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Abstract

ARM and IBM POWER multiprocessors have highgtaxedmemory models: they make use of a range of hard-
ware optimisations that do not affect the observable behaviour oéséiglicode but which are exposed to concurrent
programmers, and concurrent code may not execute in the way mmelénunless sufficient synchronisation, in the
form of barriers, dependencies, and load-reserve/store-coralipiairs, is present. In this tutorial we explain some
of the main issues that programmers should be aware of, by exanf@enaterial is based on extensive experimental
testing, discussion with some of the designers, and formal models th&b ampture the architectural intent (though
we do not speak for the vendors). To keep this tutorial as accessiplesaible, we refer to our previous work for
those details.
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1 Introduction

ARM and IBM POWER multiprocessors have highglaxedmemory models: they make use of a range of hardware
optimisations that do not affect the observable behavidgegquential code but which are exposed to concurrent
programmers, and concurrent code may not execute in the mayntends unless sufficient synchronisation, in the

form of barriers, dependencies, and load-reserve/stamditional pairs, is present. In this tutorial we explaimsoof

the main issues that programmers should be aware of, by deafipe material is based on extensive experimental
testing, discussion with some of the designers, and fornealats that aim to capture the architectural intent (though
we do not speak for the vendors). To keep this tutorial assailole as possible, we refer to our previous work for

those details.

We emphasise that our focus is on low-level concurrent codptementations of synchronisation libraries, con-
current datastructures, etc. For simple higher-level ¢bdefollows a correct locking discipline and that is raceef
apart from the lock implementations, most of what we descsbould not be a concern. Even for low-level code,
while some of our examples crop up in practical programmiigns, some (to be best of our knowledge) do not, and
are included simply to provide a reasonably complete pectiithe possible behaviour of the machines.

1.1 Scope

The ARM and IBM POWER architectures differ in many respeat they have similar (though not identical) relaxed
memory models. Here, we aim to cover the memory models fdragenents of the instruction sets required for typical
low-level concurrent algorithms in main memory, as theymippear in user or OS kernel code. We include memory
reads and writes, register-to-register operations, I@s)cand the various kinds of dependency between instnsctio
The two architectures each have a variety of special insong that enforce particular ordering properties. First,
there arememory barriers For POWER we cover thgync (also known aswsync or sync 0), lwsync, andeieio
barriers, while for ARM we cover th®MB barrier, which is analogous to the POWERnc. Second, there are
the POWERIsync instruction and analogous ARNBB instruction. Third, there are POWER load-reserve/store-
conditional pairdarx/stcx and the ARM load-exclusive/store-exclusive paiBREX/STREX. We do not deal with
mixed-size accesses or with explicit manipulation of padgets, cache hints, self-modifying code, or interrupts. Fo
ARM, we assume that all observers are in the “same requiraetahility domain”.

1.2 Organisation

We structure the explanation around a series of examplésn(&hown aditmus testk very small concurrent pro-
grams, accessing just a few shared variables, that ilkestn@ main relaxed-memory phenomena that one should be
aware of. Most are taken from a systematic study of the iaterg small examples, covering all possible patterns of
communication and synchronisation up to a certain sizeyanpull these together into a ‘periodic table’ of examples
in Section 9. To let one see the communication and synclatiois patterns as clearly as possible, the examples
are abstract rather than taken from production code, butlkebtiefly about the possible use cases in which each
might arise (and about possible microarchitectural exatians of their behaviour). After reading this tutorial,eon
should be able to look at some production concurrent codeaaatyse it in terms of the communication and syn-
chronisation patterns it uses. Sections 10-12 illustratziaty of more subtle phenomena, then Section 13 discusses
load-exclusive/store-exclusive (ARM) and load-resestaggk-conditional (POWER) instructions. Section 14 aredys
an example algorithm, a simplfied version of Peterson’srityn for mutual exclusion, in terms of litmus test pat-
terns. Section 15 relates the litmus tests we use to somédkiatappeared in the literature and Section 16 reviews
some of the related work.

Finally Section 17 describes supporting material that @ilable on-line. Various papers describe an opera-
tional abstract-machine model for POWER, explain the behawwf some litmus tests in terms of that model, give
a correctness proof for an implementation of the C/C++ cmecwwy model of the C11 and C++11 revised stan-
dards [BA08, BOS 11, Becll, ISO11] above POWER processors, and give an axiomatiel for POWER. Our
ppcmem tool, available via a web interface, lets one interactie{plore the behaviour of a POWER or ARM litmus
test with respect to our operational model; 6tmus tool takes a litmus test and constructs a test harness (as@ C p
gram with embedded assembly) to experimentally test itebble behaviours; and odiy tool generating litmus
tests from concise specifications. There is also an on-linesary of tests and experimental results.



2 From Sequential Consistency to Relaxed Memory Models

One might expect multiprocessors to haegjuentially consiste{SC) shared memory, in which, as articulated by
Lamport [Lam79]:

“the result of any execution is the same as if the operatidraldhe processors were executed in some
sequential order, and the operations of each individualcgssor appear in this sequence in the order
specified by its program”.

An SC machine can be modelled as in the diagram below:

Thread; e Thread,,
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Shared Memory

Here there are a number of hardware threads, each execotiegas specified by the program, which access a single
shared memory (by writing and reading the values it holdaeh@ddress). Such a machine has two key properties:

1. There is ndocal reordering each hardware thread executes instructions in the oréeifignl by the program,
completing each instruction (including any reads or writethe shared memory) before starting the next.

2. Each write becomes visible to all threads (including tiredd doing the write) at the same time.

However, most multiprocessors are not sequentially ctergigncluding the current ARM, POWER, x86, Itanium,
and SPARC architectures, and others dating back at least as the 1972 IBM System 370/158MP. Instead they have
variousrelaxedor weakmemory models: they guarantee only weaker propertierd|de a range of microarchitec-
tural optimisations in the processor implementations pihatide better performance, better energy usage, or simple
hardware. These optimisations are typically not obseevabkingle-threaded code, or by programs that obey a con-
ventional locking discipline and are (except within thedamplementations) race-free, but general concurrent code
can observe non-SC behaviours.

The details vary between architectures, and even betwdfenedit processor implementations of the same archi-
tecture. In broad terms x86 and SPARC are similar, with ikt strong models based on tfetal Store Ordering
(TSO) model [Spa92, OSS09, SSM0] that we recall below. ARM and POWER are much weaker than {iB@gh
broadly similar to each other), as we shall describe in thtigrial. Itanium [Int02] is also much weaker than TSO, but
in rather different ways to ARM and POWER; we do not cover igher

TSO An x86-TSO or SPARC TSO machine can be described by the diabedow [SST 10, 0SS09, SSZN09,
Spa92]. Here each hardware thread has a FIFO write buffeerdipg memory writes (thus avoiding the need to
block a thread while a write completes). Moreover, a read3@Ts required to read from the most recent write to the



same address, if there is one, in the local store buffer.
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In addition, many x86 instructions involve multiple memagcesses, e.g. an x86 incremBMC. By default, these
are not guaranteed atomic (so two parallel increments afigially 0 location might result in it holding.), but there
are atomic variants of thenizOCK;INC atomically performs a read, a write of the incremented vane a flush of
the local write buffer, effectively locking the memory fdret duration. Compare-and-swap instructic@MPXCHG)
are atomic in the same way, and memory fenddBENCE) simply flush the local write buffer. SPARC is similar,
though with a smaller repertoire of atomic instructionfieatthan a general LOCK prefix.

Returning to the two properties above, in TSO a thread caitsean writes before they become visible to other
threads (by reading them from its write buffer), but any siecomes visible to aditherthreads simultaneously: TSO
is amultiple-copy atomiaenodel, in the terminology of Collier [Col92]. One can als@ ke possibility of reading
from the local write buffer as allowing a specific kind of Ibcaordering. A program that writes one locatinrthen
reads another locatioyn might execute by adding the write joto the thread’s buffer, then readiygfrom memory,
before finally making the write ta visible to other threads by flushing it from the buffer. Instisase the thread reads
the value ofy that was in the memoryeforethe new write ofx hits memory.

ARM and POWER ARM and IBM POWER have adopted considerably more relaxed mgmodels. For several
reasons (including performance, power efficiency, hardveamplexity, and historical choices), they allow a wider
range of hardware optimisations to be observable to theranogrer. This allows a wide range of relaxed behaviour
by default, so the architectures also provide mechanismthe form of various memory barriers and dependency
guarantees, for the programmer to enforce stronger ogléaimd to pay the cost thereof) only where it is required. In
the absence of such:

1. The hardware threads can each perform reads and writed-ouder, or even speculatively (before preceding
conditional branches have been resolved). In contrast @, Where there is no local reordering except of reads
after writes to different addresses, here any local reordes allowed unless specified otherwise.

2. The memory system (perhaps involving a hierarchy of losiffed a complex interconnect) does not guarantee
that a write becomes visible to all other hardware threadheasame time point; these architectures are not
multiple-copy atomic.

I mplementation and Architecture To explain the ARM and POWER allowed behaviour in more deted, have

to clearly distinguish between several views of a multipssor. A specific processor implementation, such as the
IBM POWER 7, or the NVIDIA Tegra 2 (an SoC containing a dualec&iRM Cortex-A9 CPU), will have a specific
microarchitectureand detailed design that incorporates many optimisatidie. are not concerned here with the
internal structure of the designs, as they are too complgxduide a good programming model and are typically
commercially confidential.



Instead, we are concerned with fhi@grammer-observableehaviour of implementations: the set of all behaviour
that a programmer might see by executing multithreadedrpmg on some particular implementation and examining
the results (moreover, here we are concerned only with cioress properties, not with performance behaviour).

Even this is usually too specific to work with: each procedaorily comprises many implementations which (as
we shall see) can have significantly different programnieseovable behaviour, and one typically wants software that
will work correctly on all of them, not just on one specific pessor implementation. Aarchitecturespecifies a range
of behaviour that programmers should be able to depend omnfoprocessor implementation that conforms to the
architecture. An architecture may be a significantly loegpercification than the programmer-observable behaviour of
a specific processor implementation, to accomodate thati@ars among current, past, and future implementations.
(Of course, this looseness makes software developmenénbalg: in principle one might think that one should “pro-
gram to the architecture”, but normal software developmeligs on testing software running on specific processor
implementations, which may not exhibit some architectyi@lowed behaviour that other implementations do or will
exhibit.)

Processor vendors produce architecture specificatiook,astthe Power ISA Version 2.06 [Pow09], and the ARM
Architecture Reference Manual (ARMv7-A and ARMv7-R editidARMO08a]. These use prose and pseudocode to
describe a range of observable behaviour, and are geneatiibr precise about sequential behaviour but less claar th
one might hope when it comes to concurrent behaviour angeétenemory phenomena — it is very hard to produce
prose that unambiguously and completely captures thesketes.

Instead, we and others advocate the usenathematically rigorousarchitecture definitions. These are often
most accessibly presented @serational modelssuch as the TSO machine illustrated above. This has arréabst
microarchitectural’ flavour: it is ambstract machinewith some machine state (comprising the states of the dhare
memory, the FIFO write buffers, and the threads) and a defimif the transitions that the machine can take. It
specifies a range of observable behaviour for a concurregram implicitly, as all the behaviour that that abstract
machine could exhibit when running that program; by claignihat an abstract machine is a sound architectural
model for a range of processor implementations, we mearidhaty program the set of observable behaviours of the
abstract machine running that program includes any betiethat might be exhibited by any of those implementations
running the program. The internal structure of the abstrathine, on the other hand, might be very different to the
microarchitecture and detailed design of the processadeimgntations. Indeed, modern x86 processors typically wil
have a complex cache hierarchy, out-of-order executioth saron, quite different from the simple FIFO-write-buffer
structure of the abstract machine. The significance of tistratt machine model is that those are not observable to
the programmer (except via performance properties).

In ongoing work, we are developing mathematically rigoroperational-model architecture specifications for
ARM and POWER [SSA11, SMO"12]. In this tutorial we focus on explaining what observatdaviour is permit-
ted for ARM and POWER by example, so we will not give those medeldetail, but to develop some intuition for
how concurrent programs might behave it is useful to firgoufiice some of the basic concepts used by the model.
We emphasise again that these are not to be confused witlttlred enicroarchitecture of current implementations.

ARM and POWER Abstract Machine Concepts To explain the behaviour of a non-multiple-copy-atomic hiae,

it is sometimes helpful to think of each thread as effecivelving its own copy of memory, specifying abstractly what
value that thread would normally read for any address, dseiliagram below. A write by one thread mappagate

to other threads in any order, and the propagations of witd#ferent addresses can be interleaved arbitrarilyess|
they are constrained by barriers or coherence. As we stealaser, one can also think of barriers (the ARM DMB and
POWER sync and lwsync) as propagating from the hardwaredthed executed them to each of the other threads.



Thread;

We speak of the collection of all the memories and their sdenect (i.e., everything except the threads) astbege
subsystem

For the thread-local out-of-order (and speculative) etienyin general we can think of each thread, at any pointin
time, as having a tree of tleemmittedandin-flight instruction instances. Newly fetched instructions becowféght,
and later, subject to appropriate preconditions, can bendtied. For example, below we show a set of instruction
instances{iy, ..., 413} with the program-order-successor relation among themed& bf those {i1, i3, i1}, boxed)
have been committed; the remainder are in-flight.
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Instruction instances andig are branches for which the thread has fetched multiple plessiiccessors; here just two,
but a branch with a computed address might in principle fetalmy possible successors. A typical implementation
might well explore at most one speculative path at a time.eNbat the committed instances are not necessarily
contiguous: here; andiy, have been committed even thougthas not, which can only happen if they are sufficiently
independent. When a branch is committed then any un-takemative paths are discarded, and instructions that
follow (in program order) an uncommitted branch cannot bemdtted until that branch is, so the tree must be linear
before any committed (boxed) instructions.

For a read instruction, as soon as an address for the readvgkithe read might bsatisfied binding its value
to one received from the local memory (or in some cases falweafrom earlier in the thread). That value could
immediately be used by later instructions in the threaddlegend on it, but it and they are subject to being restarted
or (if this is a speculative path) aborted until the readasmitted

For a write instruction, the key points are when the addradsvalue become determined. After that (subject to
other conditions) the write can lmmmitted sent to the local memory; this is not subject to restart artabAfter
that, the write mighpropagateto other threads, becoming readable by them.



Barriers are similar in that they gebmmittedat a thread and sent to the local part of the storage subsyisédane
perhapgropagatingto other threads. The constraints on how writes and bac@rpropagate are intertwined, as we
shall see.

Aside: other notions of atomicity We introducedmultiple-copy atomicityabove, but some caution is needed, as
there are many different senses of “atomic” in use. Two oiih@ortant notions of atomicity are as follows.

A memory read or write by an instruction &cess-atomi¢or single-copy atomicin the terminology of Col-
lier [Col92]—though note that single-copy atomic is not thmposite of multiple-copy atomic) if it gives rise to a
single access to the memory. Typically an architecture spiéicify that certain sizes of reads and writes, subject to
some alignment constraints, (such as 1, 2, 4, 8, and 16-bgtsses with those alignments), are access-atomic, while
other sizes and non-aligned accesses may be split intoadalistinct subaccesses. For example, two writes of the
same size to the same address are access-atomic iff theiseguaranteed to be either one or the other value, not a
combination of their bits. Of course, in a machine which is mailtiple-copy atomic, even if a write instruction is
access-atomic, the write may become visible to differergatis at different times (and if a write is not access-atpmic
the individual subaccesses may become visible to difféteatads at different times, perhaps in different orders).

An instruction that involves more than one memory accest) as an increment that does a read and a write to the
same location, or a load-multiple that reads several wasdsstruction-atomidf its accesses are indivisible in time,
with no other intervening access by other threads to theatlons. For example, increment is instruction-atomic iff
two concurrent increments to the same location that isaiiytD are guaranteed to result in the location containing 2,
not 1. On x86INC is not instruction-atomic wherea®©CK;INC is. On POWER ammw load-multiple instruction is
not instruction-atomic.

Yet another usage is the C11 and C++11 atomic types and aperafThese have various properties, including
analogues of access- and instruction-atomicity, that vileneft discuss here; see [BA08, BO$1, Becl1, ISO11] for
details.

3 Introducing Litmus Tests, and Simple Message Passing (MP)

3.1 Message Passing Attempts without Barriers or Dependende

3.1.1 The Message Passing (MP) Example A simple example illustrating some ways in which ARM and
POWER are relaxed is the classiessage passind@/1P) example below, with two threads (Thread 0 and Thread 1)
and two shared variableg andy). This is a simple low-level concurrency programming idjomwhich one thread
(Thread 0) writes some dataand then sets a flagto indicate that the data is ready to be read, while anotheath
(Thread 1) busy-waits reading the flpgintil it sees it set, and then reads the datato a local variable or processor
registerr2. The desired behaviour is that after the reading threaddes the flag set, its subsequent read of the data
x will see the value from the writing thread, not the initiadtet (or some other previous value). In pseudocode:

MP-loop Pseudocode
Thread 0 Thread 1
x=1 /] write data while (y==0) {}  // busy-wait for flag
y=1 /[ write flag r2=x /I read data

Initial state: x=0 A y=0
Forbidden?: Thread 1 register r2 =0

The test specifies the initial state of registers and memar§ &ndy=0; henceforth we assume these are zero if not
given explicitly) and a constraint on the final state, e.gt fhread 1's registe® is 0. Herex (or [X] in assembly tests)

is the value of memory locatiox later we writel:r2 for the value of register2 on hardware thread. If one reached
that final state, withr2=0, then the Thread 1 read afwould have to have reax=0 from the initial state despite the
Thread lwhile loop having successfully exit on reading from the Thread ifevaf y=1, program-order-after its write
of x=1.

We can simplify the example without really affecting whatgising on by looking at just a single test of the
flag: instead of looking at all executions of tMP-loop busy-waiting loop, we can restrict our attention to just the
executions of th&ViP program below in which the Thread 1 readyo$ees the valué written by Thread 0 (we are
effectively considering just the executionsMP-loop in which thewhile loop test succeeds the first time). In other



words, the desired behaviour is thifathe read ofy saw1 then the read ok must not have seeb. Or, equivalently,
the desired behaviour is that final outcomes in whilthl andr2=0 should be forbidden.

