. That is also allowed in our model but not
observable in our tests — unsurprisingly, given that we have
not observed LB itself. However, the following variant of MP
does exhibit observable register shadowing: the two uses of
r3 on Thread 1 do not prevent the second read being satis-
fied out-of-order, if the reads are into shadow registers. The
reuse of a register is not represented in our diagrams, so
for this example we have to give the underlying PowerPC
assembly code.

Test MP+sync+rs : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

po

rf

Thread 0 Thread 1
li r1,1 lwz r3,0(r2)
stw r1,0(r2) mr r1,r3
sync lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y

∧ 1:r2=y ∧ 1:r4=x
Allowed: 1:r1=1 ∧ 1:r3=0

7. Experiments on hardware

The use of small litmus-test programs for discussing the be-
haviour of relaxed memory models is well-established, but
most previous work (with notable exceptions) does not em-
pirically investigate how tests behave on actual hardware.
We use our litmus tool [AMSS11] to run tests on machines
with various Power processors: Power G5 (aka PowerPC
970MP, based on a POWER4 core), POWER 5, POWER
6, and POWER 7. The tool takes tests in PowerPC assem-
bly and runs them in a test harness designed to stress the
processor, to increase the likelihood of interesting results.
This is black-box testing, and one cannot make any definite
conclusions from the absence of some observation, but our
experience is that the tool is rather discriminating, identify-
ing many issues with previous models (and [AMSS10] report
the discovery of a processor erratum using it).

Our work is also unusual in the range and number of tests
used. For this paper we have established a library based on

tests from the literature [Pow09, BA08, AAS03, ARM08],
new hand-written tests (e.g. the PPOCA, PPOAA, RSW,
RDW, and 2+2W in §6, and many others), and systematic
variations of several tests (SB, MP, WRC, IRIW, ISA2, LB,
and two others, RWC and WWC) with all possible combi-
nations of barriers or dependencies; we call this the “VAR3”
family, of 314 tests. We ran all of these on Power G5, 6,
and 7. In addition, we use the diy tool [AMSS10] to sys-
tematically generate several thousand interesting tests with
cycles of edges (dependencies, reads-from, coherence, etc.)
of increasing size, and tested some of these. As an impor-
tant style point, we use tests with constraints on the final
values (and hence on the values read) rather than loops, to
make them easily testable. We give an excerpt of our exper-
imental results below, to give the flavour; more are avail-
able online [SSA+11]. For example, PPOCA was observable
on POWER G5 (1.0k/3.1G), not observable on POWER
6, and then observable again on POWER 7 — consistent
with the less aggressively out-of-order microarchitecture of
POWER 6.

Test Model POWER 6 POWER 7

WRC Allow ok 970k / 12G ok 23M/ 93G
WRC+data+addr Allow ok 562k / 12G ok 94k / 93G
WRC+syncs Forbid ok 0 / 16G ok 0 / 110G
WRC+sync+addr Forbid ok 0 / 16G ok 0 / 110G
WRC+lwsync+addr Forbid ok 0 / 16G ok 0 / 110G
WRC+data+sync Allow ok 150k / 12G ok 56k / 94G

PPOCA Allow unseen 0 / 39G ok 62k / 141G
PPOAA Forbid ok 0 / 39G ok 0 / 157G

LB Allow unseen 0 / 31G unseen 0 / 176G

The interplay between manual testing, systematic test-
ing, and discussion with IBM staff has been essential
to the development of our model. For example: the
PPOCA/PPOAA behaviour was discovered in manual test-
ing, leading us to conjecture that it should be explained by
write-forwarding, which was later confirmed by discussion;
the blw-w-006 test, found in systematic testing, highlighted
difficulties with coherence and lwsync in an earlier model;
and the role of coherence and sync acknowledgements in
the current implementations arose from discussion.

