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OUTLINE

Topics and List of algorithms
@ Basic concepts in genetics.

@ Dynamic programming (Longest Common Subsequence, Needleman-Wunsch,
Smith-Waterman, Hirschberg, Nussinov).

Progressive alignment (Clustal).

Homology database search (Blast, Patternhunter).

Next Generation sequencing (De Bruijn graph, Burrows-Wheeler transform)
Phylogeny - parsimony-based - (Fitch, Sankoff).

Phylogeny - distance based - (UPGMA,Neighbor Joining; Boostrap).
Clustering (K-means, Markov Clustering)

Hidden Markov Models applications in Bioinformatics (Genescan, TMHMM).
Pattern search in sequences (Gibbs sampling).

Biological Networks reconstruction (Wagner) and simulation (Gillespie).
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@ The course focuses on algorithms used in bioinformatics

@ The algorithms presented in this course could be also applied in other data-rich
fields.

@ Atthe end of the course the student should be able to describe the main aspects
of the algorithms.

@ The student should understand how bioinformatics combines biology and
computing.
@ The exam papers will not contain biological questions.

@ References and links to additional material at the end of the lecture notes may
help the students to understand better the applications of the algorithms (this is
not essential to answer exam questions).
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Overview of the course

First we provide an overview of the most important biological concepts. Then we learn
how to compare 2 strings representing DNA sequences (or different parts of the same
string). Searching a database for nearly exact matches is a key task in a Bioinformatics
lab. Algorithms for big sequence data. We learn how to build trees to study sequences
relationship and how to cluster biological data. We use hidden Markov models to
predict properties of sequence parts such as exon/intron arrangements in a gene or
the structure of a membrane protein. Sequence Patterns dispersed in sequences could
be identified by iterated techniques. Biological networks: algorithms for reconstructing
genetic regulatory networks and simulation of biochemical reaction networks. Material
and figure acknowledgements at the end of this notes and during the lectures.
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Basic concepts in Genetics-Genomics Some other concepts in the next lectures.
Important concepts: what is a gene, what is a genome, genotype-phenotype,
importance of biological networks, questions we would like to answe, algorithms we
use to answer, type of data.

At the end of the lecture notes there are links to material relevant to each chapter.
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Basic concepts in genetics and genomics

DNA could be represented as a string of symbols from a 4-letter (bases) alphabet, A
(adenine), T (thymine), C (cytosine) and G (guanine). In the double helix A pairs with T,
C with G (so only the sequence of one filament is vital to keep). A gene is a string of
DNA that contains information for a specific cell function. The Genome is the entire
DNA in a cell nucleus.

RNA is same as DNA but T is replaced by U (uracil); proteins are strings of amino
acids from an alphabet of 20. The proteins have a 3D shape that could be described by
a graph. The genetic code is a map between 61 triplets of DNA bases and 20 amino
acids.
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Comparing CS and Biological information

from www.nsta.org/publications/news/story.aspx?id=47561

Biology
1. Digital alphabet consists of bases A, C, T, G

2. Codons consist of three bases

3. Genes consist of codons

4. Promoters indicate gene locations

5. DNA information is transcribed into hnRNA and
processed into mMRNA

6. mRNA information is translated into proteins

7. Genes may be organized into operons or groups with
similar promoters

8."0Old" genes are not destroyed; their promoters
become nonfunctional

9. Entire chromosomes are replicated

10. Genes can diversify into a family of genes through
duplication

11. DNA from a donor can be inserted into host
chromosomes

12. Biological viruses disrupt genetic instructions
13. Natural selection modifies the genetic basis of
organism design

14. A successful genotype in a natural population
outcompetes others

Computer science
1. Digital alphabet consists of 0, 1

2. Computer bits form bytes
3. Files consist of bytes

4. File-allocation table indicates file locations

5. Disc information is transcribed into RAM

6. RAM information is translated onto a screen or
paper
7. Files are organized into folders

8. "Old" files are not destroyed; references to their
location are deleted

9. Entire discs can be copied

10. Files can be modified into a family of related files

11. Digital information can be inserted into files

12. Computer viruses disrupt software instructions

13. Natural selection procedures modify the software
that specifies a machine design

14. A successful website attracts more "hits" than
others
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Useful concepts : Strings, polymers, graphs

Unit: DNA base (A (adenine), T (thymine), C (cytosine) and G (guanine))

Polymer: DNA molecule

Unit: RNA base (A (adenine), U (uracil), C (cytosine) and G (guanine)) Polymer: RNA
molecule

Unit: amino acid (there are 20 amino acids) Polymer: the protein (a linear, unbranched
chain of amino acids); it can bind to other polymers.

Polymers can be thought as strings (the information is the sequence of symbols) or as
graph (the information is the 3 dimensional structure)

During species evolution, the strings undergo modifications of length n-units (mutations
(base or amino acid replacement), insertions (adding more bases or amino acids),
deletions (loss of n bases or amino acids)); large part of bioinformatics deals with
sequence (string) algorithms for alignment, tree, searching for conserved motifs, etc.
The study of these modifications is the core of the course.

The 3D graph topology of the protein determines the 3D connectivity with other proteins
or DNA (forming functional networks). We will study networks in the last lecture.

&
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The (almost) Dogma
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The most Common flow of biological information

DNA makes RNA makes proteins (the 3D graph below); given the pairing rule in a DNA
double strands molecule, all the information is in each single strand. The RNA is
termed mRNA (messenger); triplets of bases of mMRNA are copied into a chain of
amino acids (the protein) according to the genetic code.
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Transcription information process and the translation mapping, i.e. Genetic code
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Part of the information is in the gene (which protein to make); other part of informatio
is the flanking sequences (where a gene starts; extract and link exons). U
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A gene (a set of bases with begin and end signals) contains information for a

string of aminoacids (a protein) which form a 3D graph
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The Genetic code: a mapping function between DNA string and amino acid

strings

AGA UUA
AGG uuG
GCA CGA GGA CUA
GCC CGC GGC AUA cucC
GCG CGG GAC AAC UGC GAA CAA GGG CAC AUC CuG
GCU CGU GAU AAU UGU GAG CAG GGU CAU AUU cCuu
Ala Arg Asp Asn Cys Glu GIn Gly His lle Leu
A R D N C E Q G H | L /\ :
M V7 E/\D_'
ST~
AGC ) A
v hydrophobic / " charged
e Dec Acc G uan aromatic iti
AAA UUC CCG UCG ACG UAC GUG UAG posmve
AAG AUG UUU CCU UCU ACU UGG UAU GUU  UGA
Lys Met Phe Pro Ser Thr Trp Tyr Val stop

K L F P T w Y v

Figure : The genetic code provides the information for the translation of codons (triplets of bases,
in black) into amino acids (single and triple letter code in red) that are chained together to form a
protein; 61 codons code for 20 amino acids (differences on the right); 3 specific codons code a
“stop” signal; note that C exists in two states.
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Basic concepts in biological networks

Genes are activated or repressed by regulatory proteins which bind to gene flanking
sequences and are coded by the same or other genes.

A biochemical reaction converts biochemical compounds (analogous to a production
rule).

An enzyme is a protein that accelerates chemical reactions. Each enzyme is encoded
by one or more genes.

A pathway is a linked set of biochemical reactions occurring in a cell (analogous to a
chain of rules).

A pathway is a conceptual unit of the metabolism; it represents an ordered set of
interconnected, directed biochemical reactions.

The set of metabolic pathways makes the metabolic network that makes the cell
phenotype.
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DNA and chromosomes

In eukaryotes the genetic information is distributed over different DNA molecules. A
human cell contains 24 different such chromosomes. If all DNA of a human cell would
be laid out end-to-end it would reach approximately 2 meters. The nucleus however
measures only 6um. Equivalent of packing 40 km of fine thread into a tennis ball with a
compression ratio of 10000.
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Comparison between system networks and biological systems
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Comparing Gene networks and Operating Systems

E. coli transcriptional
regulatory network

Linux call graph

master regulator i
middle manager

workhorse

Fig.1. The ical layout of the . coli regulatory network and the Linux call graph. (Left) The transcriptional regulatory network of . coli
(Right) The call graph of the Linux Kernel. Nodes are lassified into three categories on the basis of their location in the hierarchy: master regulators (nodes with
zero in-degree, Yellow), workhorses (nodes with zero out-degree, Green), and middle managers (nodes with nonzero in- and out-degree, Purple). Persistent
genes and persistent functions (as defined in the main text) are shown in a larger size. The majority of persistent genes are located at the workhorse level, but
persistent functions are underrepresented in the workhorse level. For easy visualization of the Linux call graph, we sampled 10% of the nodes for display.
Under the sampling, the relative portion of nodes in the three levels and the ratio b persistent and nodes are p tothe
original network. The entire E. coli transcriptional regulatory network is displayed.

A percentage in €. collpercentage inLinux

regulatory network  callgraph The transcriptional regulatory network (1,378 nodes)
master ragulator 16 26 follows a conventional hierarchical picture, with a few top
regulators and many workhorse proteins. The Linux call
graph (12,391 nodes), on the other hand, possesses many
workhorse on o regulators; the number of workhorse routines is much
lower in proportion. The regulatory network has a broad
out-degree distribution but a narrow in-degree distribution.
The situation is reversed in the call graph, where we can
find in-degree hubs, but the out-degree distribution is
rather narrow. Yan et al. PNAS 2010, 107, 20.

middle manager 51 582

indegree hubs.
e

e “prin
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Sequence data

Assembled/annotated sequence growth

15-Sep-2014
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Sequence data

A typical DNA record at the NCBI

2785 bp DNA linear PLN

catalase A; CTAl gene.
ces cerevisiae (baker's yeast)

etes;

ota; Saccharomycot Saccharo

Saccharomycetales; Saccharomycetaceae; Sac
1 (bases 85)

Cohen,G., Rapatz,W. and Ruis, H.

Sequence of the Saccharomyces cerevisiae CTAl gene and amino acid
d from
176 (1), 159-163 (1

yces.