MP Pseudocode
Thread O Thread 1
x=1 ri=y
y=1 r2=x

Initial state: x=0 A y=0
Forbidden?: 1:r1=1 A 1:r2=0

A litmus testsuch as this comprises a small multithreaded program, wd#fiaed initial state and with a constraint on
their final state that picks out the potential executionstdriest. Given that, for any architecture we can ask whether
such an execution iallowed or forbidden we can also run the test (in a test harness [AMSS11a]) oncpkait
processor implementations to see whetherdtiservedr not observed

Throughout this document we use the term “thread” to reféiataware threads on SMT machines and processors
on non-SMT machines. Assuming a correctly implementeddudee (with appropriate barriers at context switches)
it should be sound to think of software threads in the same way

3.1.2 Observed Behaviour In a sequentially consistent model, that final outcomelsfl A r2=0 is indeed
forbiden, as there is no interleaving of the reads and wfiteshich each read reads the value of the most recent write
to the same address) which permits it. To check this, oneusirehumerate the six possible interleavings that respect
the program order of each thread:

| Interleaving | Final register state |
x=1; y=1; rl=y; r2=x|rl=1 Ar2=1
x=1; rl=y; y=1; r2=x|rl=0 Ar2=1
x=1; rl=y; r2=x; y=1 | r1=0 Ar2=1
ri=y; r2=x; x=1; y=1 | r1l=0 Ar2=0
rl=y; x=1; r2=x; y=1 | rl=0 Ar2=1
rl=y; x=1; y=1; r2=x|rl=0 Ar2=1

On x86-TSO or SPARC TSO that final outcomerdfl A r2=0 is also forbidden, as the two writes flow through a
FIFO buffer into the shared memory before becoming visibléhe reading thread. But on ARM and POWER, this
final outcome isallowedin the architecture, and it is commondpservableon current processor implementations.
Thread 1 can see the flggset to 1, and program-order-subsequently see thexdsth0. The table below gives some
sample experimental data, running this test on variousgssmr implementations using a test harness produced by our
litmus tool [AMSS11a]. Each entry gives a ratio/n, wherem is the number of times that the final outcomebfl

A r2=0 was observed in trials.

POWER ARM
\ Kind PowerGS| Power6 | Power7 Tegrazl Tegra13 APQ8¢6O A5X

[ MP [ Allow [| 10M/4.9G | 6.5M/29G| 1.7G/167G 40M/3.8G  138k/16M 61k/55dM K@B5M |

Here we just show the frequency of the outcome identified byfitial state constraint, but many other outcomes (all
the sequentially consistent outcomes listed above), aceallowed and observable.

Care is needed in interpreting such results, of course: fgheific numbers can be highly dependent on the test
harness; such testing, of highly nondeterministic systésmst guaranteed to produce all the executions that areimpl
mentation might produce; and the architectures are irteally looser in some respects than current implementstion
so (as we will see later) some behaviour may be architetyuaidbwed even though it is never observable in current
processors. Moreover, there might be differences betweearchitectural models, the vendor’s architectural ihten
and the vendor’s architecture manuals (the ARM ARM [ARMO&adl POWER ISA [Pow09]). And of course, while
our models are based in part on extensive discussion with AR#BM architects and designers, we do not speak for
either vendor. All that said, we have reasonable confidemoaii models, and we have found our testing process to
be reasonably discriminating. Whereever we mark a test éirecas allowed or forbidden, we believe that that does
match the architectural intention, and, unless otherwisted, everything marked as allowed is observable on some
implementation of one or other architecture, and (modudz@ssor errata, which we do not discuss here) everything
marked as forbidden has not been observable. We give sonmaayntest data to illustate this in each section.



3.1.3 Explaining the Behaviour To explainwhysome particular relaxed behaviour is allowed by an architec
or why it may be observable on a processor implementatiohatfdrchitecture, one might refer to the processor-
vendor architecture text, or to the microarchitecturahdetf the implementation, or to a formal model that attestipt
capture one or the other, or to an intuitive description chsumodel. All have their uses and disadvantages. Reference
to vendor architecture texts has the advantage of genetasithese aim to apply to all processor implementations of
that architecture) and of the authority of the vendor. Baytare often less clear than one might hope when it comes to
relaxed-memory behaviour. A full microarchitectural exdtion is in principle completely precise, but would requi
detailed knowledge of a processor implementation, whidiypgcally commercially confidential, and it would also
only apply to that implementation. For the third option, éormal models [0SS09, SSQA0, SSA 11, SMO"12]
aim to capture the vendor’s architectural intent, and besistent with the observed behaviour, for x86 and POWER.
They are expressed in rigorous mathematics, and so are etatypprecise, and that mathematics can also be used
to automatically generate testing and exploration todsfoa our ppcmem tool. But that mathematical detail can
make them less accessible to a broad audience than one waildAccordingly, in this tutorial we take advantage
of the fact that those formal models are in an “abstract naiaioitecture” style: to build intuition for the observable
behaviour of the formal architectural model (and hence efftocessor implementations and vendor architecture), we
explain the behaviour of tests using the style and termgotd the abstract machines we introduced in Section 2. To
avoid overwhelming detail, we do not describe the formal et@dompletely; for that, one should refer to the papers
cited above.

To explain the observed behaviour tdP on ARM and POWER, there are three distinct possibilities:vhges
on Thread O are to distinct addresses and so can be commiited order on Thread O; and/or they might also be
propagated to Thread 1 in either order; and/or the reads oceadHhl (likewise to distinct addresses) can be satisfied
out of order, binding the values they read in the oppositemnta program order (the reads might also be committed
in-order or out of order, but that has no effect on the outcbere). Any one of these microarchitectural features in
isolation is sufficient to explain the non-sequentiallyisistent behaviour above.

3.1.4 Test Execution Diagrams In most of the examples we will use, the final state constraiguely as a single
candidate execution, implicitly specifying which writeyaiead reads from, how any control-flow choices are resolved,
and how, for each location, the writes to that location ademed among themselves (theoherence orderthat we
discuss in Section 8). Itis helpful to think of this executitiagrammatically, abstracting from the code. For example
we can depict the abowdP test by the execution diagram below.

’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=1 c: Rlyl=1
PO[ ! po
\

b: W[yl=1 rf d: R[x]=0

Test MP: Allowed

The diagram has a node for each memory access. The nodebeltedag, b, c, d), so that we can refer to them,
and each specifies whether it is a writ¥)(or read R), its location (herex ory), and the value read or written in this
execution (her® or 1). The events are laid out in one column per thread, and tlsea@iogram order(po) edge
between the two events of each thread (here this happenghe same as the syntactic order of the two instructions
in the source code, but in general it represents a choice afitaad-flow path for that thread, unfolding any branches).
Thereads-from(rf) edge fromb to c indicates that read reads from the writd, and the reads-from edge from a red
dot to readd indicates that the latter reads from the initial state. Wi introduce other kinds of nodes and edges as
we use them. Sometimes we mark diagrams to indicate thak#dweigon is allowed or forbidden (in our models and
our best understanding of the vendors’ architectural tjten

3.1.5 Pseudocode vs Real codeln general, relaxed-memory behaviour can be introducel bpthe hardware,
from microarchitectural optimisations, and by the compifeom compiler optimisations. For example, a compiler
might well do common subexpression elimination (CSE), ébgrreordering accesses to different locations within
each thread’s code. In this tutorial, we are talkorgy about how the hardware executes machine-code assembly
instructions, and the pseudocode we give must be understo@ddescription of the actual assembly instructions
being executed, not as a program in C, Java, or another aigthianguage. We therefore take the definitive versions
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of the test to be the POWER and ARM assembly code, as on thelridtny, not the pseudocode above and on the
left. The assembly code can be harder to read for those uidamith it, but as we usually use execution diagrams
as above, this is not often a problem.

MP Pseudocode MP ARM  MP POWER
Thread 0 Thread 1 Thread 0 Thread 1

Thread 0 Thread 1 MOV RO #1 LDR RO,[R3] i1 Wz r1,0(r2)

x=1 r]_:y STR RO,[R2] LDR R1,[R2] stw r1,0(r2) lwz r3,0(r4)
=1 2= MOV R1#1 lir3,1

y= re=x STR R1,[R3] stw 13,0(r4)

Initial state: x=0 A y=0 Initial state: 0:R2=x A 0:R3=y A 1:R2=x Initial state: 0:12=x A O:rd=y A Lr2=y

T Y A L:R3=y A lird=x
Allowed: 1:r1=1 A 1:r2=0 Allowed: TRO=1 A LRI=0 Allowed: Tri=1 A L13=0

3.1.6 Undefined behaviour and data races By focussing on the execution of machine code, we can alestEg

the fact that in some high-level languages certain progitamwe undefined behaviour. For example, in C11/C++11,
unlessy were declared to batomic the code above would give rise to a data race, making anyamothat executed

it undefined, and if it was declared atomic the compiler migttbduce various assembly-language fences (depending
on the memory-order parameters of the atomic accessesheAnachine-code level, all programs have well-defined
(albeit typically nondeterministic) behaviour even if yifeave races.

3.1.7 Realusage of th&/P idiom IntheMP test as shown above, the dats just a single memory location, but
in real usage one might have multi-word data. For most orfalh@MP variations that we explore later, that should
make no difference.

3.1.8 Running the example inppcmem  To interactively explore the behaviour of this example gsour
ppcmem tool, go tohttp://www.cl.cam.ac.uk/ ~ pes20/ppcmem , click on Change to ARM modéf de-
sired, click onSelect POWER/ARM Teahd select MP from the menu, and click brteractive The screen will
show the state of our model (we do not give all the details,Hauethey are described in our PLDI 2011 and PLDI
2012 papers [SSA11, SMO"12]) running that test, with the green underlined optiores plossible model transi-
tions; one can click on those to explore particular posdifdleaviours. Alternatively, there is a direct link to run
ppcmem on each POWER test via thkests and Test Resulisk at http://www.cl.cam.ac.uk/ ~ pes20/
ppc-supplemental

3.2 Enforcing Order with Strong (dmb/sync) Barriers

To regain order, the programmer must defend against all@fatiove out-of-order possibilities. A strong memory
barrier (orfenc instruction inserted between the two writes on Thread @, lz@tween the two reads on Thread 1,
suffices. On POWER this would be tegnc instruction (also written abwsync), and on ARM it would beDMB.
The resulting litmus tests are given below.

MP+dmb/syncs Pseudocode  MP+dmbs ARM  MP+syncs POWER
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
MOV RO,#1 LDR RO,[R3] lirl,1 lwz r1,0(r2)
x=1 ri=y STR RO,[R2] DMB stw r1,0(r2) sync
DMB LDR R1,[R2] sync Iwz r3,0(r4)
dmb/sync dmb/sync MOV RL#1 1
y=1 r2=x STR R1,[R3] stw r3,0(r4)
Initial state: x=0 A y:0 Initial state: 0:R2=x A 0:R3=y A 1:R2=x Initial state: 0:r2=x A 0:rd=y A 1ir2=y
; ’ A 1:R3=y A Lird=x
Forbidden: 1:r1=1 A 1:r2=0 Forbidden: T:RO=1 A T:R1=0 Forbidden: 1:ri=1 A 1.13=0

We illustrate the execution of interest as below, with grderb/sync arrows to indicate memory accesses sepa-
rated by async or aDMB instruction.

[Thread0|  [Thread 1]

a: W[x]=1 c: Ry]=1
dmb/sync r y dmb/sync

b: W[y]=1 rf d: R[x]=0

Test MP+dmbs/syncs: Forbidden
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Microarchitecturally, and in our models, tegnc or DMB on Thread 0 keeps the two writes in order, both locally and
in the order they propagate to other threads in the systeranieile, thedmb/sync on Thread 1 forces the two reads
to be satisfied, binding their values, in program order, bpging the second read from being satisfied before the first
one is. Note that, as we shall see below, this is much strahgernecessary, with various dependencies or lighter
flavours of barriers being sufficient in this case.

The dmb/sync barriers are potentially expensive, but satisfy the prigpinat if inserted between every pair of
memory accesses, they restore sequentially consisteatioein Looking at the four cases of a pair of a read or write
before and after a barrier in more detail, we have:

RR For two reads separated bylmb/sync, the barrier will ensure that they are satisfied in progradenrand also
will ensure that they are committed in program order.

RW For a read before a write, separated bgnab/sync, the barrier will ensure that the read is satisfied (and also
committed) before the write can be committed, and hencerbdfe write can be propagated and thereby
become visible to any other thread.

WW For a write before a write, separated bgirab/sync, the barrier will ensure that the first write is committed and
has propagated to all other threads before the second wigtammitted, and hence before the second write can
propagate to any other thread.

WR For a write before a read, separated kynab/sync, the barrier will ensure that the write is committed and has
propagated to all other threads before the read is satisfied.

We emphasise that these descriptions ar@slfar as the programmer’s model is concernedh actual hardware
implementation might be more aggressive, e.g. with someuaive execution of instructions that follow a barrier,
or a microarchitectural structure that allows more writegargation, so long as the programmer cannot detect it.

3.3 Enforcing Order with the POWER Iwsync Barrier

On POWER, there is a ‘lightweight synbvsync instruction, which is weaker and potentially faster thae the
‘heavyweight sync’ osync instruction, and for this message-passing example thenlgvsyffices, on both the writer
and reader side of the test. Looking again at the four casmseab

RR For two reads separated by Bysync, just like sync, the barrier will ensure that they are satisfied in program
order, and also will ensure that they are committed in pnogoeder.

RW For a read before a write, separated dwsync, just like sync, the barrier will ensure that the read is satisfied
(and also committed) before the write can be committed, artd before the write can be propagated and
thereby become visible to any other thread.

WW For a write before a write, separated biwaync, the barrier will ensure that for any particular other tlihgthe
first write! propagates to that thread before the second does.

WR For a write before a read, separated byvaync, the barrier will ensure that the write is committed befdre t
read is satisfied, but lets the read be satisfied before the nas been propagated to any other thread.

In this message-passing example, we just need the WW and RR; @abvsync on the writing thread keeps the two
writes in order (their commit and propagation) as far as ¢agling thread is concerned, andasync on the reading
thread ensures that the reads are satisfied in program order.

MP+lwsyncs Pseudocode  MP+wsyncs POWER
[Thread0|  [Thread 1] Thread 0 Thread 1 __Thread © Threar 2
lirl,1 Iwz r1,0(r2)
a: W[x]=1 c: R[y]=1 x=1 ri=y stw r1,0(r2) lwsync
Iwsync Iwsync lwsync lwsync ::N%yrfc w2 13,0(r4)
) - ) _ y=1 r2=x stw r3,0(r4)
b: Wyl=1 rf d: R[x]=0 Initial state: x=0 A y=0 Initial state: 0:r2=x A O:rd=y A Lir2=y
. . : A Lird=x
Test MP+lwsyncs: Forbidden Forbidden: 1:r1=1 A 1:r2=0 Forbidden: L.ri=1 A 1.13=0

10r a coherence successor thereof; see Section 8.
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We show a case where the weaknesbvsfync really matters in tesgB+lwsyncs, in Section 6. ARM does not
have an analogue dfisync.
3.4 Observed Behaviour

Below we show experimental data for these tests: M&+dmbs and MP+syncs on ARM and POWER, and for
MP+lwsyncs just on POWER.

POWER ARM
\ Kind PowerG5 | Power6 | Power7 TegraZl Tegra13 APQ8¢60 A5X]
MP Allow || 10M/4.9G | 6.5M/29G| 1.7G/167G 40M/3.8¢G  138k/16M 61k/552M KAB5M
MP+dmbs/syncs  Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G
MP+lwsyncs Forbid 0/6.9G 0/40G 0/220G + + - -

Here the allowed result faviP is observable on all platforms, while the forbidden resfdtghe variants with barriers
are not observable on any platform.

4 Enforcing Order with Dependencies

In fact, on the read side of the message-passing examplgyiieelwsync, andDMB memory barriers used above are
stronger than necessary: one can enforce enough ordenimgtibit the undesired outcome just by relying on various
kinds of dependencyn the code. In this section we explain what those are and thiedt force is. In later sections
we use dependencies in examples that illustrate some @tlaged-memory properties of the machines. For POWER,
in all the examples of this section one could replacesthe on the writing thread witwsync without affecting the
results.

4.1 Address Dependencies

The simplest kind of dependency is address dependencyhere is an address dependency from a read instruction
to a program-order-later read or write instruction whenthkie read by the first is used to compute the address
used for the second. In the variation P below, instead of writing a flag value @f, the writer Thread 0 writes
the address of locatiox, and the reader Thread 1 uses that address for its secondTeatdependency is enough
to keep the two reads satisfied in program order on Threadelseghond read cannot get started until its address is
(perhaps speculatively) known, so the second read canrsstisdied until the first read is satisfied (in other words,
the ARM and POWER architectures do not allealue speculatioof addresses). Combining that with ttieb/sync

on Thread 0 (which keeps the writextand the write toy in order as far as any other thread is concerned) is enough
to prevent Thread 1 readirigfrom x if it has read&x fromy.

MP+dmb/sync+addr’ Pseudocode

Thread 0 Thread 1 | Thread 0 | | Thread 1 |
x=1 ri=y a: W[x]=1 f c: R[y]=&x
dmb/sync dmb/sync ' . addr
y=&X r2=*r1 b Wy=&x i d: RJ=0

Initial state: x=0 A y=0
Forbidden: 1:r1=&x A 1:r2=0

Test MP+dmb/sync+addr’: Forbidden

Note that there is a slight mismatch here between the C4ikktag of our pseudocode, in whichis a C variable and
&x its address, and the notation of our assembly examples,ichwhs a location.

