
Fences in Weak Memory Models

Jade Alglave1, Luc Maranget1, Susmit Sarkar2, and Peter Sewell2

1 INRIA 2 University of Cambridge

Abstract. We present a class of relaxed memory models, defined in Coq,
parameterised by the chosen permitted local reorderings of reads and
writes, and the visibility of inter- and intra-processor communications
through memory (e.g. store atomicity relaxation). We prove results on
the required behaviour and placement of memory fences to restore a
given model (such as Sequential Consistency) from a weaker one. Based
on this class of models we develop a tool, diy, that systematically and
automatically generates and runs litmus tests to determine properties
of processor implementations. We detail the results of our experiments
on Power and the model we base on them. This work identified a rare
implementation error in Power 5 memory barriers (for which IBM is
providing a workaround); our results also suggest that Power 6 does not
suffer from this problem.

1 Introduction

Most multiprocessors exhibit subtle relaxed-memory behaviour, with writes from
one thread not immediately visible to all others; they do not provide sequentially
consistent (SC) memory [17]. For some, such as x86 [22, 20] and Power [21],
the vendor documentation is in inevitably ambiguous informal prose, leading
to confusion. Thus we have no foundation for software verification of concurrent
systems code, and no target specification for hardware verification of microarchi-
tecture. To remedy this state of affairs, we take a firmly empirical approach, de-
veloping, in tandem, testing tools and models of multiprocessor behaviour—the
test results guiding model development and the modelling suggesting interesting
tests. In this paper we make five new contributions:

1. We introduce a class of memory models, defined in Coq [8], which we show
how to instantiate to produce SC , TSO [24], and a Power model (3 below).

2. We describe our diy testing tool. Much discussion of memory models has been
in terms of litmus tests (e.g. iriw [9]): ad-hoc multiprocessor programs for
which particular final states may be allowed on a given architecture. Given a
violation of SC , diy systematically and automatically generates litmus tests
(including classical ones such as iriw) and runs them on the hardware.

3. We model important aspects of Power processors’ behaviour, i.e. ordering

relaxations, the lack of store atomicity [3, 7], and A-cumulative barriers [21].
4. We use diy to generate about 800 tests, running them up to 1e12 times on

3 Power machines. Our experimental results confirm that our model cap-
tures many important aspects of the processor’s behaviour, despite being

Init: x=0; y=0;

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 po:1

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 rf

fr

po:1rf

fr

rf

rf

(a) Program
(b) Events and Program

Order
(c) An execution witness

Fig. 1. A program and a candidate execution

in a simple global-time style rather than the per-processor timelines of the
architecture text. They also identified a rarely occurring implementation er-
ror in Power 5 memory barriers (for which IBM is providing a workaround).
They further suggest that Power 6 does not suffer from this.

5. We prove in Coq theorems about the strength and placement of memory
barriers required to regain a strong model from a weaker model.

The experimental details and the sources and documentation of diy are avail-
able online1, as are the Coq development and typeset outlines of the proofs2.

2 Our class of models

A memory model determines whether a candidate execution of a program is valid.
For example, Fig. 1(a) shows a simple litmus test, comprising an initial state
(which gathers the initial values of registers and memory locations used in the
test), a program in pseudo- or assembly code, and a final condition on registers
and memory (we write x, y for memory locations and r1, r2 for registers). If each
location initially holds 0 (henceforth we omit the initial state if so), then, e.g.

on x86 processors, there are valid executions with the specified final state [20].

Rather than dealing directly with programs, our models are in terms of the
events E occurring in a candidate program execution. A memory event m rep-
resents a memory access, specified by its direction (write or read), its location
loc(m), its value val(m), its processor proc(m), and a unique label. The store to
x with value 1 marked (a) in Fig. 1(a) generates the event (a) Wx1 in Fig. 1(b).
Henceforth, we write r (resp. w) for a read (resp. write) event. We write Mℓ,v

(resp. Rℓ,v, Wℓ,v) for the set of memory events (resp. reads, writes) to a location

1 http://diy.inria.fr/
2 http://moscova.inria.fr/∼alglave/wmm/

Name Notation Comment Sec.

program order m1
po
→ m2 per-processor total order 2

dependencies m1
dp
→ m2 dependencies 2

po-loc m1
po-loc
→ m2 program order restricted to the same location 2.3

preserved program order m1
ppo
→ m2 pairs maintained in program order 2.2

read-from map w
rf
→ r links a write to a read reading its value 2.1

external read-from map w
rfe
→ r

rf
→ between events from distinct processors 2.2

internal read-from map w
rfi
→ r

rf
→ between events from the same processor 2.2

global read-from map w
grf
→ r

rf
→ considered global 2.2

write serialisation w1
ws
→ w2 total order on writes to the same location 2.1

from-read map r
fr
→ w r reads from a write preceding w in

ws
→ 2.1

barriers m1
ab
→ m2 ordering induced by barriers 2.2

global happens-before m1
ghb
→ m2 union of global relations 2.2

m1
hb-seq
→ m2 shorthand for m1 (

rf
→ ∪

ws
→ ∪

fr
→) m2 2.3

Fig. 2. Table of relations

ℓ with value v (we omit ℓ and v when quantifying over all of them). A barrier
instruction generates a barrier event b; we write B for the set of all such events.