6 this sequence version replaced g
ers

isiae"

Saccharomyces cer

/organisi
/ "genomic D

/mol_typ
/db_xref="taxon:4

Source: NCBI GQuery, http://mww.ncbi.nlm.nih.gov/gquery
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Sequence data

/clone="pUC19"

nnamed protein product; catalase A (RA

QN
LNENPLNFFAQVEQAAFAPS
ICPYASKFENFAIRDGEMNV

YTYIQQDRPIQQH

gaattcttag aaggtgaaga aatagtacta gattcatatg attgttataa

1 ttgttgcctc aactaatact tttggtccaa atcttgacaa ttctttgcca aattccaggt
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Sequence data

ttatgcaaac
ttacaattga
attatgaagc
aaaggaaact
agcgaaatag
cctgatgaaa
tctgtcaaac
aattagtaat
cgaaaaagga
gaaacaacca
taatgtccaa
atataatagt
aaaaatgaag
aatccaatca
caagattata
aatccacatg
gatatctgeg
ttttcgactg
gccaccaaat
ttctttatca
caaaccaacc
gtggccattc
agtatgcatg
tatgtgcaag
accaaaattg

tggacataaa
tagaaggtgc
gtctagccga
cattaacaag
attcgctgea
agctgctaac
gtccttgegt
gcaaaaagtt
cggctttaac
gttttgatat
atcgtacatt
acttacaaat
taaattactc
atgaaccatt
acttaattga
ctcatggttc
ggtctgctat
tgggtggtga
tctacactga
gagacccttc
taagggatgc
atcaagtaat
gttattctgg
ttcatatcaa
cgggatccaa

agcaatggaa
ccgcgecact
ttaccccata
ggaagaacta
agtttgtgaa
taatatttta
gaagaagtga
ggccggaatt
aaatataaac
cgccatacat
tgaatttctt
aaatttggaa
tgatgtaaga
tgtcacccaa
ttctttgget
tggtgectte
gtttagtaaa
taaaggtagt
agaaggtaat
caagttccct
tgacatgttt
gatccttttt
tcatacctat
aaccgatcaa
tccagattac

aggcaagtgg
acaaactgta
aaaaagtgcg
agagatgtta
gaaaccatcg
aagagaaagt
gcggttgtte
agccgcgcaa
tccgaaaatc
ataaagagat
gtaggtttat
ccctagaaga
gaggatagag
cgtattgggg
catttcaaca
ggctattttg
attgggaaaa
gccgacacgg
ttagattggg
cactttatcc
tgggatttce
tcagaccgtg
aaatggtcca
ggaataaaga
tgccagcagg

agagaattgt
gtgccacatg
tttctatcga
tggetcggag
acaagaatta
tgacagagga
taaccactat
gttggtgggg
cccacagtga
gtagaaagca
ttaaaaggta
tgtcgaaatt
ttgtgacaaa
aacatggccc
gggaaaatat
aagtaaccga
gaacgaaatg
ttcgtgatcc
tctacaataa
acacacagaa
tcaccactcc
gtacccctge
ataaaaacgg
atttgaccat
atttatttga

aaagaagtgt
gaaacgttgt
aaaaccttcg
agttttgaaa
caaggttatt
agaaaaaagc
ttaaagccge
tcccttaatc
cagaattgga
ttcttcactg
agttaaataa
gggacaagaa
ctccactggt
tttgcttttg
tcctcaaagg
tgacattact
tctaacaaga
aagggggttt
tacaccggta
gagaaaccca
tgaaaatcag
caactaccgt
agattggcat
agaagaggct
ggctattcag
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Sequence data

aatggaaact
aaattaccat
cggegtgtgg
caagctgect
ttacaggcece
catcaaatac
ggaccgatga
tcgtacacgt
ccagctatcc
aatctctacc
ggcattcatg
cgtgttgata
gagctttcga
cacgacaatt
attttgrtat
aaagttaaaa
aggaatctct
aagagagatg
tgagacagag
atgtcttgat

atccttcctg
tttcagtctt
gtaagattgt
tcgecccccag
gtttgtette
ccgtaaactg
atgttaacgg
atatccaaca
cttatcattg
gcgttttggg
tagaaggcgce
agggactatc
gtaactccaa
atttatgata
gaattattta
aaattatcat
attattaggg
cagcactgag
tttgcgaaat
catactcatg

gacagtttat
tgatttgact
tttgaacgag
taccacggtt
atatgcggat
tccatatgca
caacttcgge
ggacagaccc
ggcaacatcc
taaacaacct
ctgtcctcaa
tgaggcaatt
attttgaaac
gtgtgtatct
tttatacgac
ttcacacata
gtaaagttca
tagggaacca
tttataccga
aattc

ttcaaacaa
aaagtatggc
aatccactga
ccttaccaag
gctcatagat
tctaaatttt
tcagaaccta

ttcaacaac
ccaggtgatg
ggacagcaaa
atacagcagc
aaaaaagtag
gctcaagtaa
ttaacacatt
taataggtga
ggaaagctcg
acacattcag
agaaacgatg
cagcaatctg

tgaccgaacg
ctcaggggca
acttcttcge
aagcaagcge
acaggctagg
tcaatcccge
catatttggc
accaagaggt
tagatttcgt
agaacttggc
gcgtttatga
ctgaggcaaa
caaatgagtg
ttatttatta
tgctcatatt
tcgegecggg
tatgagataa
tctgaattac
gaagagacaa

cgatgccaaa
attcccttta
acaggtggaa
tgatccagta
tcctaacttce
tatcagagat
caacgataaa
atggaatggg
gcaagcaaga
atataacatc
tatgtttget
acatgcttct
gcgttgttte
caatttatgt
ctcgtgttag
gaaaaagctg
gtgtgtcttc
tagatagctt
accttcaaaa
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Sequence data

Same sequence in Fasta format

GATTCGCTGCRAG TTACRRGGTTAIT

TAATATTTTARL T AGCTCTGICRRAC

TTCTRACCACTAT

CTCATGGTTCTGGTGCCTITIC
TATGTTTAGTARRATTC

GTGCCGACACGGTTCGTGA

ALCCGATGACATTACTGATATCIGC

TTCCTCACCACTCC

TGCCRACTACC

Source: NCBI GQuery, http://www.ncbi.nlm.nih.gov/gquery

23/269



Sequence data

BAATGGTCCRATARRRACG

ATTTGACCATAGAAGAGGCTACCAARAT

GGCTATTCAGARTGGARACTATCCTTICCTG
AARTTACCATTTTCAGICTTTIGATTTGACT.
GTARGATTGTTTTGAACGAGARTCCACTGRACTTICTTCGCACA

CGCTGATCCAGTATTACAG

W
W oW
=]

[

TACCACGGTTCCTT. AGC

ACAGGC TCCTAACTTCCATCRAARTACCCGTAAA
TCAGAGATGGACCGATGRATGTTARCGGCRACTIC GRACCTACATATTIGGC
CAACGATARATCGTACACGTATATCCAACAGGACAGACCCATTCAAC. ALGRGGTATGGRATGGGE
CCAGCTATCCCTTATCATTGGGCARACATCCCCAGGTGATGTAGATIT AAGCRAGRRATCTCTACC
GCGTTTTGGGTAAACAACC GAA CGC

C

CTIGTCCTCRRATACAGCA

AMRAAAGTAGCTGAGGCARARCATGC C TAR
TGGCGTTGTTICCACGACAATTATTTATGATAGTGTGTATTITTARCACATTTTATTITATTA
AATTTATGTATITIGTITATGAATTATTTAT CTCATATTCTCGIGITAG
ARAGTTARARARATTATCATTTCACACATAG GAGGAARTICTICT
ATTATTA STTCRACACATTCAG GCAGCACTGAG
TAGGGAA ACGATGICTGARATTACTAGATAGCIT TTTTATACCGA
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Gene activity data

A B

1

2

3 1 0020
4 2 b0034
5 3 b0064
6 4 b0069
7 5 b0076
8 6 b0080
9 7 b0113
10 8 b0146
i1 9 b0162
12 | 10 b0208
13 | 11 bo226
14 | 12 bo240
15 | 13 b0254
16 | 14 b0267
17 | 15 b0272
18 | 16 b0282
19 | 17 b0294
20 | 18 b0300
21 | 19 b0305
22 | 20 b0313
23 | 21 b0316
24 | 22 b0318
25 | 23 b0330
2 24 b0338
27 | 25 bo3as
2i 26 b0346
29 | 27 b0357
30 | 28 b0375
31 | 29 b0378
32 | 30 b0399
33 | 31 b0413
34 | 32 bo43s
35 | 33 boado

e

nhaR

PU00249  PU00250

071
8.8939
8.98215
8.40112
9.12415
7.57223
9.42842
8.90958
10.1123
8.68579
8.20064
10.6385
12.1271
8.21104
9.3932
9.30297
7.66739
6.26593
7.47992

11.1981

0.71
8.94616
8.968
8.39603
9.27152
7.43093
953777
8.95447
10.2093
873203
8.30706
10.714
11.9904
7.79748
959107
939725
7.67364
5.99952
7.34954
837059
9.78941
8.3154
879713
832734
8.80536
9.14645
10.2067
10.1839
5.59532
9.20114
9.11456
10.5189
9.95728
11.5879

PU00251
071
9.08628
9.1899
8.7541
9.29754
7.72137
9.54285
9.07071
10.3636
8.89094
8.44073
10.7607
121271
8.25455

10.4261
10.1111
11,5559

PU00252  PUO0253

0.476
8.77897
9.56071
8.25553
9.39484
7.66272
9.99558
9.21234
9.98242
8.60445

8.3292
10.5488
10,5371
8.33924
9.49492
9.52848
7.48573
6.40188
7.56208
8.58173
8.87532
8.13395
8.75105
7.98268
8.69722
9.20633
9.36385
10.0765
5.94479
9.25693
9.03578
10.3752
9.08697
11,6111

0476
8.78882
972042
8.28069

9.3061
7.55189
9.89722
8.79036
9.76419
8.40199

8.3108
10.5288
10.5437
8.22761
933486
9.32239

7.5142
6.48827
7.42863
8.32828
8.79864
7.99533

8742
7.89761
8.63729
9.08628
9.20484
10.1367

5.6065
9.18242
9.0223
10.1687
9.1123
11.9223

1
PUO0254
0476
863416
9.9312
8.27877

PU00255 PU00256  PUO0257

0377
8.79036
9.38679
8.43989
9.14423
7.47209

9.7884
9.30762
10.2145
8.50878
8.18764
10.6654
11.7773
7.93373
9.38436
9.15985

7.5029
6.59526
7.70958
8.37059
9.39725
8.05973
8.70105

83117
852738
9.02764
10.6263
9.99121

5.7577
9.03063

8.968
10.3352
9.39805
11.2979

0.377
8.7343
9.05435
8.54276
9.19663
7.55864
9.84957
9.35835
10.5028
8.57931
8.23167
10.714
11.7655
7.95502
9.43885
9.22367
7.90647
6.70132
7.54484
8.22349
9.4421
8.14247
8.66356