4.1.1 Compound Data To see that this message-passing-with-dependency idionstdawork correctly if the
data (the value stored @fwere multi-word, note that all the writes to the parts ofdla¢ga would precede tltenb/sync
on Thread 0, while all the reads of the parts of the data sheadti be address-dependent on the value readyfrom
Thread 1, by some offset calculation from that value.
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4.1.2 C11Consume This preserved address dependency is what is made availdabé&eC/C++11 memory models

by their read-consumatomic operations: if the read gfwere tagged as a read-consume at the C/C++ level, then
compilers are required to respect the dependency to thedé&dwead 1 read (or to implement something stronger,
such as atwsync/sync/dmb barrier between them.

4.1.3 Address Dependencies from Reads to Writes An address dependency from a read to a write has a similar
effect to one from a read to a read, preventing the writerggttarted until the read has been satisfied and a value for
the read is known; we illustrate this with the t&sin Section 4.4 below.

4.1.4 Artificial Dependencies Above we said that “there is an address dependency from aimstdction to a
program-order-later read or write instruction when theugalead by the first isised to computéhe address used
for the second”, and that computation may be via any data-flath through registers and arithmetic or logical
operations (though not via memory) — even if the value of ttidrass used cannot be affected by the value read.
In theMP+dmb/sync+addr variant below, the value read is exclusive-or'd with itseifl then added to the (constant)
address ok to calculate the address to be used for the second Thread.ITea result of the exclusive-or will always
be zero, and so the address used for the second read willsaleagqual to that of, but the two reads are still kept

in order. Adding such aartificial dependency (sometimes these are known, perhaps confysasgalse or fake
dependencies) can be a useful programming idiom, to enfmees ordering from a read to a later read (or write) at
low run-time cost.

MP+dmb/sync+addr Pseudocode MP-+dmb-+addr ARM MP-+sync+addr POWER
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
MOV RO,#1 LDR RO,[R4] lirl,1 Iwz r1,0(r2)
x=1 ri=y STR RO,[R2] EOR R1,R0,R0 stw r1,0(r2) xor r3,r1,rl
= DMB LDR R2,[R1,R3] sync lwzx r4,r3,r5

dmb/sync r3 £r1 xor rl) MOV RL#1L et
y=1 r2=*(&x + r3) STR RL,[R3] stw r3,0(r4)
Initial state: x=0 A y:O Initial state: 0:R2=x A 0:R3=y A 1:R3=x Initial state: 0:r2=x A 0:rd=y A 1lir2=y

; ’ A 1:R4=y A 1:r5=x
Forbidden: 1:r1=1 A 1:r2=0 Forbidden: TRO=1 A 1.R2=0 Forbidden: 1:r1=1 A 1:74=0

As artificial address dependencies behave just like natuma$, we draw them in the same way, wétidr edges,

abstracting from the details of exactly what address coatjmut is done:

[Thread0|  [Thread 1]
a: W[x]=1 c: Ry]=1
rf
dmb/sync addr
b: W[y]=1 rf d: R[x]=0

Test MP+dmb/sync+addr: Forbidden

4.2 Control Dependencies

A rather different kind of dependency iscantrol dependengyfrom a read to a program-order-later read or write
instruction, where the value read by the first read is usediopeite the condition of a conditional branch that is
program-order-before the second read or write.

A control dependency from a read to a read has little forcayasee in theViP+dmb-+ctrl and MP+sync+ctrl
examples below: ARM and POWER processors can speculatixelyuée past the conditional branch (perhaps fol-
lowing one path based on a branch prediction, or in prindiglewing both paths simultaneously), and so satisfy the
second read before satisfying the first read. The first rbadytanch, and the second read might then all be committed
(with those values) in program order.
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MP+dmb/sync+ctrl Pseudocode  MP+dmb+ctrl ARM  MP+sync+ctrl POWER

Thread 0 Thread 1 Thread 0 Thread 1
Thr Thr 1
ead 0 ead MOV RO,#1 LDR RO,[R3] lirl,1 Iwz r1,0(r2)
x=1 ri=y STR RO,[R2] CMP RO,RO stw r1,0(r2) cmpw rl,rl
i o DMB BNE LC00 sync beq LCOO
dmb/sync if (rl rl) {} MOV R1,#1 LCOO: lir3,1 LCOO:
y=1 r2=x STR R1,[R3] LDR R1,[R2] stw r3,0(r4) lwz r3,0(r4)
Initial state: x=0 A y:O Initial state: 0:R2=x A 0:R3=y A 1:R2=Xx Initial state: 0:r2=x A 0:rd=y A Lir2=y
’ A 1:R3=y A Lird=x
Allowed: 1:r1=1 A 1:r2=0 Allowed: T:R0=1 A 1:R1=0 Allowed: 1:;r1=1 A 1:r3=0
[Thread0|  [Thread 1]
a: W[x]=1 c: Ry]=1
rf
dmb/sync ctrl

l\
b: W[y]=1 rf d: R[x]=0
Test MP+dmb/sync+ctrl: Allowed

For compactness, we show examples in which the branch igojtisé next instruction, an instance of which will
be executed whether or not the branch is taken. This make#facedce: the behaviour would be just the same if the
branch were to a different location and the second read wdyeegecuted in one case.

The value of the branch condition in the examples is alsofectfd by the value read, as it is just based on an
equality comparison of a register with itself. Just as fer @tificial address dependencies described above, tlis als
makes no difference: the existence of the control depernydantly relies on the fact that the value read is used in
the computation of the condition, not on whether the valutaefcondition would be changed if a different value were
read. There are therefore many ways of writing a pseudocxalm@e that are essentially equivalent to that above,
e.g. by putting the2=x inside the conditional, or, for an example without a racecpputting the read of in a loop
such aglo {rl=y;} while (r1 == 0).

4.3 Control-isb/isync Dependencies

To give a read-to-read control dependency some force, amadd anlSB (ARM) or isync (POWER) instruction
between the conditional branch and the second read, as ex#mples below. This prevents the second read from
being satisfied until the conditional branch is committetiolr cannot happen until the value of the first read is fixed
(i.e., until that read is satisfied and committed); the twadseare thus kept in order and the specified outcome of the
test is now forbidden.

MP+dmb/sync+ctrlisb/ctrlisync MP-+dmb-ctrlisb ARM  MP-+sync+ctrlisync POWER

Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

=1 1= MOV RO,#1 LDR RO,[R3] lirl,1 lwz r1,0(r2)
X= I‘ =y STR RO,[R2] CMP RO,RO stw r1,0(r2) cmpw rl,rl
dmb/sync if (r1 ==r1) {} DMB BNE LC00 sync beq LCOO
isb/i MOV R1,#1 LCO0O0: lir3,1 LCO00:
Isb/isync STR R1,[R3] ISB stw r3,0(r4) isync
y:l r2=x LDR R1,[R2] lwz r3,0(r4)

o T — Initial state: 0:R2=x A 0:R3=y A 1:R2=x Initial state: 0:r2=x A 0:rd=y A lir2=y
Initial state: x=0 A y=0 A 1:R3—y A 1ord—y
Forbidden: 1:r1=1 A 1:r2=0 Forbidden: T:RO=1 A 1:R1=0 Forbidden: 1:r1=1 A 1:r3=0

’ Thread 0 ‘ ’ Thread 1 ‘

dmb/sync

a: W[x]=1 c: R[y]=1
rf
ctrlisb/isync

-~ .
b: W[y]=1 rf d: R[x]=0

Test MP+dmb/sync+ctrlisb/ctrlisync: Forbidden

4.4 Control Dependencies from a Read to a Write

In contrast to control dependencies (withoutistn'isync) from a read to a read, a control dependency from a read to
awrite does have some force: the write cannot be seen by any otteadtiintil the branch is committed, and hence
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until the value of the first read is fixed. To illustrate this wse a variation of th®P test family, known (for historical
reasons) a$, in which the second read on Thread 1 xpis replaced by a write of. Instead of asking whether the
Thread 1 read of is guaranteed to see the value written by Thread 0, we now hskher the Thread 1 write ofis
guaranteed to beoherence-aftethe Thread O write of (i.e., whether a third thread, that readwice, is guaranteed
not to see those two writes in the opposite order; we retuook@rence in Section 8). Without a control dependency
on Thread 1, that is not guaranteed; the execution beloviowedl.

S+dmb/sync+po Pseudocode  s+dmb+po ARM  S+sync+po POWER
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
MOV RO,#2 LDR RO,[R3] lir1,2 Iwz r1,0(r2)
X=2 rl=y STR RO,[R2] MOV R1,#1 stw r1,0(r2) lir3,1
— DMB STR R1,[R2] sync stw r3,0(r4)
dmb/sync x=1 MOV R1,#1 lir3,1
y=1 STR R1,[R3] stw r3,0(r4)
Initial state: x=0 A y:0 Initial state: 0:R2=x A 0:R3=y A 1:R2=x Initial state: 0:r2=x A 0:rd=y A lir2=y
i ’ A 1:R3=y A Lird=x
Forbidden: 1:r1=1 A x=2 Allowed: [x]=2 A 1:R0=1 Allowed: [x]=2 A 1:r1=1

We draw such coherence conditions witbaedge, between two writes to the same address:

’ Thread 0 ‘ ’ Thread 1 ‘
a W x]32 c: Rly]=1
fCa
dmb/sync po
b: W[y]=1 d: W[x]=1

Test S+dmb/sync+po: Allowed

If we add a read-to-write control dependency on Thread 1 fith@ outcome becomes forbidden:

S+dmb+ctrl ARM S+sync+ctrl POWER
S+dmb/sync+ctr| Pseudocode Thread 0 Thread 1 Thread 0 Thread 1
Thread 0 Thread 1 MOV RO#2 LDR RO,[R3] lirL,2 Wz rL,0(r2)
x=2 r1=y STR RO,[R2] CMP RO,RO stw r1,0(r2) cmpw rl,rl
. DMB BNE LC00 sync beq LC00
dmb/sync if (rl==r1) { } MOV R1#1 LCO0: lir3,1 LCO0:
y=1 x=1 STR R1,[R3] MOV R1,#1 stw r3,0(r4) lir3,1
— STR R1,[R2] stw r3,0(r4)
Initial state: x=0 A y=0 initial state: 0:R2Z=x A O'R3—=y A LR2=x initial state: 0:12=x A 04—y A 12—y
i 171 = — A 1:R3=y A 1:ird=x
Forbidden: 1:r1=1 » x=2 Forbidden: [X|=2 A LRO—1 Forbidden: =2 A Lri—1
’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=2 c: Ry]=1
~fca
dmb/sync ctrl
b: W[y]=1 d: W[x]=1

Test S+dmb/sync+ctrl: Forbidden

4.5 Data Dependencies from a Read to a Write

Our final kind of dependency isdata dependengyrom a read to a program-order-later write where the vabae r

is used to compute the value written. These have a broadljasieffect to address, control, or control-isb/isync
dependencies from reads to writes: they prevent the writegbeommitted (and hence being propagated and be-
coming visible to other threads) until the value of the remdixed when the read is committed. Accordingly, the
S+dmb/sync+data variant below of the abovB8+dmb/sync+ctrl test is also forbidden.
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S+dmb/sync+data Pseudocode
S+dmb+data ARM S+sync+data POWER
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
X=2 rj_:y MOV RO,#2 LDR RO,[R3] lir,2 Iwz r1,0(r2)

_ STR RO,[R2] EOR R1,R0,R0O stw r1,0(r2) xor r3,rl,rl
dmb/sync r3 = (rl xorrl) DMB ADD R1,R1#1 sync addir3,r3,1
y=1 X=1+r3 MOV R1,#1 STR R1,[R2] lir3,1 stw r3,0(r4)

2= STR R1,[R3] stw r3,0(r4)
_ re=x Initial state: 0:R2=x A 0:R3=y A 1:R2=x Initial state: 0:r2=x A 0:rd=y A lir2=y
Initial state: x=0 A y=0 A LR3=y A Lird=x
: Forbi : [X]=2 A 1:RO0=1 Forbi D [X]=2 A 1irl=1
Forbidden: 1:11=0 A x—1 orbidden: [x]=2 A 0 orbidden: [x]=2 A 1:r

’ Thread 0 ‘ ’ Thread 1 ‘

a: W[x]=2 c: Rlyl=1
dmb/sync J‘ ° data

b: W[yl=1 d: W[x]=1

Test S+dmb/sync+data: Forbidden

4.6 Summary of Dependencies
To summarise, we have:

RR and RW address an address dependency from a read to a program-orderdaigior write where the value read
by the first is used to compute the address of the second;

RR and RW control a control dependency from a read to a program-order-laset oe write where the value read
by the first is used to compute the condition of a conditiomahbh that is program-order-before the second;

RR and RW control-isb/isync a control-isb or control-isync dependency from a read tagi@m-order-later read or
write where the value read by the first is used to compute thdition of a conditional branch that is program-
order-before an isb/isync instruction before the second; a

RW data a data dependency from a read to a program-order-later whigge the value read by the first is used to
compute the value written by the second.

There are no dependencies from writes (to either reads tesyri

In each case, the use of the value read can be via any dataftowaftregister-to-register operations, and it does
not matter whether it is artificial (or fake/false) or noteth is still a dependency even if the value read cannot affect
the actual value used as address, data, or condition.

From one read to another, an address or control-isb/isyperdkency will prevent the second read being satisfied
before the first is, while a plain control dependency will.not

From a read to a write, an address, control (and so also aot@sttvisync) or data dependency will prevent the
write being visible to any other thread before the value efrémd is fixed.

We return in Section 10 to some more subtle properties ofripecies.

As we shall see, dependencies are strictly weaker thaBkh®, sync, andlwsync barriers: replacing a depen-
dency by one of those barriers will never permit more behavand so should always be a safe program transforma-
tion), whereas the converse is not true. Dependencies anlythiread-local effects, wherdadB, sync, andlwsync
have stronger ‘cumulatively’ properties that we introdircéhe next section.

4.7 Observed Behaviour

Below we summarise the results of hardware experiments pardkencies.
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POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra$ APQ8q60 A5X
MP Allow 10M/4.9G | 6.5M/29G| 1.7G/167G  40M/3.8G  138k/16M  @3%2M | 437k/185M
MP+dmb/sync+po Allow || 670k/2.4G 0/26G”| 13M/39G | 3.1M/3.9G 50/28M| 69k/743M  249k/195M
MP+dmb/sync+addr Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G 6®/2 0/2.2G
MP-+dmb/sync+ctrl Allow || 363k/5.5G 0/43GY| 27M/167G | 5.7M/3.9G| 1.5k/53M  556/748M  1.5M/207W\1
MP+dmb/sync+ctrisib/isynd  Forbid 0/6.9¢ 0/40(G 0/252G ®29 0/39G 0/26G 0/2.2G
S+dmb/sync+po Allow 0/2.4GY 0/18GY 0/35GY| 271k/4.0G 84/58M 357/1.8G  211k/202M
S+dmb/sync+ctrl Forbid 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G  0/2.2G
S+dmb/sync+data Forbig 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G  0/2.2G

The experimental data shows that the forbidden results|lar@@-observable. Some of the allowed results, on the
other hand, are not observable on some implementationsighbghted in blue and tagged with a supersctipt
(allowed-Unseen): foMP+sync+po and MP+sync+ctrl POWER 6 does not exhibit the allowed behaviour (in this
sense it has a more in-order pipeline than either POWER G5 WER7), and foiS+sync+po none of these POWER
implementations do. It appears that these implementatiom®t commit writes when there is an outstanding program-
order-earlier read, even to a different address; thouglowfse other and future implementations may differ.

These are all cases where the particular implementati@egiater than the architectural intent, and the fact that
this can and does change from one processor generation tieeameinforces the fact that programmers aiming to
write portable code must be concerned with the architelcsipecification, not just their current implementation.

5 Iterated Message Passing on more than two threads and Cumulativity
(WRC and ISA2)

Up to this point, all our examples have used only two thred@sneralising to three or four threads reveals a new
phenomenon: on POWER and ARM, two threads can observe woitdifférent locations in different orders, even in
the absence of any thread-local reordering. In other wah@ésarchitectures are notultiple-copy atomi¢Col92]. To

see this, consider first a three-thread variari¥&fin which the first write has been pulled off to another threwith
Thread 1 busy-waiting to see it before doing its own write:

WRC-loop Pseudocode
Thread 0 Thread 1 Thread 2
x=1 while (x==0) {} | while (y==0) {}

y=1 r3=x

Initial state: x=0 A y=0
Forbidden?: 2:r3=0

This test was known as WRC, for ‘write-to-read causality’ ioeBm and Adve [BAOS].

As before, we simplify the example without really affectiwhat is going on by removing the loops, replacing
them by a final-state constraint that restricts attentiothéoexecutions in which Thread 1 readsl and Thread 2
readsy=1. The question is whether such an execution can alsg=@énstead of reading from the Thread 0 write of
x=1).

WRC Pseudocode ’ Thread 0 ‘ ’ Thread 1 ‘ ’ Thread 2 ‘
Thread 0 Thread 1 Thread 2 a: W[x]=1 ? b: RlXFl d: RJy]=l
x=1 ri=x r2=y po f po
y=1 r3=x c: W[y]=1 ~e: R[x]=0
Initial state: x=0 A y=0
Allowed: 1:;r11=1 A 2:12=1  2:13=0 Test WRC: Allowed

Without any dependencies or barriers, this is triviallpakd: the Thread 1 read and write are to different addresses
and can be reordered with each other, and likewise the Ti#&eadds can be satisfied out of program order. Adding
artificial dependencies to prevent those reorderings gisgedhe WRC+addrs test below.
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WRC+addrs Pseudocode [ Thread 0] [ Thread 1| [ Thread 2]

Thread 0 Thread 1 Thread 2 a: WxJ=1 e b: RI><]=1 d; RIy]=1
x=1 ri=x r2=y addr f addr
*(&y+r1-rl) = 1 | 13 =*&x + 12 - 12) o WS T RI=0
Initial state: x=0 A y=0
Allowed: 1:r1=1 A 2:r2=1 A 2:r3=0 Test WRC+addrs: Allowed

On a multiple-copy-atomic architecture this would be fdd®n, but on ARM and POWER it is allowed. Thread 2
has to do its reads in program order, but the fact that Threse4 the Thread 0 write Bf1 before starting its write of
y=1 does not prevent those writes propagating to Thread 2 inghesite order, allowing it to reag=1 and then read
x=0. We have observed this on POWER implementations, and exptecbé observable on some ARM processors
with more than two hardware threads, but we have not yet wedeét on the only such machine that we have access
to at present (Tegrag3).

