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Abstract

ARM and IBM POWER multiprocessors have highlyrelaxedmemory models: they make use of a range of hard-
ware optimisations that do not affect the observable behaviour of sequential code but which are exposed to concurrent
programmers, and concurrent code may not execute in the way one intends unless sufficient synchronisation, in the
form of barriers, dependencies, and load-reserve/store-conditional pairs, is present. In this tutorial we explain some
of the main issues that programmers should be aware of, by example. The material is based on extensive experimental
testing, discussion with some of the designers, and formal models that aimto capture the architectural intent (though
we do not speak for the vendors). To keep this tutorial as accessible aspossible, we refer to our previous work for
those details.
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1 Introduction

ARM and IBM POWER multiprocessors have highlyrelaxedmemory models: they make use of a range of hardware
optimisations that do not affect the observable behaviour of sequential code but which are exposed to concurrent
programmers, and concurrent code may not execute in the way one intends unless sufficient synchronisation, in the
form of barriers, dependencies, and load-reserve/store-conditional pairs, is present. In this tutorial we explain some of
the main issues that programmers should be aware of, by example. The material is based on extensive experimental
testing, discussion with some of the designers, and formal models that aim to capture the architectural intent (though
we do not speak for the vendors). To keep this tutorial as accessible as possible, we refer to our previous work for
those details.

We emphasise that our focus is on low-level concurrent code:implementations of synchronisation libraries, con-
current datastructures, etc. For simple higher-level codethat follows a correct locking discipline and that is race-free
apart from the lock implementations, most of what we describe should not be a concern. Even for low-level code,
while some of our examples crop up in practical programming idioms, some (to be best of our knowledge) do not, and
are included simply to provide a reasonably complete picture of the possible behaviour of the machines.

1.1 Scope

The ARM and IBM POWER architectures differ in many respects, but they have similar (though not identical) relaxed
memory models. Here, we aim to cover the memory models for thefragments of the instruction sets required for typical
low-level concurrent algorithms in main memory, as they might appear in user or OS kernel code. We include memory
reads and writes, register-to-register operations, branches, and the various kinds of dependency between instructions.
The two architectures each have a variety of special instructions that enforce particular ordering properties. First,
there arememory barriers. For POWER we cover thesync (also known ashwsync or sync 0), lwsync, andeieio
barriers, while for ARM we cover theDMB barrier, which is analogous to the POWERsync. Second, there are
the POWERisync instruction and analogous ARMISB instruction. Third, there are POWER load-reserve/store-
conditional pairslarx/stcx and the ARM load-exclusive/store-exclusive pairsLDREX/STREX. We do not deal with
mixed-size accesses or with explicit manipulation of page tables, cache hints, self-modifying code, or interrupts. For
ARM, we assume that all observers are in the “same required shareability domain”.

1.2 Organisation

We structure the explanation around a series of examples (often known aslitmus tests): very small concurrent pro-
grams, accessing just a few shared variables, that illustrate the main relaxed-memory phenomena that one should be
aware of. Most are taken from a systematic study of the interesting small examples, covering all possible patterns of
communication and synchronisation up to a certain size, andwe pull these together into a ‘periodic table’ of examples
in Section 9. To let one see the communication and synchronisation patterns as clearly as possible, the examples
are abstract rather than taken from production code, but we talk briefly about the possible use cases in which each
might arise (and about possible microarchitectural explanations of their behaviour). After reading this tutorial, one
should be able to look at some production concurrent code andanalyse it in terms of the communication and syn-
chronisation patterns it uses. Sections 10–12 illustrate avariety of more subtle phenomena, then Section 13 discusses
load-exclusive/store-exclusive (ARM) and load-reserve/store-conditional (POWER) instructions. Section 14 analyses
an example algorithm, a simplfied version of Peterson’s algorithm for mutual exclusion, in terms of litmus test pat-
terns. Section 15 relates the litmus tests we use to some thathave appeared in the literature and Section 16 reviews
some of the related work.

Finally Section 17 describes supporting material that is available on-line. Various papers describe an opera-
tional abstract-machine model for POWER, explain the behaviour of some litmus tests in terms of that model, give
a correctness proof for an implementation of the C/C++ concurrency model of the C11 and C++11 revised stan-
dards [BA08, BOS+11, Bec11, ISO11] above POWER processors, and give an axiomatic model for POWER. Our
ppcmem tool, available via a web interface, lets one interactivelyexplore the behaviour of a POWER or ARM litmus
test with respect to our operational model; ourlitmus tool takes a litmus test and constructs a test harness (as a C pro-
gram with embedded assembly) to experimentally test its observable behaviours; and ourdiy tool generating litmus
tests from concise specifications. There is also an on-line summary of tests and experimental results.
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2 From Sequential Consistency to Relaxed Memory Models

One might expect multiprocessors to havesequentially consistent(SC) shared memory, in which, as articulated by
Lamport [Lam79]:

“the result of any execution is the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in this sequence in the order
specified by its program”.

An SC machine can be modelled as in the diagram below:

Shared Memory

Thread1 Threadn

W R RW

Here there are a number of hardware threads, each executing code as specified by the program, which access a single
shared memory (by writing and reading the values it holds at each address). Such a machine has two key properties:

1. There is nolocal reordering: each hardware thread executes instructions in the order specified by the program,
completing each instruction (including any reads or writesto the shared memory) before starting the next.

2. Each write becomes visible to all threads (including the thread doing the write) at the same time.

However, most multiprocessors are not sequentially consistent, including the current ARM, POWER, x86, Itanium,
and SPARC architectures, and others dating back at least as far as the 1972 IBM System 370/158MP. Instead they have
variousrelaxedor weakmemory models: they guarantee only weaker propertiers, to allow a range of microarchitec-
tural optimisations in the processor implementations thatprovide better performance, better energy usage, or simpler
hardware. These optimisations are typically not observable to single-threaded code, or by programs that obey a con-
ventional locking discipline and are (except within the lock implementations) race-free, but general concurrent code
can observe non-SC behaviours.

The details vary between architectures, and even between different processor implementations of the same archi-
tecture. In broad terms x86 and SPARC are similar, with relatively strong models based on theTotal Store Ordering
(TSO) model [Spa92, OSS09, SSO+10] that we recall below. ARM and POWER are much weaker than TSO(though
broadly similar to each other), as we shall describe in this tutorial. Itanium [Int02] is also much weaker than TSO, but
in rather different ways to ARM and POWER; we do not cover it here.

TSO An x86-TSO or SPARC TSO machine can be described by the diagram below [SSO+10, OSS09, SSZN+09,
Spa92]. Here each hardware thread has a FIFO write buffer of pending memory writes (thus avoiding the need to
block a thread while a write completes). Moreover, a read in TSO is required to read from the most recent write to the
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same address, if there is one, in the local store buffer.

Shared Memory

ThreadnThread1

W
rite

B
uffer

1

W
rite

B
uffer

n

Lock

W W

WW

R RR R

In addition, many x86 instructions involve multiple memoryaccesses, e.g. an x86 incrementINC. By default, these
are not guaranteed atomic (so two parallel increments of an initially 0 location might result in it holding1), but there
are atomic variants of them:LOCK;INC atomically performs a read, a write of the incremented value, anda flush of
the local write buffer, effectively locking the memory for the duration. Compare-and-swap instructions (CMPXCHG)
are atomic in the same way, and memory fences (MFENCE) simply flush the local write buffer. SPARC is similar,
though with a smaller repertoire of atomic instructions rather than a general LOCK prefix.

Returning to the two properties above, in TSO a thread can seeits own writes before they become visible to other
threads (by reading them from its write buffer), but any write becomes visible to allotherthreads simultaneously: TSO
is a multiple-copy atomicmodel, in the terminology of Collier [Col92]. One can also see the possibility of reading
from the local write buffer as allowing a specific kind of local reordering. A program that writes one locationx then
reads another locationy might execute by adding the write tox to the thread’s buffer, then readingy from memory,
before finally making the write tox visible to other threads by flushing it from the buffer. In this case the thread reads
the value ofy that was in the memorybeforethe new write ofx hits memory.

ARM and POWER ARM and IBM POWER have adopted considerably more relaxed memory models. For several
reasons (including performance, power efficiency, hardware complexity, and historical choices), they allow a wider
range of hardware optimisations to be observable to the programmer. This allows a wide range of relaxed behaviour
by default, so the architectures also provide mechanisms, in the form of various memory barriers and dependency
guarantees, for the programmer to enforce stronger ordering (and to pay the cost thereof) only where it is required. In
the absence of such:

1. The hardware threads can each perform reads and writes out-of-order, or even speculatively (before preceding
conditional branches have been resolved). In contrast to TSO, where there is no local reordering except of reads
after writes to different addresses, here any local reordering is allowed unless specified otherwise.

2. The memory system (perhaps involving a hierarchy of buffers and a complex interconnect) does not guarantee
that a write becomes visible to all other hardware threads atthe same time point; these architectures are not
multiple-copy atomic.

Implementation and Architecture To explain the ARM and POWER allowed behaviour in more detail,we have
to clearly distinguish between several views of a multiprocessor. A specific processor implementation, such as the
IBM POWER 7, or the NVIDIA Tegra 2 (an SoC containing a dual-core ARM Cortex-A9 CPU), will have a specific
microarchitectureand detailed design that incorporates many optimisations.We are not concerned here with the
internal structure of the designs, as they are too complex toprovide a good programming model and are typically
commercially confidential.
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Instead, we are concerned with theprogrammer-observablebehaviour of implementations: the set of all behaviour
that a programmer might see by executing multithreaded programs on some particular implementation and examining
the results (moreover, here we are concerned only with correctness properties, not with performance behaviour).

Even this is usually too specific to work with: each processorfamily comprises many implementations which (as
we shall see) can have significantly different programmer-observable behaviour, and one typically wants software that
will work correctly on all of them, not just on one specific processor implementation. Anarchitecturespecifies a range
of behaviour that programmers should be able to depend on, for any processor implementation that conforms to the
architecture. An architecture may be a significantly looserspecification than the programmer-observable behaviour of
a specific processor implementation, to accomodate the variations among current, past, and future implementations.
(Of course, this looseness makes software development challenging: in principle one might think that one should “pro-
gram to the architecture”, but normal software developmentrelies on testing software running on specific processor
implementations, which may not exhibit some architecturally allowed behaviour that other implementations do or will
exhibit.)

Processor vendors produce architecture specifications, such as the Power ISA Version 2.06 [Pow09], and the ARM
Architecture Reference Manual (ARMv7-A and ARMv7-R edition) [ARM08a]. These use prose and pseudocode to
describe a range of observable behaviour, and are generallyrather precise about sequential behaviour but less clear that
one might hope when it comes to concurrent behaviour and relaxed-memory phenomena — it is very hard to produce
prose that unambiguously and completely captures these subtleties.

Instead, we and others advocate the use ofmathematically rigorousarchitecture definitions. These are often
most accessibly presented asoperational models, such as the TSO machine illustrated above. This has an ‘abstract
microarchitectural’ flavour: it is anabstract machine, with some machine state (comprising the states of the shared
memory, the FIFO write buffers, and the threads) and a definition of the transitions that the machine can take. It
specifies a range of observable behaviour for a concurrent program implicitly, as all the behaviour that that abstract
machine could exhibit when running that program; by claiming that an abstract machine is a sound architectural
model for a range of processor implementations, we mean thatfor any program the set of observable behaviours of the
abstract machine running that program includes any behaviour that might be exhibited by any of those implementations
running the program. The internal structure of the abstractmachine, on the other hand, might be very different to the
microarchitecture and detailed design of the processor implementations. Indeed, modern x86 processors typically will
have a complex cache hierarchy, out-of-order execution, and so on, quite different from the simple FIFO-write-buffer
structure of the abstract machine. The significance of the abstract machine model is that those are not observable to
the programmer (except via performance properties).

In ongoing work, we are developing mathematically rigorousoperational-model architecture specifications for
ARM and POWER [SSA+11, SMO+12]. In this tutorial we focus on explaining what observablebehaviour is permit-
ted for ARM and POWER by example, so we will not give those models in detail, but to develop some intuition for
how concurrent programs might behave it is useful to first introduce some of the basic concepts used by the model.
We emphasise again that these are not to be confused with the actual microarchitecture of current implementations.

ARM and POWER Abstract Machine Concepts To explain the behaviour of a non-multiple-copy-atomic machine,
it is sometimes helpful to think of each thread as effectively having its own copy of memory, specifying abstractly what
value that thread would normally read for any address, as in the diagram below. A write by one thread maypropagate
to other threads in any order, and the propagations of writesto different addresses can be interleaved arbitrarily, unless
they are constrained by barriers or coherence. As we shall see later, one can also think of barriers (the ARM DMB and
POWER sync and lwsync) as propagating from the hardware thread that executed them to each of the other threads.
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We speak of the collection of all the memories and their interconnect (i.e., everything except the threads) as thestorage
subsystem.

For the thread-local out-of-order (and speculative) execution, in general we can think of each thread, at any point in
time, as having a tree of thecommittedandin-flight instruction instances. Newly fetched instructions becomein-flight,
and later, subject to appropriate preconditions, can be committed. For example, below we show a set of instruction
instances{i1, . . . , i13} with the program-order-successor relation among them. Three of those ({i1, i3, i4}, boxed)
have been committed; the remainder are in-flight.

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Instruction instancesi5 andi9 are branches for which the thread has fetched multiple possible successors; here just two,
but a branch with a computed address might in principle fetchmany possible successors. A typical implementation
might well explore at most one speculative path at a time. Note that the committed instances are not necessarily
contiguous: herei3 andi4 have been committed even thoughi2 has not, which can only happen if they are sufficiently
independent. When a branch is committed then any un-taken alternative paths are discarded, and instructions that
follow (in program order) an uncommitted branch cannot be committed until that branch is, so the tree must be linear
before any committed (boxed) instructions.

For a read instruction, as soon as an address for the read is known, the read might besatisfied, binding its value
to one received from the local memory (or in some cases forwarded from earlier in the thread). That value could
immediately be used by later instructions in the thread thatdepend on it, but it and they are subject to being restarted
or (if this is a speculative path) aborted until the read iscommitted.

For a write instruction, the key points are when the address and value become determined. After that (subject to
other conditions) the write can becommitted, sent to the local memory; this is not subject to restart or abort. After
that, the write mightpropagateto other threads, becoming readable by them.
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Barriers are similar in that they getcommittedat a thread and sent to the local part of the storage subsystem, before
perhapspropagatingto other threads. The constraints on how writes and barrierscan propagate are intertwined, as we
shall see.

Aside: other notions of atomicity We introducedmultiple-copy atomicityabove, but some caution is needed, as
there are many different senses of “atomic” in use. Two otherimportant notions of atomicity are as follows.

A memory read or write by an instruction isaccess-atomic(or single-copy atomic, in the terminology of Col-
lier [Col92]—though note that single-copy atomic is not the opposite of multiple-copy atomic) if it gives rise to a
single access to the memory. Typically an architecture willspecify that certain sizes of reads and writes, subject to
some alignment constraints, (such as 1, 2, 4, 8, and 16-byte accesses with those alignments), are access-atomic, while
other sizes and non-aligned accesses may be split into several distinct subaccesses. For example, two writes of the
same size to the same address are access-atomic iff the result is guaranteed to be either one or the other value, not a
combination of their bits. Of course, in a machine which is not multiple-copy atomic, even if a write instruction is
access-atomic, the write may become visible to different threads at different times (and if a write is not access-atomic,
the individual subaccesses may become visible to differentthreads at different times, perhaps in different orders).

An instruction that involves more than one memory access, such as an increment that does a read and a write to the
same location, or a load-multiple that reads several words,is instruction-atomicif its accesses are indivisible in time,
with no other intervening access by other threads to their locations. For example, increment is instruction-atomic iff
two concurrent increments to the same location that is initially 0 are guaranteed to result in the location containing 2,
not 1. On x86INC is not instruction-atomic whereasLOCK;INC is. On POWER anlmw load-multiple instruction is
not instruction-atomic.