0377
8.83552
9.14938
8.26429

11.3796

PU00258

041
9.32239
7.9915
8.27392
9.20484
7.98007
9.74028
9.38757
10.7587
863569
8.17563
10.9027
10.8609
8.00819
9.64772
931773
812235

9.5505

10.051
5.84119
9.11075
8.99999
10.4869
9.94202
10.8716

In rows the different genes, in the columns there are different samples (experimental
replicates, temporal series, different patients ect)

&
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Data repositories

www.ebi.ac.uk
www.ensembl.org
www.ncbi.nlm.nih.gov/

www.ddbj.nig.ac.jp/ etc

1) strings for DNA and protein sequences (see
a. http://www.ensembl.org/Homo_sapiens/Gene/Summary?db=cor
¢;8=ENSG00000260629;r=11:5244554-
5245547;t=ENST00000564523
b. http://www.ensembl.org/Homo_sapiens/Transcript/ProteinSum
mary?db=core;g=ENSG00000213934;r=11:5244554-
5245547;t=ENST00000330597
c. http://www.ncbi.nlm.nih.gov/nuccore/U01317.1
d. http://www.ncbi.nlm.nih.gov/protein/AAA16334.1)
2) gene expression (intensity of gene activity) matrix (csv format) (see
a. http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53655
b. http://www.genome.jp/kegg/expression/
3d graphs for protein structure (see
a. http://www.ncbi.nlm.nih.gov/Structure/mmdb/mmdbsrv.cgi?uid
=122520
b. http://prosite.expasy.org/PS01033 http://prosite.expasy.org/cgi-
bin/pdb/pdb_structure_viewer.cgi?pdb=101M&ps=PS01033
medical literature
ww.ncbi.nlm.nih.gov/pubmed/?term=human+beta+globin
5) metabolic pathways (see http://www.genome.jp/kegg/pathway.html)
6) Browsers (http://en.wikipedia.org/wiki/Genome_browser;_ :ﬁ
http://www.ensembl.org/index.html; http://genome.ucsc.edu/)

3

-
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Bioinformatics libraries (various programming languages

4\ MathWorks'

Produts & Survicen

Bioinformatics Toolbox

[ A ———

BioPerl

SOAOX =

Biopython

© s » | ot | o

The NCBI

C++ T++lkit @

Q @

NCBI C++ Toolkit

BloRuby

Open source bioinformatics library for Ruby

Announcements.

BioPHP pHP for Bioinformatics

+ At the 15th Aneual Bioinform 05C 2014) held I Boston on
July 11-12, we wil be pre distributed developmer
BiocamL
The OCami Bioinformatics Library
Source Code

e
s hosied on Gihub: hips:/gitub comfbiocamiBosail.

mentation

e aim of this st s o shars Knowiedg By using 8 Wk sevice clases, funcet sl
and minitools may be edited by registered users. More info here

GenePHP - Download

‘Seauence Class
‘Sequence Database Cia

Sequence Algnent Gass  Owme
Miscellaneus Ciass o=
Oemo
Demo
Mark's BioPHP =
FAQ  Ragster  Login Lee Kotz's biogho
4273pi: Bioinformatics e
hardware oo

c, C++, python, perl, ruby, matlab, R, ect

Minitools - Downioad all minitools (.zip)

ik
- " loads.
Melting Ter
“tiraTer| Blip: Biomedical Logic Programming
PCR Ampif
Microsatellt [ <About B> <Festures> <es> 1
Endpatnar |
Algnment o APOU BliP
Restriction ( Bip is a callection of logic programming modules intended primarily for bioinformatics and |
‘DA to pros Modules which may be of more general Interest. Bip s intended to be both an application |
et o  "tten in SWI-Pr0lg, a fast, robust and scalable implementation of O Prolog.
rotein
...... Biip is Free Software, available, licensed under the LGPL.
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References, additional material for supervision and acknowledgements

LECTURE 1

- http://bionumbers.hms.harvard.edu/

- http://www.thomas-schlitt.net/Bioproject.html;
http://www.biostat.wisc.edu/ craven/hunter.pdf

- N. Jones, P. Pevzner An Introduction to Bioinformatics Algorithms
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Dynamic programming - sequence alignment

Algorithms in this lecture: Longest common subsequence, Needleman-Wunsch,
Smith-Waterman, Affine gap, Hirschberg, Nussinov RNA folding. Typical tasks: align
genome and protein sequences; we want to detect all differences at the single base to
block of bases levels. In the RNA folding problem we want to align a molecule with
itself.

Data: DNA or protein (amino acid) sequences considered as strings; input: two strings
(Nussinov accepts one string in input and search for internal similarities). Output: a set
of aligned positions that makes easy the identification of conserved patterns. Note that
each string belongs to a double helix so the information could be related to one of the
two strands and read in one or the opposite orientation.

Many events (mutations) could lead to sequence changes. Therefore the conservation
of a substring between two strings may suggest to a crucial functional role for the cell.
The dynamic programming algorithms could be used to detect similarities within a
single string (last section of the lecture). This is particularly useful to find the folding of
RNA moleculaes (in a RNA molecule the T is replaced by U).

Main question in this lecture: how similar are these two sequences?

&
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Sequence Alignment: The Biological problem

TGCATTGCGTAGGC

= Singl leotid i hi SNP:
ingle nucleotide polymorphisms (SNPs) TGCATTCCGTAGGE

— 1 every few hundred bp, mutation rate* = 10

= Short indels {=insertion/deletion) TGCATT-——TAGGC

— 1every few kb, mutation rate v. variable

TGCATTCCGTAGGC
= Microsatellite (STR) repeat number
— 1every few kb, mutation rate <107 TGCTCATCATCATCAGC
TGCTCATCA————— GC

= Minisatellites
— 1 every few kb, mutation rate < 10-!

|

=  Repeated genes
— rRNA, histones

A
=
8
=3
©

= large deletions, duplications, inversions

|

— Rare, e.g. Y chromosome 1-5kb

Figure : Type and frequency of mutations (replacements, insertions, deletions) in the human
genome per generation; mutations change single DNA bases (SNP polymorphism) or rearrange
DNA strings at different length scales. In sequence alignment we compare sequences that are
different because of mutations.

=

30/269



Sequence Alignment

Alignment is a way of arranging two DNA or protein sequences to identify regions of
similarity that are conserved among species. Each aligned sequence appears as a row
within a matrix. Gaps are inserted between the amino acids of each sequence so that
identical or similar bases in different sequences are aligned in successive positions.
Each gap spans one or more columns within the alignment matrix. Given two strings

X = X1, X2, , XM, ¥ = V1, Y2, , ¥n, @n alignment is an assignment of gaps to positions
0,,Minx,and 0,, N iny, so as to line up each letter in one sequence with either a
letter, or a gap in the other sequence.

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC--—
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
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Hamming distance

Hamming distance Edit distance
always compares may compare

ith letter of v with i'th letter of v with
ith letter of w jth letter of w

V = ATATATAT Just one shift V = - ATATATAT

W = TATATATA Make it all line up W = TATATATA

Hamming distance: Edit distance:
d(v, w)=8 d(v, w)=2
Computing Hamming distance Computing edit distance
is a trivial task is a non-trivial task

Figure : The Hamming distance is a column by column number of mismatches; the Edit distance
between two strings is the minimum number of operations (insertions, deletions, and
substitutions) to transform one string into the other.

%
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Edit graph

Alignment as a Path in the Edit Graph
wﬂﬁ&ﬁlfﬂ @3 ©t‘.1 TS&@@?

first alignment

] 0122345677
2 ~ v= AT_GTTAT_
. w= ATCGT_A_C

\“——h
§ ( 0123455667

second alignment

N 0122345677

(7]

=5 =) @ =] ¢

3 E

= v= AT_GTTAT_
[ w= ATCG_TA_C
7 T 0123445667

The score of the alignment paths are 5.

Figure : Create a matrix M with one sequence as row header and the other sequence as column
header. Assign a ONE where the column and row site matches (diagonal segments), a ZERO
otherwise (horizontal or vertical segments); sequence alignment can be viewed as a Path in the
Edit Graph. The edit graph is useful to introduce the dynamic programming technique.
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Dynamic programming, DP

DP is a method for reducing a complex problem to a set of identical sub-problems. The best
solution to one sub-problem is independent from the best solution to the other sub-problems.
Recursion is a top-down mechanism, we take a problem, split it up, and solve the smaller
problems that are created; DP is a bottom-up mechanism: we solve all possible small problems
and then combine them to obtain solutions for bigger problems. The reason that this may be
better is that, using recursion, it is possible that we may solve the same small subproblem many
times. Using DP, we solve it once. Consider the Fibonacci Series: F(n) = F(n—1) + F(n—2)
where F(0) =0and F(1) = 1.

A recursive algorithm will take exponential time to find F(n) while a DP solution takes only n steps.
A recursive algorithm is likely to be polynomial if the sum of the sizes of the subproblems is
bounded by kn. If, however, the obvious division of a problem of size n results in n problems of
size n-1 then the recursive algorithm is likely to have exponential growth.
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The Longest Common Subsequence (LCS)

A subsequence of a string v, is a set of characters that appear in left-to-right order, but
not necessarily consecutively. A common subsequence of two strings is a
subsequence that appears in both strings. Substrings are consecutive parts of a string,
while subsequences need not be.

A longest common subsequence is a common subsequence of maximal length.
Example:

vi=(A,C,B,D,E,G,C,E,D,B,G) and

v».=(B,E,G,C,F, E, U B,K)

the LCSis (B, E, G, C, E, B).

With respect to DNA sequences:

vi =AAACCGTGAGTTATTCGTTCTAGAA v2 =CACCCCTAAGGTACCTTTGGTTC
LCS is ACCTAGTACTTTG

35/269



The Longest Common Subsequence (LCS)

@ The LCS problem is the simplest form of sequence alignment; it allows only
insertions and deletions (no mismatches).