The models are defined in terms of binary relations over these events, and
Fig. 2 has a table of the relations we use.

As usual, the program order
po
→ is a total order amongst the events from the

same processor that never relates events from different processors. It reflects the
sequential execution of instructions on a single processor: given two instruction

execution instances i1 and i2 that generate events e1 and e2, e1
po
→ e2 means

that a sequential processor would execute i1 before i2. When instructions may
perform several memory accesses, we take intra-instruction dependencies [22]
into account to build a total order.

We postulate a
dp
→ relation to model the dependencies between instructions,

such as data or control dependencies [21, pp. 653-668]. This relation is a subre-

lation of
po
→, and always has a read as its source.

2.1 Execution witnesses

Although
po
→ conveys important features of program execution, e.g. branch reso-

lution, it does not characterise an execution. To do so, we postulate two relations
rf
→ and

ws
→ over memory events.

Reads-from map We write w
rf
→ r to mean that r loads the value stored by w (so

w and r must share the same location and value). Given a read r there exists a

unique write w such that w
rf
→ r (w can be an init store when r loads from the

initial state). Thus,
rf
→ must be well formed following the wf − rf predicate:

wf − rf(
rf
→) ,

(

rf
→ ⊆

⋃

ℓ,v

(Wℓ,v × Rℓ,v)

)

∧ (∀r, ∃!w. w
rf
→ r)

Write serialisation We assume all values written to a given location ℓ to be seri-
alised, following a coherence order. This property is widely assumed by modern
architectures. We define

ws
→ as the union of the coherence orders for all memory

locations, which must be well formed following the wf − ws predicate:

wf − ws(
ws
→) ,

(

ws
→ ⊆

⋃

ℓ

(Wℓ × Wℓ)

)

∧
(

∀ℓ. total − order
(

ws
→, (Wℓ × Wℓ)

))

From-read map We define the following derived relation
fr
→[4] which gathers all

pairs of reads r and writes w such that r reads from a write that is before w

in
ws
→:

r
fr
→ w , ∃ w′. w′ rf

→ r ∧ w′ ws
→ w

We define an execution witness X as follows (the well-formedness predicate wf

on execution witnesses is the conjunction of those for
ws
→ and

rf
→):

X , (E,
po
→,

dp
→,

rf
→,

ws
→)

Fig. 1(c) shows an execution witness for the test of Fig. 1(a). The load (d)
reads the initial value of x, later overwritten by the store (a). Since the init store

to x comes first in
ws
→, hence before (a), we have (d)

fr
→ (a).

2.2 Global Happens-Before

An execution witness is valid if the memory events can be embedded in an acyclic
global happens-before relation

ghb
→ (together with two auxiliary conditions detailed

in Sec. 2.3). This order corresponds roughly to the vendor documentation concept
of memory events being globally performed [21, 13]: a write in

ghb
→ represents the

point in global time when this write becomes visible to all processors; whereas
a read in

ghb
→ represents the point in global time when the read takes place.

There remain key choices as to which relations we include in
ghb
→ (i.e. which

we consider to be in global time), which leads us to define a class of models.

Globality Writes are not necessarily globally performed at once. Thus,
rf
→ is not

necessarily included in
ghb
→ . Let us distinguish between internal (resp. external)

rf
→, when the two events in

rf
→ are on the same (resp. distinct) processor(s),

written
rfi
→ (resp.

rfe
→) : w

rfi
→ r , w

rf
→ r ∧ proc(w) = proc(r) and w

rfe
→ r , w

rf
→

r ∧ proc(w) 6= proc(r). Some architectures allow store forwarding (or read own

writes early [3]): the processor issuing a given write can read its value before any

other participant accesses it. Then
rfi
→ is not included in

ghb
→ . Other architectures

allow two processors sharing a cache to read a write issued by their neighbour
w .r .t . the cache hierarchy before any other participant that does not share the

same cache—a particular case of read others’ writes early [3]. Then
rfe
→ is not

considered global. We write
grf
→ for the subrelation of

rf
→ included in

ghb
→ .

In our class of models,
ws
→ and

fr
→ are always included in

ghb
→ . Indeed, the write

serialisation for a given location ℓ is the order in which writes to ℓ are globally

performed. Moreover, as r
fr
→ w expresses that the write w′ from which r reads is

globally performed before w, it forces the read r to be globally performed (since
a read is globally performed as soon as it is performed) before w is globally
performed.

Preserved program order In any given architecture, certain pairs of events in the
program order are guaranteed to occur in that order. We postulate a global rela-
tion

ppo
→ gathering all such pairs. For example, the execution witness in Fig. 1(c)

is only valid if the writes and reads to different locations on each processor have
been reordered. Indeed, if these pairs were forced to be in program order, we

would have a cycle in
ghb
→ : (a)

ppo
→ (b)

fr
→ (c)

ppo
→ (d)

fr
→ (a).