5.1 Cumulative Barriers for WRC

To prevent the unintended outcomeWRC, one can strengthen the Thread 1 address dependency adygeejng it
by aDMB or sync barrier (on POWER the weakbvsync barrier also suffices).

WRC+dmb/sync+addr Pseudocode
Thread 0 Thread 1 Thread 2 [Thread0|  [Thread1| |Thread 2]
x=1 ri=x r2=y a: W[x]=1 T b: R[x]=1 d: R[y]=1
dmb/sync r3=*&x+r2-r2) dmb/sync f addr
_ y=1 c: Wlyl=1 e R[x]=0
Initial state: x=0 A y=0 )
Forbidden: 1 11=1 ~ 2:12=1 » 2:13—=0 Test WRC+dmb/sync+addr: Forbidden

In MP+syncs we saw that MB or sync barrier keeps any write done by a thread before the barrierdar with
respect to any write done by the same thread after the haséar as any other thread is concerned.

Here the Thread DMB or sync barrier also keeps any write that Thread 1 hesd from(before the barrier)
in order with respect to any write that Thread 1 does aftetbtngier, as far as any other thread (e.g., Thread 2) is
concerned. More generally, the barrier ensures that artg Wrat has propagated to Thread 1 before the barrier is
propagated to any other thread before the Thread 1 writes thi¢ barrier can propagate to that other thread. This
cumulativeproperty is essential for iterated message-passing exampl

As minor variations, one could also weaken the Thread 1 drato a POWERIwsync, giving the test
WRC+lwsync+addr, or strengthen the Thread 2 address dependency to aridiiBror sync barrier, giving the
testWRC+dmbs or WRC+syncs; these all have the same possible outcomes as the test above.

5.2 Cumulative Barriers for ISA2

TheWRC test extends the message-passMg) example on the left, and/RC+dmb/sync+addr shows one aspect
of cumulative barriers there. The ISA2 example below shavesteer aspect of cumulativity. The example (a simplified
version of [Pow09§1.7.1, Example 2], replacing loops by a final state condtesiiusual) extends ti@P example on
the right, interposing a Thread 1 write and Thread 2 read bird shared variable, before the final read of. One
could think of this as Thread 0 writing some possibly commbdata intax, then setting a flag; Thread 1 waiting for
that flag then writing another flagg and Thread 2 waiting for that flag before reading the dataisasl, one would
like to prevent the possibility that that reads the initialts value for the data (or for part of it).

ISA2 Pseudocode LThreado]  [Thread1| [Thread 2]
Thread 0 Thread 1 Thread 2 a W[x]:l c; Rly]:l - RJ2]=1
x=1 r1=y 2=z po po po
f — .
e z=1 r3=x bWYISL | WL RIG=0

Initial state: x=0 A y=0 A z=0
Allowed: 1:r1=1 A 2:r12=1 A 2:r3=0

Test ISA2: Allowed

19



To make this work (i.e., to forbid the stated final state) uifises to have @MB or sync barrier (or POWER
Iwsync) on Thread 0 and preserved dependencies on Threads 1 and@i&ss, data or control dependency between
the Thread 1 read/write pair, and an address or contrdkisiy dependency between the Thread 2 read/read pair).
Those dependencies could be replace®MB/sync/lwsync.

ISA2+dmb/sync+addr+addr Pseudocode

Thread 0 Thread 1 Thread 2 [Thread0]  [Thread 1] [Thread 2]

X=1 ri=y 12=7 a: W[x]=1 c: Ry]=1 . e: R[z]=1
I

dmb/sync *(&z4r1-r1)=1 | r3 = *(&xX +r2-r2) dmb/sync g addr addr
y=1 b: Wlyl=1 d:W[z]=1  if f: R[X]=0
Initial state: x=0 A y=0 A z=0 _
Forbidden: 1.11=1 ~ 2:12—1 » 2:13—=0 Test ISA2+dmb/sync+addr+addr: Forbidden

Here one can think of the Thread O barrier as ensuring thaltinead 0 write ofx=1 propagates to Thread 1 before
the barrier does, which in turn is before the Threag=Q propagates to Thread 1, which is before Thread 1 does its
write of z=1. Cumulativity, applied to th&=1 write before the barrier before tlzee1 write (all propagated to or done
by Thread 1) then keeps tlxel andz=1 writes in order as far as all other threads are concernedspedifically as

far as Thread 2 is concerned. As usual, the dependenciggrgy&nt local reordering which otherwise would make
the unintended result trivially possible.

5.3 Observed Behaviour

Below we summarise the results of hardware experimenthéset cumulativity tests.

POWER ARM

\ Kind PowerGS| Power6 | Power7 Tegra3
WRC Allow || 44k/2.7G| 1.2M/13G| 25M/104G 8.6k/8.2M
WRC+addrs Allow 0/2.4G°| 225k/4.3G| 104k/25G 0/20G’
WRC+dmb/sync+addr Forbid| 0/3.5G 0/21G 0/158G 0/2pG
WRC+lwsync+addr Forbid 0/3.5G 0/21G 0/138G —
ISA2 Allow 3/91M 73/30M | 1.0k/3.8M| 6.7k/2.0M
ISA2+dmb/sync+addr+addr  Forbigl 0/2.3G 0/12G 0/55G 0/20G
ISA2+lwsync+addr+addr Forbid 0/2.3G 0/12G 0/55G —

These tests involve three hardware threads, while the Zeg§RQ8060, and A5X implementations that we have access
to support only two hardware threads. Accordingly, for ARM wgive results only for Tegra3. As before, there is no
ARM analogue of théwsync variant.

The results confirm that the forbidden results are not olagdev FolWRC+addrs, POWER G5 and ARM Tegra3
do not exhibit the architecturally-allowed possibilityhie POWER 6 and POWER 7 do.

6 Store-buffering (SB) or Dekker's Examples

We now turn to a rather different two-thread example, whilaipattern that arises at the heart of some mutual
exclusion algorithms. It is sometimes referred to asstioee-bufferingexample §B), as this is more-or-less the only
relaxed-memory behaviour observable in the TSO model ofot88parc with their FIFO (and forwardable) store
buffers, and sometimes referred to as Dekker's examplé agpears in his mutual exclusion algorithm.

The two-thread version of the example has two shared latgtijoist likeMP, but now each thread writes one
location then reads from the other. The question is whettesr ¢an both (in the same execution) read from the initial
state.
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SB Pseudocode sg ARM  SB POWER
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
— — MOV RO,#1 MOV RO,#1 lirl,1 lirl,1
x=1 y=1 STR RO,[R2] STR RO,[R3] stw r1,0(r2) stw r1,0(r2)
rj_:y r2=x LDR R1,[R3] LDR R1,[R2] Ivv_z‘ r3,0(r4) Iwz r3,0(r4)
Initial state: x=0 ~ y:O Initial state: O.RzAflx:F\:\gisiafy A L:R2=x Initial state: O.rZ/Ti:rAlli)rffy A Lir2=y
Allowed: 0:r1=0 A 1:r2=0 Allowed: 0:R1=0 A 1:R1I=0 Allowed: 0:r3=0 A 1:13=0

] Thread 0 ‘ ] Thread 1 ‘
a: W[x]=1 c: Wy]=1
po po
'\L '
rf b: R[y]=0 rf d: R[x]=0

Test SB: Allowed

Without any barriers or dependencies, that outcome is allipwnd, as there are no dependencies from writes, the
only possible strengthening of the code is to insert barié&dding aDMB or sync on both threads suffices to rule
out the unintended outcome:

SB+dmbs/syncs  Pseudocode g, gmps ARM  SB+syncs POWER
Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
x=1 y:]_ MOV RO,#1 MOV RO,#1 lirl,1 lirl1
STR RO,[R2] STR RO,[R3] stw r1,0(r2) stw r1,0(r2)
dmb/sync dmb/sync DMB DMB sync sync
r1:y r2=x LDR R1,[R3] LDR R1,[R2] lwz r3,0(r4) Iwz r3,0(r4)

— Initial state: 0:R2=x A 0:R3=y A 1:R2=x Initial state: 0:r2=x A 0:rd=y A 1lir2=y
Initial state: x=0 A y=0 A 1:R3=y A Lird=x
Forbidden: 0:r1=0 A 1:12=0 Forbidden: 0:R1=0 A 1:R1=0 Forbidden: 0:r3=0 A 1:r3=0

’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=1 c: W[y]=1
dmb/sync dmb/sync
\ \
rf b: Rly]=0 rf d: R[x]=0

Test SB+dmbs/syncs: Forbidden

Here thedmb or sync barriers ensure that the program-order-previous writest imave propagated to all threads
before the reads are satisfied, ruling out the given exetutdn POWER, it does not suffice here to lssync
barriers (or onédwsync and onesync barrier): the POWERvsync doesnot ensure that writes before the barrier have
propagated to any other thread before subsequent actimmgh it does keep writes before and aftervagync in
order as far as all threads are concerned.

6.1 Extending SB to more threads: IRIW and RWC

Just as we extended the MP example by pulling out the firsewvoita new thread, to give the WRC example, we
can extend SB by pulling out one or both writes to new thredigling out both gives the Independent Reads of
Independent Writes (IRIW) example below (so named by Lea)edths 0 and 2 write toandy respectively; Thread 1
readsx theny; and Thread 3 readsthenx.

IRIW Pseudocode ‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2 ‘ ‘ Thread 3 ‘
Thread 0 Thread 1 Thread 2 Thread 3 a Wikj=1 = br RixJ=1 d: Wiy=1 = et RiyJ=1
x=1 rl=x y=1 r3=y po rf po
‘\ ‘\
r2=y r4=x if ¢ Rly]=0 f: R[x]=0
Initial state: x=0 A y=0 _
Allowed: 1.r1=1 » 1:12=0 A 3.13=1 » 3:14=0 TestIRIW: Allowed

This gives us a striking illustration of the fact that writeen be propagated to different threads in different orders:
in IRIW+addrs below (where we add dependencies to the redhiegds to rule out the trivial executions in which
the reads are locally reordered), Thread 1 sees the writdt not that toy, while Thread 3 sees the write yobut
not that tox.
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IRIW+addrs Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3
x=1 ri=x y=1 r3=y
r2=*(&y+rl-rl) r4=*(&x+r3-r3)

Initial state: x=0 A y=0 A z=0

Allowed: 1:r1=1 A 1:r2=0 A 3:r3=1 A 3:r4=0

[Thread0]  [Thread1]  [Thread2]|  [Thread3]
a: W[x]=1 4f> b: R[x]=1 d: W[y]=1 ? e: Rly]=1
r i

addr rf addr
‘\ ‘\
rf ¢ Rly]=0 f: R[x]=0

Test IRIW+addrs: Allowed

To rule out this behaviour one needB®IB or sync on both of the reading threadsvéyncs do not suffice here),

just as for theSB test:

IRIW+dmbs/syncs Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3 [Threado|  [Thread 1]  [Thread2]  [Threads]
X=1 r1=x y=1 3=y a: W[x]=1 T’ b: R[x]=1 d: Wy]=1 T e: R[y]=1
dmb/sync dmb/sync drgb\/sz'nc o dmb/sync
r2=y r4=x if ¢ R[y]=0 “F RIx=0
Initial state: x=0 A y=0 )
Allowed: 1:r1=1 A 1:r2=0 A 3:r3=1 A 3:r4=0 Test IRIW+dmbs/syncs: Forbidden

We are not aware of any case where IRIW arises as a naturaigonoging idiom (we would be glad to hear of any
such), but it is a concern when one is implementing a higellenguage memory model, perhaps with sequentially
consistent behaviour for volatiles or atomics, above lyigalaxed models such as ARM and POWER.

Pulling just one of theSB writes out to a new thread gives tRAWC (for ‘read-to-write causality’) example of

Boehm and Adve [BAOS8]:

RWC Pseudocode
Thread 0 Thread 1 Thread 2
x=1 ri=x y=1
r2=y r4=x

Initial state: x=0 A y=0 A z=0
Allowed: 1:r1=1 A 1:r2=0 A 2:r4=0

and that also needs tviaMBs orsyncs.

6.2 SB Variations with Writes: R and 2+2W

‘ Thread 0 ‘ ‘ Thread 1 ‘ ‘ Thread 2 ‘
a: W[x]=1 4f> b: R[x]:l d: Wyl=1
i
rf

‘\rf‘ po po
c: Rly]=0 e: R[x]=0

Test RWC: Allowed

Two different variations oSB are obtained by replacing one or both of the reads by writeslogous to the way
we obtainedS from MP earlier, with coherence edges in place of the reads fromnitialistate. We call these test
familiesR and2+2W respectively. Just as for IRIW, they are principally of iest when implementing a high-level
language model (that has to support arbitrary high-levejlage programs) above ARM or POWER; we are not yet
aware of cases where they are arise in natural programmimgsd

R Pseudocode
Thread 0 Thread 1
x=1 y=2
y=1 ri=x

Initial state: x=0 A y=0
Allowed: y=2 A 1:r1=0

2+2W Pseudocode
Thread 0 Thread 1
x=1 y=1
y=2 x=2

Initial state: x=0 A y=0
Allowed: x=1  y=1

’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=1 c: W[y]=2
co
0 0
p - p
b: W[y]=1 rf d: R[x]=0

Test R: Allowed

[Thread0|  [Thread 1]
a: W[x]=1 c: Wlyl=1
coco
po po
b: W[y]=2 d: W[x]=2

Test 2+2W: Allowed

Just as foSB, R needs twdMBs orsyncs to rule out the specified behavio@r2W needs twdMBs on ARM

but on POWER twdwsyncs suffices.
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6.3 Observed Behaviour

POWER ARM

[ Kind PowerG5 |  Power6 Power7 Tegra2 Tegra$ APQ800 A5X
SB Allow 102M/4.9G 1.9G/26G| 11G/167G  430M/3.8G  1.0M/16M M/@40M | 8.1M/185M
SB+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 12.2@
SB+lwsyncs Allow 7.0M/4.8G 10G/26G 1.0G/162G -+ + + +
IRIW Allow 220k/2.6G 1.3M/13G 16M/83G —|  835/8.3M — —
IRIW+addrs Allow 0/3.5G| 1.2M/14G | 344k/107G — 0/20GY — —
IRIW+dmbs/syncs |  Forbid 0/3.5G 0/20G 0/126G +— 0/20G — —
IRIW+lwsyncs Allow 0/3.6G"| 568k/13G 429k/87G —] — — —
RWC Allow 883k/1.2G 7.4M/4.2G 118M/24G — 90k/8.2M —+ —+
RWC+dmbs/syncs Forbid 0/2.3G 0/12G 0/558G — 0/20G — —
S Allow 250/2.3G 129k/8.3G 1.7M/14G 16M/3.8G 107k/16M 150M | 4.5M/185M
S+dmbs/syncs Forbid 0/2.16 0/14(G 0/29G 0/24G 0/39G 0/26G .2@/2
S+lwsyncs Forbid 0/2.1G 0/14G 0/29G -+ -+ -+ -+
R Allow 45M/1.9G | 263M/7.3G 47M/4.5G  207M/3.8G 441k/16M  MR40M | 6.9M/185M
R+dmbs/syncs Forbid 0/2.06 0/13G 0/27G 0/24G 0/3pG 0/26G .2G/2
R+lwsync+sync Allow 0/2.3¢” 0/17G 0/33¢Y — — — —
2+2W Allow 2.1M/6.3G 251M/33G 29G/894G 114M/4.4G 484k/31M 10k/580M 11M/365M
2+2W+dmbs/syncs|  Forbid 0/6.3G 0/43G 0/943G 0/29G 0/44G 0/26G  0/2.5G
2+2W+lwsyncs Forbid 0/6.2G 0/43G 0/911G -+ + -+ +

Tegra3 is the only four-hardware-thread implementationcueently have access to, so we shiRiW and RWC
results only for that, and there are no ARM analogues ofutlsgnc tests.

As one would hope, the forbidden behaviours are all non+whbée. In some cases the allowed behaviours
are not exhibited by particular implementations: just asVitiRC+addrs, the IRIW+addrs test is not observable on
POWER G5 or on ARM Tegra3, anRIW+lwsyncs is also not observable on POWER G5 (together with the previous
data, this suggests that POWER G5 and POWER 6 are incomparsdilleer is strictly weaker or stronger than the
other).

The R+lwsync+sync test is not observable on any of these POWER implementatwinish is particularly in-
teresting for the implementation of higher-level languagmdels such as the C/C++11 model. As we explain else-
where [BMO"12], an early proposal for an implementation of the C/C++adcurrency primitives on POWER im-
plicitly assumed that thR+lwsync+sync is forbidden, using atwsync at a certain point in the implementation in a
place that would be sound for the POWER implementations we tested to date but that which would not be sound
with respect to the architectural intent. The proposal ireceseen updated.

7 Load-Buffering (LB) Examples

Dual to store-buffering is theoad-buffering(LB) example below, in which two threads first read from twarsd
locations respectively and then write to the other locatiorhe outcome in which the reads both read from the write
of the other thread is architecturally allowed on ARM and PARYEnd it is observable on current ARM processors;
we have not observed it on POWER G5, POWER 6, or POWER 7.