@ Given two sequences v =v; Vo ,Vpand w = wy Wz , ws. The LCS of vandw is a
sequence of positions in v: 1 < iy < p < < iy < m and a sequence of positions in
w: 1 < ji < o << ji < nsuch that i letter of v equals to ji-letter of w and tis
maximal

@ In the LCS problem, we score 1 for matches and 0 for indels (we will see that in
DNA sequence alignment we use different scores for match, mismatch and gap).
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The Longest Common Subsequence

LCS(v,w)

for i € 1ton
Sip € 0

for j € 1Ltom
So,; €0

for 7 € 1ton
for 7 €1tom

Si-1,5
S;,; € max { S;.5-1

Si,i1 * 1, if v; = wy
toaf

. 5i,7 = Si-1,5
b;; € . if s = 55,1
if s =553+ 1

return (s, ,, b)

Figure : It takes O(nm) time to fill in the n by m dynamic programming matrix. The pseudocode
describes two nested for loops to build up a n by m matrix. %
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match score, mismatch score, gap penalties

* The Global Alignment Problem tries to e
find the longest path between vertices — cal\\
(0,0) and (n,m) in the edit graph. b ‘

* The Local Alignment Problem tries to find f,'fg’:f,',ent
the longest path among paths between
arbitrary vertices (i,j) and (i} j°) in the edit
graph.
¢ Global Alighment
—=-T—CC=C-AGT—TATGT-CAGGGGACACG—A-GCATGCAGA-GAC

T S e L L A N O O
BATTGCCGCC-GTCGT-T-TTCAG-—-—-CA-GTTATG—T-CAGAT--C

¢ Local Alignment—better alignment to find conserved

segment

teccCAGTTATGTCAGgygacacgagecatgecagagac
BERRRRRENEN
aattgcecgececgtegttttcagCAGTTATGTCAGate

Figure : The same sequences could be used in both alignments; we need to set the match score,
the mismatch and gap penalties. %
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Needleman-Wunsch algorithm (Global alignment)

1. Initialization (two sequences of length M and N).
a. F(0,00 =0
b. F(@,)) =-jxd
c. F(,00 =-ixd

2. Main Iteration. Filling-in partial alignments
Foreachi=1...... M
Foreachj=1......N
F(i-1,)-d [case 1]

F(i, j) = max F(i, j-1)-d [case 2]
Fi-1,)-1) + s(x, y;) [case 3]
UP, if [case 1]

Pir(ij) = LEFT if [case 2]

DIAG if [case 3]

3.  Termination. F(M, N) is the optimal score, and from Ptr(M, N) can trace back
optimal alignment
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Example, Match= 2 (s=2); Gap= -1 (d=1); Mismatch=-1 (s=1)

penglil;et A C G C T G
0 | ogr g e o456
1
c 1 ; -1 K:ﬂ?
A 2| -2 |
t =C
3|3 —
1
G 4| -4
1
T S5 |-5
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Example, Match= 2 (s=2); Gap= -1 (d=1); Mismatch=-1 (s=1)

- O[> |0
G |lp | WIN -

@

o

o

'

4

-
@-»wod;doé»mc)
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Example, Match= 2; Gap= -1; Mismatch=-1

A C G C T G
0 1 2 3 4 5 6
0 Q< ‘acceTe-
c 1 140 L;CV—ATGT
1
T 3 1
3
}
T 5 2
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Example, Match= 2; Gap= -1; Mismatch=-1

A C G C T G

0 1 2 3 4 5 6

0 Q-1 ‘ACGCTG-

C 1 1 L;Cli—TGT

A 2 0 -1

T 3 1

3

}

T 5 2
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Mismatch=-1

Match= 2; Gap=-1;

N

T
5

ro | O

—

(—ACGCT

L(e—ATI'G—T—

-1 O|-1|> O
GO p | W | =
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The choice of scores (match, gap and mismatch) depends on the data

x A G C
Mstzh 1 R 01 2 3
Mismatch -1
Gap -2 0| 0«-2+«-4«-6
1 TZ‘\‘I 1e=-3
A - — | ——
pope tN it N
A2 -4\—:'1\04—-2
t AN
s a3l 5 5 2
t ottt
_— ca/-8 5 4 -1
AG-C

Figure : Given a m x n matrix, the overall complexity of computing all sub-values is O(nm). The

final optimal score is the value at position n,m. In this case we align the sequences AGC and
AAAC.
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How good is an alignment?

The score of an alignment is calculated by summing the rewarding scores for match
columns that contain the same bases and the penalty scores for gaps and mismatch
columns that contain different bases.

A scoring scheme specifies the scores for matches and mismatches, which form the
scoring matrix, and the scores for gaps, called the gap cost. There are two types of
alignments for sequence comparison: global and local. Given a scoring scheme,
calculating a global alignment is a kind of global optimization process that forces the
alignment to span the entire length of two query sequences, whereas local
alignments identify regions of high similarity between two sequences.
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Alignment of sequences of different lengths

Maybe it is OK to have an unlimited # of gaps in the beginning and end:

-------- CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG-~-———========

X otarizannedenaaninnnseiasanadensans Xu
_ Changes:
>
: 1. Initialization
PPN Foralli, j,
: N F(i, 0)=0
E F(0,)=0
2. Termination
: ? max; F(i, N)
Fopr=max |max; F(M, j)
=
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Alignment of sequences of different lengths

The local alignment: the Smith-Waterman algorithm

Idea: Ignore badly aligning regions: Modifications to
Needleman-Wunsch
€.8. X = aaaacCccCEees
Y = cccgggaaccaacc
Initialization: F(0,j)=F(i,0)=0

0
Iteration: F(i, j) = max F(i—1,j)—d "
Fli,j—1)—-d

Fli—1,j—1) +s(x, y)
Termination:
1. If we want the best local alignment...
Fopr = max;; F(i, j)
2. If we want all local alignments scoring >t
For all i, j find F(j, j) > t, and trace back
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Affine gap: two different penalties for gap insertion

Insertions and deletions often occur in blocks longer than a single nucleotide. if there
are many gaps we do not want to penalise too much; a non linear function could be
expensive to implement; so we may implement two gap penalties: one for the first gap
(opening) and one, smaller, for the following required gaps (see the figure below).

)]
y(n)=d+ (n—1)xe
| | e
gap gap d
open extend

To compute optimal alignment,

At position i,j, need to “remember” best score if gap is open
best score if gap is not open

F(i,j):  score of alignment x,...x; to y,...y,
if x aligns to y,

G(i,j): score if x; aligns to a gap after Y
H(i, j): scoreif Y aligns to a gap after x;

V(i,]) = best score of alignment x;...x;to y,...y;
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Affine gap: two penalties for gap insertion

Time complexity - As before O(nm), as we only compute four matrices instead of one.
Space complexity: there’s a need to save four matrices (for F, G, H and V respectively) during the
computation. Hence, O(nm) space is needed, for the trivial implementation.

Initialization:

Iteration:

Termination:

Vi, 0)=d + (i - 1)xe
V(0,))=d + (- 1)xe

Vi, j) = max{ F(i, j), (i, ), H(i, ]) }

F(i.j) = Vii—1,i=1) +s(x, y)
V(i-1,j)-d
G(i, J) = max
Gli—-1,j)-e
V(i,j-1)-d
H(i, j) = max
H{i,j-1)-e
similar
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Space-Efficient Sequence Alignment, Hirschberg algorithm

When comparing long DNA sequences, the limited resource in sequence alignment is
not time but space. Hirschberg in 1975 proposed a divide-and-conquer approach that
performs alignment in linear space for the expense of just doubling the computational
time. The time complexity of the dynamic programming algorithm for sequence
alignment is roughly the number of edges in the edit graph, i.e., 0(hm). The
space complexity is roughly the number of vertices in the edit graph, i.e., 0(nm).
However, if we only want to compute the score of the alignment (rather than the
alignment itself), then the space can be reduced to just twice the number of vertices in
a single column of the edit graph, i.e., O(n).
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Space-Efficient Sequence Alignment, Hirschberg algorithm

It is easy to compute F(M, N) in linear space

Allocate ( column[1])
Allocate ( column[2] )

I

T For i=1...M
If i>1,then:
Free( column[i-2] )
Allocate( column[i])
For j=1...N
F(i,j)=...

Figure : Space complexity of computing just the score itself is O(n); we only need the previous
column to calculate the current column, and we can then throw away that previous column once
we have done using it

=
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Space-Efficient Sequence Alignment, Hirschberg algorithm

Linear-Space Sequence Alignment
-2 @ 2

on

(™ =

on

A: space complexity

B: time complexity
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Space-Efficient Sequence Alignment Hirschberg algorithm

The reduction comes from observation that the only values needed to compute the alignment
scores s, (column j) are the alignment scores s, ;_; (column j — 1). Therefore, the alignment
scores in the columns before j — 1 can be discarded while computing alignment scores for
columnsj, j + 1,.etc...