Barrier constraints Architectures also provide barrier instructions, e.g. the Power
sync (discussed in Sec. 3) to enforce ordering between pairs of events. We pos-

tulate a global relation
ab
→ gathering all such pairs.

Architectures We call a particular model of our class an architecture, written A

(or Aǫ for when
ab
→ is empty); ppo (resp. grf , ab, A.ghb) is the function returning

the
ppo
→ (resp.

grf
→,

ab
→ and

ghb
→) relation when given an execution witness:

A , (ppo, grf , ab)

We define
ghb
→ as the union of the global relations:

ghb
→ ,

ppo
→ ∪

ws
→ ∪

fr
→ ∪

grf
→ ∪

ab
→

2.3 Validity of an execution w .r .t . an architecture

We now add two sanity conditions to the above. First, we require each processor
to respect memory coherence for each location [11]. If a processor writes e.g. v

to ℓ and then reads v′ from ℓ, v′ should not precede v in the write serialisation. We
define the relation

po-loc
→ over accesses to the same location in the program order,

and require
po-loc
→ ,

rf
→,

ws
→ and

fr
→ to be compatible (writing

hb-seq
→ for

rf
→ ∪

ws
→ ∪

fr
→):

m1
po-loc
→ m2 , m1

po
→ m2 ∧ loc(m1) = loc(m2)

uniproc(X) , acyclic(
hb-seq
→ ∪

po-loc
→)

P0 P1

(a) x← 1 (b) r1← x

(c) x← 2

(a) uniproc Forbidden: x=1; r1=1;

P0 P1

(a) r1← x (c) r4← y

r9← xor r1,r1 r9← xor r4,r4

(b) y← 1+r9 (d) x← 1+r9

(b) thin Forbidden: r1=1; r4=1;

(a) Wx1

(b) Rx1

(c) Wx2

rf rf

po:1po-loc

ws

(a) Rx1

(b) Wy1

(c) Ry1

(d) Wx1

dp

rf

rf

dp

rf

rf

Fig. 3. Invalid executions according to the uniproc and thin criteria

For example, in Fig. 3 (a), we have (c)
ws
→ (a) (by x final value) and (a)

rf
→ (c)

(by r1 final value). The cycle (a)
rf
→ (b)

po-loc
→ (c)

ws
→ (a) invalidates this execution:

(b) cannot read from (a) as it is a future value of x in
ws
→.

Second, we rule out programs where values come out of thin air [19] (as
in Fig. 3 (b)):

thin(X) , acyclic(
rf
→ ∪

dp
→)

We define the validity of an execution w .r .t . an architecture A as the conjunc-
tion of three checks independent of the architecture, namely wf(X), uniproc(X)
and thin(X) with a last one that characterises the architecture:

A.valid(X) , wf(X) ∧ uniproc(X) ∧ thin(X) ∧ acyclic(A.ghb(X))

2.4 Comparing architectures via validity predicates

From our definition of validity arises a simple notion of comparison among ar-
chitectures. A1 ≤ A2 means that A1 is weaker than A2:

A1 ≤ A2 , (
ppo1→ ⊆

ppo2→) ∧ (
grf1→⊆

grf2→)

The validity of an execution is decreasing w .r .t . the strength of the predicate;
i.e. a weak architecture exhibits at least all the behaviours of a stronger one:

∀A1A2, (A1 ≤ A2) ⇒ (∀X,Aǫ
2.valid(X) ⇒ Aǫ

1.valid(X))

Programs running on an architecture Aǫ
1 exhibit executions that would be

valid on a stronger architecture Aǫ
2; we characterise all such executions as follows:

A1.checkA2
(X) , acyclic(

grf2→ ∪
ws
→ ∪

fr
→ ∪

ppo2→)

These two theorems, though fairly simple, will be useful to compare two
models and to restore a strong model from a weaker one, as in Sec. 3.

2.5 Examples

We propose here alternative formulations of SC [17] and Sparc’s TSO [24] in
our framework, which we proved equivalent to the original definitions. We omit
proofs and the formal details for lack of space, but they can be found online2. We

write po(X) (resp. rf(X), rfe(X)) for the function extracting the
po
→ (resp.

rf
→,

rfe
→)

relation from X. We define notations to extract pairs of memory events from the
program order: MM , λX. ((M × M) ∩ po(X)), RM , λX. ((R × M) ∩ po(X))
and WW , λX. ((W × W) ∩ po(X)).

SC allows no reordering of events (
ppo
→ equals

po
→ on memory events) and makes

writes available to all processors as soon as they are issued (
rf
→ are global).

Thus, there is no need for barriers, and any architecture is weaker than SC :
SC , (MM , rf, λX.∅). The following criterion characterises, as in Sec. 2.4,

valid SC executions on any architecture: A.checkSC (X) = acyclic(
hb-seq
→ ∪

po
→).

Thus, the outcome of Fig. 1 will never be the result of an SC execution, as it

exhibits the cycle: (a)
po
→ (b)

fr
→ (c)

po
→ (d)

fr
→ (a).