LB

Pseudocode

LB ARM LB POWER
Thread O Thread 1 Thread 0 Thread 1 Thread 0 Thread 1
1= = LDR RO,[R2] LDR RO,[R3] lwz r1,0(r2) lwz r1,0(r2)
ri=x re=y MOV R1,#1 MOV R1,#1 lir3,1 lir3,1
y=1 x=1 STR R1,[R3] STR R1,[R2] stw r3,0(r4) stw r3,0(r4)

Initial state: x=0 A y=0

Allowed: r1=1 A r2=1

Initial state: 0:R2=x A 0:R3=y A 1:R2=x

A 1:R3=y

Initial state: 0:r2=x A 0:rd=y A 1lir2=y
A Lird=x

Allowed: 0:R0=

1A 1:RO=1

Allowed: 0:r1=1 A 1ir1=1
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[Thread0|  [Thread 1]
a: R[x]=1 c: Ry]=1
if rf
po po
b: W[y]=1 d: W[x]=1

Test LB: Allowed

To forbid that outcome it suffices to add any read-to-writgat@ency, or ® MB, sync, or lwsync barrier, to both
threads, as in theB+addrs variant below:

LB+addrs Pseudocode LB+addrs ARM LB+addrs POWER
Thread 0 Thread 1 Thread 0 Thread 1
Thread 0 Thread 1 LDR RO,[R3] LDR RO,[R4] Wz r1,0(2) Wz r1,0(r2)
rl=x r2:y EOR R1,R0,R0 EOR R1,R0O,RO xor r3,r1,r1 xor r3,r1,r1
. PR _ MOV R2.#1 MOV R2.#1 li ra,1 li 14,1
(&y+r1-r1)=1 | *(&x+r2-r2)=1 STRR2,[RLR4] | STRR2[RLR3] StWX 14,r3,15 StWX 143,15

Initial state: x=0 A y=0

Forbidden: r1=1 A r2=1

Initial state: 0:R3=x A 0:R4=y A 1:R3=x
A L:R4=y

A L5

Initial state: 0:r2=x A 0:r5=y A 1ir2=y

=X

Forbidden: 0:R0=1 A 1:R0=1

Forbidden: 0:r1=1 A 1:r1=1

’ Thread 0 ‘ ’ Thread 1 ‘
a R x]il c: Rlyl=1
addr addr
b: W[yl=1 d: W[x]=1

Test LB+addrs: Forbidden

or in theLB+datas andLB+ctrls variants below:

LB+datas Pseudocode LB+ctrls Pseudocode
Thread 0 Thread 1 Thread 0 Thread 1
ri=x r2=y ri=x r2=y
y=rl X=r2 if (rl==1) y=1 | if (r2==1) x=1
Initial state: x=0 A y=0 Initial state: x=0 A y=0

Forbidden: rl=m A r2=n for any m,n # 0

Forbidden: ri=m A r2=n for any m,n # 0

All of these ensure that both writes cannot be committed taedce propagated and become visible to the other
thread) until their program-order-preceding reads haea satisfied and committed.

7.1 Observed Behaviour
POWER ARM
\ Kind PowerGS| Power6| Power Tegra2 Tegra13 APQ8¢60 A5X
LB Allow 0/7.4G°| 0/43G’| 0/258G’| 1.5M/3.9G | 124k/16M 58/1.6G 1.3M/185M
LB+addrs | Forbid 0/6.9G 0/40G  0/216G 0/24G 0/39G 0/26G 0/2{2G
LB+datas | Forbid 0/6.9G 0/40G  0/252G 0/16G 0/23G 0/18G 0/2{2G
LB+ctrls | Forbid 0/4.5G 0/16G 0/88G 0/8.1G 0/7.5G 0/1.6G 0/2.2G

Here we see another case where some implementations argesttban the architectural intent: these POWER imple-
mentations do not exhibitB, while the ARM implementations do. This suggests that tf&S@ER implementations

do not commit a write until program-order-previous readgehaound their values and committed (as we saw in for
S+sync+po in Section 4.7), while in the ARM case a program-order-pyasiread-request may still be outstanding

when a write is committed.

Comfortingly, neither architecture permits values to betkgsised out of thin air, dsB+datas illustrates; this
has been a key concern in the design of high-level-languagkels for Java and C/C++11.
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8 Coherence (CoRR1, CoWwWw, CoRW1, CoWR, CoRW)

As we have seen, ARM and POWER are far from sequentially cieméisone cannot assume that in any execution of
a multithreaded program there is some sequential ordel tifatead and write operations of the threads, consistent
with the program order of each thread, in which each readsrdaelvalue of the most recent write. However, if one
restricts attention to just the reads and writes efryle locationin an ARM or POWER execution, it is true that all
threads must share a consistent view of those reads andwffectively, in any execution, for each location, there
is a single linear order of all writes to that location whiclhishbe respected by all threads. This property is known as
coherencegwe explore and make precise what we mean by ‘respected bya#lds’ with the examples below.

Our first test, CoRR1, is shown below in three forms, as usaiaéadable C-like pseudocode on the left, using
thread-local variablesl andr2 and a shared variabbe (initially 1), and the definitive ARM and POWER versions
(the versions we test), in assembly language on the rigbhdfreached the specified final state, with2 andr2=1,
then the second Thread 1 readxofvould have to have been from the initial state despite theTsead 1 read ok
seeing the valug from Thread 0’s write ok=2. That write must be coherence-after the initial state, sotbuld be a
violation of coherence, and that execution is forbiddendthbtARM and POWER. As usual, several other executions
of the same code are allowed: both Thread 1 reads couldlreadboth could rea@, or the first could read and the
secon?. Those are just sequentially consistent interleavingd®ftbde, not exposing any of the relaxed aspects of
the architectures.

CoRR1 Pseudocode
CoRR1 ARM CoRR1 POWER

Thread O Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

X=2 rl=x STR R2,[R5] | LDR R1,[R5] stw r2,0(r5) | Iwz r1,0(r5)

o= LDR R2,[R5] lwz r2,0(r5)
_ re=x Initial state: 0:R2=2 A 0:R5=x A 1:R5=x Initial state: 0:r2=2 A 0:r5=x A 1:r5=x
Initial state: x=1 A [X=1 A X=1
- Forbidden: 1:R1=2 A 1:R2=1 Forbidden: 1:r1=2 A 1:r2=1
Forbidden: 1:r1=2 A 1:r2=1 orviden A oricden: 22 AT
’ Thread 0 ‘ ’ Thread 1 ‘

a: W[x]=2 Hf b: R[x]=2
r
po
rf ¢ R[x]=1

Test CoRR1: Forbidden

Two minor variations of the test can be instructive.doRRO on the left below, the above initial-state write of
X is done by Thread 0, and the forbidden outcome is simply thatdd 1 sees the two program-ordered writes by
Thread 0 in the opposite order. CoRR2 on the right below (like IRIW but with a single shared locatimot two),
the two writes ofx=1 andx=2 are by different threads (different both from each otherfaoch the reading threads),
so they are not a priori ordered either way, but it is stiletthat the two reading threads have to see them in the same
order as each other: it is forbidden for Thread 2 toa#genl in the same execution as Thread 3 skésen?2.

[Threado|  [Thread 1| [Thread0|  [Thread1| rf [Thread2|  [Thread 3]
a: W[x]=1 c: R‘x]zz a: W[x]=1 b: W[x]=2\4,>\c:|:\§x:\ e: R[x]:l
f \\ f
co 0 p 0
l ><: P rf R R p
b: W[x]=2 d: R[x]=1 d: R[x]=1 f: R[x]=2
Test CoRRO: Forbidden Test CoRR2: Forbidden

We express coherence with edges between writes to the same address; in a completeiexefor each address
those edges must form a total linear order. All writes arelicitfy coherence-after the initial-state write to their
address. The diagrams above illustrate executions in wiiith a is coherence-before write

The coherence order for a location can be observed expdriheim two ways. In simple cases where there are
at most two writes to any location, as here, one can read thkstiate (after all threads have completed, with suitable
barriers). In general one can have an additional threade@oh location) that does a sequence of reads, seeing each
successive value in order. For exampleoaedge from a writea of x=v; to a writeb of x=v, means that no thread
should observe as taking value, thenvaluev, .
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TestCoRR1 above showed that a pair of reads by a thread cannot reachpptdrthe coherence order, but there
are several other cases that need to be covered to ensutbet@aiherence order is respected by all threads. Test
CoWW below shows that the coherence order must respect progiden for a pair of writes by a single thread. Test
CoRW1 shows that a read cannot read from a write that program-dodlews it. TestCoWR shows that a read
cannot read from a write that is coherence-hidden by anathiée that precedes the read on its own thread. Test
CoRW shows that a write cannot coherence-order-precede a Watetprogram-order-preceding read read from.

a: W[x]=1 a: R[x]=1
po| |co pol rf
b: W[x]=2 b: W[x]=1
Test CoWW: Forbidden Test CoRW1: Forbidden
] Thread 0 ‘ ] Thread 1 ‘ ] Thread 0 ‘ ] Thread 1 ‘
a: W[x]=1<+—c: W[x]=2 a: R[x]=2 =— c: W[x]=2
co cof
po po
rf
b: R[x]=2 b: W[x]=1
Test CoWR: Forbidden Test CoRW: Forbidden

9 Periodic Tables of Litmus Tests

After seeing all the litmus tests that we have used to ilatstvarious relaxed-memory phenomena, one might ask
whether they areompletein any sense. We now show that they can be treated systeihyatizganising them into
“periodic tables” of families of tests with similar behauip and giving a sense in which this covers all “small” tests
of some particular kinds. The tables do not include all ig&ng tests; we return to some others in later sections.

9.1 Litmus Test Families

First, we define damily of litmus tests to be the common shape of a group of tests,exsfigal by the read and write
events, with the events of each thread related by progral®rpo edges, the write events to each location related by
coherenceo edges, and writes related to any reads that read from therdolg+fromf edges. For example, théP

test:

’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=1 c: Rlyl=1
po[ rf 0o
.\L

b: W[yl=1 rf d: R[x]=0

Test MP

also defines a family of related tests, all of the same shagajred by replacing the program-order edges by de-
pendencies or barriers. The terminology we have been usiegdy suggests this, for example wktP+dmb+addr
denoting theVIP variation with admb barrier on Thread 0 and an address dependency (perhapsaljtidn Thread 1.

9.2 Minimal Strengthenings for a Family

For any family of tests, one can ask what are the minimal gtremings of its program-ordepd) edges required

to forbid the specified execution. To make this precise,lréicat the read-to-read dependencies that prevent local
reordering are address and control-isb (ARM) or contrphis(POWER) dependencies (a control dependency to a
read does not prevent the read being satisfied speculativelg cannot be a data dependency to a read, and &hone
orisync has no effect in this context), while the read-to-write defencies that prevent local reordering are address,
data, control, or control-ish/isync dependencies. We defotation:
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RRdep
RwWdep

addr | ctrlisb/ctrlisync
addr | data | ctrl | ctrlisb/ctrlisync

To a first approximation, the different kinds BRdep andRWdep dependencies behave similarly to each other (but
see Section 10.5 for a subtle exception). The ABMb barrier and the POWERvsync andsync barriers are both
stronger than those dependencies, giving an order;

po < {RRdep,RWdep} < lwsync < dmb/sync

In other words, it should always be safe (giving the same wefallowed behaviours) to replace a plain program-
order edge by aRRdep or RWdep dependency, or to replace one of those bywasync barrier, or to replace any of
those by admb or sync barrier. As we saw before, a read-to-read control deperydeae no force, and (for normal
memory accesses) nor doesist'isync without an associated control dependency, so replacinggrgam-order edge
by one of those should have no effect.

Now consider all the POWERIP variations obtained from the basic test shape of the famjilydplacing its
program-ordergo) edges bysync, addr, ctrlisync, lwsync, or sync (ARM would be similar except withodtvsync
and withdmb in place ofsync). The diagram in Fig. 1 shows each variation, in green if ibfds the undesirable
outcome, or in red if that outcome is permitted; the arrovesistine above order. Tests that have ‘similar’ dependencies
and therefore should behave similarly are grouped in blueforhe minimal green tests aviP+lwsync+addr and
MP+lwsync+ctrlisync, showing that on POWER to rule out the undesirable behavibi® one needs at least an
Iwsync on Thread 0 and an address or control-isync dependency @adlit All tests above those two are also green,
showing that in this case our ordering is meaningful.

9.3 4-edge 2-thread Tests and RF-Extensions

We now look at our set of test families more systematicallying the minimal strengthenings for each, as shown in
the table below. We have mentioned several families so fayhich MP, S, SB, R, 2+2W, andLB all have two
threads, two shared locations, and two reads or writes dnteaead. Additionally, we have seen a few three- or four-
thread variations of thos®@WC, WRC, ISA2, andIRIW. We have also seen several coherence tests, but those are of
a slightly different character; their specified executians forbidden without needing any dependencies or basriers
so there is less interest in exploring variations.

Looking at the table, in the left column we see those twodtreests, grouped by the number of reads-froin (
edges they have. In the first bloddP andS are similar: inS the MP readd from the initial state (coherence-before
the writea to x) is replaced by a writel that is coherence-befoee They are similar also in what has to be done to
prevent the undesirable outcoméP needs at leadtvsync/dmb and a read-to-read dependency, wigleeeds at
leastlwsync/dmb and a read-to-write dependency.

Next we have the three tests with nfoedges:SB and its variationd®R and 2+2W, which replace one or both
(respectively) of the final initial-state reads by writesctitherence predecessors of the writeg.tdn contrast to the
first group,SB andR need twosyncs or twodmbs; lwsync does not suffice here. Howevérsync does suffice for
the last variatior2+2W, of four writes.

Finally there is the_B family, with two rf edges. Here simple dependencies suffice.

Moving to the right, the second and third columns are thestelstainable from the left column by “pulling out”
one or two initial writes to new threads. There are severatiewariations here, most of which are not (as far as
we know) natural use-cases, but they includeWRC, IRIW, andRWC families discussed in the literature [BA08].
Notably, they need just the same strengthenings as thairtbsts in the first columniwsync/dmb and a dependency
in the first block syncs/dmbs for the extensions &B andR, andlwsyncs/dmbs for the extensions &+2W; this is
the cumulativity properties of the barriers at work.

The MP family can usefully be varied in another dimension by coesity asequencef dependency or other
edges between the reads, shown schematically on the diagr#me PPO (preserved program order) series; we come
back to some of these in Section 10.
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4-edge 2-thread tests

5-edge extensions along one rf edge

One rf Two rf Preserved read-read program order
MP: rf,fr needs Iwsync+RRdep WRC: rf,rf fr needs lwsync+RRdep PPO: barrier,rf,intra-thread*,fr
or dmb+RRde| +
P or dmb RRdep Thread 0 Thread 1
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2
a: W[x]=1 c: Rly]=1
a: W[x]=1 c: Ryl=1 a: W[x]=1 — b: R[x]=1 d: R[y]=1 rf Ypo
rf rf po '
po po po o [po {P
b: W[y]=1 if d: R[x]=0 c: Wlyl=1 }: R[x]=0 b: Wlyl=1 i d: R[x]=0
Test MP Test WRC PPO variations
S: rf,co needs lwsync+tRWdep | WWC: rf,rf,co needs lwsync+RWdep
or dmb+RWdep or dmb+RWdep
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2
a: W[x]=2 c: Rly]=1 a W[x]=2_— > b: R[x]=2 d: Rly]=1
tfco
po po P po
Cl
b: W[y]=1 d: W[x]=1 c: Wly]=1 e: W[x]=1
Test S Test WWC
No rf One rf 6-edge extensions along two rf edges
SB: fr,fr needs sync+sync RWC: rf,fr,fr needs sync+sync IRIW: rf,fr,rf,fr needs sync+sync
or dmb+dmb or dmb+dmb or dmb+dmb
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2 Thread 3
a: W[x]=1 c: Wy]=1 a: W[x]=1 —f» b: R[x]=1 d: W[yl]=1 a: W[xJ=1 4f> b: RIx]zl d: Wy]=1 4f> e: RIy]:l
r I I
[o] 0
p po if po if po P o pe
rf b: R[y]=0 rf d: R[X]=0 c: R[y]=0 e: R[x]=0 rf ¢ Ry]=0 f: R[x]=0
Test SB Test RWC Test IRIW
R: co,fr needs sync+sync | WRW+WR: rf,co,fr needs sync+sync IRRWIW: rf fr,rf,co needs sync+sync
or dmb+dmb or dmb+dmb or dmb+dmb
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2 Thread 3
a: W[x]=1 w G W]y]=2 a: W[x]=1 e b: RIX]:l d: W[y]=2 a: W[x]=2 s— b: R[x]=2 d: Wyl=1 e RIyFl
I I I
po 0 0 po 0
p p o |po - o p
b: WlyJ=1 rf d: R[X]=0 ¢ Wlyl=1 e: R[x]=0 rf ¢: Rly]=0 f: W[x]=1
TestR Test WRW+WR Test IRRWIW
WRR+2W: rf fr,co needs sync+sync
or dmb+dmb
Thread 0 Thread 1 Thread 2
a W[x]=2 > b: R[x]=2 d: Wly]=1
0
.\rf‘ P po
c: R[y]=0 e: W[x]=1
Test WRR+2W
2+2W: co,co needs lwsync+lwsync WRW+2W: rf,co,co needs lwsync+lwsync IRWIW: rf,co,rf,co needs Iwsync+lwsync
or dmb+dmb or dmb+dmb or dmb+dmb
Thread 0 Thread 1 Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2 Thread 3
a: W[x]=1 c: Wyl=1 a: W[x]=2_— b: R[x]=2 d: Wy]=2 a: W[x]=2 =—* b: R[x]=2 d: Wly]=2 —* e: R[y]=2
coco i co rf
po po P po po po
b: Wy]=2 d: W[x]=2 c: VE/[y]:l e: W[x]=1 c: Wlyl=1 co f: W[x]=1
Test 2+2W Test WRW+2W Test IRWIW
Two rf Key
LB: rf,rf needs RWdep+RWdep
Edges: Read-read and read-write dependencies:
Thread 0 Thread 1 po program order RRdep ::= addr | ctrl-isb/isync
a: R[xj=1 ¢ Ryl=1 rf reads-from RWdep ::= addr | data | ctrl | ctrl-isb/isync
po (g po co coherence order
b Wvic whisy fr  from-reads: read from coherence po < {RRdep,RWdep} < lwsync < dmb/sync
- Wil FWh= predecessor, or from the initial state
TestLB
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9.4 6-edge 3-thread Tests

Moving to tests with three threads, three shared locatiand,two reads or writes in each thread, the tables below
show our 11 families. Of interest here are:

e ISA2: the generalisation of message-passing to three threadsawvén Section 5, which needs a barrier only
on the first thread;

e 3.SB, 3.2W, and3.LB, the generalisations &B, 2+2W, andLB to three threads, which need just the same as
the two-thread variants; and

e Z6.3, which shows the lack of transitivity of coherence dwdync barriers on POWER; we return to this in
Section 11.