Yet another usage is the C11 and C++11 atomic types and operations. These have various properties, including
analogues of access- and instruction-atomicity, that we will not discuss here; see [BA08, BOS+11, Bec11, ISO11] for
details.

3 Introducing Litmus Tests, and Simple Message Passing (MP)

3.1 Message Passing Attempts without Barriers or Dependencies

3.1.1 The Message Passing (MP) Example A simple example illustrating some ways in which ARM and
POWER are relaxed is the classicmessage passing(MP) example below, with two threads (Thread 0 and Thread 1)
and two shared variables (x andy). This is a simple low-level concurrency programming idiom, in which one thread
(Thread 0) writes some datax, and then sets a flagy to indicate that the data is ready to be read, while another thread
(Thread 1) busy-waits reading the flagy until it sees it set, and then reads the datax into a local variable or processor
registerr2. The desired behaviour is that after the reading thread has seen the flag set, its subsequent read of the data
x will see the value from the writing thread, not the initial state (or some other previous value). In pseudocode:

MP-loop Pseudocode
Thread 0 Thread 1

x=1 // write data while (y==0) {} // busy-wait for flag
y=1 // write flag r2=x // read data
Initial state: x=0 ∧ y=0
Forbidden?: Thread 1 register r2 = 0

The test specifies the initial state of registers and memory (x=0 andy=0; henceforth we assume these are zero if not
given explicitly) and a constraint on the final state, e.g. that Thread 1’s registerr2 is 0. Herex (or [x] in assembly tests)
is the value of memory locationx; later we write1:r2 for the value of registerr2 on hardware thread1. If one reached
that final state, withr2=0, then the Thread 1 read ofx would have to have readx=0 from the initial state despite the
Thread 1while loop having successfully exit on reading from the Thread 0 write of y=1, program-order-after its write
of x=1.

We can simplify the example without really affecting what isgoing on by looking at just a single test of the
flag: instead of looking at all executions of theMP-loop busy-waiting loop, we can restrict our attention to just the
executions of theMP program below in which the Thread 1 read ofy sees the value1 written by Thread 0 (we are
effectively considering just the executions ofMP-loop in which thewhile loop test succeeds the first time). In other
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words, the desired behaviour is thatif the read ofy saw1 then the read ofx must not have seen0. Or, equivalently,
the desired behaviour is that final outcomes in whichr1=1 andr2=0 should be forbidden.

MP Pseudocode
Thread 0 Thread 1

x=1 r1=y
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden?: 1:r1=1 ∧ 1:r2=0

A litmus testsuch as this comprises a small multithreaded program, with adefined initial state and with a constraint on
their final state that picks out the potential executions of interest. Given that, for any architecture we can ask whether
such an execution isallowed or forbidden; we can also run the test (in a test harness [AMSS11a]) on particular
processor implementations to see whether it isobservedor not observed.

Throughout this document we use the term “thread” to refer tohardware threads on SMT machines and processors
on non-SMT machines. Assuming a correctly implemented scheduler (with appropriate barriers at context switches)
it should be sound to think of software threads in the same way.

3.1.2 Observed Behaviour In a sequentially consistent model, that final outcome ofr1=1 ∧ r2=0 is indeed
forbiden, as there is no interleaving of the reads and writes(in which each read reads the value of the most recent write
to the same address) which permits it. To check this, one can just enumerate the six possible interleavings that respect
the program order of each thread:

Interleaving Final register state

x=1; y=1; r1=y; r2=x r1=1 ∧ r2=1
x=1; r1=y; y=1; r2=x r1=0 ∧ r2=1
x=1; r1=y; r2=x; y=1 r1=0 ∧ r2=1
r1=y; r2=x; x=1; y=1 r1=0 ∧ r2=0
r1=y; x=1; r2=x; y=1 r1=0 ∧ r2=1
r1=y; x=1; y=1; r2=x r1=0 ∧ r2=1

On x86-TSO or SPARC TSO that final outcome ofr1=1 ∧ r2=0 is also forbidden, as the two writes flow through a
FIFO buffer into the shared memory before becoming visible to the reading thread. But on ARM and POWER, this
final outcome isallowed in the architecture, and it is commonlyobservableon current processor implementations.
Thread 1 can see the flagy set to 1, and program-order-subsequently see the datax still 0. The table below gives some
sample experimental data, running this test on various processor implementations using a test harness produced by our
litmus tool [AMSS11a]. Each entry gives a ratiom/n, wherem is the number of times that the final outcome ofr1=1
∧ r2=0 was observed inn trials.

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

Here we just show the frequency of the outcome identified by the final state constraint, but many other outcomes (all
the sequentially consistent outcomes listed above), are also allowed and observable.

Care is needed in interpreting such results, of course: the specific numbers can be highly dependent on the test
harness; such testing, of highly nondeterministic systems, is not guaranteed to produce all the executions that an imple-
mentation might produce; and the architectures are intentionally looser in some respects than current implementations,
so (as we will see later) some behaviour may be architecturally allowed even though it is never observable in current
processors. Moreover, there might be differences between our architectural models, the vendor’s architectural intent,
and the vendor’s architecture manuals (the ARM ARM [ARM08a]and POWER ISA [Pow09]). And of course, while
our models are based in part on extensive discussion with ARMand IBM architects and designers, we do not speak for
either vendor. All that said, we have reasonable confidence in our models, and we have found our testing process to
be reasonably discriminating. Whereever we mark a test execution as allowed or forbidden, we believe that that does
match the architectural intention, and, unless otherwise stated, everything marked as allowed is observable on some
implementation of one or other architecture, and (modulo processor errata, which we do not discuss here) everything
marked as forbidden has not been observable. We give some summary test data to illustate this in each section.

9



3.1.3 Explaining the Behaviour To explainwhysome particular relaxed behaviour is allowed by an architecture,
or why it may be observable on a processor implementation of that architecture, one might refer to the processor-
vendor architecture text, or to the microarchitectural details of the implementation, or to a formal model that attempts to
capture one or the other, or to an intuitive description of such a model. All have their uses and disadvantages. Reference
to vendor architecture texts has the advantage of generality (as these aim to apply to all processor implementations of
that architecture) and of the authority of the vendor. But they are often less clear than one might hope when it comes to
relaxed-memory behaviour. A full microarchitectural explanation is in principle completely precise, but would require
detailed knowledge of a processor implementation, which istypically commercially confidential, and it would also
only apply to that implementation. For the third option, ourformal models [OSS09, SSO+10, SSA+11, SMO+12]
aim to capture the vendor’s architectural intent, and be consistent with the observed behaviour, for x86 and POWER.
They are expressed in rigorous mathematics, and so are completely precise, and that mathematics can also be used
to automatically generate testing and exploration tools, as for ourppcmem tool. But that mathematical detail can
make them less accessible to a broad audience than one would like. Accordingly, in this tutorial we take advantage
of the fact that those formal models are in an “abstract microarchitecture” style: to build intuition for the observable
behaviour of the formal architectural model (and hence of the processor implementations and vendor architecture), we
explain the behaviour of tests using the style and terminology of the abstract machines we introduced in Section 2. To
avoid overwhelming detail, we do not describe the formal models completely; for that, one should refer to the papers
cited above.

To explain the observed behaviour forMP on ARM and POWER, there are three distinct possibilities: thewrites
on Thread 0 are to distinct addresses and so can be committed out of order on Thread 0; and/or they might also be
propagated to Thread 1 in either order; and/or the reads on Thread 1 (likewise to distinct addresses) can be satisfied
out of order, binding the values they read in the opposite order to program order (the reads might also be committed
in-order or out of order, but that has no effect on the outcomehere). Any one of these microarchitectural features in
isolation is sufficient to explain the non-sequentially-consistent behaviour above.

3.1.4 Test Execution Diagrams In most of the examples we will use, the final state constraintuniquely as a single
candidate execution, implicitly specifying which write any read reads from, how any control-flow choices are resolved,
and how, for each location, the writes to that location are ordered among themselves (theircoherence ordersthat we
discuss in Section 8). It is helpful to think of this execution diagrammatically, abstracting from the code. For example,
we can depict the aboveMP test by the execution diagram below.

Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

The diagram has a node for each memory access. The nodes are labelled (a, b, c, d), so that we can refer to them,
and each specifies whether it is a write (W) or read (R), its location (herex or y), and the value read or written in this
execution (here0 or 1). The events are laid out in one column per thread, and there is aprogram order(po) edge
between the two events of each thread (here this happens to bethe same as the syntactic order of the two instructions
in the source code, but in general it represents a choice of a control-flow path for that thread, unfolding any branches).
Thereads-from(rf) edge fromb to c indicates that readc reads from the writeb, and the reads-from edge from a red
dot to readd indicates that the latter reads from the initial state. We will introduce other kinds of nodes and edges as
we use them. Sometimes we mark diagrams to indicate that the execution is allowed or forbidden (in our models and
our best understanding of the vendors’ architectural intent).

3.1.5 Pseudocode vs Real codeIn general, relaxed-memory behaviour can be introduced both by the hardware,
from microarchitectural optimisations, and by the compiler, from compiler optimisations. For example, a compiler
might well do common subexpression elimination (CSE), thereby reordering accesses to different locations within
each thread’s code. In this tutorial, we are talkingonly about how the hardware executes machine-code assembly
instructions, and the pseudocode we give must be understoodas a description of the actual assembly instructions
being executed, not as a program in C, Java, or another high-level language. We therefore take the definitive versions
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of the test to be the POWER and ARM assembly code, as on the rightbelow, not the pseudocode above and on the
left. The assembly code can be harder to read for those unfamiliar with it, but as we usually use execution diagrams
as above, this is not often a problem.

MP Pseudocode
Thread 0 Thread 1

x=1 r1=y
y=1 r2=x
Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0

MP ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] LDR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 1:R0=1 ∧ 1:R1=0

MP POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 1:r1=1 ∧ 1:r3=0

3.1.6 Undefined behaviour and data races By focussing on the execution of machine code, we can also sidestep
the fact that in some high-level languages certain programshave undefined behaviour. For example, in C11/C++11,
unlessy were declared to beatomic, the code above would give rise to a data race, making any program that executed
it undefined, and if it was declared atomic the compiler mightintroduce various assembly-language fences (depending
on the memory-order parameters of the atomic accesses). At the machine-code level, all programs have well-defined
(albeit typically nondeterministic) behaviour even if they have races.

3.1.7 Real usage of theMP idiom In theMP test as shown above, the datax is just a single memory location, but
in real usage one might have multi-word data. For most or all of the MP variations that we explore later, that should
make no difference.

3.1.8 Running the example inppcmem To interactively explore the behaviour of this example using our
ppcmem tool, go tohttp://www.cl.cam.ac.uk/ ˜ pes20/ppcmem , click on Change to ARM modelif de-
sired, click onSelect POWER/ARM Testand select MP from the menu, and click onInteractive. The screen will
show the state of our model (we do not give all the details here, but they are described in our PLDI 2011 and PLDI
2012 papers [SSA+11, SMO+12]) running that test, with the green underlined options the possible model transi-
tions; one can click on those to explore particular possiblebehaviours. Alternatively, there is a direct link to run
ppcmem on each POWER test via theTests and Test Resultslink at http://www.cl.cam.ac.uk/ ˜ pes20/
ppc-supplemental .

3.2 Enforcing Order with Strong (dmb/sync) Barriers

To regain order, the programmer must defend against all of the above out-of-order possibilities. A strong memory
barrier (orfence) instruction inserted between the two writes on Thread 0, and between the two reads on Thread 1,
suffices. On POWER this would be thesync instruction (also written ashwsync), and on ARM it would beDMB.
The resulting litmus tests are given below.

MP+dmb/syncs Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync dmb/sync
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] DMB
DMB LDR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) sync
sync lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 1:r1=1 ∧ 1:r3=0

We illustrate the execution of interest as below, with greendmb/sync arrows to indicate memory accesses sepa-
rated by async or aDMB instruction.

Test MP+dmbs/syncs: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

dmb/sync

rf
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Microarchitecturally, and in our models, thesync or DMB on Thread 0 keeps the two writes in order, both locally and
in the order they propagate to other threads in the system. Meanwhile, thedmb/sync on Thread 1 forces the two reads
to be satisfied, binding their values, in program order, by stopping the second read from being satisfied before the first
one is. Note that, as we shall see below, this is much strongerthan necessary, with various dependencies or lighter
flavours of barriers being sufficient in this case.

The dmb/sync barriers are potentially expensive, but satisfy the property that if inserted between every pair of
memory accesses, they restore sequentially consistent behaviour. Looking at the four cases of a pair of a read or write
before and after a barrier in more detail, we have:

RR For two reads separated by admb/sync, the barrier will ensure that they are satisfied in program order, and also
will ensure that they are committed in program order.

RW For a read before a write, separated by admb/sync, the barrier will ensure that the read is satisfied (and also
committed) before the write can be committed, and hence before the write can be propagated and thereby
become visible to any other thread.

WW For a write before a write, separated by admb/sync, the barrier will ensure that the first write is committed and
has propagated to all other threads before the second write is committed, and hence before the second write can
propagate to any other thread.

WR For a write before a read, separated by admb/sync, the barrier will ensure that the write is committed and has
propagated to all other threads before the read is satisfied.

We emphasise that these descriptions are allas far as the programmer’s model is concerned. An actual hardware
implementation might be more aggressive, e.g. with some speculative execution of instructions that follow a barrier,
or a microarchitectural structure that allows more write propagation, so long as the programmer cannot detect it.

3.3 Enforcing Order with the POWER lwsync Barrier

On POWER, there is a ‘lightweight sync’lwsync instruction, which is weaker and potentially faster than the the
‘heavyweight sync’ orsync instruction, and for this message-passing example the lwsync suffices, on both the writer
and reader side of the test. Looking again at the four cases above:

RR For two reads separated by anlwsync, just like sync, the barrier will ensure that they are satisfied in program
order, and also will ensure that they are committed in program order.

RW For a read before a write, separated by alwsync, just likesync, the barrier will ensure that the read is satisfied
(and also committed) before the write can be committed, and hence before the write can be propagated and
thereby become visible to any other thread.

WW For a write before a write, separated by alwsync, the barrier will ensure that for any particular other thread, the
first write1 propagates to that thread before the second does.

WR For a write before a read, separated by alwsync, the barrier will ensure that the write is committed before the
read is satisfied, but lets the read be satisfied before the write has been propagated to any other thread.

In this message-passing example, we just need the WW and RR cases; anlwsync on the writing thread keeps the two
writes in order (their commit and propagation) as far as the reading thread is concerned, and anlwsync on the reading
thread ensures that the reads are satisfied in program order.

Test MP+lwsyncs: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

lwsync
rf

lwsync

rf

MP+lwsyncs Pseudocode
Thread 0 Thread 1

x=1 r1=y
lwsync lwsync
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

MP+lwsyncs POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) lwsync
lwsync lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 1:r1=1 ∧ 1:r3=0

1Or a coherence successor thereof; see Section 8.
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We show a case where the weakness oflwsync really matters in testSB+lwsyncs, in Section 6. ARM does not
have an analogue oflwsync.

3.4 Observed Behaviour

Below we show experimental data for these tests: forMP+dmbs andMP+syncs on ARM and POWER, and for
MP+lwsyncs just on POWER.

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

MP+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G

MP+lwsyncs Forbid 0/6.9G 0/40G 0/220G — — — —

Here the allowed result forMP is observable on all platforms, while the forbidden resultsfor the variants with barriers
are not observable on any platform.

4 Enforcing Order with Dependencies

In fact, on the read side of the message-passing example, thesync, lwsync, andDMB memory barriers used above are
stronger than necessary: one can enforce enough ordering toprohibit the undesired outcome just by relying on various
kinds ofdependencyin the code. In this section we explain what those are and whattheir force is. In later sections
we use dependencies in examples that illustrate some other relaxed-memory properties of the machines. For POWER,
in all the examples of this section one could replace thesync on the writing thread withlwsync without affecting the
results.