The longest path in the edit graph connects the start vertex (0,0) with the sink vertex (n, m) and
passes through an (unknown) middle vertex (i, m/2 ) (assume for simplicity that m is even). Let's
try to find its middle vertex instead of trying to find the entire longest path. This can be done in
linear space by computing the scores s, /2 (lengths of the longest paths from (0,0) to (i, m/2 ) for
0 < i < n) and the scores of the paths from (i, m/2 ) to (n,m). The latter scores can be computed
as the scores of the paths s€¢"5¢ from (n,m) to (i, m/2 ) in the reverse edit graph (i.e., the graph
with the directions of all edges reversed). The value S; /> + S’e"e/’se is the length of the longest
path from (0,0) to (n, m) passing through the vertex (i, m/2). Therefore, max;[S; /2 + S,"i;‘i’ge
computes the length of the longest path and identifies a middle vertex.
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Space-Efficient Sequence Alignment, Hirschberg algorithm

Computing these values requires the time equal to the area of the left rectangle (from
column 1 to m/2) plus the area of the right rectangle (from column m/2 + 1 to m) and
the space O(n). After the middle vertex (i, m/2 ) is found the problem of finding the
longest path from (0,0) to (n, m) can be partitioned into two subproblems: finding the
longest path from (0,0) to the middle vertex (i, m/2) and finding the longest path from
the middle vertex (i, m/2) to (n, m). Instead of trying to find these paths, we first try to
find the middle vertices in the corresponding rectangles. This can be done in the time
equal to the area of these rectangles, which is two times smaller than the area of the
original rectangle. Computing in this way, we will find the middle vertices of all
rectangles in time = area + area/2 + area/4 +.. <2 * area and therefore compute the
longest path in time 0(nm) and space O(n).
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Basics of Hirschberg algorithm

@ Path (source, sink)

@ if source and sink are in consecutive columns

© output the longest path from the source to the sink
Q else

©@ middle < middle vertex between source and sink
@ Path (source, middle)

@ Path (middle, sink)
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Hirschberg algorithm: details

M/2

X « lterate this procedure to the left and right!
F(M/2, k) / Fr(M/2, N-k)
y K
P
1
Now, we can find k" maximizing F(M/2, k) + F"(M/2, k) .
Also, we can trace the path exiting column M/2 from k* Nk
-+ w
S M/2 M2

<
I

Conclusion: In O(NM) time, O(N) space,
we found optimal alignment path at column M/2




Example of genome alignment

Mouse and Human Genetic Similarities

Mouse chromosomes Mum-nn ;mwnowrne;

I;%F |

l“III

Courtesy Lisa Stubbs
Oak Ridge National Laboratory

Figure : Human and mouse genome sequence comparison ( each of 3 billion DNA bases). The
color map reflects similar segments in the two species up to a similarity threshold
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Challenges in alignment: repeats and inversions

B

Mouse
1 -76-109 -8 2 -11 -3 54

1 2 34567 8 910 11
Human

€ Genome Research

The comparison of sequences containing repeats of different length (as in puzzles) and
inverted blocks (could be also nested) is particularly difficult.

%
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Single string folding: the Biological problem

cees) )

(@)
O nnen (O emaanenn 1) L a (i

A
[
i ¢
] G
i &
i Ay
Mir-166 :’ oA
’ )
o G—C
A Hepatitis C é—C‘
internal LI
rbosome poee
entry site L{ U—G\
C‘»};G‘ G‘F‘CV
e el Sy \ v
frVC/\ ~A dz; fo
- G, 1
> c-c" G, 4

8. sublils SRP ANA

Figure : Examples of RNA molecules in nature; many molecules of RNA do not translate into
proteins; using the pairing rule A-T, C-G, the molecule could find regions of perfect pairing so to
have intrachain interactions. Therefore, the molecule folds into 2 Dimensional shape (termed
secondary structure) and then into 3 Dimensional shape (tertiary structure) and regulates cell
processes by interacting with proteins. On the right, in (a) the prediction of the contacts of the

RNA molecule shown immediately below in (b).
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Nussinov Algorithm: string folding i.e. intra chain alignment of a RNA molecule

The intrachain folding of RNA reveals the RNA Secondary Structure
This tells us which bases are paired in the subsequence from x; to x; Every optimal
structure can be built by extending optimal substructures.

N &N 2 VAN
{ {? e > <
b b & L 3

i1 $9j1 i+1t j i 4j1 _
i i i j i

i i s J
=&
i,j pair i unpaired ] unpaired bifurcation

Figure : Set of paired positions on interval [/, j]. Suppose we know all optimal substructures of
length less than j — i + 1. The optimal substructure for [/, j] must be formed in one of four ways: i,j
paired; i unpaired; j unpaired; combining two substructures. Note that each of these consists of
extending or joining substructures of length less than j — i + 1.
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Nussinov dynamic programming algorithm for RNA folding

@ Let 3(i, ) be the maximum number of base pairs in a folding of subsequence SJi .
-
Q for1<i<nandi<j<n
fori=1,..,n:6(i,i) =0;
for2<i<n:p(i,i—1)=0
Bi+1.))
B(i,j—1)
maXi<k<j [B (’7 k) + ﬂ (k + 17])]
© Where §(i,j) = 1if x; and x; are a complementary base pair i.e. (A, U) or (C, G),
and §(/,j) = 0, otherwise.

B(i,j) = max

There are O(n?) terms to be computed, each requiring calling of O(n) already
computed terms for the case of bifurcation. Thus overall complexity is O(n®) time and
O(r?) space.

&
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Nussinov algorithm for RNA folding

Note that only the upper (or lower) half of the matrix needs to be filled. Therefore, after
initialization the recursion runs from smaller to longer subsequences as follows:
@ forl=1tondo

Q fori=1to(n+1-1/)do

Q=i+l
© compute 4(i, )
@ end for
Q end for

k -1 i

| i

; [#en] [Foa-v | —] sen |
T

Figure : Details of matrix filling :ﬁ
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Nussinov algorithm: example

clc[c[alalalulc]c
Glo Example:
[slolo cle[c[a[a[a[u]c]c
G 0 GGGAAAUCC G|ojojojojojo|1]2|3
A ™ G olofofofol1]2["
A A A G o ofofofo[1]2]2
A N/ A oloofo] 11
0 ATY A ofofql1]1]1
N G5 A o|d[1[1]1
< s U ojololo0
6 c o/o]o
c oo]

Figure : order: top left, bottom left, right: a
matrix will be filled along the diagonals and the
solution can be recovered through a traceback
step.

Fill up the table (DP
matrix) -- diagonal by
diagonal

J

A

0-a> -
a4d
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Challenges in RNA folding

o

~

[cle]c]el>]n]r]e]a]

[o]o
o |o
-

e N w
NN W s

o|lo|o|o|r |~

olo|lo|=|m|n|n

T

[efe]~lolu]afw]m]~]

[=
o|o|o |~

o|o|o ‘ SN I N F N FWi S

Figure :

Bulge loop

Intemal loop
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Homology search: Topics and List of algorithms

Homology database search (Blast, Patternhunter). Data: sequences; input: a short
string as a query against a database; output: all the records showing a good match
with the query.

In an Internet search you run a query for exact keyword search against a database with
a size limit of 6 billion people x homepage size.

Given two DNA sequences you want to find all local similar regions, using edit distance;
the size limit: 6 billion people x 3 billion basepairs + millions of species x billion bases.
Main question: find the sequences more similar to my query sequence.
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Approximate Search algorithms

The problem is to find in a database all sequences with interesting similarities. Below
there is an example of output for the following task: a query (an unknown gene
sequence) is compared with other sequences with known functions in a database. The
figure below shows an example of output. Perfect hits are red colored. Regions that
were weaker in match are pink, green, or blue; alignment details are also available.
Algorithms considered: Blast, Patternhunter.

— _——— ————]
I I 1 1 I
1 800 1600 2400 3200 4000

ol
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Homology search algorithms: The Biological problem

It is common to observe strong sequence similarity between a gene (or a protein) and
its counterpart in another species that diverged hundreds of millions of years ago.
Accordingly, the best method to identify the function of a new gene or protein is to find
its sequence- related genes or proteins whose functions are already known.

The Basic Local Alignment Search Tool (BLAST) is a computer program for
finding regions of local similarity between two DNA or protein sequences. It is
designed for comparing a query sequence against a target database. It is a heuristic
that finds short matches between query and database sequences and then attempts to
start alignments from these seed hits. BLAST is arguably the most widely used
program in bioinformatics. By sacrificing sensitivity for speed, it makes sequence
comparison practical on huge sequence databases currently available.
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BLAST (Basic Local Alignment Search Tools

Dynamic Programming (DP) is an effective way to construct alignments (in some
applications too slow). Since the DP is O(r?), matching two 9x10° base length
sequences would take about 9x10'® operations. BLAST is an alignment algorithm
which runs in O(n) time. The key to BLAST is that we only actually care about
alignments that are very close to perfect. A match of 70% is worthless; we want
something that matches 95% or 99% or more. What this means is that correct (near
perfect) alignments will have long substrings of nucleotides that match perfectly. Most
popular Blast-wise algorithms use a seed-and-extend approach that operates in two
steps: 1. Find a set of small exact matches (called seeds) 2. Try to extend each seed
match to obtain a long inexact match.
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BLAST (Basic Local Alignment Search Tools)

The main steps of the algorithm are the follows:
@ Split query into overlapping words of length W (W-mers).

© Find a neighborhood of similar words for each word in the query (see the figure
next slide).

@ Lookup each word in the neighborhood in a hash table to find where in the
database each word occurs. Call these the seeds.

© Extend all seed collections until the score of the alignment drops off below a
threshold.

@ Report matches with overall highest scores.
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BLAST (Basic Local Alignment Search Tools)

BLAST provides a trade off between speed and sensitivity, by setting a "threshold”
parameter T. A higher value of T yields greater speed, but also an increased probability
of missing weak similarities (the figure shows an example with protein query; it shows
perfect matches and nearly perfect matches, + ).

keyword

Query: KRHRKVLRDNIQGITKPAIRRLARRGGVKRISGLIYEETRGVLKIFLENVIRD

GVK 18
GRK 16 )
GIK 16 Neighborhood

. GGK 14 words
neighborhood GLK 13

score threshold CNE 12
(T=13) GRK 11

GEK 11

GDK 11

extension

Query: 22 VLRDNIQGITKPATRRLARRGGVKRISGLIYEETRGVLK 60
+++DN +G + IR L G+K I+ L+ E+ RG++K
Sbjct: 226 IIKDNGRGFSGKQIRNLNYGIGLKVIADLV-EKHRGIIK 263

High-scoring Pair (HSP) @
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BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

To speed up the homology search process, BLAST employs a filtration strategy:
it first scans the database for length-w word matches of alignment score at least T
between the query and target sequences and then extends each match in both ends to
generate local alignments (in the sequences) with score larger than a threshold x.

The matches are called high-scoring segment pairs (HSPs). BLAST outputs a list of
HSPs together with E-values that measure how frequent such HSPs would occur by
chance.

A HSP has the property that it cannot be extended further to the left or right without the
score dropping significantly below the best score achieved on part of the HSP. The
original BLAST algorithm performs the extension without gaps. Variants are gapped
Blast, psi-Blast, Mega Blast and others.

see http://blast.ncbi.nim.nih.gov/Blast.cqi
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Statistical significance in Blast

@ Assume that the length m and n of the query and database respectively are
sufficiently large; a segment-pair (s, t) consists of two segments, one in m (say the
amino acid string: VALLAR) and one in n (say PAMMAR), of the same length. We
think of s and t as being aligned without gaps and score this alignment; the
alignment score for (s, t) is denoted by o (s, t).