We expect thalSA2 is common in practice, but would be glad to hear of any usesoafstne other families.
6-edge 3-thread tests

Two rf
ISA2: rfrffr needs Iwsync+RWdep+RRdep
Thread 0 Thread 1 Thread 2
a: W[x]=1 ¢ Rlyl=1 e: R[z]=1 Three rf
f
po po ! po 3.LB: rf,rfrf needs RWdep+RWdep+RWdep
rf
b: W[y]=1 d: W[z]=1 rf f: R[x]=0
Thread 0 Thread 1 Thread 2
Test ISA2 a: R[x=1_ c: Rly]=1 e: R[z]=1
f
Z26.2: rf,rf,co needs lwsync+RWdep+RWdep po ! P po
b: W[y]=1 d: W[z]=1 f: W[x]=1
Thread 0 Thread 1 Thread 2
a Wx]=2_ c: Rly]=1 e: R[z]=1 Test3.LB
i (o]
po p po
b: W[y]=1 d: W[z]=1 f: W[x]=1
Test 6.2
One rf No rf
W+RWC: rf,fr,fr needs lwsync+sync+sync 3.SB: fr,fr,fr needs sync+sync+sync
or sync+RWdep+sync
Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2
a WIX]:l (o8 RIy]:l e: WIZ]:l a: fo]:l c: Wyl=1 e: W[z]=1
rf
po f PO f po po po po
L L — —
b: W[y]=1 d: R[z]=0 f: R[x]=0 rf b: R[y]=0 rf d: R[z]=0 rf f: R[x]=0
Test W+RWC Test 3.SB
76.0: rf,co,fr needs lwsync+sync+sync 76.4: co,fr,fr needs sync+sync+sync
or sync+RWdep+sync
Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2
a: W[x]=1 c: RIy]:l o e: sz]:Z a: WIx]=1 c: Wlyl=2 e: W[z]=1
co
0 0 0
P < P — p po .\rfA po .\rfA po
b: Wyl=1 d: W[zJ=1 rf f: R[x]=0 b: Wlyl=1 d: R[z]=0 f: R[x]=0
Test Z6.0 Test Z6.4
76.3: co,rffr needs sync+lwsync+sync Z6.5: co,co,fr needs sync+sync+sync
or sync+sync+RRdep or sync+lwsync+sync?
Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2
a: W[xJ=1 c: Wyl=2 e: R[z]=1 a: W[xJ=1 c: Wyl=2 e: W[z]=2
rf co
po po po po po po
b: Wy]=1 © d: W[z]=1 rf f: R[x]=0 b: Wy]=1 © d: W[z]=1 rf f: R[x]=0
Test 26.3 Test 26.5
Z6.1: co,rf,co needs Ilwsync+lwsync+RWdep 3.2W: co,co,co needs lwsync+lwsync+lwsync
Thread 0 Thread 1 Thread 2 Thread 0 Thread 1 Thread 2
a Wix]=2_ c: Wlyl=2 e: R[z]=1 a WixJ=2_ c: Wyl=2 e: W[z]=2
0 0
po P po po P po
b: Wly]=1 d: W[z]=1 f: W[x]=1 b: W[y]=1 d: W[z]=1 f: W[x]=1
Test 26.1 Test 3.2W
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9.5 Test Family Coverage

The obvious question is whether those families give a se¢siftthat is complete in any sense? One could try to
answer it by enumerating all multithreaded assembly prograp to some size (e.g. some bound on the number of
threads and the number of instructions per thread), butghiakly gives an intractable number of tests, very many
of which would be uninformative. A better approach would be&humerate all familes up to a certain size (e.g. up
to four threads and some number of read and write actionshpead). However, simply enumerating families still
includes many uninformative tests, where the executionuiestion is allowed in a sequentially consistent model.
Instead, therefore, we consider the families generatedhdyritical cyclesof [SS88, Alg10, AMSS10]. To do this,
we first need the concept offeom-readsedge, introduced (as reads-before edges) by Aharhatl [ABJ*93] and

(as some edges in their access graphs) by Laaedal [LHH91]. Given a candidate execution, with its reads-from
relation (from each write to all the reads that read-front tinréte) and its coherence relation (the union of some linear
order over the writes to each address), we define its fromisreglation to have an edge from each read to all the
coherence-successors of the write it reads from (or all tiesvto the same address, if it reads from the initial state)
For example, consider the candidate execution below, withites (perhaps by various threads),19f. .,5, to x, in

that coherence order, and with a read that reads from the lwrithe coherence-successordadre writesc, d, and

e, so we construct a from-reads edge frbrto each of those.

a: W[x]=1
co
b:wpg=2 "
co . f: R[x]=2
r
c: W[x]=3 -
o fr
d: W[x]=4 fr
co
e: W[x]=5

From-reads Edges

We can replace the reads-from edges from the initial stateditne read) by the from-reads edges from that read
to the write(s) to the same address, without any loss of in&bion. For example, fdviP andSB, we have:

drawn with reads-fromrf) from initial state drawn with from-read$)
Thread 0 Thread 1 Thread 0 Thread 1
a: W[x]=1 c: Rly]=1 a: W[x]=1 c: Ry]=1
MP / fref
0 0 o} 0
p — p p p
b: W[y]=1 rf d: R[x]=0 b: W[yl=1 d: R[x]=0
Test MP: Allowed Test MP: Allowed
Thread 0 Thread 1 Thread 0 Thread 1
a: W[x]=1 c: WlyJ=1 a: W[x]=1 c: W[y]=1
frir
SB po po po po
I\
rf b: Rly]=0 rf d: R[x]=0 b: R[y]=1 d: R[x]=0
Test SB: Allowed Test SB: Allowed

Note that the diagrams on the right have cycles in the uniaf 0b, fr, andpo, and indeed such cycles are exactly
the violations of sequential consistency, as shown by [S8RBR0, AMSS10] (see also Theorem 5 in [LHH91]), so
by enumerating such cycles we can produce exactly the tadlida of interest — the potential non-SC executions.
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The families presented up to now cover all critical cyclestausix edges, where critical cycles are defined as:
(1) po edges alternate with basic communication sequences def@r&dr, co, co followed by f, or fr followed by
rf; (2) communication edged, fr andco are between distinct threads; (8) edges are between distinct locations;
and (4) no thread holds more than two events, and when a tiia@dd two events those are related bpaedge.
Following [SS88, Algl0, AMSS10], any non-SC axiomatic caade executionife. a set of events with a cyclic
union of relationgo, rf, co andfr), includes at least one critical cycle (or violates coheegrsee below). Hence,
critical cycles describe violations of SC (up to coherenaayl our coverage is of such violations up to six edges.

Thediy tool of Alglave and Marangehtp://diy.inria.fr ) lets one generate litmus tests from particular
cycles, and also lets one enumerate families (and the manobarfamily) by describing sets of cycles; most of the
tests we show were generated in this fashion.

9.6 Coherence

Reducing violations of SC to critical cycles assumes a aattearchitecture, which POWER and ARM architectures
are. Coherence is related to the very existence of a sharetbryenamely there is observably only one instance of
a given memory location, or that writes to a given locatiom larearly ordered (that ig0 exists), with all observa-
tions made in the system compatible with that linear ordgerithese conditions can be summarised as “per-location
sequential consistency” [CLS03]. More formally, one caawglthat forbidding the five tests we gave is equivalent to
the acyclicity of the union off, co, fr, and thepo edges restricted to events to the same location, which iscige
sense in which coherence is per-location sequential densig, this is thainiproccondition of [Alg10, AMSS10].

Coherence tests
CoRR1: rf,po,fr

forbidden | CoRW: rf,po,co forbidden | CoWR: co,fr forbidden

Thread 0 Thread 1 Thread 0 Thread 1 Thread 0 Thread 1

a W[x]i2 4f' b: R[x]=2
rfr
po

I
co

a: R[x][=2 < c. W[x]=2
PO]

fr

a: WxJ=1<——c¢: W[x]=2
co
po

rf

c: R[x]=1 b: W[x]=1 b: R[x]=2
Test CoRR1 Test CORW Test CoWR
CoWW: po,co forbidden | CoRW1: po,rf forbidden
Thread 0 Thread 0
a: W[x]=1 a: R[x]=1
co|po rf| po

b: W[x]=2 b: W[x]=1

Test Coww Test CORW1

10 Preserved Program Order (PPO) Variations

We now explore some further variations of the messagepg@diP) test that illustrate some more subtle points about
the circumstances in which the architectures do (and, nmopeitantly, do not) respect program order.

10.1 No Write-to-write Dependency fromrf;addr (MP+nondep+dmb/sync)

In Section 4 we saw dependencies from reads to reads andviteno ‘dependency’ from a write. One might think
that if one writes a value to a location then reads it back on the same thread, then has a data osad@mendency

to a write of a different locatiog, then those two writes would be held in order as far as anyr tiinead is concerned.
That isnot the case, as th®IP+nondep+addr example below shows: even though the two writes might have to
commit in program order, in the absence of any barriers (awdise they are to different addresses) they can still
propagate to other threads in arbitrary orders.
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’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=y d: Rly]=1
< dmb/ MP-+nondep+sync Pseudocode
mbisyne Thread 0 Thread 1
b: R[x]=y e: R[x]=z X=8&y ri=y
addr ro =x dmb/sync
c: Wy]=1 *I‘(_'J_= 1 r2=x
Initial state: x=&z A y=0
Test MP+nondep+dmb/sync: Allowed Allowed: 0:10=&y A Lr1=1 A 1.12=&z

This is observable on POWER and ARM:

POWER ARM
| Kind || PowerG5] Power6 [  Power? Tegra2|  TegraB  APQ806O A5X
| MP+nondep+dmb/synd  Allow]|  12/3.7G  157k/20G  2.9G/860G  22BWG [ 1.1k/90M[ 6.9k/640M| 9.1k/185M

10.2 No Ordering from Register Shadowing MP+dmb/sync+rs, LB+rs)

Another conceivable source of ordering which is not regzbtly the architectures is re-use of the same processor
register: the hardware implementations typically haveerishadow’ registers than the architected general-purpose
registers that can be referred to by machine-code instmstiand the allocation of hardware registers to architecte
registers is done on-the-fly. This register renaming is nladde to the programmer, as the following two examples
show.

First, we have a variant d¥IP that exhibits observable register shadowing: the two u$e8 on Thread 1 do
not prevent the second read being satisfied out-of-ordéneifeads are into shadow registers (specifically, the first
two uses of3 on Thread 1 might be involve one shadow register while thel th$age might involve another). The
reuse of a register is not represented in our diagrams, sateetrin the caption; the details can only be seen in the
pseudocode or assembly versions of the test.

’ Thread 0 ‘ ’ Thread 1 ‘

MP-+dmb/sync+rs Pseudocode
a: Wixj=1 g SR yI=L Thread 0 Thread 1
dmb/ = =
mb/sync — po x=1 r3=y
b: Wiy]=1  rf d: R[x]=0 dmb/sync ri=r3
. y:1 r3=x
Test MP+sync+rs (register reuse on Thread 1): Allowed Allowed: 1-11=1 » 1:13=0

Along the same lines, we have a variant of LB (taken from Adile[AASO03]) in which the reuse of registet
on Thread 0 does not keep the reacaind the write ofy in order.

LB+rs Pseudocode
Thread 0 Thread 1

’ Thread 0 ‘ ’ Thread 1 ‘ r1=x r3=y

a: R[x]=2 ¢, RIyI=1 r2=rl | r3=r3+1

po data ri=1 X=r3
b WFL  d: Wix=2 y=rl
_ Allowed: 0:r1=1 A 0:r2=2 A
Test LB+rs (register reuse on Thread 0): Allowed 1:r3=2 A y=1 A X=2

In currentimplementations, thdP+sync+rs behaviour is observable on both ARM and POWER, whild fBers
behaviour is only observable on ARM, as the table below shdwe latter is simply because the ba&behaviour
is only observable on ARM (it appears that current POWER imgletations do not commit writes in the presence of
outstanding uncommitted reads). Nonetheless, both beinavare architecturally permitted in both architectures.

POWER ARM
\ Kind PowerGS| Powerd Power7 Tegra2| Tegrap APQ8¢6O A5X
LB+rs Allow 0/3.7G’| 0/26G’ 0/898G’| 101k/3.9G| 6.4k/89M 0/26G°| 60k/201M
MP+dmb/sync+rs| Allow| 1.8k/3.0G 0/41G’| 29M/146G | 9.0M/3.9G| 1.2k/19M 11k/753M  549k/201M
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10.3 Preserved Program Order, Speculation, and Write Forweding (PPOCA and

PPOAA)

The POWER architecture states that that writes are not peefdspeculatively, but we see here that, while speculative
writes are never visible to other threads, they can be fate@locally to program-order-later reads on the same thread
this forwarding is observable to the programmer.

In the PPOCA variant ofMP below,f is address-dependent enwhich reads from the writd, which is control-
dependent o. One might expect that chain to prevent rédanding its value before does, but in fact in some
implementationg can bind out-of-order, as shown — the wridecan be forwarded directly te within the thread,
before the write is committed to the storage subsystemaahié, andf are all still speculative (before the branch of
the control dependency anis resolved).

[Thread0|  [Thread 1]
a: W[z]=1 c: Ry]=1
dmb/sync ctrl
rf
b: W[y]=1 d: W[x]=1
rf
e: RIx]zl
f addr
U
f: R[z]=0

Test PPOCA: Allowed

Replacing the control dependency with a data dependenstyPlROAA, below) removes that possibility, forbid-
ding the given result on current hardware, as far as our erpetal results show, and in our model.

’ Thread 0 ‘ ’ Thread 1 ‘

a: W[z]=1 c: Ry]=1
dmb/sync addr

b: W[yl=1 " d: W[x]=1

rf

e: R[x]=1
'\rf; l addr

f: R[z]=0

Test PPOAA: Forbidden

POWER ARM

Kind | PowerG5| Powerf  Power7| Tegrd2 Tega3 APQ8Q60  A5X
PPOCA [ Allow || 1.1k/3.4G| 0/49G’| 175k/157G| 0/24G’| 0/39G’[ 233/743M | 0/2.2G’

PPOAA | Forbid 0/3.4G]  0/46G 0/209G  0/245  0/34G 0/26G  0/22G

10.4 Aggressively Out-of-order ReadsRSW and RDW)

Given the discussion of coherence in Section 8, one might@xpvo reads from the same address to have to be
satisfied in program order. That is usually the case, butérsffecial case where the two reads happen to read from
the same write (not merely that they read the same valus)nitt.

In the reads-from-same-writeREW) variant of MP below, the two reads of, d ande, happen to read from the
same write (the initial state). In this case, despite thetfatd ande are reading from the same address,dfgair
can satisfy their reads out-of-order, before ¢ pair, permitting the outcome shown. The address isfknown, so
it can be satisfied early, while the addressléd not known until its address dependencycas resolved.

34



’ Thread 0 ‘ ’ Thread 1 ‘
a: W[z]=1 c: Rly]=2

rf
dmb/sync addr
\
b: W[y]=2 rf d: R[x]=0
rf po

.\L
e: RIX]=O

rf addr
.\L
f: R[z]=0

Test RSW: Allowed

In contrast, in an execution of the same code in whi@nde read from different writes ta (testRDW below),
with another write tox by another thread), that is forbidden — in the model, the cdmfrthe first read ¢) would
force a restart of the second)( together with its dependencies (includif)gif e had initially read from a different
write tod. In actual implementations the restart might be earlieenvan invalidate is processed, but will have the

same observable effect.

’ Thread 0 ‘ ’ Thread 1 ‘ ’ Thread 2 ‘
a: W[z]=1 c: Rly]=2 g: W[x]=1
rf
dmb/sync addr
S~ rf
b: W[y]=2 d: R[x]=0
po
e: Rlx]:l
ddr
A
f: R[z]=0

Test RDW: Forbidden

POWER ARM
Kind || PowerG5| Powerd  Power7| Tegrd2 Tegre3 APQ8060  A5X
RSW [ Allow [| 1.3k/3.4G| 0/33G°[ 33M/144G | 0/24G”[ 0/39G°|  0/26G’| 0/2.2G’

RDW | Forbid 0/1.7G 0/17G 0/125G —+ 0/20
RDWI | Allow || 5.2k/3.0G | 0/12G’| 1.3M/43G | 0/24G’| 0/39G’ 0/26G°| 0/2.2G°

Q)

TestRDWI is a two-thread variant dRDW in which the writeg:W[x]=1 is on Thread 1, betweeathande. One
notices thaRSW (andRDWI) stands unobserved on ARM, while observed on POWER.

10.5 Might-access-same-address

In the examples we have seen so far, address and data depiesdena write have the same effect, preventing the
write being visible to other threads before the instrucitrat provide the dependent value are committed. However,
there can be a second-order effect that distinguishes battiem: the fact that there is an address dependency to a
write might mean that another program-order-later writencd proceed until it is known that the first write is not to
the same address, whereas the existence of a data depemdenayite has no such effect on program-order-later
writes that are statically known to be to different addres3éis can be seen in the two variations oftietest below.