TSO allows two relaxations [3]: write to read program order, meaning its
ppo
→

includes all pairs but the store-load ones (ppotso , (λX. (RM (X) ∪ WW (X)))

and read own write early (
rfi
→ are not global). We elide barrier semantics, detailed

in Sec. 3: TSOǫ
, (ppotso, rfe, λX.∅). Sec. 2.4 shows the following criterion char-

acterises valid executions (w .r .t . any A ≤ TSO) that would be valid on TSOǫ,

e.g. in Fig. 1: A.checkTSO(X) = acyclic(
ws
→ ∪

fr
→ ∪

rfe
→ ∪

ppo-tso
→).

3 Semantics of barriers

We define the semantics and placement in the code that barriers should have to
restore a stronger model from a weaker one. It is clearly enough to have w

ab1→ r

whenever w
grf2\1→ r holds to restore store atomicity, i.e. a barrier ensuring

rf
→

is global. But then a processor holding such a barrier placed after r would wait
until w is globally performed, then read again to ensure r is globally performed

after w. We provide a less costly requirement: when w
rf
→ r

po
→ m, where r may

not be globally performed after w is, inserting a barrier instruction between the
instructions generating r and m only forces the processor generating r and m to
delay m until w is globally performed.

Formally, given A1 ≤ A2, we define the predicate fb (fully barriered) on
executions X by

A1.fbA2
(X) ,

(

(
ppo2\1→) ∪ (

grf2\1→ ;
ppo2→)

)

⊆
ab1→

where
r2\1→ ,

r2→ \
r1→ is the set difference, and x

r1→;
r2→ y , ∃z. x

r1→ z ∧ z
r2→ y.

The fb predicate provides an insight on the strength that the barriers of the
architecture A1 should have to restore the stronger A2. They should:

1. restore the pairs that are preserved in the program order on A2 and not
on A1, which is a static property;

2. compensate for the fact that some writes may not be globally performed at
once on A1 while they are on A2, which we model by (some subrelation of)
rf
→ not being global on A1 while it is on A2; this is a dynamic property.

We can then prove that the above condition on
ab1→ is sufficient to regain Aǫ

2

from A1:

Theorem 1 (Barrier guarantee).

∀A1A2, (A1 ≤ A2) ⇒ (∀X,A1.valid(X) ∧ A1.fbA2
(X) ⇒ Aǫ

2.valid(X))

The static property of barriers is expressed by the condition
ppo2\1→ ⊆

ab1→ . A bar-
rier provided by A1 should ensure that the events generated by a same processor
are globally performed in program order if they are on A2. In this case, it is
enough to insert a barrier between the instructions that generate these events.

The dynamic property of barriers is expressed by the condition
grf2\1→ ;

ppo2→ ⊆
ab1→ .

A barrier provided by A1 should ensure store atomicity to the write events that
have this property on A2. This is how we interpret the cumulativity of barriers as
stated by Power [21]: the A-cumulativity (resp. B-cumulativity) property applies

to barriers that enforce ordering of pairs in
rf
→;

po
→ (resp.

po
→;

rf
→). We consider a

barrier that only preserves pairs in
po
→ to be non-cumulative. Thm. 1 states that,

to restore A2 from A1, it suffices to insert an A-cumulative barrier between each
pair of instructions such that the first one in the program order reads from a
write which is to be globally performed on A2 but is not on A1.

Restoring SC We model an A-cumulative barrier as a function returning an
ordering relation when given a placement of the barriers in the code:

m1
fenced
→ m2 , ∃b.m1

po
→ b

po
→ m2

A − cumul(X,
fenced
→) ,

fenced
→ ∪

rf
→;

fenced
→

Thm. 1 shows that inserting such a barrier between all
po
→ pairs restores SC :

Corollary 1 (Barriers restoring SC).

∀A X, (A.valid(X) ∧ A − cumul(X,MM) ⊆
ab
→) ⇒ SC .valid(X)

Consider e.g. the iriw test depicted in Fig. 4. The specified outcome may
be the result of a non-SC execution on a weak architecture in the absence of
barriers. Our A-cumulative barrier forbids this outcome, as shown in Fig. 4: if
placed between each pair of reads on P0 and P1, not only does it prevent their
reordering, but also ensures that the write (e) on P2 (resp. (y) P3) is globally
performed before the second read (b) on P0 (resp. (d) on P1).

iriw

P0 P1 P2 P3

(a) r1← x (c) r2← y (e) x← 1 (f) y← 2

fence fence

(b) r2← y (d) r1← x

Observed? 0:r1=1; 0:r2=0; 1:r2=2; 1:r1=0;

(a) Rx1(b) Ry0

(f) Wy2

(c) Ry2 (d) Rx0

(e) Wx1

fenced

fr

fenced

fr

rfA cumul

rf A cumul

Fig. 4. Study of iriw with A-cumulative barriers

Thus, we force a program to have an SC behaviour by fencing all pairs in
po
→.

Yet, it would be enough to invalidate non-SC executions, by fencing only the
po
→

pairs in the
hb-seq
→ ∪

po
→ cycles of these executions. We believe the static analysis

of [23] (based on compile-time approximation of
hb-seq
→ ∪

po
→ cycles) applies to

architectures relaxing store atomicity, if their barriers offer A-cumulativity.