8. Executing the model

The intricacy of relaxed memory models (and the number
of tests we consider) make it essential also to have tool sup-
port for exploring the model, to automatically calculate the
outcomes that the model permits for a litmus test, and to
compare them against those observed in practice. To ease
model development, and also to retain confidence in the
tool, its kernel should be automatically generated from the
model definition, not hand-coded. Our abstract machine is
defined in Lem, a new lightweight language for machine-
formalised mathematical definitions, of types, functions and
inductive relations [OBZNS]. From this we generate HOL4
prover code (and thence an automatically typeset version
of the machine) and executable OCaml code, using a finite
set library, for the precondition and action of each transition
rule. We also formalised a symbolic operational semantics for
the tiny fragment of the instruction set needed for our tests.
Using those, we build an exhaustive memoised search proce-
dure that finds all possible abstract-machine executions for
litmus tests.

This has confirmed that the model has the expected
behaviour for the 41 tests we mention by name in this paper,
for the rest of the VAR3 family of 314 systematic tests,



and for various other tests. In most cases the model exactly
matches the Power7 experimental results, with the exception
of a few where it includes the experimental outcomes but
is intentionally looser; this applies to 60 tests out of our
batch of 333. Specifically: the model allows instructions
to commit out of program order, which permits the LB
and LB+rs test outcomes (not observed in practice); the
model also allows an isync to commit even in the presence
of previously uncommitted memory accesses, whereas the
specified outcomes of tests such as WRC with an lwsync
and isync have not been observed; and the R01 test outcome
is not observed. In all these cases the model follows the
architectural intent, as confirmed with IBM staff.

Our experimental results also confirm that Power G5 and
6 are strictly stronger than Power 7 (though in different
ways): we have not seen any test outcome on those which
is not also observable on Power 7. The model is thus also
sound for those, to the best of our knowledge.

9. Related Work

There has been extensive previous work on relaxed mem-
ory models. We focus on models for the major current pro-
cessor families that do not have sequentially consistent be-
haviour: Sparc, x86, Itanium, ARM, and Power. Early work
by Collier [Col92] developed models based on empirical test-
ing for the multiprocessors of the day. For Sparc, the ven-
dor documentation has a clear Total Store Ordering (TSO)
model [SFC91, Spa92]. It also introduces PSO and RMO
models, but these are not used in practice. For x86, the
vendor intentions were until recently quite unclear, as was
the behaviour of processor implementations. The work by
Sarkar, Owens, et al. [SSZN+09, OSS09, SSO+10] suggests
that for normal user- or system-code they are also TSO.
Their work is in a similar spirit to our own, with a mech-
anised semantics that is tested against empirical observa-
tion. Itanium provides a much weaker model than TSO,
but one which is more precisely defined by the vendor than
x86 [Int02]; it has also been formalised in TLA [JLM+03]
and in higher-order logic [YGLS03].

For Power, there have been several previous models, but
none are satisfactory for reasoning about realistic concurrent
code. In part this is because the architecture has changed
over time: the lwsync barrier has been added, and barri-
ers are now cumulative. Corella, Stone and Barton [CSB93]
gave an early axiomatic model for PowerPC, but, as Adir et
al. note [AAS03], this model is flawed (it permits the non-SC
final state of the MP+syncs example we show in §2). Stone
and Fitzgerald later gave a prose description of PowerPC
memory order, largely in terms of the microarchitecture of
the time [SF95]. Gharachorloo [Gha95] gives a variety of
models for different architectures in a general framework,
but the model for the PowerPC is described as “approxi-
mate”; it is apparently based on Corella et al. [CSB93] and
on May et al. [MSSW94]. Adve and Gharachorloo [AG96]
make clear that PowerPC is very relaxed, but do not dis-
cuss the intricacies of dependency-induced ordering, or the
more modern barriers. Adir, Attiya, and Shurek give a de-
tailed axiomatic model [AAS03], in terms of a view order for
each thread. The model was “developed through an iterative
process of successive refinements, numerous discussions with
the PowerPC architects, and analysis of examples and coun-
terexamples”, and its consequences for a number of litmus
tests (some of which we use here) are described in detail.
These facts inspire some confidence, but it is not easy to
understand the force of the axioms, and it describes non-

cumulative barriers, following the pre-PPC 1.09 PowerPC
architecture; current processors appear to be quite differ-
ent. More recently, Chong and Ishtiaq give a preliminary
model for ARM [CI08], which has a very similar architected
memory model to Power. In our initial work in this area
[AFI+09], we gave an axiomatic model based on a reading
of the Power ISA 2.05 and ARM ARM specifications, with
experimental results for a few tests (described as work in
progress); this seems to be correct for some aspects but to
give an unusably weak semantics to barriers.