4.1 Address Dependencies

The simplest kind of dependency is anaddress dependency. There is an address dependency from a read instruction
to a program-order-later read or write instruction when thevalue read by the first is used to compute the address
used for the second. In the variation ofMP below, instead of writing a flag value of1, the writer Thread 0 writes
the address of locationx, and the reader Thread 1 uses that address for its second read. That dependency is enough
to keep the two reads satisfied in program order on Thread 1: the second read cannot get started until its address is
(perhaps speculatively) known, so the second read cannot besatisfied until the first read is satisfied (in other words,
the ARM and POWER architectures do not allowvalue speculationof addresses). Combining that with thedmb/sync
on Thread 0 (which keeps the write tox and the write toy in order as far as any other thread is concerned) is enough
to prevent Thread 1 reading0 from x if it has read&x from y.

MP+dmb/sync+addr′ Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync
y=&x r2=*r1
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=&x ∧ 1:r2=0 Test MP+dmb/sync+addr’: Forbidden

Thread 0

a: W[x]=1

b: W[y]=&x

c: R[y]=&x

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

Note that there is a slight mismatch here between the C-like syntax of our pseudocode, in whichx is a C variable and
&x its address, and the notation of our assembly examples, in which x is a location.

4.1.1 Compound Data To see that this message-passing-with-dependency idiom can still work correctly if the
data (the value stored atx) were multi-word, note that all the writes to the parts of thedata would precede thedmb/sync
on Thread 0, while all the reads of the parts of the data shouldeach be address-dependent on the value read fromy on
Thread 1, by some offset calculation from that value.
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4.1.2 C11 Consume This preserved address dependency is what is made availablein the C/C++11 memory models
by their read-consumeatomic operations: if the read ofy were tagged as a read-consume at the C/C++ level, then
compilers are required to respect the dependency to the second Thread 1 read (or to implement something stronger,
such as anlwsync/sync/dmb barrier between them.

4.1.3 Address Dependencies from Reads to Writes An address dependency from a read to a write has a similar
effect to one from a read to a read, preventing the write getting started until the read has been satisfied and a value for
the read is known; we illustrate this with the testS in Section 4.4 below.

4.1.4 Artificial Dependencies Above we said that “there is an address dependency from a readinstruction to a
program-order-later read or write instruction when the value read by the first isused to computethe address used
for the second”, and that computation may be via any data-flowpath through registers and arithmetic or logical
operations (though not via memory) — even if the value of the address used cannot be affected by the value read.
In theMP+dmb/sync+addr variant below, the value read is exclusive-or’d with itselfand then added to the (constant)
address ofx to calculate the address to be used for the second Thread 1 read. The result of the exclusive-or will always
be zero, and so the address used for the second read will always be equal to that ofx, but the two reads are still kept
in order. Adding such anartificial dependency (sometimes these are known, perhaps confusingly, as falseor fake
dependencies) can be a useful programming idiom, to enforcesome ordering from a read to a later read (or write) at
low run-time cost.

MP+dmb/sync+addr Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync r3=(r1 xor r1)
y=1 r2=*(&x + r3)
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmb+addr ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R4]
STR R0,[R2] EOR R1,R0,R0
DMB LDR R2,[R1,R3]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R3=x

∧ 1:R4=y
Forbidden: 1:R0=1 ∧ 1:R2=0

MP+sync+addr POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) xor r3,r1,r1
sync lwzx r4,r3,r5
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r5=x
Forbidden: 1:r1=1 ∧ 1:r4=0

As artificial address dependencies behave just like naturalones, we draw them in the same way, withaddr edges,
abstracting from the details of exactly what address computation is done:

Test MP+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

4.2 Control Dependencies

A rather different kind of dependency is acontrol dependency, from a read to a program-order-later read or write
instruction, where the value read by the first read is used to compute the condition of a conditional branch that is
program-order-before the second read or write.

A control dependency from a read to a read has little force, aswe see in theMP+dmb+ctrl andMP+sync+ctrl
examples below: ARM and POWER processors can speculatively execute past the conditional branch (perhaps fol-
lowing one path based on a branch prediction, or in principlefollowing both paths simultaneously), and so satisfy the
second read before satisfying the first read. The first read, the branch, and the second read might then all be committed
(with those values) in program order.
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MP+dmb/sync+ctrl Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync if (r1 == r1) {}
y=1 r2=x
Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0

MP+dmb+ctrl ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] CMP R0,R0
DMB BNE LC00
MOV R1,#1 LC00:
STR R1,[R3] LDR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 1:R0=1 ∧ 1:R1=0

MP+sync+ctrl POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) cmpw r1,r1
sync beq LC00
li r3,1 LC00:
stw r3,0(r4) lwz r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 1:r1=1 ∧ 1:r3=0

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

For compactness, we show examples in which the branch is justto the next instruction, an instance of which will
be executed whether or not the branch is taken. This makes no difference: the behaviour would be just the same if the
branch were to a different location and the second read were only executed in one case.

The value of the branch condition in the examples is also unaffected by the value read, as it is just based on an
equality comparison of a register with itself. Just as for the artificial address dependencies described above, this also
makes no difference: the existence of the control dependency simply relies on the fact that the value read is used in
the computation of the condition, not on whether the value ofthe condition would be changed if a different value were
read. There are therefore many ways of writing a pseudocode example that are essentially equivalent to that above,
e.g. by putting ther2=x inside the conditional, or, for an example without a race onx, putting the read ofy in a loop
such asdo {r1=y;} while (r1 == 0).

4.3 Control-isb/isync Dependencies

To give a read-to-read control dependency some force, one can add anISB (ARM) or isync (POWER) instruction
between the conditional branch and the second read, as in theexamples below. This prevents the second read from
being satisfied until the conditional branch is committed, which cannot happen until the value of the first read is fixed
(i.e., until that read is satisfied and committed); the two reads are thus kept in order and the specified outcome of the
test is now forbidden.

MP+dmb/sync+ctrlisb/ctrlisync
Thread 0 Thread 1

x=1 r1=y
dmb/sync if (r1 == r1) {}

isb/isync
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmb+ctrlisb ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] CMP R0,R0
DMB BNE LC00
MOV R1,#1 LC00:
STR R1,[R3] ISB

LDR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: 1:R0=1 ∧ 1:R1=0

MP+sync+ctrlisync POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) cmpw r1,r1
sync beq LC00
li r3,1 LC00:
stw r3,0(r4) isync

lwz r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 1:r1=1 ∧ 1:r3=0

Test MP+dmb/sync+ctrlisb/ctrlisync: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrlisb/isync

rf

4.4 Control Dependencies from a Read to a Write

In contrast to control dependencies (without anisb/isync) from a read to a read, a control dependency from a read to
a write does have some force: the write cannot be seen by any other thread until the branch is committed, and hence
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until the value of the first read is fixed. To illustrate this weuse a variation of theMP test family, known (for historical
reasons) asS, in which the second read on Thread 1 (ofx) is replaced by a write ofx. Instead of asking whether the
Thread 1 read ofx is guaranteed to see the value written by Thread 0, we now ask whether the Thread 1 write ofx is
guaranteed to becoherence-afterthe Thread 0 write ofx (i.e., whether a third thread, that readsx twice, is guaranteed
not to see those two writes in the opposite order; we return tocoherence in Section 8). Without a control dependency
on Thread 1, that is not guaranteed; the execution below is allowed.

S+dmb/sync+po Pseudocode
Thread 0 Thread 1

x=2 r1=y
dmb/sync x=1
y=1
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ x=2

S+dmb+po ARM
Thread 0 Thread 1

MOV R0,#2 LDR R0,[R3]
STR R0,[R2] MOV R1,#1
DMB STR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: [x]=2 ∧ 1:R0=1

S+sync+po POWER
Thread 0 Thread 1

li r1,2 lwz r1,0(r2)
stw r1,0(r2) li r3,1
sync stw r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: [x]=2 ∧ 1:r1=1

We draw such coherence conditions with aco edge, between two writes to the same address:

Test S+dmb/sync+po: Allowed

Thread 0

a: W[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

dmb/sync
rf co

po

If we add a read-to-write control dependency on Thread 1, that final outcome becomes forbidden:

S+dmb/sync+ctrl Pseudocode
Thread 0 Thread 1

x=2 r1=y
dmb/sync if (r1==r1) { }
y=1 x=1
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ x=2

S+dmb+ctrl ARM
Thread 0 Thread 1

MOV R0,#2 LDR R0,[R3]
STR R0,[R2] CMP R0,R0
DMB BNE LC00
MOV R1,#1 LC00:
STR R1,[R3] MOV R1,#1

STR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: [x]=2 ∧ 1:R0=1

S+sync+ctrl POWER
Thread 0 Thread 1

li r1,2 lwz r1,0(r2)
stw r1,0(r2) cmpw r1,r1
sync beq LC00
li r3,1 LC00:
stw r3,0(r4) li r3,1

stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: [x]=2 ∧ 1:r1=1

Test S+dmb/sync+ctrl: Forbidden

Thread 0

a: W[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

dmb/sync
rf co

ctrl

4.5 Data Dependencies from a Read to a Write

Our final kind of dependency is adata dependency, from a read to a program-order-later write where the value read
is used to compute the value written. These have a broadly similar effect to address, control, or control-isb/isync
dependencies from reads to writes: they prevent the write being committed (and hence being propagated and be-
coming visible to other threads) until the value of the read is fixed when the read is committed. Accordingly, the
S+dmb/sync+data variant below of the aboveS+dmb/sync+ctrl test is also forbidden.
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S+dmb/sync+data Pseudocode
Thread 0 Thread 1

x=2 r1=y
dmb/sync r3 = (r1 xor r1)
y=1 x = 1 + r3

r2=x
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=0 ∧ x=1

S+dmb+data ARM
Thread 0 Thread 1

MOV R0,#2 LDR R0,[R3]
STR R0,[R2] EOR R1,R0,R0
DMB ADD R1,R1,#1
MOV R1,#1 STR R1,[R2]
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: [x]=2 ∧ 1:R0=1

S+sync+data POWER
Thread 0 Thread 1

li r1,2 lwz r1,0(r2)
stw r1,0(r2) xor r3,r1,r1
sync addi r3,r3,1
li r3,1 stw r3,0(r4)
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: [x]=2 ∧ 1:r1=1

Test S+dmb/sync+data: Forbidden

Thread 0

a: W[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

dmb/sync
rf co

data

4.6 Summary of Dependencies

To summarise, we have:

RR and RW address an address dependency from a read to a program-order-later read or write where the value read
by the first is used to compute the address of the second;

RR and RW control a control dependency from a read to a program-order-later read or write where the value read
by the first is used to compute the condition of a conditional branch that is program-order-before the second;

RR and RW control-isb/isync a control-isb or control-isync dependency from a read to a program-order-later read or
write where the value read by the first is used to compute the condition of a conditional branch that is program-
order-before an isb/isync instruction before the second; and

RW data a data dependency from a read to a program-order-later writewhere the value read by the first is used to
compute the value written by the second.

There are no dependencies from writes (to either reads or writes).
In each case, the use of the value read can be via any dataflow chain of register-to-register operations, and it does

not matter whether it is artificial (or fake/false) or not: there is still a dependency even if the value read cannot affect
the actual value used as address, data, or condition.

From one read to another, an address or control-isb/isync dependency will prevent the second read being satisfied
before the first is, while a plain control dependency will not.

From a read to a write, an address, control (and so also a control-isb/isync) or data dependency will prevent the
write being visible to any other thread before the value of the read is fixed.

We return in Section 10 to some more subtle properties of dependencies.
As we shall see, dependencies are strictly weaker than theDMB, sync, andlwsync barriers: replacing a depen-

dency by one of those barriers will never permit more behaviour (and so should always be a safe program transforma-
tion), whereas the converse is not true. Dependencies only have thread-local effects, whereasDMB, sync, andlwsync
have stronger ‘cumulatively’ properties that we introducein the next section.

4.7 Observed Behaviour

Below we summarise the results of hardware experiments on dependencies.
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POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

MP+dmb/sync+po Allow 670k/2.4G 0/26GU 13M/39G 3.1M/3.9G 50/28M 69k/743M 249k/195M

MP+dmb/sync+addr Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G 0/26G 0/2.2G

MP+dmb/sync+ctrl Allow 363k/5.5G 0/43GU 27M/167G 5.7M/3.9G 1.5k/53M 556/748M 1.5M/207M

MP+dmb/sync+ctrlsib/isync Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G 0/26G 0/2.2G

S+dmb/sync+po Allow 0/2.4GU 0/18GU 0/35GU 271k/4.0G 84/58M 357/1.8G 211k/202M

S+dmb/sync+ctrl Forbid 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G 0/2.2G

S+dmb/sync+data Forbid 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G 0/2.2G

The experimental data shows that the forbidden results are all non-observable. Some of the allowed results, on the
other hand, are not observable on some implementations, as highlighted in blue and tagged with a superscriptU
(allowed-Unseen): forMP+sync+po andMP+sync+ctrl POWER 6 does not exhibit the allowed behaviour (in this
sense it has a more in-order pipeline than either POWER G5 or POWER 7), and forS+sync+po none of these POWER
implementations do. It appears that these implementationsdo not commit writes when there is an outstanding program-
order-earlier read, even to a different address; though of course other and future implementations may differ.

These are all cases where the particular implementations are tighter than the architectural intent, and the fact that
this can and does change from one processor generation to another reinforces the fact that programmers aiming to
write portable code must be concerned with the architectural specification, not just their current implementation.

5 Iterated Message Passing on more than two threads and Cumulativity
(WRC and ISA2)

Up to this point, all our examples have used only two threads.Generalising to three or four threads reveals a new
phenomenon: on POWER and ARM, two threads can observe writes to different locations in different orders, even in
the absence of any thread-local reordering. In other words,the architectures are notmultiple-copy atomic[Col92]. To
see this, consider first a three-thread variant ofMP in which the first write has been pulled off to another thread,with
Thread 1 busy-waiting to see it before doing its own write:

WRC-loop Pseudocode
Thread 0 Thread 1 Thread 2

x=1 while (x==0) {} while (y==0) {}
y=1 r3=x

Initial state: x=0 ∧ y=0
Forbidden?: 2:r3=0

This test was known as WRC, for ‘write-to-read causality’ in Boehm and Adve [BA08].
As before, we simplify the example without really affectingwhat is going on by removing the loops, replacing

them by a final-state constraint that restricts attention tothe executions in which Thread 1 readsx=1 and Thread 2
readsy=1. The question is whether such an execution can also seex=0 (instead of reading from the Thread 0 write of
x=1).

WRC Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y
y=1 r3=x

Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0 Test WRC: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
porf

Without any dependencies or barriers, this is trivially allowed: the Thread 1 read and write are to different addresses
and can be reordered with each other, and likewise the Thread2 reads can be satisfied out of program order. Adding
artificial dependencies to prevent those reorderings givesus theWRC+addrs test below.
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WRC+addrs Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y
*(&y+r1-r1) = 1 r3 = *(&x + r2 - r2)

Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0 Test WRC+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

On a multiple-copy-atomic architecture this would be forbidden, but on ARM and POWER it is allowed. Thread 2
has to do its reads in program order, but the fact that Thread 1sees the Thread 0 write ofx=1 before starting its write of
y=1 does not prevent those writes propagating to Thread 2 in the opposite order, allowing it to ready=1 and then read
x=0. We have observed this on POWER implementations, and expect it to be observable on some ARM processors
with more than two hardware threads, but we have not yet observed it on the only such machine that we have access
to at present (Tegra3).

5.1 Cumulative Barriers for WRC

To prevent the unintended outcome ofWRC, one can strengthen the Thread 1 address dependency above, replacing it
by aDMB or sync barrier (on POWER the weakerlwsync barrier also suffices).

WRC+dmb/sync+addr Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y
dmb/sync r3 = *(&x + r2 - r2)
y=1

Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0 Test WRC+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
dmb/sync

rf
addrrf

In MP+syncs we saw that aDMB or sync barrier keeps any write done by a thread before the barrier inorder with
respect to any write done by the same thread after the barrier, as far as any other thread is concerned.