4 diy: a testing tool

We present our diy (do it yourself) tool, which computes litmus tests in x86 or

Power assembly code by generating violations of SC , i.e. cycles in
hb-seq
→ ∪

po
→. A

diy tutorial is available1.

4.1 Cycles as specifications of litmus tests

Consider e.g. the outcome of Fig. 4 (a): it leads to the
hb-seq
→ ∪

po
→ cycle of Fig. 4 (b):

from r1 = 1 on P0, we know the load (a) reads from the store (e) on P2, thus

(e)
rfe
→ (a). By the fence on P0, we know (a)

fenced
→ (b) and since r2 = 0 on P0,

we know the load (b) read from the initial state, thus (b)
fre
→ (f); idem on P1.

The interesting behaviour of a litmus test can be characterised by a cycle

formed of relations: e.g. the iriw test of Fig. 4 can be built from the cycle
rfe
→

;
fenced
→ ;

fre
→;

rfe
→;

fenced
→ ;

fre
→. The computed outcome ensures the input cycle appears

in at least one of the execution witnesses of the test. If the outcome is observed,
then at least one subsequence in the cycle is not global, i.e. not in

ghb
→ : e.g. if

the fence of Fig. 4 orders pairs of loads and since
ab
→ and

fr
→ are global, then

rfe
→;

fenced
→ 6⊆

ghb
→ , i.e. the fence is not A-cumulative.

We call sequences of relations relaxations and give them a concrete syntax

(see Fig. 7 and 8). Thus Rfe represents a
rfe
→ arrow, Fre a

fre
→ arrow, and DpdR a

dp
→

(Dp) arrow targeting a read (R), with different (d) source and target locations.
diy needs to be specified which relaxations are considered global and which are

not. When specified a pool of global relaxations, a single non-global relaxation,
and a size n (i.e. the number of relaxations arrows in the cycle, e.g. 6 for iriw),

diy generates cycles up to size n that contains at least one occurrence of the non-
global relaxation. If no non-global relaxation is specified, diy generates cycles up
to size n containing the specified global relaxations. When the cycles generation
is done, diy computes litmus tests from these cycles, as detailed in the following.

4.2 Code generation

We show here how we generate a Power litmus test from a given cycle of re-
laxations by an example below. The complete algorithm for code generation is
available online2. We write for the information not yet set by diy: is an
undetermined event, W a write with yet unset location and value, and Rx a
read from x with undetermined value.

1. Consider e.g. the input cycle, issued by diy’s cycles generation phase:

(a)
Rfe
−→ (b)

DpdR
−→ (c)

Fre
−→ (d)

Rfe
−→ (e)

DpdR
−→ (f)

Fre
−→ (a)

.
2. A linear scan sets the directions from the edges. Observe e.g. the last edge;

Fre
−→ requires a R source and a W target:

(a)W
Rfe
−→ (b)R

DpdR
−→ (c)R

Fre
−→ (d)W

Rfe
−→ (e)R

DpdR
−→ (f)R

Fre
−→ (a)

3. We pick an event e which is the target of a relaxation specifying a location
change. If there is none, generation fails. Otherwise, a linear scan starting
from e sets the locations. At the end of the scan, if e and its predecessor have

the same location (e.g.
Rfe
−→ e

PodRW
−→), generation fails. As

DpdR
−→ specifies a

location change (i.e. we pick (c)), we rewrite the cycle as:

(c)R
Fre
−→ (d)W

Rfe
−→ (e)R

DpdR
−→ (f)R

Fre
−→ (a)W

Rfe
−→ (b)R

DpdR
−→ (c)

We set the locations starting from (c), changing location between (e) and (f):

(c)Rx
Fre
−→ (d)Wx

Rfe
−→ (e)Rx

DpdR
−→ (f)Ry

Fre
−→ (a)Wy

Rfe
−→ (b)Ry

DpdR
−→ (c)

4. We cut the input cycle into maximal sequences of events with the same
location (i.e. (c)(d)(e) and (f)(a)(b)), each being scanned w .r .t . the cycle
order: the first write in each sequence is given value 1, the second one 2, etc.
The values then reflect the write serialisation order for the specified location:

(c)Rx
Fre
−→ (d)Wx1

Rfe
−→ (e)Rx

DpdR
−→ (f)Ry

Fre
−→ (a)Wy1

Rfe
−→ (b)Ry

DpdR
−→ (c)

5. Significant reads are the sources of
fr
→ and the targets of

rf
→ edges. We asso-

ciate them with the write on the other side of the edge. In the
rf
→ case, the

value of the read is the one of its associated write. In the
fr
→ case, the value

of the read is the value of the predecessor of its associated write in
ws
→, i.e. by

construction the value of its associated write minus 1. Non significant reads
do not appear in the test condition. All the reads are significant here:

(c)Rx0
Fre
−→ (d)Wx1

Rfe
−→ (e)Rx1

DpdR
−→ (f)Ry0

Fre
−→ (a)Wy1

Rfe
−→ (b)Ry1

DpdR
−→ (c)