More recently, we gave a rather different axiomatic
model [AMSS10], further developed in Alglave’s the-
sis [Alg10] as an instance of a general framework; it models
the non-multi-copy-atomic nature of Power (with examples
such as IRIW+addrs correctly allowed) in a simple global-
time setting. The axiomatic model is sound with respect
to our experimental tests, and on that basis can be used
for reasoning, but it is weaker than the observed behaviour
or architectural intent for some important examples. More-
over, it was based principally on black-box testing and its
relationship to the actual processor implementations is less
clear than that for the operational model we present here,
which is more firmly grounded on microarchitectural and ar-
chitectural discussion. In more detail, the axiomatic model is
weaker than one might want for lwsync and for cumulativity:
it allows MP+lwsync+addr and ISA2+sync+data+addr,
which are not observed and which are intended to be ar-
chitecturally forbidden. It also forbids R01, which is not ob-
served but architecturally intended to be allowed, and which
is allowed by the model given here. The two models are thus
incomparable.

We mention also Lea’s JSR-133 Cookbook for Compiler
Writers [Lea], which gives informal (and approximate) mod-
els for several multiprocessors, and which highlights the need
for clear models.

10. Conclusion

To summarise our contribution, we have characterised the
actual behaviour of Power multiprocessors, by example and
by giving a semantic model. Our examples include new
tests illustrating several previously undescribed phenomena,
together with variations of classic tests and a large suite
of automatically generated tests; we have experimentally
investigated their behaviour on a range of processors. Our
model is: rigorous (in machine-typechecked mathematics);
experimentally validated ; accessible (in an abstract machine
style, and detailed here in a few pages of prose); usable (as
witnessed by the explanations of examples); supported by
a tool, for calculating the possible outcomes of tests; and
sufficient to explain the subtle behaviour exposed by our
examples and testing. It is a new abstraction, maintaining
coherence and cumulativity properties by fiat but modelling
out-of-order and speculative execution explicitly.

The model should provide a good intuition for developers
of concurrent systems code for Power multiprocessors, e.g. of
concurrency libraries, language runtimes, OS kernels, and
optimising compilers. Moreover, as the ARM architecture
memory model is very similar, it may well be applicable
(with minor adaptation) to ARM.

The model also opens up many directions for future re-
search in verification theory and tools. For example, it is
now possible to state results about the correct compilation
of the C++0x concurrency primitives to Power processors,
and to consider barrier- and dependency-aware optimisa-
tions in that context. We have focussed here primarily on



the actual behaviour of implementations, but there is also
work required to identify the guarantees that programmers
actually rely on, which may be somewhat weaker — some of
our more exotic examples are not natural use-cases, to the
best of our knowledge. There is also future work required
to broaden the scope of the model, which here covers only
cacheable memory without mixed-size accesses.

We described our model principally in its own terms and
in terms of the observed behaviour, without going into de-
tails of the relationship between the model and the underly-
ing microarchitecture, or with the vendor architecture spec-
ification [Pow09]; this remains future work. A central notion
of the memory model text in the latter is that of when a
memory read or write by one thread is performed with re-
spect to another, which has a hypothetical (or subjunctive)
definition, e.g. for loads: “A load by a processor P1 is per-
formed with respect to a processor P2 when the value to be
returned can no longer be changed by a store by P2”, where
that P2 store may not even be present in the program un-
der consideration (again, ARM is similar). This definition
made perfect sense in the original white-box setting [DSB86],
where the internal structure of the system was known and
one can imagine the hypothetical store by P2 appearing at
some internal interface, but in the black-box setting of a
commercial multiprocessor, it is hard or impossible to make
it precise, especially with examples such as PPOCA. Our
abstract-machine model may provide a stepping stone to-
wards improved architectural definitions, perhaps via new
axiomatic characterisations.
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