Here the Thread 1DMB or sync barrier also keeps any write that Thread 1 hasread from(before the barrier)
in order with respect to any write that Thread 1 does after thebarrier, as far as any other thread (e.g., Thread 2) is
concerned. More generally, the barrier ensures that any write that has propagated to Thread 1 before the barrier is
propagated to any other thread before the Thread 1 writes after the barrier can propagate to that other thread. This
cumulativeproperty is essential for iterated message-passing examples.

As minor variations, one could also weaken the Thread 1 barrier to a POWERlwsync, giving the test
WRC+lwsync+addr, or strengthen the Thread 2 address dependency to anotherDMB or sync barrier, giving the
testWRC+dmbs or WRC+syncs; these all have the same possible outcomes as the test above.

5.2 Cumulative Barriers for ISA2

TheWRC test extends the message-passing (MP) example on the left, andWRC+dmb/sync+addr shows one aspect
of cumulative barriers there. The ISA2 example below shows another aspect of cumulativity. The example (a simplified
version of [Pow09,§1.7.1, Example 2], replacing loops by a final state constraint as usual) extends theMP example on
the right, interposing a Thread 1 write and Thread 2 read of a third shared variable,z, before the final read ofx. One
could think of this as Thread 0 writing some possibly compound data intox, then setting a flagy; Thread 1 waiting for
that flag then writing another flagz, and Thread 2 waiting for that flag before reading the data; asusual, one would
like to prevent the possibility that that reads the initial state value for the data (or for part of it).

ISA2 Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=y r2=z
y=1 z=1 r3=x
Initial state: x=0 ∧ y=0 ∧ z=0
Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0 Test ISA2: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

po
rf

po
rf

po

rf
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To make this work (i.e., to forbid the stated final state), it suffices to have aDMB or sync barrier (or POWER
lwsync) on Thread 0 and preserved dependencies on Threads 1 and 2 (anaddress, data or control dependency between
the Thread 1 read/write pair, and an address or control-isb/isync dependency between the Thread 2 read/read pair).
Those dependencies could be replaced byDMB/sync/lwsync.

ISA2+dmb/sync+addr+addr Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=y r2=z
dmb/sync *(&z+r1-r1)=1 r3 = *(&x +r2-r2)
y=1
Initial state: x=0 ∧ y=0 ∧ z=0
Forbidden: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0 Test ISA2+dmb/sync+addr+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

dmb/sync
rf

addr
rf

addr

rf

Here one can think of the Thread 0 barrier as ensuring that theThread 0 write ofx=1 propagates to Thread 1 before
the barrier does, which in turn is before the Thread 0y=1 propagates to Thread 1, which is before Thread 1 does its
write of z=1. Cumulativity, applied to thex=1 write before the barrier before thez=1 write (all propagated to or done
by Thread 1) then keeps thex=1 andz=1 writes in order as far as all other threads are concerned, andspecifically as
far as Thread 2 is concerned. As usual, the dependencies justprevent local reordering which otherwise would make
the unintended result trivially possible.

5.3 Observed Behaviour

Below we summarise the results of hardware experiments for these cumulativity tests.

POWER ARM

Kind PowerG5 Power6 Power7 Tegra3

WRC Allow 44k/2.7G 1.2M/13G 25M/104G 8.6k/8.2M

WRC+addrs Allow 0/2.4GU 225k/4.3G 104k/25G 0/20GU

WRC+dmb/sync+addr Forbid 0/3.5G 0/21G 0/158G 0/20G

WRC+lwsync+addr Forbid 0/3.5G 0/21G 0/138G —

ISA2 Allow 3/91M 73/30M 1.0k/3.8M 6.7k/2.0M

ISA2+dmb/sync+addr+addr Forbid 0/2.3G 0/12G 0/55G 0/20G

ISA2+lwsync+addr+addr Forbid 0/2.3G 0/12G 0/55G —

These tests involve three hardware threads, while the Tegra2, APQ8060, and A5X implementations that we have access
to support only two hardware threads. Accordingly, for ARM we give results only for Tegra3. As before, there is no
ARM analogue of thelwsync variant.

The results confirm that the forbidden results are not observable. ForWRC+addrs, POWER G5 and ARM Tegra3
do not exhibit the architecturally-allowed possibility, while POWER 6 and POWER 7 do.

6 Store-buffering (SB) or Dekker’s Examples

We now turn to a rather different two-thread example, which is a pattern that arises at the heart of some mutual
exclusion algorithms. It is sometimes referred to as thestore-bufferingexample (SB), as this is more-or-less the only
relaxed-memory behaviour observable in the TSO model of x86or Sparc with their FIFO (and forwardable) store
buffers, and sometimes referred to as Dekker’s example, as it appears in his mutual exclusion algorithm.

The two-thread version of the example has two shared locations, just likeMP, but now each thread writes one
location then reads from the other. The question is whether they can both (in the same execution) read from the initial
state.
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SB Pseudocode
Thread 0 Thread 1

x=1 y=1
r1=y r2=x
Initial state: x=0 ∧ y=0
Allowed: 0:r1=0 ∧ 1:r2=0

SB ARM
Thread 0 Thread 1

MOV R0,#1 MOV R0,#1
STR R0,[R2] STR R0,[R3]
LDR R1,[R3] LDR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 0:R1=0 ∧ 1:R1=0

SB POWER
Thread 0 Thread 1

li r1,1 li r1,1
stw r1,0(r2) stw r1,0(r2)
lwz r3,0(r4) lwz r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 0:r3=0 ∧ 1:r3=0

Test SB: Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

Without any barriers or dependencies, that outcome is allowed, and, as there are no dependencies from writes, the
only possible strengthening of the code is to insert barriers. Adding aDMB or sync on both threads suffices to rule
out the unintended outcome:

SB+dmbs/syncs Pseudocode
Thread 0 Thread 1

x=1 y=1
dmb/sync dmb/sync
r1=y r2=x
Initial state: x=0 ∧ y=0
Forbidden: 0:r1=0 ∧ 1:r2=0

SB+dmbs ARM
Thread 0 Thread 1

MOV R0,#1 MOV R0,#1
STR R0,[R2] STR R0,[R3]
DMB DMB
LDR R1,[R3] LDR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: 0:R1=0 ∧ 1:R1=0

SB+syncs POWER
Thread 0 Thread 1

li r1,1 li r1,1
stw r1,0(r2) stw r1,0(r2)
sync sync
lwz r3,0(r4) lwz r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 0:r3=0 ∧ 1:r3=0

Test SB+dmbs/syncs: Forbidden

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

dmb/sync dmb/sync

rf rf

Here thedmb or sync barriers ensure that the program-order-previous writes must have propagated to all threads
before the reads are satisfied, ruling out the given execution. On POWER, it does not suffice here to uselwsync
barriers (or onelwsync and onesync barrier): the POWERlwsync doesnotensure that writes before the barrier have
propagated to any other thread before subsequent actions, though it does keep writes before and after anlwsync in
order as far as all threads are concerned.

6.1 Extending SB to more threads: IRIW and RWC

Just as we extended the MP example by pulling out the first write to a new thread, to give the WRC example, we
can extend SB by pulling out one or both writes to new threads.Pulling out both gives the Independent Reads of
Independent Writes (IRIW) example below (so named by Lea). Threads 0 and 2 write tox andy respectively; Thread 1
readsx theny; and Thread 3 readsy thenx.

IRIW Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y
r2=y r4=x

Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0 Test IRIW: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf

rf

This gives us a striking illustration of the fact that writescan be propagated to different threads in different orders:
in IRIW+addrs below (where we add dependencies to the readingthreads to rule out the trivial executions in which
the reads are locally reordered), Thread 1 sees the write tox but not that toy, while Thread 3 sees the write toy but
not that tox.
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IRIW+addrs Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y
r2=*(&y+r1-r1) r4=*(&x+r3-r3)

Initial state: x=0 ∧ y=0 ∧ z=0
Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0 Test IRIW+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
addr

rf
addr

rf

rf

To rule out this behaviour one needs aDMB or sync on both of the reading threads (lwsyncs do not suffice here),
just as for theSB test:

IRIW+dmbs/syncs Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y
dmb/sync dmb/sync
r2=y r4=x

Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0 Test IRIW+dmbs/syncs: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
dmb/sync

rf
dmb/sync

rf

rf

We are not aware of any case where IRIW arises as a natural programming idiom (we would be glad to hear of any
such), but it is a concern when one is implementing a high-level language memory model, perhaps with sequentially
consistent behaviour for volatiles or atomics, above highly relaxed models such as ARM and POWER.

Pulling just one of theSB writes out to a new thread gives theRWC (for ‘read-to-write causality’) example of
Boehm and Adve [BA08]:

RWC Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=x y=1
r2=y r4=x

Initial state: x=0 ∧ y=0 ∧ z=0
Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 2:r4=0 Test RWC: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1

e: R[x]=0

rf
po porf rf

and that also needs twoDMBs orsyncs.

6.2 SB Variations with Writes: R and 2+2W

Two different variations ofSB are obtained by replacing one or both of the reads by writes, analogous to the way
we obtainedS from MP earlier, with coherence edges in place of the reads from the initial state. We call these test
familiesR and2+2W respectively. Just as for IRIW, they are principally of interest when implementing a high-level
language model (that has to support arbitrary high-level language programs) above ARM or POWER; we are not yet
aware of cases where they are arise in natural programming idioms.

R Pseudocode
Thread 0 Thread 1

x=1 y=2
y=1 r1=x
Initial state: x=0 ∧ y=0
Allowed: y=2 ∧ 1:r1=0 Test R: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: R[x]=0

po
co

po

rf

2+2W Pseudocode
Thread 0 Thread 1

x=1 y=1
y=2 x=2
Initial state: x=0 ∧ y=0
Allowed: x=1 ∧ y=1 Test 2+2W: Allowed

Thread 0

a: W[x]=1

b: W[y]=2

c: W[y]=1

Thread 1

d: W[x]=2

po
coco

po

Just as forSB, R needs twoDMBs orsyncs to rule out the specified behaviour.2+2W needs twoDMBs on ARM
but on POWER twolwsyncs suffices.
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6.3 Observed Behaviour
POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

SB Allow 102M/4.9G 1.9G/26G 11G/167G 430M/3.8G 1.0M/16M 16M/240M 8.1M/185M

SB+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G

SB+lwsyncs Allow 7.0M/4.8G 10G/26G 1.0G/162G — — — —

IRIW Allow 220k/2.6G 1.3M/13G 16M/83G — 835/8.3M — —

IRIW+addrs Allow 0/3.5GU 1.2M/14G 344k/107G — 0/20GU — —

IRIW+dmbs/syncs Forbid 0/3.5G 0/20G 0/126G — 0/20G — —

IRIW+lwsyncs Allow 0/3.6GU 568k/13G 429k/87G — — — —

RWC Allow 883k/1.2G 7.4M/4.2G 118M/24G — 90k/8.2M — —

RWC+dmbs/syncs Forbid 0/2.3G 0/12G 0/55G — 0/20G — —

S Allow 250/2.3G 129k/8.3G 1.7M/14G 16M/3.8G 107k/16M 16k/550M 4.5M/185M

S+dmbs/syncs Forbid 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G 0/2.2G

S+lwsyncs Forbid 0/2.1G 0/14G 0/29G — — — —

R Allow 45M/1.9G 263M/7.3G 47M/4.5G 207M/3.8G 441k/16M 1.6M/240M 6.9M/185M

R+dmbs/syncs Forbid 0/2.0G 0/13G 0/27G 0/24G 0/39G 0/26G 0/2.2G

R+lwsync+sync Allow 0/2.3GU 0/17GU 0/33GU — — — —

2+2W Allow 2.1M/6.3G 251M/33G 29G/894G 114M/4.4G 484k/31M 10k/580M 11M/365M

2+2W+dmbs/syncs Forbid 0/6.3G 0/43G 0/943G 0/29G 0/44G 0/26G 0/2.5G

2+2W+lwsyncs Forbid 0/6.2G 0/43G 0/911G — — — —

Tegra3 is the only four-hardware-thread implementation wecurrently have access to, so we showIRIW andRWC
results only for that, and there are no ARM analogues of thelwsync tests.

As one would hope, the forbidden behaviours are all non-observable. In some cases the allowed behaviours
are not exhibited by particular implementations: just as for WRC+addrs, the IRIW+addrs test is not observable on
POWER G5 or on ARM Tegra3, andIRIW+lwsyncs is also not observable on POWER G5 (together with the previous
data, this suggests that POWER G5 and POWER 6 are incomparable:neither is strictly weaker or stronger than the
other).

The R+lwsync+sync test is not observable on any of these POWER implementations,which is particularly in-
teresting for the implementation of higher-level languagemodels such as the C/C++11 model. As we explain else-
where [BMO+12], an early proposal for an implementation of the C/C++11 concurrency primitives on POWER im-
plicitly assumed that theR+lwsync+sync is forbidden, using anlwsync at a certain point in the implementation in a
place that would be sound for the POWER implementations we have tested to date but that which would not be sound
with respect to the architectural intent. The proposal has since been updated.

7 Load-Buffering (LB) Examples

Dual to store-buffering is theload-buffering(LB) example below, in which two threads first read from two shared
locations respectively and then write to the other locations. The outcome in which the reads both read from the write
of the other thread is architecturally allowed on ARM and POWER, and it is observable on current ARM processors;
we have not observed it on POWER G5, POWER 6, or POWER 7.

LB Pseudocode
Thread 0 Thread 1

r1=x r2=y
y=1 x=1
Initial state: x=0 ∧ y=0
Allowed: r1=1 ∧ r2=1

LB ARM
Thread 0 Thread 1

LDR R0,[R2] LDR R0,[R3]
MOV R1,#1 MOV R1,#1
STR R1,[R3] STR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 0:R0=1 ∧ 1:R0=1

LB POWER
Thread 0 Thread 1

lwz r1,0(r2) lwz r1,0(r2)
li r3,1 li r3,1
stw r3,0(r4) stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 0:r1=1 ∧ 1:r1=1
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Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

To forbid that outcome it suffices to add any read-to-write dependency, or aDMB, sync, or lwsync barrier, to both
threads, as in theLB+addrs variant below:

LB+addrs Pseudocode
Thread 0 Thread 1

r1=x r2=y
*(&y+r1-r1)=1 *(&x+r2-r2)=1
Initial state: x=0 ∧ y=0
Forbidden: r1=1 ∧ r2=1

LB+addrs ARM
Thread 0 Thread 1

LDR R0,[R3] LDR R0,[R4]
EOR R1,R0,R0 EOR R1,R0,R0
MOV R2,#1 MOV R2,#1
STR R2,[R1,R4] STR R2,[R1,R3]
Initial state: 0:R3=x ∧ 0:R4=y ∧ 1:R3=x

∧ 1:R4=y
Forbidden: 0:R0=1 ∧ 1:R0=1

LB+addrs POWER
Thread 0 Thread 1

lwz r1,0(r2) lwz r1,0(r2)
xor r3,r1,r1 xor r3,r1,r1
li r4,1 li r4,1
stwx r4,r3,r5 stwx r4,r3,r5
Initial state: 0:r2=x ∧ 0:r5=y ∧ 1:r2=y

∧ 1:r5=x
Forbidden: 0:r1=1 ∧ 1:r1=1

Test LB+addrs: Forbidden

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

addr
rf rf

addr

or in theLB+datas andLB+ctrls variants below:

LB+datas Pseudocode
Thread 0 Thread 1

r1=x r2=y
y=r1 x=r2
Initial state: x=0 ∧ y=0
Forbidden: r1=m ∧ r2=n for any m,n 6= 0

LB+ctrls Pseudocode
Thread 0 Thread 1

r1=x r2=y
if (r1==1) y=1 if (r2==1) x=1
Initial state: x=0 ∧ y=0
Forbidden: r1=m ∧ r2=n for any m,n 6= 0

All of these ensure that both writes cannot be committed (andthence propagated and become visible to the other
thread) until their program-order-preceding reads have been satisfied and committed.