@ Given a cutoff score x, a segment pair (s, t) is called a high-scoring segment pair
(HSP), if it is locally maximal and o(s, t) > x and the goal of BLAST is to compute
all HSPs.

@ The BLAST algorithm has three parameters: the word size W, the word similarity
threshold T and the minimum match score x (cutoff score x).

@ BLAST outputs a list of HSPs together with E-values that measure how frequent
such HSPs would occur by chance. This is calculated with respect of a database
with similar size and random data. E-value close to zero means that the
sequences retrieved is almost identical to the query.
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For protein sequences, BLAST operates as follows

The list of all words of length W that have similarity > T to some word in the query
sequence m is generated. The database sequence n is scanned for all hits t of words s
in the list. Each such seed (s, t) is extended until its score o (s, t) falls a certain
distance below the best score found for shorter extensions and then all best extensions
are reported that have score > x. In practice, W is usually 4 (amino acids) for proteins.
The list of all words of length W that have similarity > T to some word in the query
sequence m can be produced in time proportional to the number of words in the list.
These are placed in a keyword tree and then, for each word in the tree, all exact
locations of the word in the database n are detected in time linear to the length of n.
The original version of BLAST did not allow indels, making hit extension very fast.

Note that the use of seeds of length W and the termination of extensions with fading
scores are both steps that speed up the algorithm, but also imply that BLAST is not
guaranteed to find all HSPs.
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For DNA sequences, BLAST operates as follows

@ The list of all words of length W in the query sequence m is generated. The
database n is scanned for all hits of words in this list. Blast uses a two-bit
encoding for DNA. This saves space and also search time, as four bases are
encoded per byte. In practice, W is usually 12 for DNA.

@ HSP scores are characterized by two parameters, W and . The expected number
of HSPs with score at least Z is given by the E-value, which is: E(Z) = Wmne™*%.

@ Essentially, W and X are scaling-factors for the search space and for the scoring
scheme, respectively.

@ As the E-value depends on the choice of the parameters W and )\, one cannot
compare E-values from different BLAST searches.
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@ For a given HSP (s, t) we transform the raw score Z = o(s, t) into a bit-score thus:
Z' = 22 Such bit-scores can be compared between different BLAST
searches. To see this, solve for Z in the previous equation and then plug the result

into the original E-value.

@ E-values and bit scores are related by E = mn2-%

@ The number of random HSPs (s, t) with o(s, t) > x can be described by a Poisson
distribution. Hence the probability of finding exactly k HSPs with a score > Z is
given by P(k) = %(e*E (see also
www.ncbi.nim.nih.gov/blast/tutorial/Altschul-1.html)

@ The probability of finding at least one HSP by chance is
P=1-PX=0)=1- e E, called the P-value, where E is the E-value for Z.

@ BLAST reports E-values rather than P-values as it is easier, for example, to
interpret the difference between an E-value of 5 and 10, than to interpret the
difference between a P-value of 0.993 and 0.99995. For small E-values < 0.01,
the two values are nearly identical.
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Example of Blast output

Blast of human beta globin DNA against human DNA

{bits) Value

E
Homo sapiens haplotype PB26 beta-

o sapiens beta globin region (HBBf) on chromosome 11

gtgaz 326

aaaggracctttgctacactgagtgac 54468

stgacaagergeaty ctee 365

gtaacsaget 2 aactte

from Altschul: The expected-time computational complexity of BLAST is approximately

aW + bN + cNW /20", where W is the number of words generated, N is the number of residues
in the database and a, b and c are constants. The W term accounts for compiling the word list, the
N term covers the database scan, and the NW term is for extending the hits. Although the number
of words generated, W, increases exponentially with decreasing the threshold, it increases only
linearly with the length of the query, so that doubling the query length doubles the number of

words. %
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DNA, protein query

ttgacdlagatgagatgtagttcadt tadcgagctacagaaaa

tto|acc frag| atg| agaltgr| oot frea| dtfta| dglage|tac|agalaaa
LT x M RC RS LLL S ¥ R K

tlegaloct| agaltga| gat|dec| dt| cacltititacltan| gct|acal gaa [aa
x P R x DV VHPFY x S T E

ttgac|dta| gat |gag| atgltogltic| act|tit|act|gag| dralcagl aaala
DL D EMS SV FT TP FTE L Q K

Figure : Blast DNA query (top) against a database of proteins will process all the potential triplets
forming codons which code for amino acid (the capitol letters)

=
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Example of Blast Pitfalls

BLAST may also miss a hit
GAGTACTCAACACCAACAT TAGTGGGCAATGGAARAT

FErrrrrerer reeerr roreren [
GAATACTCAACAGCARCAT CAATGGGCAGCAGAAAAT

fp——
9 matches
In this example, despite a clear homology, there is no sequence of
continuous matches longer than length 9. BLAST uses a length 11
and because of this, BLAST does not recognize this as a hit!

Resolving this would require reducing the seed length to 9, which
would have a damaging effect on speed

81/269



Patternhunter

The big problem for BLAST is low sensitivity (and low speed). Massive parallel
machines are built to do Smith Waterman exhaustive dynamic programming.

A spaced seed is formed by two words, one from each input sequence, that match at
positions specified by a fixed pattern and one don’t care symbol respectively. For
example, the pattern 1101 specifies that the first, second and fourth positions must
match and the third one contains a mismatch.

PatternHunter (PH) was the first method that used carefully designed spaced seeds to
improve the sensitivity of DNA local alignment.

Spaced seeds have been shown to improve the efficiency of lossless filtration for
approximate pattern matching, namely for the problem of detecting all matches of a
string of length m with g possible substitution errors.
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Blast vs PH vs PH Il

If you want to speed up, you have to use a longer seed. However, we now face a
dilemma: increasing seed size speeds up, but looses sensitivity; decreasing seed size
gains sensitivity, but looses speed. How do we increase sensitivity and speed
simultaneously?

Spaced Seed: nonconsecutive matches and optimized match positions Represent
BLAST seed by 11111111111;

Spaced seed: 111010010100110111 where 1 means a required match and 0 means
dont care position.

This simple change makes a huge difference: significantly increases hit number to
homologous region while reducing bad hits. Spaced seeds give PH a unique
opportunity of using several optimal seeds to achieve optimal sensitivity, this was not
possible by BLAST technology. PH Il uses multiple optimal seeds; it approaches
Smith-Waterman sensitivity while is 3000 times faster.

Example: Smith-Waterman (SSearch): 20 CPU-days, PatternHunter Il with 4 seeds:
475 CPU-seconds: 3638 times faster than Smith-Waterman dynamic programming at
the same sensitivity

&
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Sensitivity and Specificity

Sensitivity: The probability to find a local alignment. Specificity: In all local alignments,
how many alignments are homologous

Consecutive Positions Non-Consecutive Positions
] 0O IO I
7 hits 3 hits
0000000 @]
7 hits 3 hits
o 0000 000
On a 70% conserved region:
Consecutive Non-consecutive
Expected # hits: 1.07 0.97
Prob[at least one hit]: 0.30 0.47
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= 111010010100110111 (called a model)
= Eleven required matches (weight=11)
= Seven “don't care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT...

LU PEEerrrre reeer rereerr e
GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT..

111010010100110111
= Hit = all the required matches are satisfied.
= BLAST seed model = 11111111111

111010010100110111
111010010100110111
111010010100110111
111010010100110111
111010010100110111
111010010100110111
111010010100110111
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Spaced model

In PatternHunter, the spaced model has often weight 11 and length 18.

l Solid curves: Multiple (1, 2, 4, 8,
16) weight-12 spaced seeds.
0.8 Dashed curves: Optimal spaced
seeds with weight = 11, 10, 9, 8.
0.6
sensitivity Typically, “Doubling the seed
04l number” gains better sensitivity
’ than “decreasing the weight by
1”
0.2
00.6 1
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The non-consecutive seed is the primary difference and strength of Patternhunter

Sensitivity: PH weight 11 seed vs BLAST 11 & 10

1 T T T T T ———

probatiity of o least 1 Hi

az a3 aa
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Comparing different seeds number

0,94

0.8

PH 8 seeds: 996 sac
senstivity PH 4 seeds: 575 sec
PH1 seed: 214 sec

o0 BLAST. 576 sac

| (SSearch; 20 days)
0.6

0570 Eil ] 30 il 70 0 an

allgriment score

Figure : sensitivity versus alignment score
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References, additional material for supervision and acknowledgements
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Multi sequence alignment: Topics and List of algorithms

Progressive alignment (Clustal). Input: a set of sequences in Fasta format (also
thousands).

Output: alignment of the set of sequences: multi sequence alignment (MSA). Interest:
find conserved patterns (across sequences, i.e. columns retaining similar patterns)
may indicate functional constraints. In other words, if the same pattern is conserved in
multiple sequences from different species, the substring could have an important
functional role.

Main question in this lecture: how similar is this group of sequences?
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Challenges of extending dynamic programming to n sequences

@ For two sequences, there are three ways to extend an alignment

@ for n sequences, a n-dimensional dynamic programming hypercube has to be
computed and for each entry we have to evaluate (2" — 1) predecessors.

@ Given 3 sequences, the figure below shows a three-dimensional alignment path
matrix: there are = (2° — 1) = 7 ways to extend an alignment.

@ o
70

1 2 3 4 5 6 7
ABC AB- ABC ABC ABC AB- AB-
ABC ABC AB- ABC AB- AB- ABC
ABC ABC ABC AB- AB- ABC AB-
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Progressive alignment

@ Progressive alignment methods are heuristic in nature. They produce multiple
alignments from a number of pairwise alignments.

@ Perhaps the most widely used algorithm of this type is CLUSTALW.

@ Given N sequences, align each sequence against each other and obtain a
similarity matrix; similarity = exact matches / sequence length (percent identity)

@ Create a guide tree using the similarity matrix; the tree is reconstructed using
clustering methods such as UPGMA or neighbor-joining (explained later).

@ Progressive Alignment guided by the tree.

Pairwise Alignment Guide Tree Iterative Multiple Alignment

1+

2
1+3 —! I

1+4 ~2 3,‘

2+3 - 3 : = 4‘,7

2+4 g

3+4

—4
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Progressive alignment

Not all the pairwise alignments build well into

multiple sequence alignment (top figure);

the progressive alignment builds a final alignment by merging sub-alignments with a

guide tree (bottom figure).