In both, there are extra writes, to two different addressesgrted in the middle of each thread. On the left, those
writes are address-dependent on the first reads, and se ledse reads are satisfied, the middle writes are not known
to be to different addresses to the last writes on each thf@adhe right, the middle writes are merely data-dependent
on the first reads, so they are statically known to be to diffeaddresses to the last writes on each thread.
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’ Thread 0 ‘ ’ Thread 1 ‘ ’ Thread 0 ‘ ’ Thread 1 ‘

a: R[x]=1 d: R[z]=1 a: R[x]=1 d: R[z]=1
addr l addr data data
b: W[y]=1 e: W[a]J=1 b: W[y]=1 e: W[a]=1
Pot [PO POI po
c: W[z]=1 f: W[x]=1 c: W[z]=1 f: W[x]=1
Test LB+addrs+WW: Forbidden Test LB+datas+WW: Allowed

The firstis not observable on any of the ARM implementatiordrave tested (Tegra 2, Tegra 3, APQ8060, A5X),
while the second is observable on all of them except APQ8G®0.POWER, recall that we have not observed the
basicLB behaviour on any current implementation, and these varigtire also, unsurprisingly, not observable.

Replacing the intervening writes by reads gives the testvipelvhich has the same observable behaviour as
LB+addrs+WW.

] Thread 0 ‘ ] Thread 1 ‘
a: R[x]=1 d: R[z]=1
addr addr
\
rf b: R[y] f e: R[a]=0
po po
c: W[z]=1 f: W[x]=1

Test LB+addrs+RW: Forbidden

The operational model we gave in PLDI 2011 [SSIA] matches these observations precisely, giving theifierb
den’ or ‘allowed’ status as shown for each test. But whethearahitectural model should allow or forbid the two it
forbids may be debatable.

POWER ARM
\ Kind PowerGS| Power6| Power Tegrafp Tegra# APQ8¢60 A5X
LB+addrs+WW | Forbid 0/30G 0/8.7G  0/208G 0/16G 0/23G 0/18G 0/2|1G
LB+datas+WW | Allow 0/30G’| 0/9.2G’| 0/208G’| 15k/6.3G | 224/854M 0/18G"| 23/1.9G
LB+addrs+RW | Forbid 0/3.6G 0/6.06 0/128G 0/13G 0/28G 0/16G —

10.6 Observable Read-request Buffering

Our final example is a case where our PLDI 2011 [S34] model, there tested against POWER, is not sound with
respect to behaviour observable on ARM (specifically, th€8660), and that behaviour is architecturally intended
to be permitted for ARM.

The test is another variation of message passwiB)( with a strongdmb barrier on the writing side. On the
reading side, the read gfis followed by a write (necessarily of a coherence-latengpback toy, followed by a read
of that value, and finally a control-isb dependency to thienate read ok.

The control-isb means that the refof x cannot be satisfied until the readbf y=2 is committed, and that read
cannot be committed before the wrdehat it reads from is committed.

In our PLDI 2011 model, to maintain coherence, that waditsannot be committed before program-order-previous
reads and writes that might be to the same address are cadmithich blocks the whole chain, ensuring that
satisfied aftec.

To see how legitimate hardware might be doing the contramypasse that the read request tois buffered. It
can proceed with the writd to the same address, letting that write be read fromeaaddf continue, so long as the
hardware can guarantee that the read request will eveptumbatisfied by a coherence predecessor of the drite
read requests and writes are buffered in the same FIFQepatidn buffer, that will happen naturally.

This can be accomodated in a variant of the PLDI 2011 modellbwiag writes to commit in slightly more liberal
circumstances.
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’ Thread 0 ‘ ’ Thread 1 ‘
a: W[x]=1 . c: Rlyl=1
r

dmb/styncl po
b: W[y]=1 —>d: W[y]=2
co

lrf

e: R[y]=2

rf ctrlisb/ctrlisync
.\

f: R[x]=0

Test MP+dmb/lwsync+fri-rfi-ctrlisb/ctrlisync: Forbidden

POWER ARM
\Kind PowerGS| Power6| Power Tegr42 TengB APQ8¢60 A5X

| MP+dmb/iwsync+ri-rfi-ctrlisb/isync| Allow[|  0/26G’| 0/6.6G°] 0/80G’| 0/26G°| 0/39G’|  7/1.6G | 0/1.9C]

11 Coherence and lwsync46.3+lwsync+lwsync+addr)

This POWER example (known as blw-w-006 in our earlier worl)ves that one cannot assume that the transitive
closure of lwsync and coherence edges guarantees orddrimgt® pairs, which is a challenge for over-simplified
models. In our abstract machine, the fact that the storalggystem commits tb being beforec in the coherence
order has no effect on the order in which wriseandd propagate to Thread 2. Thread 1 does not read from either
Thread 0 write, so they need not be sent to Thread 1, so no atiwityl is in play. In other words, coherence edges to
not bring writes into the “Group A’ of a POWER batrrier.

’ Thread 0 ‘ ’ Thread 1 ‘ ’ Thread 2 ‘
a: W[x]=1 c: W[y]=2 e: R[z]=1
co rf
lwsync wsync .i addr
b: W[y]=1 d: W[z]=1 f: R[x]=0

Test Z6.3+lwsync+lwsync+addr: Allowed

In some implementations, and in our model, replacing bolyies by syncs forbids this behaviour. In the model, it
would require a cycle in abstract-machine execution tim@mnfthe point at whicta propagates to its last thread, to
the Thread 0 sync ack, to thewrite accept, tac propagating to Thread 0, propagating to its last thread, to the
Thread 1 sync ack, to thetwrite accept, tal propagating to Thread 2, ®being satisfied, td being satisfied, t@a
propagating to Thread 2, eopropagating to its last thread.

ARM does not have an analoguelafsync, so there is no analogue of this example there.

| | Kind || PowerG5] Power6| Power7
Z6.3+lwsync+lwsync+addr Allow|| 0/658M"| 4.7k/1.8G| 29k/4.0G

Z6.3+sync+sync+addr Forbig 0/648M 0/3.7G 0/5.0G
W+RWC+lwsync+addr+syng — 0/658M  2.3k/1.8(G  45k/4.0G

12 Unobservable Interconnect TopologylRIW+addrs-twice)
A straightforward microarchitectural explanation for thehaviour ofiRIW+addrs we saw in Section 6.1 would be

that there is a storage hierarchy in which Threads 0 and lraglibours”, able to see each other’'s writes before
the other threads do, and similarly Threads 2 and 3 are “beigis”. For example, one might have an interconnect
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topology as shown below.

Thread
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Thread
Execution

Thread
Execution

Thread
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| I
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I I
I I
I I
I I
| |

Cache Protocol, Memory

If that were the only reason wHiRIW+addrs were allowed, then one could only observe the specified hedafor
some specific assignment of the threads of the test to thevaegdhreads of the implementation (some specific choice
of thread affinity). That would mean that two consecutiveanses ofRIW+addrs as shown below, with different

assignments of test threads to hardware threads, could newdbserved.

[ Thread 0 ‘ [ Thread 1 ‘ [ Thread 2 ‘ [ Thread 3 ‘ IRIW+addrs-twice Pseudocode
a: W[x]=1 —f» d: R[x]=1 g: W[y]=1 —f» k: Rlyl=1 Thread O Thread 1 Thread 2 Thread 3
I I
.<a:idr o addr x=1 ri=x y=1 r3=y
-~ =% - :* -
po e RIyj0 po I RIxj=0 r2=*(&y+r1-rl) r4=*(&x+r3-r3)
po po z=1 w=1 r5=z r7=w
c: W[z]=1 f: Ww]=1 i RizI=1 T_>m: Rwj=1 r6=*(&w+r5-r5) | r8=*(&z+r7-r7)
i addr o addr Allowed: 1:r1=1 A 1:r2=0 A 3:r3=1 A 3:r4=0 A
5 RI=0 n RIZJ=0 2:r5=1 A 2:r6=0  3:r7=1 A 3:r18=0

Test IRIW+addrs-twice: Allowed

In fact, however, on some current POWER machinesRitid/+addrs-twice behaviouiis observable (microarchi-
tecturally, while they do have a storage hierarchy [[E8F, KSSF10], the cache protocol behaviour alone suffices to
give the observed behaviour, and threads can also be readdig the hypervisor in some circumstances). Moreover,
it is desirable for the architectures not to require thatetee a single topology fixed before a program starts exegutin
as far as correctness goes, the hardware threads shou&iatebchangeable. If programmers learn the interconnect
topology, by a test likéRIW+addrs-twice or otherwise, and use that to make choices within their ctheby, should
not expect consistent and predictable behaviour.

| | Kind [[ PowerG5] Powerf Powery
| IRIW+addrs-twice| Allow | 0/290M°] 0/2.9G°] 5/29G |

13 Load-reserve/Store-conditional

Load-reserve/store-conditional primitives were introeld by Jenseet al. [JHB87] as a RISC-architecture alternative

to the compare-and-swap (CAS) instruction; they have beed an the PowerPC architecture since 1992 and are also
presentin ARM, MIPS, and Alpha. They are also known as la@kkt/store-conditional (LL/SC), or, on ARM, load-
exclusive/store-exclusive. They provide a simple formmtfristic concurrency (very roughly, optimistic transaos

on single locations).

Herlihy [Her93] uses load-reserve/store-conditionahtpliement various wait-free and lock-free algorithms, not-
ing that (as for CAS, but unlike test-and-set and fetch-add)} it isuniversalin terms of consensus number, and
moreover that load-reserve/store-conditional is pratiiicsuperior to CAS in that it defends against the ABA prob-
lem.

We will illustrate the properties of load-reserve/stooaditional by the sequence below, which implements an
atomic add operation. The first sequence is in pseudocoliteyéal by ARM assembly and POWER assembly.
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Atomic Add (Fetch and Add) Pseudocode

Atomic Add ARM Atomic Add POWER
do { T.LDREX RO, [R3] T:iwarx r0,0,r2
— _ . ADD RO, RO, R4 add r0,r1,r0
r = load-reserve x; STREX R1, RO, [R3)] stwex. 10,0,r2
r=r+v; TEQRL, #0 bne- 1b
} while (Istore-conditional (r,x)); BNE 1b

Let us understand the code above by going through the compon&he load-reserve does a load from some
memory address, and establishesservationfor the loading thread to that address. A subsequent stovdigonal
to the same address will either succeed or fail. Moreoverstare-conditional sets a flag so that later instructions ca
determine whether or not it succeeded; load-reservefstorditional pairs are often repeated until success. Ntk t
other operations are permitted between the load-reseetane-conditional, including memory reads and writes,
though, unlike transactions, nothing is rolled back if ttare-conditional fails.

So when can a store-conditional succeed, and when mudtitlfaad-reserve and store-conditional are typically
used in tandem as above. The key property they must join8yirenis that, if the store-conditional succeeds, the
corresponding store must be immediately after the storfreen by the load-reserve. Recalling coherence, the key
condition is that the store of the successful store-caomhti must immediately follow (in the coherence order) the
store read-from by the immediately previous load-resefuethermore, that situation should not be subject to change
as the system evolves (no other write should be able to sndadtiveen). One subtlety is that POWER allows stores
from the same thread (as the load-reserve and the storéticoat) to appear in coherence order in between the two
stores above. This can only happen by program-order imergestores to the same location between the load-reserve
and the store-conditional.

The store-conditional can succeed if this coherence dondis possible, and must fail if it no longer is (for
example, if another write to the same address gets proghtgatbat thread in between the write read from and that
of the store-conditional, which means that third write mhestome coherence-between the two). Note also that this is
merely a condition for possible success, and it is poss@l¢he store-conditional to fail spuriously, thus making an
strong guarantee of forward progress or fairness theaiticnpossible, though in practice this may not be a concern

Various kinds of atomic operations can be built out of loaderve/store-conditional pairs. For the purpose of
examples, we will use two extreme forms shown below: one /tter value loaded is immediately stored back (fetch
and no-op), which implements an atomic load, and anothectwinores the value loaded and stores a pre-determined
value (store-atomic).

Fetch and NO'Op Pseudocode Fetch-and-no-op ARM Fetch-and-no-op POWER
do { 1:LDREX RO, [R3] 1:lwarx r0,0,r2
i STREX R1, RO, [R3] stwex. r0,0,r2
r = load-reserve x; TEQ R1, #0 bne- 1b
} while (!store-conditional (r,x)); BNE 1b
Store-atomic  Pseudocode Store-Atomic _ARM__ Store-Atomic  POWER
do { 1:LDREX RO, [R3] 1:lwarx r0,0,r2
STREX R1, R2, [R3] stwex. r1,0,r2
r = load-reserve x; TEQ R1, #0 bne- 1b
} while (Istore-conditional (v,x)); BNE 1b

In diagrams below, we show a load-reserve by a marked Rgddnd a successful store-conditional by a marked

write (W*).

13.1 Load-reserves and Store-conditionals Stay in Order

Load-reserves and store-conditionals from the same tistagdn order, that is, the load-reserve is satisfied by faadi
its value, and the store-conditional succeeds or failgtstiaccording to program order. This means that having two
fetch-and-no-op on the reader side of the MP example, tegettth alwsync between the writes, makes the non-SC
behaviour forbidden:
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MP+lwsync+poaa Pseudocode

[Thvead o] [Thread 1] Thread 0 Thread 1
a Wi=1 S RIVI=1 x=1 rl=fetch-and-no-op (y)
lwsync data lwsync r2 = fetch-and-no-op (x)
b: Wyl=1 d: W[yJ*=1 y=1
ctrl Initial state: x=0 A y=0
. Forbidden: 1:r1=1 A 1:r2=0

g: W[x]*=0

Test MP+lwsync+poaa: Forbidden

The program-order edge between the two atomic sequencésondding thread here acts almost like a depen-
dency. Indeed, we can go further, andiif memory accesses are replaced by atomic sequences (loaetstmand-
no-op, stores by store-atomics), then we will only have S@ak®ur. This property is less useful that it sounds,
however, since the presence of any non-atomic sequenceydhraad could permit observable non-SC behaviour, as
we see below. Further, even though store-atomics succefed wr order, if they do succeed, their underlying stores
can be propagated to other threads in any order (thus, the® barrier-like effect here). This leads to the variation
of Message Passing with the writes being replaced by storeies and the reads being ordered by dependency being
allowed on POWER.

’ Thread 0 ‘ ’ Thread 1 ‘
rf 3: R[x]*=0 f:(R =1
MP+poaa+addr Pseudocode
po addr
v s Thread 0 Thread 1
¢ WIXI=1 9: RiXJ=0 store-atomic(1,x) | ri=y
po store-atomic (1,y) | r3=(rl xor rl)
.E?RE 1*=0 r2=* (&x + r3)
po Initial state: x=0 A y=0
\ Allowed: 1:r1=1 A 1:r2=0
e: Wyl*=1

Test MP+poaa+addr: Allowed

13.2 Load-reserves and Store-conditionals Not Ordered witiNormal Accesses

There is no special ordering requirements between loaghresstore-conditionals and normal loads/stores, on the
same or different threads. A normal load can be satisfied ttiame with respect to load-reserves and store-
conditionals on the same thread, ignoring program-order (isual coherence restrictions on accesses to the same
location do still apply). Similarly, a normal store and arstfrom a store-conditional from the same thread can propa-
gate to other threads in any order whatsoever, as long astbey different locations. All this means that, for example
the Message Passing test witlwessync between the writes and just one of the reads replaced by la-detd-no-op

still permits the non-SC behaviour.

MP-+lwsync+poap Pseudocode
[Threado|  [Thread 1| Thiead 0 Thread 1
a: WixJ=1 ¢ RIyI*=1 x=1 rl1=fetch-and-no-op (y)
lwsync g data lwsync r2=x

b: Wyl=1 —>d: W[y]*=1 y=1

co p 0o Initial state: x=0 » y=0

—a Forbidden: 1:r1=1 A 1:r2=0

e: R[x]=0

Test MP+lwsync+poap: Allowed
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| | Kind ]| PowerG5] Power6] Powerj
MP+lwsync+poaa| Forbid 0/302M 0/6.36G 0/6.1G
MP+poaa+addr Allow || 0/302M°| 27k/1.1G| 56/1.4G
MP+lwsync+poap| Allow || 362/20M  0/6.3G’| 15k/19M

14 Analysis of Peterson’s algorithm on POWER

The following pseudocode is a simplification of Petersolgeathm for mutual exclusion [Pet81]. The presented code
focusses on mutual exclusion by presenting only the “loc&giment — Thread 0 (resp. Thread 1) would perform
unlocking by writing0 to the flag variablé0 (resp.fl); and by simplifying this lock fragment. Indeed, in the adtu
algorithm the finalif conditional is replaced by while loop whose condition is the negation of the presented final
condition. For instance Thread 0 code of the actual lockifragt could end aswhile (f1 == 1 && vict == 0) ;.

PET Pseudocode
Thread 0 Thread 1
fo=1 /I write flag f1=1 Il write flag
vict=0 /I let other pass | vict=1 /'let other pass
if (f1==0 || vict==1) crit0=1 ; if (f0==0 || vict==0) crit1=1 ;
Initial state: critO=0 A crit1=0
Forbidden?: critO=1 A critl=1

The above final conditionritO=1 A critl=1 expresses mutual exclusion: if bathtO andcritl hold the valuel at
the end of test, then we witness a failure of mutual exclusion
Due to standard short-circuiting compilation of the boaleannectot], if, critO holds the valud, then either:

(1) Thread 0 has read the valddrom the locatiorfl, or

(2) Thread 0 has read the valtidrom the locatiorfl and then the valug from the locatiorvict.
Similarily, if critl holds the valud, then either:

(3) Thread 1 has read the valOdrom the locatiorfO, or

(4) Thread 1 has read the validrom the locatiorfO and then the valué from the locatiorvict.

Usually, a proof of correcteness of Peterson’s algoritheckh that any two conjunction of conditions (1) or (2) on
the one hand, and of (3) or (4) on the other hand leads to aazhation. Such “contradictions” can be interpreted as
violations of sequential consitency, as we discuss.