7.1 Observed Behaviour
POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB Allow 0/7.4GU 0/43GU 0/258GU 1.5M/3.9G 124k/16M 58/1.6G 1.3M/185M

LB+addrs Forbid 0/6.9G 0/40G 0/216G 0/24G 0/39G 0/26G 0/2.2G

LB+datas Forbid 0/6.9G 0/40G 0/252G 0/16G 0/23G 0/18G 0/2.2G

LB+ctrls Forbid 0/4.5G 0/16G 0/88G 0/8.1G 0/7.5G 0/1.6G 0/2.2G

Here we see another case where some implementations are stronger than the architectural intent: these POWER imple-
mentations do not exhibitLB, while the ARM implementations do. This suggests that thesePOWER implementations
do not commit a write until program-order-previous reads have bound their values and committed (as we saw in for
S+sync+po in Section 4.7), while in the ARM case a program-order-previous read-request may still be outstanding
when a write is committed.

Comfortingly, neither architecture permits values to be synthesised out of thin air, asLB+datas illustrates; this
has been a key concern in the design of high-level-language models for Java and C/C++11.
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8 Coherence (CoRR1, CoWW, CoRW1, CoWR, CoRW)

As we have seen, ARM and POWER are far from sequentially consistent: one cannot assume that in any execution of
a multithreaded program there is some sequential order of all the read and write operations of the threads, consistent
with the program order of each thread, in which each read reads the value of the most recent write. However, if one
restricts attention to just the reads and writes of asingle locationin an ARM or POWER execution, it is true that all
threads must share a consistent view of those reads and writes. Effectively, in any execution, for each location, there
is a single linear order of all writes to that location which must be respected by all threads. This property is known as
coherence; we explore and make precise what we mean by ‘respected by allthreads’ with the examples below.

Our first test, CoRR1, is shown below in three forms, as usual:a readable C-like pseudocode on the left, using
thread-local variablesr1 andr2 and a shared variablex (initially 1), and the definitive ARM and POWER versions
(the versions we test), in assembly language on the right. Ifone reached the specified final state, withr1=2 andr2=1,
then the second Thread 1 read ofx would have to have been from the initial state despite the first Thread 1 read ofx
seeing the value2 from Thread 0’s write ofx=2. That write must be coherence-after the initial state, so this would be a
violation of coherence, and that execution is forbidden in both ARM and POWER. As usual, several other executions
of the same code are allowed: both Thread 1 reads could read1, or both could read2, or the first could read1 and the
second2. Those are just sequentially consistent interleavings of the code, not exposing any of the relaxed aspects of
the architectures.

CoRR1 Pseudocode
Thread 0 Thread 1

x=2 r1=x
r2=x

Initial state: x=1
Forbidden: 1:r1=2 ∧ 1:r2=1

CoRR1 ARM
Thread 0 Thread 1

STR R2,[R5] LDR R1,[R5]
LDR R2,[R5]

Initial state: 0:R2=2 ∧ 0:R5=x ∧ 1:R5=x
∧ [x]=1

Forbidden: 1:R1=2 ∧ 1:R2=1

CoRR1 POWER
Thread 0 Thread 1

stw r2,0(r5) lwz r1,0(r5)
lwz r2,0(r5)

Initial state: 0:r2=2 ∧ 0:r5=x ∧ 1:r5=x
∧ [x]=1

Forbidden: 1:r1=2 ∧ 1:r2=1

Test CoRR1: Forbidden

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
po

rf

Two minor variations of the test can be instructive. InCoRR0 on the left below, the above initial-state write of
x is done by Thread 0, and the forbidden outcome is simply that Thread 1 sees the two program-ordered writes by
Thread 0 in the opposite order. InCoRR2 on the right below (like IRIW but with a single shared location, not two),
the two writes ofx=1 andx=2 are by different threads (different both from each other andfrom the reading threads),
so they are not a priori ordered either way, but it is still true that the two reading threads have to see them in the same
order as each other: it is forbidden for Thread 2 to see2 then1 in the same execution as Thread 3 sees1 then2.

Test CoRR0: Forbidden

Thread 0

a: W[x]=1

b: W[x]=2 d: R[x]=1

c: R[x]=2

Thread 1

co
rf

rf
po

Test CoRR2: Forbidden

Thread 0

a: W[x]=1 b: W[x]=2

d: R[x]=1

e: R[x]=1

Thread 1

c: R[x]=2

f: R[x]=2

Thread 2 Thread 3

rf
po po

co

rf

rf
rf

We express coherence withco edges between writes to the same address; in a complete execution, for each address
those edges must form a total linear order. All writes are implicitly coherence-after the initial-state write to their
address. The diagrams above illustrate executions in whichwrite a is coherence-before writeb.

The coherence order for a location can be observed experimentally in two ways. In simple cases where there are
at most two writes to any location, as here, one can read the final state (after all threads have completed, with suitable
barriers). In general one can have an additional thread (foreach location) that does a sequence of reads, seeing each
successive value in order. For example, aco edge from a writea of x=v1 to a writeb of x=v2 means that no thread
should observex as taking valuev2 thenvaluev1.
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TestCoRR1 above showed that a pair of reads by a thread cannot read contrary to the coherence order, but there
are several other cases that need to be covered to ensure thatthe coherence order is respected by all threads. Test
CoWW below shows that the coherence order must respect program order for a pair of writes by a single thread. Test
CoRW1 shows that a read cannot read from a write that program-orderfollows it. TestCoWR shows that a read
cannot read from a write that is coherence-hidden by anotherwrite that precedes the read on its own thread. Test
CoRW shows that a write cannot coherence-order-precede a write that a program-order-preceding read read from.

Test CoWW: Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

Test CoRW1: Forbidden

Thread 0

b: W[x]=1

a: R[x]=1

rfpo

Test CoWR: Forbidden

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

Test CoRW: Forbidden

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po
corf

9 Periodic Tables of Litmus Tests

After seeing all the litmus tests that we have used to illustrate various relaxed-memory phenomena, one might ask
whether they arecompletein any sense. We now show that they can be treated systematically, organising them into
“periodic tables” of families of tests with similar behaviour, and giving a sense in which this covers all “small” tests
of some particular kinds. The tables do not include all interesting tests; we return to some others in later sections.

9.1 Litmus Test Families

First, we define afamily of litmus tests to be the common shape of a group of tests, as specified by the read and write
events, with the events of each thread related by program-orderpo edges, the write events to each location related by
coherenceco edges, and writes related to any reads that read from them by reads-fromrf edges. For example, theMP
test:

Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

also defines a family of related tests, all of the same shape, obtained by replacing the program-order edges by de-
pendencies or barriers. The terminology we have been using already suggests this, for example withMP+dmb+addr
denoting theMP variation with admb barrier on Thread 0 and an address dependency (perhaps artificial) on Thread 1.

9.2 Minimal Strengthenings for a Family

For any family of tests, one can ask what are the minimal strengthenings of its program-order (po) edges required
to forbid the specified execution. To make this precise, recall that the read-to-read dependencies that prevent local
reordering are address and control-isb (ARM) or control-isync (POWER) dependencies (a control dependency to a
read does not prevent the read being satisfied speculatively, there cannot be a data dependency to a read, and a loneisb
or isync has no effect in this context), while the read-to-write dependencies that prevent local reordering are address,
data, control, or control-isb/isync dependencies. We define notation:
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RRdep ::= addr | ctrlisb/ctrlisync
RWdep ::= addr | data | ctrl | ctrlisb/ctrlisync

To a first approximation, the different kinds ofRRdep andRWdep dependencies behave similarly to each other (but
see Section 10.5 for a subtle exception). The ARMdmb barrier and the POWERlwsync andsync barriers are both
stronger than those dependencies, giving an order:

po < {RRdep,RWdep} < lwsync < dmb/sync

In other words, it should always be safe (giving the same or fewer allowed behaviours) to replace a plain program-
order edge by anRRdep or RWdep dependency, or to replace one of those by anlwsync barrier, or to replace any of
those by admb or sync barrier. As we saw before, a read-to-read control dependency has no force, and (for normal
memory accesses) nor does anisb/isync without an associated control dependency, so replacing a program-order edge
by one of those should have no effect.

Now consider all the POWERMP variations obtained from the basic test shape of the family by replacing its
program-order (po) edges byisync, addr, ctrlisync, lwsync, or sync (ARM would be similar except withoutlwsync
and withdmb in place ofsync). The diagram in Fig. 1 shows each variation, in green if it forbids the undesirable
outcome, or in red if that outcome is permitted; the arrows show the above order. Tests that have ‘similar’ dependencies
and therefore should behave similarly are grouped in blue boxes. The minimal green tests areMP+lwsync+addr and
MP+lwsync+ctrlisync, showing that on POWER to rule out the undesirable behaviour of MP one needs at least an
lwsync on Thread 0 and an address or control-isync dependency on Thread 1. All tests above those two are also green,
showing that in this case our ordering is meaningful.

9.3 4-edge 2-thread Tests and RF-Extensions

We now look at our set of test families more systematically, giving the minimal strengthenings for each, as shown in
the table below. We have mentioned several families so far, of which MP, S, SB, R, 2+2W, andLB all have two
threads, two shared locations, and two reads or writes on each thread. Additionally, we have seen a few three- or four-
thread variations of those:RWC, WRC, ISA2, andIRIW. We have also seen several coherence tests, but those are of
a slightly different character; their specified executionsare forbidden without needing any dependencies or barriers,
so there is less interest in exploring variations.

Looking at the table, in the left column we see those two-thread tests, grouped by the number of reads-from (rf)
edges they have. In the first block,MP andS are similar: inS theMP readd from the initial state (coherence-before
the writea to x) is replaced by a writed that is coherence-beforea. They are similar also in what has to be done to
prevent the undesirable outcome:MP needs at leastlwsync/dmb and a read-to-read dependency, whileS needs at
leastlwsync/dmb and a read-to-write dependency.

Next we have the three tests with norf edges:SB and its variationsR and2+2W, which replace one or both
(respectively) of the final initial-state reads by writes tocoherence predecessors of the writes tox. In contrast to the
first group,SB andR need twosyncs or twodmbs; lwsync does not suffice here. However,lwsync does suffice for
the last variation2+2W, of four writes.

Finally there is theLB family, with two rf edges. Here simple dependencies suffice.
Moving to the right, the second and third columns are the tests obtainable from the left column by “pulling out”

one or two initial writes to new threads. There are several exotic variations here, most of which are not (as far as
we know) natural use-cases, but they include theWRC, IRIW, andRWC families discussed in the literature [BA08].
Notably, they need just the same strengthenings as their base tests in the first column:lwsync/dmb and a dependency
in the first block,syncs/dmbs for the extensions ofSB andR, andlwsyncs/dmbs for the extensions of2+2W; this is
the cumulativity properties of the barriers at work.

The MP family can usefully be varied in another dimension by considering asequenceof dependency or other
edges between the reads, shown schematically on the diagramas the PPO (preserved program order) series; we come
back to some of these in Section 10.
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4-edge 2-thread tests 5-edge extensions along one rf edge
One rf Two rf Preserved read-read program order

MP: rf,fr needs lwsync+RRdep
or dmb+RRdep

Test MP

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

WRC: rf,rf,fr needs lwsync+RRdep
or dmb+RRdep

Test WRC

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
porf

PPO: barrier,rf,intra-thread∗,fr

PPO variations

Thread 0

a: W[x]=1 c: R[y]=1

Thread 1

b: W[y]=1 d: R[x]=0

po
rf

rf

po

po

S: rf,co needs lwsync+RWdep
or dmb+RWdep

Test S

Thread 0

a: W[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf co

po

WWC: rf,rf,co needs lwsync+RWdep
or dmb+RWdep

Test WWC

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: W[x]=1

rf
po

rfco
po

No rf One rf 6-edge extensions along two rf edges

SB: fr,fr needs sync+sync
or dmb+dmb

Test SB

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

RWC: rf,fr,fr needs sync+sync
or dmb+dmb

Test RWC

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1

e: R[x]=0

rf
po porf rf

IRIW: rf,fr,rf,fr needs sync+sync
or dmb+dmb

Test IRIW

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf

rf

R: co,fr needs sync+sync
or dmb+dmb

Test R

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: R[x]=0

po
co

po

rf

WRW+WR: rf,co,fr needs sync+sync
or dmb+dmb

Test WRW+WR

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: W[y]=2

Thread 2

e: R[x]=0

rf
po

co
porf

IRRWIW: rf,fr,rf,co needs sync+sync
or dmb+dmb

Test IRRWIW

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: W[x]=1

rf
po

rf

co
po

rf

WRR+2W: rf,fr,co needs sync+sync
or dmb+dmb

Test WRR+2W

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1

e: W[x]=1

rf
po

co
porf

2+2W: co,co needs lwsync+lwsync
or dmb+dmb

Test 2+2W

Thread 0

a: W[x]=1

b: W[y]=2

c: W[y]=1

Thread 1

d: W[x]=2

po
coco

po

WRW+2W: rf,co,co needs lwsync+lwsync
or dmb+dmb

Test WRW+2W

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: W[y]=1

d: W[y]=2

Thread 2

e: W[x]=1

rf
po

coco
po

IRWIW: rf,co,rf,co needs lwsync+lwsync
or dmb+dmb

Test IRWIW

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: W[y]=1

d: W[y]=2

Thread 2

e: R[y]=2

Thread 3

f: W[x]=1

rf
po

co

rfco
po

Two rf Key

LB: rf,rf needs RWdep+RWdep

Test LB

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

Edges:
po program order
rf reads-from
co coherence order
fr from-reads: read from coherence

predecessor, or from the initial state

Read-read and read-write dependencies:
RRdep ::= addr | ctrl-isb/isync
RWdep ::= addr | data | ctrl | ctrl-isb/isync

po < {RRdep,RWdep} < lwsync < dmb/sync
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9.4 6-edge 3-thread Tests

Moving to tests with three threads, three shared locations,and two reads or writes in each thread, the tables below
show our 11 families. Of interest here are:

• ISA2: the generalisation of message-passing to three threads wesaw in Section 5, which needs a barrier only
on the first thread;

• 3.SB, 3.2W, and3.LB, the generalisations ofSB, 2+2W, andLB to three threads, which need just the same as
the two-thread variants; and

• Z6.3, which shows the lack of transitivity of coherence andlwsync barriers on POWER; we return to this in
Section 11.

We expect thatISA2 is common in practice, but would be glad to hear of any use cases of the other families.

6-edge 3-thread tests

Two rf

ISA2: rf,rf,fr needs lwsync+RWdep+RRdep

Test ISA2

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

po
rf

po
rf

po

rf

Z6.2: rf,rf,co needs lwsync+RWdep+RWdep

Test Z6.2

Thread 0

a: W[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: W[x]=1

po
rf

po
rf

co
po

Three rf

3.LB: rf,rf,rf needs RWdep+RWdep+RWdep

Test 3.LB

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: W[x]=1

po
rf

po
rf

rf
po

One rf

W+RWC: rf,fr,fr needs lwsync+sync+sync
or sync+RWdep+sync

Test W+RWC

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[z]=0

Thread 2

e: W[z]=1

f: R[x]=0

po
rf

po porf rf

Z6.0: rf,co,fr needs lwsync+sync+sync
or sync+RWdep+sync

Test Z6.0

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: W[z]=2

Thread 2

f: R[x]=0

po
rf

po
co

po

rf

Z6.3: co,rf,fr needs sync+lwsync+sync
or sync+sync+RRdep

Test Z6.3

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

po
co

po
rf

po

rf

Z6.1: co,rf,co needs lwsync+lwsync+RWdep

Test Z6.1

Thread 0

a: W[x]=2

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: W[x]=1

po
co

po
rf

co
po

No rf

3.SB: fr,fr,fr needs sync+sync+sync

Test 3.SB

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[z]=0

Thread 2

e: W[z]=1

f: R[x]=0

po po po

rf rf rf

Z6.4: co,fr,fr needs sync+sync+sync

Test Z6.4

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: R[z]=0

Thread 2

e: W[z]=1

f: R[x]=0

po
co

po porf rf

Z6.5: co,co,fr needs sync+sync+sync
or sync+lwsync+sync?