{ 0:r2=y; 0:r5=x; 1:r2=x; 2:r2=x; 2:r5=y; 3:r2=y; }

P0 | P1 | P2 | P3

(b) lwz r1,0(r2) | li r1,1 | (e) lwz r1,0(r2) | li r1,1

xor r3,r1,r1 | (d) stw r1,0(r2) | xor r3,r1,r1 |(a) stw r1,0(r2)

(c) lwzx r4,r3,r5 | | (f) lwzx r4,r3,r5 |

exists (0:r1=1 /\ 0:r4=0 /\ 2:r1=1 /\ 2:r4=0)

Fig. 5. iriw with dependencies in Power assembly

6. We generate the litmus test given in Fig. 5 for Power. We add e.g. a xor

instruction between the instructions associated with the events (b) and (c)
to implement the dependency required by the

DpdR
−→ relation between them.

The test in Fig. 5 actually is a Power implementation of iriw [9] with depen-
dencies. diy recovers indeed many classical tests, such as rwc [9] (see also Fig. 8).

5 Case study: the Power architecture

We now instantiate the formalism of Sec. 2 for Power by adding register events to
reflect register accesses [22], and commit events to express branching decisions.
C is the set of commits, and c is an element of C. We handle three barrier
instructions : isync, sync and lwsync. We distinguish the corresponding events
by the eponymous predicates, e.g. is-isync. An execution witness includes an
additional intra-instruction causality relation

iico
→ : e.g. executing the indirect load

lwz r1, 0(r2) (r2 holding the address of a memory location x containing 1)
creates three events (a) Rr2x, (b) Rx1 and (c) Wr11, such that (a)

iico
→ (b)

iico
→ (c).

Moreover,
rf
→ now also relates register events: we write

rf-reg
→ the subrelation of

rf
→ relating register stores to register loads that read their values.

Preserved program order We present in Fig. 6(a) the definition of
ppo-ppc
→ , induced

by lifting the ordering constraints of a processor to the global level (where + is
the transitive closure). This is a formal presentation of the data dependencies

(
dd
→) and control dependencies (

ctrl
→ and

isync
→) of [21, p. 661] which allows loads

to be speculated if no isync is added after the branch but prevents stores from
being speculated in any case. This is similar to Sparc RMO [24, V9, p. 265].

Read-from maps Since Power allows store buffering [21, p.661],
rfi
→ is not global.

Running iriw with data dependencies (Fig. 5) on Power reveals that
rfe
→ is not

global either. This is the main particularity of the Power architecture.

Barriers We define in Fig. 6 (b) the sync barrier [21, p. 700] as the SC-restoring
A-cumulative barrier of Sec. 3 extended to B-cumulativity. Power features an-
other cumulative barrier [21, p. 700], lwsync, defined in Fig. 6 (b). lwsync acts
as sync except on store-load pairs, in both the base and cumulativity cases.

dd
→, (

rf-reg
→ ∪

iico
→)+ r

ctrl
→ w , ∃c ∈ C. r

dd
→ c

po
→ w

r
isync
→ e , ∃c ∈ C. r

dd
→ c ∧ ∃b. is-isync(b) ∧ c

po
→ b

po
→ e

dp
→,

ctrl
→ ∪

isync
→ ∪

``dd
→ ∪ (

po-loc
→ ∩ (W× R))

´
+

∩ (R×M)
´ ppo-ppc

→ ,
dp
→

(a) Preserved program order

m1
sync
→ m2 ,

∃b. is-sync(b) ∧m1
po
→ b

po
→ m2

m1
ab-sync
→ m2 ,

m1
sync
→ m2

∨ ∃r. m1
rf
→ r

ab-sync
→ m2

∨ ∃w. m1
ab-sync
→ w

rf
→ m2

(b) Barrier sync

m1
lwsync
→ m2 ,

∃b. is-lwsync(b) ∧m1
po
→ b

po
→ m2

m1
ab-lwsync
→ m2 ,

m1
lwsync
→ m2 ∩ ((W×W) ∪ (R×M))

∨ ∃r. m1
rf
→ r

ab-lwsync
→ m2 ∧m2 ∈W

∨ ∃w. m1
ab-lwsync
→ w

rf
→ m2 ∧m1 ∈ R

(c) Barrier lwsync
ab-ppc
→ ,

ab-sync
→ ∪

ab-lwsync
→

Power , (
ppo-ppc
→ , ∅,

ab-ppc
→)

Fig. 6. A Power model

Experiment diy generated 800 Power tests and ran them up to 1e12 times each on
3 machines: squale, a 4-processor Power G5 running Mac OS X, hpcx a Power 5
with 16 processors per node and vargas, a Power 6 with 32 processors per node,
both of them running AIX. The detailed protocol and results are available1.