TAGT

T-GT
TAGT TAGT
T-GT ~— qp7
TA-T

T-GT
TA-T

/

AC-A
ACGA
CC-A
/Lm, ‘\
Subalignment
ACR
[aler:N
i N
‘Sequence Alignment

ACR cca

TGG—-
-GGAT

TEG--
-GGAT
-—-AT

-TGG
AT——

GGAT
T

AC--RA
ACG-R
CC--RA
A-GTR
A-G-R

Merping of
Subulignments

AGTA
AG-R

.
“Sequence Alignment

LGTA AGR

ACGR
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Progressive alignment

1) Vi Vo Vi Vy 2) V1
v, | - Vs
v, | W17 - vy,
vy, | .87 .28 - v,

v,| .59 .33 .62 -

Calculate:

V1,3 = alignment (v;, v3)
V1,3,4 = alignment ((v; ;),v,)
Vi2,3,2 = alignment((vy ; J),v,)

Figure : Progressive alignment of 4 sequences (v1,v2,v3,v4): 1) distance matrix from pairwise

alignment; 2) pairwise alignment score analysis; tree showing the best order of progressive
alignment, 3) building up the alignment.
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how to compare columns of amino acids? Amino acid exchange propensity

Blosum is a symmetric amino acid replacement matrix used as scoring matrix in Blast
search and in phylogeny. Using only the conserved regions of protein sequences in a
MSA, we compute pj i.e. for each column of the MSA, the probability of two amino
acids i and j replacing each other, and p; and p; are the background probabilities of
finding the amino acids i and j in any protein sequence. Finally we compute:

Score; = (k~")log(pj/pip;) Where the k is a scaling factor.

ARNDCQEGHILKMFPSTWYV
Al4-1220-1-102-1-1-1-1-2-110-320
R[F150231020-322-13-2-1-1-3-23
N-206130001-33023210-423
Df-2216-302-1-1-3-4-1-3-3-1 0-1-4-33
cl033393433-1-13-12-3-1-1-2-2-1
o-11003522032103-10-1-2-1-2
E[100242520-331-23-10-1-3-2-2
G0-20-13-2-26-2-4-4-2-33-20-2-2-33
H201-1300-28-33-12-12-12-223
f-133-3-13343423103-2-13-13
L-1234-123432422032-1-2-11
K-120-1311-2-1-3-25-1-3-10-1-3-2-2
MHI-1-23-102-3-212-1502-1-1-1-11
Fl-23332333-1003064-2-213-1
p-122-13-1-1-2233-1247-1-1 432
s{1-110-1000-1-2 -1-2-141-3-222
T[0-1 O-1-1-1-1-2-2-1 2-115220
wl-3-3-4-4 3-2-2-3 14321123
v[-2-2-2-3 2-3 2-1- 3-32-2 271
vlj0-3-3-3-1-2-2-3-3 3 -1220-3-1 4

95/269



Entropy measure of a multiple alignment as optimisation criterion

AAA
AAA
AAT
ATC

Let’s start from an alignment of four sequences (above the first three columns);
Compute the frequencies for the occurrence of each letter in each column of multiple
alignment pA = 1, pT=pG=pC=0 (1st column);

pA = 0.75, pT = 0.25, pG=pC=0 (2nd column);

pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column);

Compute entropy of each column: E = — 3"y, - 5 1 Px/og (px)

The entropy for a multiple alignment is the sum of entropies of each column of the
alignment.
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Example of a multiple sequence alignment (globin amino acid sequences)

HBA_HUHAN - VLS PADKTHVEAAIGEY GAHAGEY GA--EALERMFLSFETTETYFPHF-DL 48
HEA_HORSE - L 3AADKTHVEAAISEY GGHAGEY GA~-EALERMFLGFPTTETY FPHF-DL 48
HBB_HLUMAN - ~VHLTPEEKSAVTALIGKVN- - VDEVGG--EALGRLLVVYPUTQRFFESFGDL 48
HBB_HORSE = ===n e e~V LICEEKAAVLALNDE V= -EEEVG0=~EALCRLLVVYPUTQRFFDSFCDL 48
GLBS_PETIA PIVDTGSVAPLSAAEKTHKIRSAIAPVYSTYETSGY--DILVEFFTSTPAMEFFPEFEGL 58
MYG_PHYCA VL IEGEWQLVLHVIAKVEADVAGHG)--DILIRL FKSHFETLEKFDRFKHL 49
GLB1_GLYDI GLEAAQROVIAATIED LAGADNGAGYGFDCLIKFLSAHPQMARVFCFS - -~ 48
GLB3_CHITH - LSADQ 1 STVOASFDEVE-~ GDPVGILYAVFKADPSTMAKFTOFAGK 44
LGBZ_LUPLY ---mmmee GALTESQAALVESSUEE FNANT PKHTH--RFFILVIEIAPAAFDLFSFLKGT 50
HBA_HUHMAN AQVEGHGKKVADALTHAVAHVDD - -~ ~-MPHALSALSDLHA--HKLRVD PV 96
HBA_HORSE GIAQVEAHGKEVGDALTLAVGHLDD = LPGALINLIDLEA--HELRVDPY 96
HBB_HUMAN STRDAVHGUPKVEAHCKIVLOAFSDGLAHLDN- LEGTFATLSELHC--DELEVDPE 101
HBE_HORSE G FAALSELHC--DELHVDPE 101
GLB5_PETIGA TTADQLEESADVRWHAERT INAVADAVASIDDT: (LRDLEGKHA--KSFOVDRQ 114
MYG_PHYCA KTEAENKASED LKKHGVTVLTALGAT LKRKGH ¢ 102
GLB1_GLYDI =====GASDPGVAALGAKVLAQIGYAVIHLGDE 10l
GLB3_CHITH DLES-IKGTAPFEIHANRIVGFFSKITGE LPN- a5
LGB2_LUPLU SEVP==QNNPELQAHAGKVFELYYEAATQLQVTOVVYTDATLENLGSVEY===3K0VADA 105
HBA_HUMAN WFKLLSECLLVTLAAHLPAEFTPAVHAS LDKFLASVSTVLTSKYR 141
HBA_HORSE NFELLSHCLLSTLAVHLENDFTPAVHAS LDKFLSSVSTVLTSHYR - 141
HEB_HUMAN NFRLLGRYLYCY ¥ 146
HBB_HORSE NFRLLGIVL 146
GLB5_PETMA 149
M¥G_PHYCA 153
GLB1_GLYDI 3 147
GLB3_CHITH ! =FAGAEAANGATLDTFF 136
LGB2_LUPLY HF[WI'EM J"rn:\'w AKUSEELNS m.r"m‘m:lm‘m KEMNDAR--- 153

Figure : Chemical properties of amino acids are in color code. The globin proteins from different
species could be easily aligned because they have many similar substrings in common.
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Insight into protein structure (3D graph) from MSA analysis

Figure : Human globin 3D structure. The small amount of changes in the globin alignment
suggests that globin sequences are likely to have very similar 3D structure (figure). Columns rich
of gaps (previous slide) often correspond to unstructured regions (loops); conserved regions often
correspond to binding sites or regions where one protein interacts with a DNA sequence or with
another protein: most important bits are more conserved.

&
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Multi sequence alignment: examples of results

COCOEleeallllennnnnns )))) . eee))e P

AF008220 U IAGCUGGGAI JCUUA 50
M68929 AGGCGUU elel A-C 49
X02172 GGU ICUGAAG. [UACAUG 49
211880 L jCUUUU2 GGUCa 49
D10744 CAUCGGCAAGAU\, IAGG? 60

etormason based on a 90k stnawa

ces e N ces are.
A -
e -
g
c I
40000 600000 800000 1000000 1200600 1400000 1600000 1000000 2000000 220000 3806000 mzm mnm mv:n !nm aoiom oteo eaion amdeon s awd;  SUENCES reporied Al negatives
e e e ]
= -m —— W e
Y. PCSIIS KIM - - -

A) Multi alignment of RNA
Sequences (note
conservation score at
the bottom and
secondary structure
prediction on top)

B) Positive and Negative
assessment of
alignment.

C) Multi alignment of
genomic sequences

== L

Y. pseudotuberculosis IP32953
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References, additional material for supervision and acknowledgements

D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for multiple sequence alignments.
Methods in Enzymology, 266:383402, 1996.
http://www.ebi.ac.uk/Tools/msa/
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Genome Assembly: Topics and List of algorithms

Algorithms: Genome Assembly (Burrows-Wheeler transform) and De Bruijn graph
Data: DNA sequence Input: reads (short sequences); Output: genomes (long
sequences)

Main question: how to build a genome from little bits?

=
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Building genomes from short sequences (reads)

fre— 5 cotoris cawesean|

il 7 | I
oA AL ML ) Ll

fragment assembly software a
? .

whole-genome assembly

seftuere Assembly

5 Known mRNAs and proteins
Genomic DNA p
s‘::g"g!l ab initio methods

Genome annotation procedure

Putative genes
location in the genome, DNA, mRNA and protein sequences
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Aligning genomes

Genome scaffolding (i.e. the process of ordering and orientating contigs) of de novo assemblies
usually represents the first step in most genome finishing pipelines (figure below on the right). The
preferred approach to genome scaffolding is currently based on assembling the sequenced reads
into contigs and then using paired end information to join them into scaffolds. The figure below
show the overlapping reads used to cover the assemble of the genome and the problem with
repeats. The algorithm presented here is the Burrows- Wheeler transform.

Mapped Genome
saaffolds T T T T—_T 0T T

Scaffold:

l Paired-end reads Gap

Contig: Contiguous sequences (contigs)

Individual sequence “reads”
650-850 bases each

Repeats

=
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Burrows- Wheeler transform: saving memory in NGS alignments

The current sequencing procedures are characterized by highly parallel operations,
much lower cost per base, but they produce several millions of "reads”, short stretches
of DNA bases (usually 35-400 bp). In many experiments, e.g., in ChIP-Seq, the task is
to align these reads to a reference genome.

The main effort is to reduce the memory requirement for sequence alignment (such as
Bowtie, BWA and SOAP2); the Burrows-Wheeler transform, BWT (1994) is commonly
used. The Burrows and Wheeler transform (BWT) is a block sorting lossless and
reversible data transform. The BWT can permute a text into a new sequence which is
usually more compressible.