Test Z6.5

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: W[z]=2

Thread 2

f: R[x]=0

po
co

po
co

po

rf

3.2W: co,co,co needs lwsync+lwsync+lwsync

Test 3.2W

Thread 0

a: W[x]=2

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: W[z]=2

Thread 2

f: W[x]=1

po
co

po
co

co
po
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9.5 Test Family Coverage

The obvious question is whether those families give a set of tests that is complete in any sense? One could try to
answer it by enumerating all multithreaded assembly programs up to some size (e.g. some bound on the number of
threads and the number of instructions per thread), but thatquickly gives an intractable number of tests, very many
of which would be uninformative. A better approach would be to enumerate all familes up to a certain size (e.g. up
to four threads and some number of read and write actions per thread). However, simply enumerating families still
includes many uninformative tests, where the execution in question is allowed in a sequentially consistent model.
Instead, therefore, we consider the families generated by thecritical cyclesof [SS88, Alg10, AMSS10]. To do this,
we first need the concept of afrom-readsedge, introduced (as reads-before edges) by Ahamadet al. [ABJ+93] and
(as some edges in their access graphs) by Landinet al. [LHH91]. Given a candidate execution, with its reads-from
relation (from each write to all the reads that read-from that write) and its coherence relation (the union of some linear
order over the writes to each address), we define its from-reads relation to have an edge from each read to all the
coherence-successors of the write it reads from (or all the writes to the same address, if it reads from the initial state).
For example, consider the candidate execution below, with 5writes (perhaps by various threads), of1,. . .,5, to x, in
that coherence order, and with a read that reads from the write b. The coherence-successors ofb are writesc, d, and
e, so we construct a from-reads edge fromb to each of those.

From-reads Edges

d: W[x]=4

e: W[x]=5

c: W[x]=3

a: W[x]=1

b: W[x]=2

f: R[x]=2

co

co

co

co

rf

fr

fr

fr

We can replace the reads-from edges from the initial state (to some read) by the from-reads edges from that read
to the write(s) to the same address, without any loss of information. For example, forMP andSB, we have:

drawn with reads-from (rf) from initial state drawn with from-reads (fr)

MP

Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po po
fr rf

SB

Test SB: Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

Test SB: Allowed

Thread 0

a: W[x]=1

b: R[y]=1

c: W[y]=1

Thread 1

d: R[x]=0

po po
fr fr

Note that the diagrams on the right have cycles in the union ofrf, co, fr, andpo, and indeed such cycles are exactly
the violations of sequential consistency, as shown by [SS88, Alg10, AMSS10] (see also Theorem 5 in [LHH91]), so
by enumerating such cycles we can produce exactly the test families of interest — the potential non-SC executions.
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The families presented up to now cover all critical cycles upto six edges, where critical cycles are defined as:
(1) po edges alternate with basic communication sequences definedasrf, fr, co, co followed by rf, or fr followed by
rf; (2) communication edgesrf, fr andco are between distinct threads; (3)po edges are between distinct locations;
and (4) no thread holds more than two events, and when a threadholds two events those are related by apo edge.
Following [SS88, Alg10, AMSS10], any non-SC axiomatic candidate execution (i.e. a set of events with a cyclic
union of relationspo, rf, co and fr), includes at least one critical cycle (or violates coherence, see below). Hence,
critical cycles describe violations of SC (up to coherence), and our coverage is of such violations up to six edges.

Thediy tool of Alglave and Maranget (http://diy.inria.fr ) lets one generate litmus tests from particular
cycles, and also lets one enumerate families (and the members of a family) by describing sets of cycles; most of the
tests we show were generated in this fashion.

9.6 Coherence

Reducing violations of SC to critical cycles assumes a coherent architecture, which POWER and ARM architectures
are. Coherence is related to the very existence of a shared memory: namely there is observably only one instance of
a given memory location, or that writes to a given location are linearly ordered (that is,co exists), with all observa-
tions made in the system compatible with that linear ordering. These conditions can be summarised as “per-location
sequential consistency” [CLS03]. More formally, one can show that forbidding the five tests we gave is equivalent to
the acyclicity of the union ofrf, co, fr, and thepo edges restricted to events to the same location, which is a precise
sense in which coherence is per-location sequential consistency; this is theuniproccondition of [Alg10, AMSS10].

Coherence tests

CoRR1: rf,po,fr forbidden

Test CoRR1

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
fr

po

CoRW: rf,po,co forbidden

Test CoRW

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po
co

rf

CoWR: co,fr forbidden

Test CoWR

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po fr

co

rf

CoWW: po,co forbidden

Test CoWW

Thread 0

a: W[x]=1

b: W[x]=2

co po

CoRW1: po,rf forbidden

Test CoRW1

Thread 0

a: R[x]=1

b: W[x]=1

rf po

10 Preserved Program Order (PPO) Variations

We now explore some further variations of the message-passing (MP) test that illustrate some more subtle points about
the circumstances in which the architectures do (and, more importantly, do not) respect program order.

10.1 No Write-to-write Dependency fromrf;addr (MP+nondep+dmb/sync)

In Section 4 we saw dependencies from reads to reads and writes, but no ‘dependency’ from a write. One might think
that if one writes a value to a locationx, then reads it back on the same thread, then has a data or address dependency
to a write of a different locationy, then those two writes would be held in order as far as any other thread is concerned.
That isnot the case, as theMP+nondep+addr example below shows: even though the two writes might have to
commit in program order, in the absence of any barriers (and because they are to different addresses) they can still
propagate to other threads in arbitrary orders.
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Test MP+nondep+dmb/sync: Allowed

Thread 0

a: W[x]=y

b: R[x]=y

c: W[y]=1

d: R[y]=1

Thread 1

e: R[x]=z

rf

addr
rf

dmb/syncrf
MP+nondep+sync Pseudocode

Thread 0 Thread 1
x=&y r1=y
r0 = x dmb/sync
*r0 = 1 r2=x
Initial state: x=&z ∧ y=0
Allowed: 0:r0=&y ∧ 1:r1=1 ∧ 1:r2=&z

This is observable on POWER and ARM:
POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP+nondep+dmb/sync Allow 12/3.7G 157k/20G 2.9G/860G 2.2M/3.8G 1.1k/90M 6.9k/640M 9.1k/185M

10.2 No Ordering from Register Shadowing (MP+dmb/sync+rs, LB+rs)

Another conceivable source of ordering which is not respected by the architectures is re-use of the same processor
register: the hardware implementations typically have more ‘shadow’ registers than the architected general-purpose
registers that can be referred to by machine-code instructions, and the allocation of hardware registers to architected
registers is done on-the-fly. This register renaming is observable to the programmer, as the following two examples
show.

First, we have a variant ofMP that exhibits observable register shadowing: the two uses of r3 on Thread 1 do
not prevent the second read being satisfied out-of-order, ifthe reads are into shadow registers (specifically, the first
two uses ofr3 on Thread 1 might be involve one shadow register while the third usage might involve another). The
reuse of a register is not represented in our diagrams, so we note it in the caption; the details can only be seen in the
pseudocode or assembly versions of the test.

Test MP+sync+rs (register reuse on Thread 1): Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

po

rf

MP+dmb/sync+rs Pseudocode
Thread 0 Thread 1

x=1 r3=y
dmb/sync r1=r3
y=1 r3 = x
Allowed: 1:r1=1 ∧ 1:r3=0

Along the same lines, we have a variant of LB (taken from Adir et al. [AAS03]) in which the reuse of registerr1
on Thread 0 does not keep the read ofx and the write ofy in order.

Test LB+rs (register reuse on Thread 0): Allowed

Thread 0

a: R[x]=2

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=2

po
rf rf

data

LB+rs Pseudocode
Thread 0 Thread 1

r1=x r3=y
r2=r1 r3=r3+1
r1=1 x=r3
y=r1
Allowed: 0:r1=1 ∧ 0:r2=2 ∧

1:r3=2 ∧ y=1 ∧ x=2

In current implementations, theMP+sync+rs behaviour is observable on both ARM and POWER, while theLB+rs
behaviour is only observable on ARM, as the table below shows. The latter is simply because the baseLB behaviour
is only observable on ARM (it appears that current POWER implementations do not commit writes in the presence of
outstanding uncommitted reads). Nonetheless, both behaviours are architecturally permitted in both architectures.

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB+rs Allow 0/3.7GU 0/26GU 0/898GU 101k/3.9G 6.4k/89M 0/26GU 60k/201M

MP+dmb/sync+rs Allow 1.8k/3.0G 0/41GU 29M/146G 9.0M/3.9G 1.2k/19M 11k/753M 549k/201M
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10.3 Preserved Program Order, Speculation, and Write Forwarding (PPOCA and
PPOAA)

The POWER architecture states that that writes are not performed speculatively, but we see here that, while speculative
writes are never visible to other threads, they can be forwarded locally to program-order-later reads on the same thread;
this forwarding is observable to the programmer.

In thePPOCA variant ofMP below,f is address-dependent one, which reads from the writed, which is control-
dependent onc. One might expect that chain to prevent readf binding its value beforec does, but in fact in some
implementationsf can bind out-of-order, as shown — the writed can be forwarded directly toe within the thread,
before the write is committed to the storage subsystem, while d, e, andf are all still speculative (before the branch of
the control dependency onc is resolved).

Test PPOCA: Allowed

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

e: R[x]=1

f: R[z]=0

d: W[x]=1

dmb/sync
rf

ctrl

rf

rf

addr

Replacing the control dependency with a data dependency (test PPOAA, below) removes that possibility, forbid-
ding the given result on current hardware, as far as our experimental results show, and in our model.

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

PPOCA Allow 1.1k/3.4G 0/49GU 175k/157G 0/24GU 0/39GU 233/743M 0/2.2GU

PPOAA Forbid 0/3.4G 0/46G 0/209G 0/24G 0/39G 0/26G 0/2.2G

10.4 Aggressively Out-of-order Reads (RSW and RDW)

Given the discussion of coherence in Section 8, one might expect two reads from the same address to have to be
satisfied in program order. That is usually the case, but in the special case where the two reads happen to read from
the same write (not merely that they read the same value), it is not.

In the reads-from-same-writes (RSW) variant ofMP below, the two reads ofx, d ande, happen to read from the
same write (the initial state). In this case, despite the fact thatd ande are reading from the same address, thee/f pair
can satisfy their reads out-of-order, before thec/d pair, permitting the outcome shown. The address ofe is known, so
it can be satisfied early, while the address ofd is not known until its address dependency onc is resolved.
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Test RSW: Allowed

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=0

f: R[z]=0

dmb/sync
rf

addr

po

addr

rf

rf

rf

In contrast, in an execution of the same code in whichd ande read from different writes tox (testRDW below),
with another write tox by another thread), that is forbidden — in the model, the commit of the first read (d) would
force a restart of the second (e), together with its dependencies (includingf), if e had initially read from a different
write to d. In actual implementations the restart might be earlier, when an invalidate is processed, but will have the
same observable effect.

Test RDW: Forbidden

Thread 0

a: W[z]=1

b: W[y]=2

c: R[y]=2

Thread 1

d: R[x]=0

e: R[x]=1

f: R[z]=0

Thread 2

g: W[x]=1

dmb/sync
rf

addr

po

addr

rf
rf

rf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

RSW Allow 1.3k/3.4G 0/33GU 33M/144G 0/24GU 0/39GU 0/26GU 0/2.2GU

RDW Forbid 0/1.7G 0/17G 0/125G — 0/20G — —

RDWI Allow 5.2k/3.0G 0/12GU 1.3M/43G 0/24GU 0/39GU 0/26GU 0/2.2GU

TestRDWI is a two-thread variant ofRDW in which the writeg:W[x]=1 is on Thread 1, betweend ande. One
notices thatRSW (andRDWI) stands unobserved on ARM, while observed on POWER.

10.5 Might-access-same-address

In the examples we have seen so far, address and data dependencies to a write have the same effect, preventing the
write being visible to other threads before the instructions that provide the dependent value are committed. However,
there can be a second-order effect that distinguishes between them: the fact that there is an address dependency to a
write might mean that another program-order-later write cannot proceed until it is known that the first write is not to
the same address, whereas the existence of a data dependencyto a write has no such effect on program-order-later
writes that are statically known to be to different addresses. This can be seen in the two variations of theLB test below.
In both, there are extra writes, to two different addresses,inserted in the middle of each thread. On the left, those
writes are address-dependent on the first reads, and so before those reads are satisfied, the middle writes are not known
to be to different addresses to the last writes on each thread. On the right, the middle writes are merely data-dependent
on the first reads, so they are statically known to be to different addresses to the last writes on each thread.
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Test LB+addrs+WW: Forbidden

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

addr

po
rf

addr
rf

po

Test LB+datas+WW: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: W[z]=1

d: R[z]=1

Thread 1

e: W[a]=1

f: W[x]=1

data

po
rf

data
rf

po

The first is not observable on any of the ARM implementations we have tested (Tegra 2, Tegra 3, APQ8060, A5X),
while the second is observable on all of them except APQ8060.For POWER, recall that we have not observed the
basicLB behaviour on any current implementation, and these variations are also, unsurprisingly, not observable.

Replacing the intervening writes by reads gives the test below, which has the same observable behaviour as
LB+addrs+WW.

Test LB+addrs+RW: Forbidden

Thread 0

a: R[x]=1

b: R[y]=0

c: W[z]=1

d: R[z]=1

Thread 1

e: R[a]=0

f: W[x]=1

addr

po
rf

addr

rf
po

rf rf

The operational model we gave in PLDI 2011 [SSA+11] matches these observations precisely, giving the ‘forbid-
den’ or ‘allowed’ status as shown for each test. But whether an architectural model should allow or forbid the two it
forbids may be debatable.

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB+addrs+WW Forbid 0/30G 0/8.7G 0/208G 0/16G 0/23G 0/18G 0/2.1G

LB+datas+WW Allow 0/30GU 0/9.2GU 0/208GU 15k/6.3G 224/854M 0/18GU 23/1.9G

LB+addrs+RW Forbid 0/3.6G 0/6.0G 0/128G 0/13G 0/23G 0/16G —

10.6 Observable Read-request Buffering

Our final example is a case where our PLDI 2011 [SSA+11] model, there tested against POWER, is not sound with
respect to behaviour observable on ARM (specifically, the APQ8060), and that behaviour is architecturally intended
to be permitted for ARM.

The test is another variation of message passing (MP), with a strongdmb barrier on the writing side. On the
reading side, the read ofy is followed by a write (necessarily of a coherence-later value) back toy, followed by a read
of that value, and finally a control-isb dependency to the ultimate read ofx.

The control-isb means that the readf of x cannot be satisfied until the reade of y=2 is committed, and that read
cannot be committed before the writed that it reads from is committed.

In our PLDI 2011 model, to maintain coherence, that writed cannot be committed before program-order-previous
reads and writes that might be to the same address are committed, which blocks the whole chain, ensuring thatf is
satisfied afterc.

To see how legitimate hardware might be doing the contrary, suppose that the read request forc is buffered. It
can proceed with the writed to the same address, letting that write be read from ande andf continue, so long as the
hardware can guarantee that the read request will eventually be satisfied by a coherence predecessor of the writed. If
read requests and writes are buffered in the same FIFO-per-location buffer, that will happen naturally.