Following our model, we assumed
ws
→,

fr
→,

ppo-ppc
→ and

ab-ppc
→ to be global and

tested it by computing safe tests whose input cycles only include relaxations we

suppose global, e.g.
SyncdWW

−→ ;
Wse
−→;

SyncdWR
−→ ;

Fre
−→. We ran the tests supposed to,

according to our model, exhibit relaxations. These tests are given in Fig. 7 (where
M stands for million). We observed all of them at least on one machine, which
corresponds with our model. For each relaxation observed on a given machine,
we write the highest number of outcomes. When a relaxation is not observed, we
write the total of outcomes: thus we write e.g. 0/16725M for PodRR on vargas.

For each machine, we observed the number of runs required to exhibit the
least frequent relaxation (e.g. 32 million for Rfe on vargas), and ran the safe
tests at least 20 times this number. The outcomes of the safe tests have not
been observed on vargas and squale, which increases our confidence in the safe
set we assumed. Yet, hpcx exhibits non-SC behaviours for some A-cumulativity
tests, including classical ones [9] like iriw with sync instructions on P0 and
P1(see Fig. 8). We understand that this is due to an erratum in the Power 5
implementation. IBM is providing a workaround, replacing the sync barrier by
a short code sequence [Personal Communication], and our testing suggests this
does regain SC behaviour for the examples in question (e.g. with 0/4e10 non-SC

Relaxation Definitiona hpcx squale vargas

PosRR rℓ

po
→ r′ℓ 2/40M 3/2M 0/4745M

PodRR rℓ

po
→ r′

ℓ
′ 2275/320M 12/2M 0/16725M

PodRW rℓ

po
→ w′

ℓ
′ 8653/400M 178/2M 0/6305M

PodWW wℓ

po
→ w′

ℓ
′ 2029/4M 2299/2M 2092501/32M

PodWR wℓ

po
→ r′

ℓ
′ 51085/40M 178286/2M 672001/32M

Rfi
rfi
→ 7286/4M 1133/2M 145/32M

Rfe
rfe
→ 177/400M 0/1776M 9/32M

LwSyncsWR wℓ

lwsync
→ r′ℓ 243423/600M 2/40M 385/32M

LwSyncdWR wℓ

lwsync
→ r′

ℓ
′ 103814/640M 11/2M 117670/32M

ACLwSyncsRR wℓ

rfe
→ r′ℓ

lwsync
→ r′′ℓ 11/320M 0/960M 1/21M

ACLwSyncdRR wℓ

rfe
→ r′ℓ

lwsync
→ r′′

ℓ
′ 124/400M 0/7665M 2/21M

BCLwSyncsWW wℓ

lwsync
→ w′

ℓ

rfe
→ r′′ℓ 68/400M 0/560M 2/160M

BCLwSyncdWW wℓ

lwsync
→ w′

ℓ
′

rfe
→ r′′

ℓ
′ 158/400M 0/11715M 1/21M

a Notation: rℓ (wℓ) is a read (write) event with location ℓ.

Fig. 7. Selected results of the diy experiment matching our model

Cycle hpcx Name in [9]

Rfe SyncdRR Fre Rfe SyncdRR Fre 2/320M iriw

Rfe SyncdRR Fre SyncdWR Fre 3/400M rwc

DpdR Fre Rfe SyncsRR DpdR Fre Rfe SyncsRR 1/320M

Wse LwSyncdWW Wse Rfe SyncdRW 1/800M

Wse SyncdWR Fre Rfe LwSyncdRW 1/400M

Fig. 8. Anomalies observed on Power 5

results for iriw). We understand also that the erratum should not be observable
for conventional lock-based code and that Power 6 is not subject to it; the latter
is consistent with our testing on vargas.

6 Related Work

Formal memory models roughly fall into two classes: operational models and
axiomatic models. Operational models, e.g. [25, 15], are abstractions of actual
machines composed of idealised hardware components such as queues. They
can be appealingly intuitive and offer a relatively direct path to simulation, at
least in principle. Axiomatic models focus on segregating allowed and forbidden
behaviours, usually by constraining various order relations on memory accesses;
they are particularly well adapted for model exploration, as we do here. Several
of the more formal vendor specifications have been in this style [5, 24, 16].

One generic axiomatic model related to ours is Nemos [26]. This covers a
broad range of models including Itanium as the most substantial example. Ita-
nium is rather different to Power; we do not know whether our framework could
handle such a model or whether a satisfactory Power model could be expressed
in Nemos. By contrast, our framework owes much to the concept of relaxation,
informally presented in [3]. As regards tools, Nemos calculates the behaviour
of example programs w.r.t. to a model, but offers no support for generating or
running tests on actual hardware.

Previous work on model-building based on experimental testing includes that
of Collier [12] and Adir et al. [2, 1]. The former is based on hand-coded test pro-
grams and Collier’s model, in which the cumulativity of the Power barriers does
not seem to fit naturally. The latter developed an axiomatic model for a version of
Power before cumulative barriers [1]; their testing [2] aims to produce interesting
collisions (accesses to related locations) with knowledge of the microarchitecture,
using an architecture model as an oracle to determine the legal results of tests
rather than (as we do) generating interesting tests from the memory model.