Guarantee of mutual exclusion, by uniproc

We first consider the case where Peterson’s algorithm rediti@gal mutual exclusion algorithm that would consider
flagsfO andfl only. More precisely, if both threads read valué the other thread’s flag, then the winner is selected
by having each thread to resitt, considering thatict has a settled value that designates the looser in the cdropeti
for mutual exclusion. And indeed, on POWER we cannot haver{#)(4) simultaneously, by the uniproc condition
(see Section 9.6). The following diagrams depict (canéidexecutions that originate from the hypothesis (2) and (4)
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Thread 0 Thread 1 Thread 0 Thread 1
a: W[fo]=1 f: W[f1]=1 a: W[f0]=1 f: W[f1]=1
po po po po
A A A X A
b: Wlvict]=0—— g: Wlvict]=1 b: Wlvict]=0+— : Wlvict]=1
po po po po
A A A X A
c: R[f1]=1 v h: R[f0]=1 c: R[f1]=1 v h: R[f0]=1
ctrl ctrl ctrl ctrl

ctrl ctrl
d: R[vict]=1 i: R[vict]=0 d: R[vict]=1 i: R[vict]=0
ctrl ctrl
trl ctrl trl ctrl
e: Wicrit0]=1 j: Wicritl]=1 e: Wlcrit0]=1 j: Wicritl]=1
Test PET: Forbidden Test PET: Forbidden

In all executions we have - and f e (i.e. each thread reads the value stored in the appropriate flageby t
other thread), this commands the readingiof by both threads. The remaining arrows then depend on theelbi
a coherence order for the writésindg to locationvict (b — ¢ for the diagram on the lefy = b for the diagram
on the right). We only pictured the situation where Threaddlds the valu® stored by Thread O iwict; Thread 1 can
also read the initial value ofict, resulting in a similar analysis, which we omit for brevity.

Then, in all executions, we have a violation of uniproc, aarabterised by te€€0WR: somefr edge contradicts
program order from one memory accessvict to another —e.g. in the first diagram we havée SN g =
As a consequence, the pictured executions are forbiddehdbP©®WER architecture, as they are by any coherent
architecture. More generally, the arbitration protocotiiy means of theict shared location introduced by Peterson
does work on any coherent architecture.

Failure of mutual exclusion, SB style

We now consider the case where (1) and (3) simultaneousty. hbhat is, Thread O reads val@efrom f1 while
Thread 1 reads valu@from fO. The following diagrams depict the resulting (candidatesoaitions:
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Thread 0 Thread 1 Thread O Thread 1

a: W[fo]=1 e: W[f1]=1 a: W[fo]=1 e: W[f1]=1
po po
b: W[vi b: W[vi
po po
c: R[f1]=0 g: R[f0]=0 c: R[f1]=0 g: R[f0]=0
ctrl ctrl ctrl ctrl
d: Wicrit0]=1 h: W[critl]=1 d: W(crit0]=1 h: W[crit1]=1

Test PET: Allowed Test PET: Allowed

There are two executions and not one because of the changiegence edge between the two writeand f to

locationvict. This coherence edge is irrelevant to the pictured viafatiof sequential consistency: namely, there is

cyclea LN NNPLN g ™ 4. This cycle is characteristic of tH8B (or Dekker) test, see the comples®

diagram in Section 9.5. As a consequence the pictured eézasudre allowed by the POWER architecture, as test
SB is.

Failure of mutual exclusion, R style

We now consider the cases where (1) and (4) simultaneoudly Atat is, Thread 0 reads val@efrom f1, while
Thread 1 reads valug from fO but is granted right to mutual exclusion by readidigrom vict. This situation is
depicted by the leftmost of the following two diagrams:

Thread 0 Thread 1 Thread 0 Thread 1
a: W[f0]=1 e: W[f1]=1 a: W[fo]=1 f: W[f1]=1
po po po po
b: W]vict]= : Wvict]=1 b: Wvict]= : Wvict]=1
po po po po
¢: R[f1]=0 g: R[f0]=1 ¢ R[f1]=1 h: R[f0]=0
ctrl ctrl ctrl ctrl

ctrl
d: Wcrit0]=1 i h: R[vict]=0 d: R[vict]=1 i: W[crit1]=1
ctrl trl
i: Wlcrit1]=1 e: Wicrit0]=1

Test PET: Allowed

Test PET: Allowed

First notice that we also picture the symetrical case whHgrarfd (3) hold on the right.




Now we turn back to the leftmost diagram and argue that theigd execution originates from the hypothesis (1)
and (4). Namely, by (1)ife. Thread 0 readé from f1) Thread O reads the initial value fif and we thus have " e.
Furthermore by (3)i(e. Thread 1 read& from f1 and therD from vict), we first havez LN g and therb s h. The

firstrf arrow is immediate, as the writeis the only write of 1 td0 in the whole program. The secorfdarrowd M h
deserves a detailled argumenitreading value) could be fromvict initial state, but this would violate the uniproc
condition, because Thread 1 writesviot before reading from it. Moreover from - 1 we can deducg = .
Otherwise, we would havie % f (as the coherence order is a total order on writes to the doeationvict), and
thus we would again witness@oWR violation of coherence.

Once arrows are settled we easily see the cbcl@% c e 2o f =% bin the leftmost diagram, and,

symetrically,g N g U N RN g in the rightmost diagram. Those cycles are of Bhstyle, they are allowed
and observed on POWER.

Ensuring mutual exclusion with fences

To restore mutual exclusion it suffices to forbid BB andR style violations of sequential consistency described in
the previous two sections. As teS8B+syncs andR+syncs are forbidden on POWER, it suffices to insert tayoc
fences in each thread code, one after the the store to th&flaigf1, and one after the store tact. The resulting
programPET+syncs is shown below:

PET+syncs Pseudocode

Thread 0 Thread 1

fo=1 /I write flag f1=1 /I write flag

sync sync

vict=0 /I let other pass | vict=1 /I let other pass

sync sync

if (f1==0 || vict==1) crit0=1; if (f0==0 || vict==0) critl=1;

Initial state: crit0=0 A critl=0

Forbidden: critO=1 A critl=1

The following observations confirm our analysis:

POWER ARM
\ Kind PowerG5 | Power6 | Power7 Tegra2 TegreiaS APQ8060
PET Allow || 4.7M/160M | 66k/26M| 475M/32G  2.3M/206M 505/10k  38k/100M
PET-UNI Forbid 0/160M 0/26M 0/32G 0/206M 0/10k 0/100M
PET-SB Allow || 4.3M/160M | 64k/26M| 471M/32G 2.2M/206M  438/10k  38k/100M
PET-R Allow || 446k/160M| 2.4k/26M| 4.6M/32G 55k/206M  67/1Qk  503/100M
PET+dmbs/syncs  Forbid 0/160M 0/3.0G 0/32G 0/12G 0/16G 0/16G

One observes that tI&B andR styles of mutual exclusion failure are observed, thalihi style is not observed and
that no failure of mutual exclusion is observed once fencesdded to the tefIET.

15 Sources of Tests, and Correspondences among Them

Several of our tests are taken or adapted from the literaaisrere describe here.

15.1 Boehm and Adve examples

Boehm and Adve [BA08] give four main tests in C-like psuedale using dence statement. Taking that to be a
POWERsync or ARM DMB barrier, they correspond with the tests here as follows.

IRIW [BAO8, Fig. 4]: IRIW+dmbs/syncs
WRC [BAO08, Fig. 5]: WRC+dmbs/syncs
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RWC [BAO08, Fig. 6]: RWC+dmbs/syncs
CC [BAO08, Fig. 7]: we do not discuss

Note that we use an unadornéRIW, WRC or RWC to refer to versions of these tests without any dependency
constraints or barriers, writing e.dRIW+dmbs/syncs for versions ol RIW with two POWERsync barriers or ARM
DMB batrriers.

15.2 ARM Cookbook examples

The correspondence between our tests and the examples éctiors6 of the ARM Barrier Litmus Tests and Cook-
book document [ARMO08Db] is as follows. We label the latter ARBI1, etc., after their section numbers. The code of
our tests is not identical to that of the Cookbook: it differdhe choice of registers, values, etc., and we avoid loops
to simplify our automated checking. Apart from these mirssuies, the correspondence is reasonably exact.

ARMCS6.1 Simple Weakly Consistent Ordering Examigl&B.

ARMCS6.2.1 Weakly-Ordered Message Passing probisiP.

ARMCSG6.2.1.1 Resolving by the addition of barriers MP+dmbs.

ARMCS6.2.1.2 Resolving by the use of barriers and address dependéreymain example iSIP+dmb+addr.

ARMCS6.2.2 Message passing with multiple observers variant of ARMC6.2.1, but with two reading processors,
seeing the writes in opposite orders. This shows that twh®fossible outcomes of the unadoriéB are
simultaneously possible in the same execution.

ARMCS6.2.2.1 Resolving by the addition of barrieeslds &DMB to the writer and dependencies to the readers, giving
a variant of ARMCG6.2.1.2 but with two reading processors.

ARMCG6.3 Address Dependency with object constructidhis is essentially another variantP+dmb-+addr.

ARMCG6.4 Causal consistency issues with Multiple observerde first example is a variant /RC+po+addr,
without a dependency on the middle processor. The secomdpeadds &MB to that processor, giving an
analogue ofVRC+dmb+addr.

ARMCS6.5 Multiple observers of writes to multiple locatiofiie first example i$RIW. The second ifRIW+dmbs.

ARMCG6.6 Posting a Store before polling for acknowledgemettiis is an example in which BAMB barrier after a
write is used to ensure a progress property. Our impressitivat more recent versions of the architecture make
this barrier unnecessary.

ARMCS6.7 WFE and WFI and BarriersWe do not consider interrupts here.

15.3 Power2.06 ISA examples

The Power2.06 ISA [Pow09] Book Il Chapter 1 has just two exasipin §1.7.1, intended to illustrate A- and
B-cumulativity. The first is a variant dWRC+syncs. The second is an iterated message-passing example; our
ISA2+sync+data+addr is a similar but loop-free test.

15.4 Adir et al. examples

The correspondence between our tests and those of AdiyaAtind Shurek [AAS03] (which we label AdirNNN) is
as follows.

Adirl is theMP+syncs example.
Adirlvl removes onsync.

Adirlv2 replaces the secorsync by a load/load dependency, ashiiP+sync+addr.
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Adirlv3 replaces the first sync by a “store/store” dependency, aniitems a write then read from the same address
followed by a load/store dependency, adMR+nondep+sync.

Adirlv4 replaces the second sync by a re-use of the same register.

Adir2 is WRC+syncs, except that the final state is allowed. This example preddie introduction of cumulativity
to PowerPC barriers.

Adir3 is an example showing that store buffering is visible, mdaberate tharsB.

Adird is a message-passing example withyac between the stores and a control dependency between thg load
showing that control dependencies between loads are rpeces, as itMP+sync+ctrl.

Adir5 is an example showing that control dependencies from laadiotes are respected.
Adir6 shows that the existence of multiple copies of registergsible to the programmer; here this is thB+rs test.

Adir7 illustrates artificial (or “false”) load/load dependergiiée. where the value of the first load does not in fact
affect the address of the second, showing that they areatespe

Adir8 (not included here) shows an example of behaviour which mesmodels is forbidden by a cycle through
from-reads and sync edges.

15.5 Adve and Gharachorloo examples
From [AG96]:

Fig. 4(a), Fig. 5(a) SB

Fig. 4(b), Fig. 10(b) WRC

Fig. 5(b,c) MP

Fig. 6 involves four writes on two processors (loosely analogausibt identical to th+2W+syncs example), used
in a discussion of write atomicity

Fig. 10(a) is an extension of th&B example with an additional read/write pair between therirtstons of each
processor

16 Related Work

There has been extensive previous work on relaxed memorglsyaf which we recall here just some of that on mod-
els for the major current processor families that do not reaguentially consistent behaviour: Sparc, x86, Itanium,
ARM, and POWER. Early work by Collier [Col92] developed mabhsed on empirical testing for the multiproces-
sors of the day. For Sparc, the vendor documentation hasaTdal Store Ordering (TSO) model [SFC91, Spa92].
It also introduces PSO and RMO models, but these are not aspdactice. For x86, the vendor intentions were
until recently quite unclear, as was the behaviour of preamegnplementations. The work by Sarkar, Owens, et
al. [SSZN"09, 0SS09, SSO10] suggests that for normal user- or system-code they soeT80. This is in a similar
spirit to the work we describe here, with a mechanised sdosthiat is tested against empirical observation. Itanium
provides a much weaker model than TSO, but one which is mewgaly defined by the vendor than x86 [Int02]; it
has also been formalised in TLA [JLM3] and in higher-order logic [YGLSO03].

For POWER, there have been several previous models, but nesatisfactory for reasoning about realistic con-
current code. In part this is because the architecture hasgeld over time: the lwsync barrier has been added, and
barriers are now cumulative. Corella, Stone and Barton [@3@ave an early axiomatic model for PowerPC, but,
as Adir et al. note [AASO03], this model is flawed (it permite thon-SC final state of the MP+syncs example we
show in§3). Stone and Fitzgerald later gave a prose description wEFRC memory order, largely in terms of the
microarchitecture of the time [SF95]. Gharachorloo [GHafi%es a variety of models for different architectures in a
general framework, but the model for the PowerPC is desgritséapproximate”; it is apparently based on Corella
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et al. [CSB93] and on May et al. [MSSW94]. Adve and Gharactw[AG96] make clear that PowerPC is very re-
laxed, but do not discuss the intricacies of dependencyei@ad ordering, or the more modern barriers. Adir, Attiya,
and Shurek give a detailed axiomatic model [AAS03], in teaha view order for each thread. The model wds-
veloped through an iterative process of successive refinesmeumerous discussions with the PowerPC architects,
and analysis of examples and counterexamplesit its consequences for a number of litmus tests (some ichwh
we use here) are described in detail. These facts inspire somfidence, but it is not easy to understand the force
of the axioms, and it describe®n-cumulativebarriers, following the pre-PPC 1.09 PowerPC architectaverent
processors appear to be quite different. More recentlyn@lamd Ishtiag give a preliminary model for ARM [CI08],
which has a very similar architected memory model to POWERUIrinitial work in this area [AFt09], we gave an
axiomatic model based on a reading of the Power ISA 2.05 and ARM specifications, with experimental results
for a few tests (described as work in progress); this seeiis tmrrect for some aspects but to give an unusably weak
semantics to barriers. More recently still, Alglave et @ve a rather different axiomatic model [AMSS10], further
developed in Alglave’s thesis [Alg10] as an instance of aegehframework; it models the non-multiple-copy-atomic
nature of POWER (with examples such as IRIW+addrs correciityvald) in a simple global-time setting. The ax-
iomatic model is sound with respect to our experimentaktestd on that basis can be used for reasoning, but it
is weaker than the observed behaviour or architecturahtirite some important examples. Moreover, it was based
principally on black-box testing and its relationship te tictual processor implementations is less clear thandhat f
the operational model of [SSAL1, SMO"12], which are more firmly grounded on microarchitectural anchitec-
tural discussion. In more detail, the axiomatic model iskeeghan one might want for lwsync and for cumulativity:
it allows MP+lwsync+addr andISA2+sync+data+addr, which are not observed and which are intended to be ar-
chitecturally forbidden. It also forbids tHe+lwsync+sync variant of R which is not observed but architecturally
intended to be allowed.

We mention also Lea’dSR-133 Cookbook for Compiler Writdisea], which gives informal (and approximate)
models for several multiprocessors, and which highligiksrteed for clear models.

17 On-line material

Various supporting material is available on-line atttp://www.cl.cam.ac.uk/ ~ pes20/
ppc-supplemental

e There are papers describing an operational abstract-meachodel for POWER and its extension for load-
reserve/store-conditional and eieio instructions:

— Understanding POWER multiprocessors. Susmit Sarkar, Betgell, Jade Alglave, Luc Maranget, and
Derek Williams. InProc. PLDI, 2011. [SSA 11]

— Synchronising C/C++ and POWER. Susmit Sarkar, Kayvan Manafcott Owens, Mark Batty, Peter
Sewell, Luc Maranget, Jade Alglave, and Derek WilliamsPtac. PLDI, 2012. [SMO 12]

These also describe how that model explains the behaviaomé of the tests we discuss here, and summarise
some of our experimental data in support of the model. THeviahg paper, together with the PLDI 2012 paper
above, describes a correctness proof for an implementafitine C/C++ concurrency model of the C11 and
C++11 revised standards [BA08, BO$1, Becl1, ISO11] above POWER processors.

— Clarifying and Compiling C/C++ Concurrency: from C++11 tOWER. Mark Batty, Kayvan Memarian,
Scott Owens, Susmit Sarkar, and Peter SewelPrbot. POPL, 2012. [BMO"12]

The following paper gives an axiomatic model for POWER (withioad-reserve/store-conditional), equivalent
to the abstract-machine model above.

— An Axiomatic Memory Model for POWER Multiprocessors. Seladda-Haim, Luc Maranget, Susmit
Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, Raj\&ay Milo M.K. Martin, Peter Sewell, and
Derek Williams. InProc. CAV, 2012 [MHMS™12].

e Ourppcmem tool lets one interactively explore the behaviour of a POWERRM litmus test with respect to
our model; this is available via a web interfacehttp://www.cl.cam.ac.uk/ ~ pes20/ppcmem . The
use ofppcmem was described in a Linux Weekly News (LWN) article by McKenifigyeK11].
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Note that at the time of writing thppcmem tool is based on the model presented in those papers which was
developed principally for POWER. The ARM mode micmem uses the same model instantiated to a small
fragment of the ARM instruction set. We believe this to bereotrin most instances but there are cases, most
notably theMP+dmb-+fri-rfi-ctrlisb test we describe in Section 10.5, where an ARM test has céisienand
architecturally allowed behaviour that that model forbirk on a revised model for ARM is in progress.

e Ourlitmus tool takes a litmus test and constructs a test harness (as@g@m with embedded assembly) to

experimentally test its observable behaviours. This isrdoadable fromhttp://diy.inria.fr , which
also includes oudiy tool for generating litmus tests from concise specificatiorhelitmus tool is described in
this paper:

— Litmus: running tests against hardware. Jade Alglave, Lacaviget, Susmit Sarkar, and Peter Sewell. In
Proc. TACAS2011. [AMSS11b]

e A summary of tests and of experimental results.

AcknowledgementsWe acknowledge funding from EPSRC grants EP/F036345, EF56/3, and EP/H027351, and
from ANR project WMC (ANR-11-JS02-011).
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