This can be accomodated in a variant of the PLDI 2011 model by allowing writes to commit in slightly more liberal
circumstances.
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Test MP+dmb/lwsync+fri-rfi-ctrlisb/ctrlisync: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

d: W[y]=2

Thread 1

e: R[y]=2

f: R[x]=0

rf

co

po

rf

rf

dmb/lwsync

ctrlisb/ctrlisync

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP+dmb/lwsync+fri-rfi-ctrlisb/isync Allow 0/26GU 0/6.6GU 0/80GU 0/26GU 0/39GU 7/1.6G 0/1.9GU

11 Coherence and lwsync (Z6.3+lwsync+lwsync+addr)

This POWER example (known as blw-w-006 in our earlier work) shows that one cannot assume that the transitive
closure of lwsync and coherence edges guarantees ordering of write pairs, which is a challenge for over-simplified
models. In our abstract machine, the fact that the storage subsystem commits tob being beforec in the coherence
order has no effect on the order in which writesa andd propagate to Thread 2. Thread 1 does not read from either
Thread 0 write, so they need not be sent to Thread 1, so no cumulativity is in play. In other words, coherence edges to
not bring writes into the “Group A” of a POWER barrier.

Test Z6.3+lwsync+lwsync+addr: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: W[y]=2

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

lwsync
co

lwsync
rf

addrrf

In some implementations, and in our model, replacing both lwsyncs by syncs forbids this behaviour. In the model, it
would require a cycle in abstract-machine execution time, from the point at whicha propagates to its last thread, to
the Thread 0 sync ack, to theb write accept, toc propagating to Thread 0, toc propagating to its last thread, to the
Thread 1 sync ack, to thed write accept, tod propagating to Thread 2, toe being satisfied, tof being satisfied, toa
propagating to Thread 2, toa propagating to its last thread.

ARM does not have an analogue oflwsync, so there is no analogue of this example there.

Kind PowerG5 Power6 Power7

Z6.3+lwsync+lwsync+addr Allow 0/658MU 4.7k/1.8G 29k/4.0G

Z6.3+sync+sync+addr Forbid 0/648M 0/3.7G 0/5.0G

W+RWC+lwsync+addr+sync — 0/658M 2.3k/1.8G 45k/4.0G

12 Unobservable Interconnect Topology (IRIW+addrs-twice)

A straightforward microarchitectural explanation for thebehaviour ofIRIW+addrs we saw in Section 6.1 would be
that there is a storage hierarchy in which Threads 0 and 1 are “neighbours”, able to see each other’s writes before
the other threads do, and similarly Threads 2 and 3 are “neighbours”. For example, one might have an interconnect
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topology as shown below.

Execution
Thread

Caching

Buffering

and

Execution
Thread

Execution
Thread

Caching

Buffering

and

Execution
Thread

Cache Protocol, Memory

If that were the only reason whyIRIW+addrs were allowed, then one could only observe the specified behaviour for
some specific assignment of the threads of the test to the hardware threads of the implementation (some specific choice
of thread affinity). That would mean that two consecutive instances ofIRIW+addrs as shown below, with different
assignments of test threads to hardware threads, could never be observed.

Test IRIW+addrs-twice: Allowed

Thread 0

a: W[x]=1 d: R[x]=1

c: W[z]=1

Thread 1

e: R[y]=0

f: W[w]=1 m: R[w]=1

Thread 2

g: W[y]=1 k: R[y]=1

j: R[w]=0

Thread 3

l: R[x]=0

n: R[z]=0

i: R[z]=1

rf
addr

po

rf

addr

addr

po

addr

rf

rf

rf

rf

po po

rf

rf

IRIW+addrs-twice Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y
r2=*(&y+r1-r1) r4=*(&x+r3-r3)

z=1 w=1 r5=z r7=w
r6=*(&w+r5-r5) r8=*(&z+r7-r7)

Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0 ∧

2:r5=1 ∧ 2:r6=0 ∧ 3:r7=1 ∧ 3:r8=0

In fact, however, on some current POWER machines theIRIW+addrs-twice behaviouris observable (microarchi-
tecturally, while they do have a storage hierarchy [LSF+07, KSSF10], the cache protocol behaviour alone suffices to
give the observed behaviour, and threads can also be reassigned by the hypervisor in some circumstances). Moreover,
it is desirable for the architectures not to require that there be a single topology fixed before a program starts executing:
as far as correctness goes, the hardware threads should all be interchangeable. If programmers learn the interconnect
topology, by a test likeIRIW+addrs-twice or otherwise, and use that to make choices within their code,they should
not expect consistent and predictable behaviour.

Kind PowerG5 Power6 Power7

IRIW+addrs-twice Allow 0/290MU 0/2.9GU 5/29G

13 Load-reserve/Store-conditional

Load-reserve/store-conditional primitives were introduced by Jensenet al. [JHB87] as a RISC-architecture alternative
to the compare-and-swap (CAS) instruction; they have been used on the PowerPC architecture since 1992 and are also
present in ARM, MIPS, and Alpha. They are also known as load-linked/store-conditional (LL/SC), or, on ARM, load-
exclusive/store-exclusive. They provide a simple form of optimistic concurrency (very roughly, optimistic transactions
on single locations).

Herlihy [Her93] uses load-reserve/store-conditional to implement various wait-free and lock-free algorithms, not-
ing that (as for CAS, but unlike test-and-set and fetch-and-add) it isuniversal in terms of consensus number, and
moreover that load-reserve/store-conditional is practically superior to CAS in that it defends against the ABA prob-
lem.

We will illustrate the properties of load-reserve/store-conditional by the sequence below, which implements an
atomic add operation. The first sequence is in pseudocode, followed by ARM assembly and POWER assembly.

38



Atomic Add (Fetch and Add) Pseudocode
do {

r = load-reserve x;
r = r + v;

} while (!store-conditional (r,x));

Atomic Add ARM
1:LDREX R0, [R3]

ADD R0, R0, R4
STREX R1, R0, [R3]
TEQ R1, #0
BNE 1b

Atomic Add POWER
1:lwarx r0,0,r2

add r0,r1,r0
stwcx. r0,0,r2
bne- 1b

Let us understand the code above by going through the components. The load-reserve does a load from some
memory address, and establishes areservationfor the loading thread to that address. A subsequent store-conditional
to the same address will either succeed or fail. Moreover, the store-conditional sets a flag so that later instructions can
determine whether or not it succeeded; load-reserve/store-conditional pairs are often repeated until success. Note that
other operations are permitted between the load-reserve and store-conditional, including memory reads and writes,
though, unlike transactions, nothing is rolled back if the store-conditional fails.

So when can a store-conditional succeed, and when must it fail? Load-reserve and store-conditional are typically
used in tandem as above. The key property they must jointly ensure is that, if the store-conditional succeeds, the
corresponding store must be immediately after the store read-from by the load-reserve. Recalling coherence, the key
condition is that the store of the successful store-conditional must immediately follow (in the coherence order) the
store read-from by the immediately previous load-reserve.Furthermore, that situation should not be subject to change
as the system evolves (no other write should be able to sneak in between). One subtlety is that POWER allows stores
from the same thread (as the load-reserve and the store-conditional) to appear in coherence order in between the two
stores above. This can only happen by program-order intervening stores to the same location between the load-reserve
and the store-conditional.

The store-conditional can succeed if this coherence condition is possible, and must fail if it no longer is (for
example, if another write to the same address gets propagated to that thread in between the write read from and that
of the store-conditional, which means that third write mustbecome coherence-between the two). Note also that this is
merely a condition for possible success, and it is possible for the store-conditional to fail spuriously, thus making any
strong guarantee of forward progress or fairness theoretically impossible, though in practice this may not be a concern.

Various kinds of atomic operations can be built out of load-reserve/store-conditional pairs. For the purpose of
examples, we will use two extreme forms shown below: one where the value loaded is immediately stored back (fetch
and no-op), which implements an atomic load, and another which ignores the value loaded and stores a pre-determined
value (store-atomic).

Fetch and No-Op Pseudocode
do {

r = load-reserve x;
} while (!store-conditional (r,x));

Fetch-and-no-op ARM
1:LDREX R0, [R3]

STREX R1, R0, [R3]
TEQ R1, #0
BNE 1b

Fetch-and-no-op POWER
1:lwarx r0,0,r2

stwcx. r0,0,r2
bne- 1b

Store-atomic Pseudocode
do {

r = load-reserve x;
} while (!store-conditional (v,x));

Store-Atomic ARM
1:LDREX R0, [R3]

STREX R1, R2, [R3]
TEQ R1, #0
BNE 1b

Store-Atomic POWER
1:lwarx r0,0,r2

stwcx. r1,0,r2
bne- 1b

In diagrams below, we show a load-reserve by a marked read (R*), and a successful store-conditional by a marked
write (W*).

13.1 Load-reserves and Store-conditionals Stay in Order

Load-reserves and store-conditionals from the same threadstay in order, that is, the load-reserve is satisfied by loading
its value, and the store-conditional succeeds or fails, strictly according to program order. This means that having two
fetch-and-no-op on the reader side of the MP example, together with alwsync between the writes, makes the non-SC
behaviour forbidden:
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Test MP+lwsync+poaa: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

g: W[x]*=0

c: R[y]*=1

d: W[y]*=1

Thread 1

e: R[x]*=0

lwsync

co

rf

co

data

ctrl

data
rf

MP+lwsync+poaa Pseudocode
Thread 0 Thread 1

x=1 r1=fetch-and-no-op (y)
lwsync r2 = fetch-and-no-op (x)
y=1
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

The program-order edge between the two atomic sequences on the reading thread here acts almost like a depen-
dency. Indeed, we can go further, and ifall memory accesses are replaced by atomic sequences (loads by fetch-and-
no-op, stores by store-atomics), then we will only have SC behaviour. This property is less useful that it sounds,
however, since the presence of any non-atomic sequence on any thread could permit observable non-SC behaviour, as
we see below. Further, even though store-atomics succeed orfail in order, if they do succeed, their underlying stores
can be propagated to other threads in any order (thus, there is no barrier-like effect here). This leads to the variation
of Message Passing with the writes being replaced by store-atomics and the reads being ordered by dependency being
allowed on POWER.

Test MP+poaa+addr: Allowed

Thread 0

a: R[x]*=0

c: W[x]*=1

d: R[y]*=0

e: W[y]*=1

f: R[y]=1

Thread 1

g: R[x]=0

po

po

po rf

addr

rf

rf

rf MP+poaa+addr Pseudocode
Thread 0 Thread 1

store-atomic(1,x) r1=y
store-atomic (1,y) r3=(r1 xor r1)

r2=* (&x + r3)
Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0

13.2 Load-reserves and Store-conditionals Not Ordered withNormal Accesses

There is no special ordering requirements between load-reserve/store-conditionals and normal loads/stores, on the
same or different threads. A normal load can be satisfied at any time with respect to load-reserves and store-
conditionals on the same thread, ignoring program-order (the usual coherence restrictions on accesses to the same
location do still apply). Similarly, a normal store and a store from a store-conditional from the same thread can propa-
gate to other threads in any order whatsoever, as long as theyare to different locations. All this means that, for example,
the Message Passing test with alwsync between the writes and just one of the reads replaced by a fetch-and-no-op
still permits the non-SC behaviour.

Test MP+lwsync+poap: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]*=1

d: W[y]*=1

Thread 1

e: R[x]=0

lwsync
rf

co

data

porf

MP+lwsync+poap Pseudocode
Thread 0 Thread 1

x=1 r1=fetch-and-no-op (y)
lwsync r2=x
y=1
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0
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Kind PowerG5 Power6 Power7

MP+lwsync+poaa Forbid 0/302M 0/6.3G 0/6.1G

MP+poaa+addr Allow 0/302MU 27k/1.1G 56/1.4G

MP+lwsync+poap Allow 362/20M 0/6.3GU 15k/19M

14 Analysis of Peterson’s algorithm on POWER

The following pseudocode is a simplification of Peterson’s algorithm for mutual exclusion [Pet81]. The presented code
focusses on mutual exclusion by presenting only the “lock” fragment — Thread 0 (resp. Thread 1) would perform
unlocking by writing0 to the flag variablef0 (resp. f1); and by simplifying this lock fragment. Indeed, in the actual
algorithm the finalif conditional is replaced by awhile loop whose condition is the negation of the presented final
condition. For instance Thread 0 code of the actual lock fragment could end as “while (f1 == 1 && vict == 0) ;”.

PET Pseudocode
Thread 0 Thread 1

f0=1 // write flag f1=1 // write flag
vict=0 // let other pass vict=1 // let other pass
if (f1==0 || vict==1) crit0=1 ; if (f0==0 || vict==0) crit1=1 ;
Initial state: crit0=0 ∧ crit1=0
Forbidden?: crit0=1 ∧ crit1=1

The above final conditioncrit0=1 ∧ crit1=1 expresses mutual exclusion: if bothcrit0 andcrit1 hold the value1 at
the end of test, then we witness a failure of mutual exclusion.

Due to standard short-circuiting compilation of the boolean connector||, if, crit0 holds the value1, then either:

(1) Thread 0 has read the value0 from the locationf1, or

(2) Thread 0 has read the value1 from the locationf1 and then the value1 from the locationvict.

Similarily, if crit1 holds the value1, then either:

(3) Thread 1 has read the value0 from the locationf0, or

(4) Thread 1 has read the value1 from the locationf0 and then the value0 from the locationvict.

Usually, a proof of correcteness of Peterson’s algorithm checks that any two conjunction of conditions (1) or (2) on
the one hand, and of (3) or (4) on the other hand leads to a contradiction. Such “contradictions” can be interpreted as
violations of sequential consitency, as we discuss.

Guarantee of mutual exclusion, by uniproc

We first consider the case where Peterson’s algorithm refinesa trivial mutual exclusion algorithm that would consider
flagsf0 andf1 only. More precisely, if both threads read value1 in the other thread’s flag, then the winner is selected
by having each thread to readvict, considering thatvict has a settled value that designates the looser in the competition
for mutual exclusion. And indeed, on POWER we cannot have (2) and (4) simultaneously, by the uniproc condition
(see Section 9.6). The following diagrams depict (candidate) executions that originate from the hypothesis (2) and (4):
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Test PET: Forbidden

Thread 0

a: W[f0]=1

b: W[vict]=0

h: R[f0]=1c: R[f1]=1

g: W[vict]=1

i: R[vict]=0d: R[vict]=1

e: W[crit0]=1

Thread 1

f: W[f1]=1

j: W[crit1]=1

po

rf

po

co

rf

ctrl

ctrl

ctrl

rf

rf

po

fr

po

ctrl

ctrl

ctrl

Test PET: Forbidden

Thread 0

a: W[f0]=1

b: W[vict]=0

h: R[f0]=1c: R[f1]=1

i: R[vict]=0d: R[vict]=1

e: W[crit0]=1

Thread 1

f: W[f1]=1

g: W[vict]=1

j: W[crit1]=1

po

rf

po

rf

ctrl

ctrl

fr

ctrl

rf

co

rf

po

po

ctrl

ctrl

ctrl

In all executions we havea
rf

−→ h andf
rf

−→ c (i.e. each thread reads the value stored in the appropriate flag by the
other thread), this commands the reading ofvict by both threads. The remaining arrows then depend on the choice of
a coherence order for the writesb andg to locationvict (b

co
−→ g for the diagram on the left,g

co
−→ b for the diagram

on the right). We only pictured the situation where Thread 1 reads the value0 stored by Thread 0 invict; Thread 1 can
also read the initial value ofvict, resulting in a similar analysis, which we omit for brevity.

Then, in all executions, we have a violation of uniproc, as characterised by testCoWR: somefr edge contradicts

program order from one memory access tovict to another —e.g. in the first diagram we havei
fr

−→ g
po
−→ i.

As a consequence, the pictured executions are forbidden by the POWER architecture, as they are by any coherent
architecture. More generally, the arbitration protocol bythe means of thevict shared location introduced by Peterson
does work on any coherent architecture.