7 Conclusion

We present here a general class of axiomatic memory models, extending smoothly
from SC to a highly relaxed model for Power processors. We model their relax-
ation of store atomicity without requiring multiple write events per store [16],
or a view order per processor [12, 1, 21, 6]. Our principal validity condition is
simple, just an acyclicity check of the global happens before relation. This check
is already known for SC [18], and recent verification tools use it for architectures
with store buffer relaxation [14, 10]. Our Power model captures key aspects of
the behaviour of cumulative barriers, though we do not regard it as definitive:
on the one hand there are known tests for which the model is too weak w.r.t. our
perception of the architect’s intent (particularly involving the lightweight bar-
rier lwsync); on the other hand, given that we rely heavily on black-box testing,
it is hard to establish confidence that there are not tests that would invalidate
our model. Despite that, our automatic test generation based on the model suc-
ceeds in generating interesting tests, revealing a rare Power 5 implementation
erratum for barriers in lock-free code. This is a significant advance over reliance
on hand-crafted litmus tests.

Acknowledgements We thank Damien Doligez and Xavier Leroy for invaluable
discussions and comments, Assia Mahboubi and Vincent Siles for advice on the
Coq development, and Thomas Braibant, Jules Villard and Boris Yakobowski
for comments on a draft. We thank the HPCx (UK) and IDRIS(.fr) high-
performance computing services. We acknowledge support from EPSRC grants
EP/F036345 and EP/H005633 and ANR grant ANR-06-SETI-010-02.

References

1. A. Adir, H. Attiya, and G. Shurek. Information-Flow Models for Shared Memory
with an Application to the PowerPC Architecture. In TPDS, 2003.

2. A. Adir and G. Shurek. Generating Concurrent Test-Programs with Collisions for
Multi-Processor Verification. In HLDVT, 2002.

3. S. V. Adve and K. Gharachorloo. Shared Memory Consistency Models: A Tutorial.
IEEE Computer, 29:66–76, 1995.

4. M. Ahamad, R. A. Bazzi, R.John, P. Kohli, and G. Neiger. The Power of Processor
Consistency. In SPAA, 1993.

5. Alpha Architecture Reference Manual, Fourth Edition, 2002.
6. ARM Architecture Reference Manual (ARMv7-A and ARMv7-R), April 2008.
7. Arvind and J.-W. Maessen. Memory Model = Instruction Reordering + Store

Atomicity. In ISCA. IEEE Computer Society, 2006.
8. Y. Bertot and P. Casteran. Coq’Art. Springer Verlag, EATCS Texts in Theoretical

Computer Science, 2004.
9. H.-J. Boehm and S.V. Adve. Foundations of the C++ Concurrency Memory Model.

In PLDI, 2008.
10. S. Burckhardt and M. Musuvathi. Effective Program Verification for Relaxed

Memory Models. In CAV, 2008.
11. J. Cantin, M. Lipasti, and J. Smith. The Complexity of Verifying Memory Coher-

ence. In SPAA, 2003.
12. W. W. Collier. Reasoning About Parallel Architectures. Prentice-Hall, 1992.
13. M. Dubois and C. Scheurich. Memory Access Dependencies in Shared-Memory

Multiprocessors. IEEE Transactions on Software Engineering, 16(6), June 1990.
14. S. Hangal, D. Vahia, C. Manovit, J.-Y. J. Lu, and S. Narayanan. TSOTool: A

Program for Verifying Memory Systems Using the Memory Consistency Model. In
ISCA, 2004.

15. L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part
I: Definitions and comparisons. Technical Report98/612/03, Department of Com-
puter Science, The University of Calgary, January, 1998.

16. A Formal Specification of Intel Itanium Processor Family Memory Ordering, Oc-
tober 2002. Intel Document 251429-001.

17. L. Lamport. How to Make a Correct Multiprocess Program Execute Correctly on
a Multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1979.

18. A. Landin, E. Hagersten, and S. Haridi. Race-free interconnection networks and
multiprocessor consistency. SIGARCH Comput. Archit. News, 19(3):106–115, 1991.

19. J. Manson, W. Pugh, and S. V. Adve. The Java Memory Model. In POPL, 2005.
20. S. Owens, S. Sarkar, and P. Sewell. A Better x86 Memory Model: x86-TSO. In

TPHOL, 2009.
21. Power isa version 2.06, 2009.
22. S. Sarkar, P. Sewell, F. Zappa Nardelli, S. Owens, T. Ridge, T. Braibant,

M. Myreen, and J. Alglave. The Semantics of x86-CC Multiprocessor Machine
Code. In POPL, 2009.

23. D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs that
Share Memory. ACM Trans. Program. Lang. Syst., 10(2):282–312, 1988.

24. Sparc Architecture Manual Versions 8 and 9, 1992 and 1994.
25. Y. Yang, G. Gopalakrishnan, and G. Lindstrom. UMM: an Operational Memory

Model Specification Framework with Integrated Model Checking Capability. In
CCPE, 2007.

26. Y. Yang, G. Gopalakrishnan, G. Linstrom, and K. Slind. Nemos: A Framework for
Axiomatic and Executable Specifications of Memory Consistency Models. IPDPS,
2004.