Failure of mutual exclusion,SB style

We now consider the case where (1) and (3) simultaneously hold. That is, Thread 0 reads value0 from f1 while
Thread 1 reads value0 from f0. The following diagrams depict the resulting (candidate) executions:
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Test PET: Allowed

Thread 0

a: W[f0]=1

b: W[vict]=0

c: R[f1]=0

f: W[vict]=1

d: W[crit0]=1

e: W[f1]=1

Thread 1

g: R[f0]=0

h: W[crit1]=1

po

po

co

ctrl

fr

po

fr

po

ctrl

Test PET: Allowed

Thread 0

a: W[f0]=1

b: W[vict]=0

c: R[f1]=0

d: W[crit0]=1

e: W[f1]=1

Thread 1

f: W[vict]=1

g: R[f0]=0

h: W[crit1]=1

po

po

ctrl

frco

po

fr

po

ctrl

There are two executions and not one because of the changing coherence edge between the two writesb andf to
locationvict. This coherence edge is irrelevant to the pictured violations of sequential consistency: namely, there is

cycle a
po
−→ c

fr
−→ e

po
−→ g

fr
−→ a. This cycle is characteristic of theSB (or Dekker) test, see the completeSB

diagram in Section 9.5. As a consequence the pictured executions are allowed by the POWER architecture, as test
SB is.

Failure of mutual exclusion,R style

We now consider the cases where (1) and (4) simultaneously hold. That is, Thread 0 reads value0 from f1, while
Thread 1 reads value1 from f0 but is granted right to mutual exclusion by reading0 from vict. This situation is
depicted by the leftmost of the following two diagrams:

Test PET: Allowed

Thread 0

a: W[f0]=1

b: W[vict]=0

g: R[f0]=1c: R[f1]=0

h: R[vict]=0d: W[crit0]=1

e: W[f1]=1

Thread 1

f: W[vict]=1

i: W[crit1]=1

po

rf

po

rf

ctrl

frco

po

po

ctrl

ctrl

ctrl

Test PET: Allowed

Thread 0

a: W[f0]=1

b: W[vict]=0

c: R[f1]=1

g: W[vict]=1

d: R[vict]=1

e: W[crit0]=1

Thread 1

f: W[f1]=1

h: R[f0]=0

i: W[crit1]=1

po

po

co

ctrl

ctrl

ctrl

rf

rf

po

fr

po

ctrl

First notice that we also picture the symetrical case where (2) and (3) hold on the right.
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Now we turn back to the leftmost diagram and argue that the pictured execution originates from the hypothesis (1)

and (4). Namely, by (1) (i.e. Thread 0 reads0 from f1) Thread 0 reads the initial value off1 and we thus havec
fr

−→ e.

Furthermore by (3) (i.e. Thread 1 reads1 from f1 and then0 from vict), we first havea
rf

−→ g and thenb
rf

−→ h. The

first rf arrow is immediate, as the writea is the only write of 1 tof0 in the whole program. The secondrf arrowb
rf

−→ h
deserves a detailled argument:h reading value0 could be fromvict initial state, but this would violate the uniproc

condition, because Thread 1 writes tovict before reading from it. Moreover fromb
rf

−→ h we can deducef
co
−→ b.

Otherwise, we would haveb
co
−→ f (as the coherence order is a total order on writes to the givenlocationvict), and

thus we would again witness aCoWR violation of coherence.

Once arrows are settled we easily see the cycleb
po
−→ c

fr
−→ e

po
−→ f

co
−→ b in the leftmost diagram, and,

symetrically,g
po
−→ g

fr
−→ a

po
−→ b

co
−→ g in the rightmost diagram. Those cycles are of theR style, they are allowed

and observed on POWER.

Ensuring mutual exclusion with fences

To restore mutual exclusion it suffices to forbid theSB andR style violations of sequential consistency described in
the previous two sections. As testsSB+syncs andR+syncs are forbidden on POWER, it suffices to insert twosync
fences in each thread code, one after the the store to the flagf0 or f1, and one after the store tovict. The resulting
programPET+syncs is shown below:

PET+syncs Pseudocode
Thread 0 Thread 1

f0=1 // write flag f1=1 // write flag
sync sync
vict=0 // let other pass vict=1 // let other pass
sync sync
if (f1==0 || vict==1) crit0=1 ; if (f0==0 || vict==0) crit1=1 ;
Initial state: crit0=0 ∧ crit1=0
Forbidden: crit0=1 ∧ crit1=1

The following observations confirm our analysis:

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060

PET Allow 4.7M/160M 66k/26M 475M/32G 2.3M/206M 505/10k 38k/100M

PET-UNI Forbid 0/160M 0/26M 0/32G 0/206M 0/10k 0/100M

PET-SB Allow 4.3M/160M 64k/26M 471M/32G 2.2M/206M 438/10k 38k/100M

PET-R Allow 446k/160M 2.4k/26M 4.6M/32G 55k/206M 67/10k 503/100M

PET+dmbs/syncs Forbid 0/160M 0/3.0G 0/32G 0/12G 0/16G 0/16G

One observes that theSB andR styles of mutual exclusion failure are observed, that theUNI style is not observed and
that no failure of mutual exclusion is observed once fences are added to the testPET.

15 Sources of Tests, and Correspondences among Them

Several of our tests are taken or adapted from the literature, as we describe here.

15.1 Boehm and Adve examples

Boehm and Adve [BA08] give four main tests in C-like psuedo-code using afence statement. Taking that to be a
POWERsync or ARM DMB barrier, they correspond with the tests here as follows.

IRIW [BA08, Fig. 4]: IRIW+dmbs/syncs

WRC [BA08, Fig. 5]: WRC+dmbs/syncs
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RWC [BA08, Fig. 6]: RWC+dmbs/syncs

CC [BA08, Fig. 7]: we do not discuss

Note that we use an unadornedIRIW, WRC or RWC to refer to versions of these tests without any dependency
constraints or barriers, writing e.g.IRIW+dmbs/syncs for versions ofIRIW with two POWERsync barriers or ARM
DMB barriers.

15.2 ARM Cookbook examples

The correspondence between our tests and the examples from Section 6 of the ARM Barrier Litmus Tests and Cook-
book document [ARM08b] is as follows. We label the latter ARMC6.1, etc., after their section numbers. The code of
our tests is not identical to that of the Cookbook: it differsin the choice of registers, values, etc., and we avoid loops
to simplify our automated checking. Apart from these minor issues, the correspondence is reasonably exact.

ARMC6.1 Simple Weakly Consistent Ordering Exampleis SB.

ARMC6.2.1 Weakly-Ordered Message Passing problemis MP.

ARMC6.2.1.1 Resolving by the addition of barriersis MP+dmbs.

ARMC6.2.1.2 Resolving by the use of barriers and address dependency. The main example isMP+dmb+addr.

ARMC6.2.2 Message passing with multiple observersis a variant of ARMC6.2.1, but with two reading processors,
seeing the writes in opposite orders. This shows that two of the possible outcomes of the unadornedMB are
simultaneously possible in the same execution.

ARMC6.2.2.1 Resolving by the addition of barriersadds aDMB to the writer and dependencies to the readers, giving
a variant of ARMC6.2.1.2 but with two reading processors.

ARMC6.3 Address Dependency with object construction. This is essentially another variant ofMP+dmb+addr.

ARMC6.4 Causal consistency issues with Multiple observers. The first example is a variant ofWRC+po+addr,
without a dependency on the middle processor. The second example adds aDMB to that processor, giving an
analogue ofWRC+dmb+addr.

ARMC6.5 Multiple observers of writes to multiple locationsThe first example isIRIW. The second isIRIW+dmbs.

ARMC6.6 Posting a Store before polling for acknowledgement. This is an example in which aDMB barrier after a
write is used to ensure a progress property. Our impression is that more recent versions of the architecture make
this barrier unnecessary.

ARMC6.7 WFE and WFI and Barriers. We do not consider interrupts here.

15.3 Power2.06 ISA examples

The Power2.06 ISA [Pow09] Book II Chapter 1 has just two examples, in §1.7.1, intended to illustrate A- and
B-cumulativity. The first is a variant ofWRC+syncs. The second is an iterated message-passing example; our
ISA2+sync+data+addr is a similar but loop-free test.

15.4 Adir et al. examples

The correspondence between our tests and those of Adir, Attiya, and Shurek [AAS03] (which we label AdirNNN) is
as follows.

Adir1 is theMP+syncs example.

Adir1v1 removes onesync.

Adir1v2 replaces the secondsync by a load/load dependency, as inMP+sync+addr.
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Adir1v3 replaces the first sync by a “store/store” dependency, or in our terms a write then read from the same address
followed by a load/store dependency, as inMP+nondep+sync.

Adir1v4 replaces the second sync by a re-use of the same register.

Adir2 is WRC+syncs, except that the final state is allowed. This example predated the introduction of cumulativity
to PowerPC barriers.

Adir3 is an example showing that store buffering is visible, more elaborate thanSB.

Adir4 is a message-passing example with async between the stores and a control dependency between the loads,
showing that control dependencies between loads are not respected, as inMP+sync+ctrl.

Adir5 is an example showing that control dependencies from loads to stores are respected.

Adir6 shows that the existence of multiple copies of registers is visible to the programmer; here this is theLB+rs test.

Adir7 illustrates artificial (or “false”) load/load dependencies, i.e. where the value of the first load does not in fact
affect the address of the second, showing that they are respected.

Adir8 (not included here) shows an example of behaviour which in some models is forbidden by a cycle through
from-reads and sync edges.

15.5 Adve and Gharachorloo examples

From [AG96]:

Fig. 4(a), Fig. 5(a) SB

Fig. 4(b), Fig. 10(b) WRC

Fig. 5(b,c) MP

Fig. 6 involves four writes on two processors (loosely analogous but not identical to the2+2W+syncs example), used
in a discussion of write atomicity

Fig. 10(a) is an extension of theSB example with an additional read/write pair between the instructions of each
processor

16 Related Work

There has been extensive previous work on relaxed memory models, of which we recall here just some of that on mod-
els for the major current processor families that do not havesequentially consistent behaviour: Sparc, x86, Itanium,
ARM, and POWER. Early work by Collier [Col92] developed models based on empirical testing for the multiproces-
sors of the day. For Sparc, the vendor documentation has a clear Total Store Ordering (TSO) model [SFC91, Spa92].
It also introduces PSO and RMO models, but these are not used in practice. For x86, the vendor intentions were
until recently quite unclear, as was the behaviour of processor implementations. The work by Sarkar, Owens, et
al. [SSZN+09, OSS09, SSO+10] suggests that for normal user- or system-code they are also TSO. This is in a similar
spirit to the work we describe here, with a mechanised semantics that is tested against empirical observation. Itanium
provides a much weaker model than TSO, but one which is more precisely defined by the vendor than x86 [Int02]; it
has also been formalised in TLA [JLM+03] and in higher-order logic [YGLS03].

For POWER, there have been several previous models, but none are satisfactory for reasoning about realistic con-
current code. In part this is because the architecture has changed over time: the lwsync barrier has been added, and
barriers are now cumulative. Corella, Stone and Barton [CSB93] gave an early axiomatic model for PowerPC, but,
as Adir et al. note [AAS03], this model is flawed (it permits the non-SC final state of the MP+syncs example we
show in§3). Stone and Fitzgerald later gave a prose description of PowerPC memory order, largely in terms of the
microarchitecture of the time [SF95]. Gharachorloo [Gha95] gives a variety of models for different architectures in a
general framework, but the model for the PowerPC is described as“approximate”; it is apparently based on Corella
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et al. [CSB93] and on May et al. [MSSW94]. Adve and Gharachorloo [AG96] make clear that PowerPC is very re-
laxed, but do not discuss the intricacies of dependency-induced ordering, or the more modern barriers. Adir, Attiya,
and Shurek give a detailed axiomatic model [AAS03], in termsof a view order for each thread. The model was“de-
veloped through an iterative process of successive refinements, numerous discussions with the PowerPC architects,
and analysis of examples and counterexamples”, and its consequences for a number of litmus tests (some of which
we use here) are described in detail. These facts inspire some confidence, but it is not easy to understand the force
of the axioms, and it describesnon-cumulativebarriers, following the pre-PPC 1.09 PowerPC architecture; current
processors appear to be quite different. More recently, Chong and Ishtiaq give a preliminary model for ARM [CI08],
which has a very similar architected memory model to POWER. Inour initial work in this area [AFI+09], we gave an
axiomatic model based on a reading of the Power ISA 2.05 and ARM ARM specifications, with experimental results
for a few tests (described as work in progress); this seems tobe correct for some aspects but to give an unusably weak
semantics to barriers. More recently still, Alglave et al. gave a rather different axiomatic model [AMSS10], further
developed in Alglave’s thesis [Alg10] as an instance of a general framework; it models the non-multiple-copy-atomic
nature of POWER (with examples such as IRIW+addrs correctly allowed) in a simple global-time setting. The ax-
iomatic model is sound with respect to our experimental tests, and on that basis can be used for reasoning, but it
is weaker than the observed behaviour or architectural intent for some important examples. Moreover, it was based
principally on black-box testing and its relationship to the actual processor implementations is less clear than that for
the operational model of [SSA+11, SMO+12], which are more firmly grounded on microarchitectural and architec-
tural discussion. In more detail, the axiomatic model is weaker than one might want for lwsync and for cumulativity:
it allows MP+lwsync+addr and ISA2+sync+data+addr, which are not observed and which are intended to be ar-
chitecturally forbidden. It also forbids theR+lwsync+sync variant ofR which is not observed but architecturally
intended to be allowed.

We mention also Lea’sJSR-133 Cookbook for Compiler Writers[Lea], which gives informal (and approximate)
models for several multiprocessors, and which highlights the need for clear models.

17 On-line material

Various supporting material is available on-line athttp://www.cl.cam.ac.uk/ ˜ pes20/
ppc-supplemental :

• There are papers describing an operational abstract-machine model for POWER and its extension for load-
reserve/store-conditional and eieio instructions:

– Understanding POWER multiprocessors. Susmit Sarkar, PeterSewell, Jade Alglave, Luc Maranget, and
Derek Williams. InProc. PLDI, 2011. [SSA+11]

– Synchronising C/C++ and POWER. Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter
Sewell, Luc Maranget, Jade Alglave, and Derek Williams. InProc. PLDI, 2012. [SMO+12]

These also describe how that model explains the behaviour ofsome of the tests we discuss here, and summarise
some of our experimental data in support of the model. The following paper, together with the PLDI 2012 paper
above, describes a correctness proof for an implementationof the C/C++ concurrency model of the C11 and
C++11 revised standards [BA08, BOS+11, Bec11, ISO11] above POWER processors.

– Clarifying and Compiling C/C++ Concurrency: from C++11 to POWER. Mark Batty, Kayvan Memarian,
Scott Owens, Susmit Sarkar, and Peter Sewell. InProc. POPL, 2012. [BMO+12]

The following paper gives an axiomatic model for POWER (without load-reserve/store-conditional), equivalent
to the abstract-machine model above.

– An Axiomatic Memory Model for POWER Multiprocessors. Sela Mador-Haim, Luc Maranget, Susmit
Sarkar, Kayvan Memarian, Jade Alglave, Scott Owens, RajeevAlur, Milo M.K. Martin, Peter Sewell, and
Derek Williams. InProc. CAV, 2012 [MHMS+12].

• Ourppcmem tool lets one interactively explore the behaviour of a POWER or ARM litmus test with respect to
our model; this is available via a web interface athttp://www.cl.cam.ac.uk/ ˜ pes20/ppcmem . The
use ofppcmem was described in a Linux Weekly News (LWN) article by McKenney[McK11].
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Note that at the time of writing theppcmem tool is based on the model presented in those papers which was
developed principally for POWER. The ARM mode ofppcmem uses the same model instantiated to a small
fragment of the ARM instruction set. We believe this to be correct in most instances but there are cases, most
notably theMP+dmb+fri-rfi-ctrlisb test we describe in Section 10.5, where an ARM test has observable and
architecturally allowed behaviour that that model forbids. Work on a revised model for ARM is in progress.

• Our litmus tool takes a litmus test and constructs a test harness (as a C program with embedded assembly) to
experimentally test its observable behaviours. This is downloadable fromhttp://diy.inria.fr , which
also includes ourdiy tool for generating litmus tests from concise specifications. Thelitmus tool is described in
this paper:

– Litmus: running tests against hardware. Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. In
Proc. TACAS, 2011. [AMSS11b]

• A summary of tests and of experimental results.
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from ANR project WMC (ANR-11-JS02-011).
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