The transformed text can be better compressed with fast locally-adaptive algorithms,
such as run-length-encoding (or move-to-front coding) in combination with Huffman
coding (or arithmetic coding). Burrows obtained the Ph.D at the Computer Laboratory.
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Burrows-Wheeler Transform

INPUT (example): T = “abraca”; then we sort lexicographically all the cyclic shifts of T
For all i # |, the character L][i] is followed in T by F[i]; for any character ch, the i-th
occurrence of ch in F corresponds to the i-th occurrence of ch in L.

OUTPUT: BWT(T)=caraab and the index I, that denotes the position of the original
word T after the lexicographical sorting. The Burrows-Wheeler Transform is reversible,
in the sense that, given BWT(T) and an index |, it is possible to recover the original
word T.

aabralc
abracal— 1
acaalbr
bracalal «:
caabra
racaalb

012345
T =(135240)
134502
w=abraca
135240

nhwWwNEO
TN L L T

nphbwNne=O
Ty Y —F

nhwyrEoO
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Burrows-Wheeler Transform example

Once BWT(T) is built, all else shown here (i.e. the matrix) is discarded. Three steps: 1)
Form a N*N matrix by cyclically rotating (left) the given text to form the rows of the
matrix. Here we use '$’ as a sentinel (lexicographically greatest character in the
alphabet and occurs exactly once in the text but it is not a must). 2) Sort the matrix
according to the alphabetic order. Note that the cycle and the sort procedures of the
Burrows-Wheeler induce a partial clustering of similar characters providing the means
for compression. 3) The last column of the matrix is BWT(T) (we need also the row
number where the original string ends up).

$acaacg $acaacg
aacg$ac aacg$ac
acaacg$ acaacg$
acaacg$ —>acgSaca —> acg$Saca—> gc$aaac
B caacg$a caacg$a BWT(T)
cgSacaa cg$acaa
g$acaac g$acaac
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LF Mapping

Property that makes BWT(T) reversible is LF Mapping: the ith occurrence of a
character in Last column is same text occurrence as the ith occurrence in the First
column (i.e. the sorting strategy preserves the relative order in both last column and
first column).

$acaacg’
Rank:Z\Aaacgs.Pac
(acaacgs
aacg$ acg$aca > swi
e 9 caacg$[a
T cg$acaa | ™ gank:>
g$acaac)
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LF Mapping

To recreate T from BWT(T), repeatedly apply the rule: T = BWT[ LF(i) ] + T; i = LF(i)
where LF(i) maps row i to row whose first character corresponds to i’s last per LF
Mapping. First step: S =2; T = $. Second step: s = LF[2] =6; T = g$. Third step: s =
LF[6] =5; T = cg$.

D oLeAO LW

-Za
Z22C

o oonD Do
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The BWT(T) is more amenable to subsequent compression algorithms

t atatatata § $ t a vt a2t a2t adt »
a t a t a t a t a $ t a $ t a t a t a t a t
t at at at a § t a r t & 5 t a t a t a t
a t at a t a $ t a t a t & t a S ¢ a t a t
t atatas$tat a a t w t a t a $ t a
at at a st ata t At a t ama t a4 t a $
t ata$tatat a t = $ t a t a t ama t @
a t a § t a t a t a t t a t a $ ¢t a t a t »
t a $t a t at a t a t 2 t s ¢t a2 § t = ¢ N
a$tatatatat t a t a t a t a $ t a
$ t atatatat a t a t a t a t a ¢t a §

Figure : in the left,the word "tatatatata$” undergoes cyclic shift and it is sorted in the right. Note
that the BWT (tatatatata$) is a word (atttttaaaa$) with good clustering of T's and A’s and so it can
be written in a more compact way. The DNA is from an alphabet of 4 symbols so the clustering
happens very often.
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Next Generation sequencing (NGS): The Biological problem

Instead of considering a DNA sequence, for sake of clarity, let’s consider a sentence
and we trim all spaces.

Copies of the sentence are divided into fragments called reads which could be
converted into k-mers. We would like to assemble the original sentence using the
reads or the k-mers.

Generate random ‘reads’ ' How do we assemble?
apoen

Convert reads into “Kmers”
Kmer: a substring of defined length
Reads: i

Kmers sth ast wor
(k=3) the sth ors
heb the rst
ebe hea sto
bes eag tof
est age oft
sto geo fti

tof eof tim :ﬁ
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Three methods to reconstruct the original sequence

The genome is shown in a. One method (shown in b) uses the reads, the two other
methods use k-mers derived from the reads (shown in ¢ and d).

- A raacar
v A e
&6tatae
v [~} [NRNN]
-------- ' NN}
Ll @ Short-read TGCAATG
<5 0l demiancng Laatdae

Genome: ATGGCGTGCAATGGCGT

Vertices are k-mers ... Vertices are (k=1)-mers

Edges are pairwise alignments _ . **+._ Edges are k-mers
o T
v
ATG
17
T6G
]
GGC
i
G‘(G
!
cGT
AAAAAAAAAAAAAA > ul S SR
k-mers from vertices GT(" k-mers from edges
TGC
Iy
GCA
i
CAA
"
AAT
i
ATG
Genome: ATGGCGTGCAATG
Hamiltonian cycle Eulerian cycle
Visit each vertex once Visit each edge once

(harder to solve) (easier to solve) %
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Graph approaches in alignment (previous figure)

(a) A small circular genome. In (b) reads are represented as nodes in a graph, and
edges represent alignments between reads. Following the edges in numerical order
allows one to reconstruct the circular genome by combining alignments between
successive reads. In (c) reads are divided into all possible k-mers (k = 3), ATGGCGT
comprises ATG, TGG, GGC, GCG and CGT.

Following a Hamiltonian cycle (indicated by red edges) allows one to reconstruct the
genome by forming an alignment in which each successive k-mer (from successive
nodes) is shifted by one position. (d) Modern short-read-based genome assembly
algorithms construct a de Bruijn graph by representing all k-mer prefixes and suffixes
as nodes and then drawing edges that represent k-mers having a particular prefix and
suffix. For example, the k-mer edge ATG has prefix AT and suffix TG.

Finding an Eulerian path allows one to reconstruct the genome by forming an alignment
in which each successive k-mer (from successive edges) is shifted by one position.

%
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Hamiltonian graph using reads

v
ATGGCGT

Genome: ATGGCGTGCAATGGCGT

Figure b (see previous slide): The Hamiltonian graph is a graph in which each read is
represented by a node and overlap between reads is represented by an arrow (called a
directed edge) joining two reads. For instance, two nodes representing reads may be
connected with a directed edge if the reads overlap by at least five nucleotides.

The Hamiltonian cycle is a path that travels to every node exactly once and ends
at the starting node, meaning that each read will be included once in the
assembly.
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Hamiltonian graph using k-mers

Figure c: The Hamiltonian cycle approach can be generalized to make use of k-mers
by constructing a graph as follows. First, from a set of reads, make a node for every
k-mer appearing as a consecutive substring of one of these reads. Second, given a
k-mer, define its suffix as the string formed by all its nucleotides except the first one
and its prefix as the string formed by all of its nucleotides except the last one. k-mer to
another using a directed edge if the suffix of the former equals the prefix of the
latter, that is, if the two k-mers completely overlap except for one nucleotide at each
end. Third, look for a Hamiltonian cycle, which represents a candidate genome
because it visits each detected k-mer.
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Hamiltonian graph

Hamilton path is a graph that covers all vertex exactly once. When this path returns to
its starting point than this path is called Hamilton cycle.

There is no known efficient algorithm for finding a Hamiltonian cycle in a large graph
with millions (let alone billions) of nodes.

The Hamiltonian cycle approach was feasible for sequencing the first microbial genome
in 1995 and the human genome in 2001.

The computational problem of finding a Hamiltonian cycle belongs to the
NP-Complete class of problems.

Next: Euler path is a graph using every edge of the graph exactly once. Euler cycle is a
Euler path that returns to it starting point after covering all edges.
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Eulerian graph

Figure d: Instead of assigning each k-mer contained in some read to a node, we will
now assign each such k-mer to an edge. This allows the construction of a de Bruijn
graph. First, form a node for every distinct prefix or suffix of a k-mer. Then, connect
node x to node y with a directed edge if some k-mer has prefix x and suffix y, and label

the edge with this k-mer.
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Eulerian graph

We visit all edges of the de Bruijn graph, which represents all possible k-mers; traveling
will result in spelling out a candidate genome; for each edge that is traversed, one
records the first nucleotide of the k-mer assigned to that edge. Euler considered
graphs for which there exists a path between every two nodes (called connected
graphs). He proved that a connected graph with undirected edges contains an
Eulerian cycle exactly when every node in the graph has an even number of
edges touching it. The case of directed graphs (that is, graphs with directed edges) is
similar. For any node in a directed graph, define its indegree as the number of edges
leading into it and its outdegree as the number of edges leaving it. A graph in which
indegrees are equal to outdegrees for all nodes is called balanced.
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Eulerian graph

Eulers theorem states that a connected directed graph has an Eulerian cycle if
and only if it is balanced. In particular, Eulers theorem implies that our de Bruijn
graph contains an Eulerian cycle as long as we have located all k-mers present in the
genome. Indeed, in this case, for any node, both its indegree and outdegree represent
the number of times the k — 1-mer assigned to that node occurs in the genome. To see
why Eulers theorem must be true, first note that a graph that contains an Eulerian cycle
is balanced because every time we traverse an Eulerian cycle and we need to pass
through a particular vertex, we enter on one edge of the cycle and exit on the next
edge. This pairs up all the edges touching each vertex, showing that half the edges
touching the vertex lead into it and half lead out from it. It is a bit harder to see the
converse: that every connected balanced graph contains an Eulerian cycle.
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De Bruijn graph: representing the data as a graph

A De Bruijn graph for k = 4 and a two character alphabet composed of the digits 0 and
1. This graph has an Eulerian cycle because each node has indegree and outdegree
equal to 2. Following the blue numbered edges in order from 1 to 16 traces an Eulerian
cycle 0000, 0001, 0011, 0110, 1100, 1001, 0010, 0101, 1011, 0111, 1111, 1110, 1101,
1010, 0100, 1000. Recording the first character of each edge label spells the cyclic
superstring 0000110010111101.

1001 0110
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Hamiltonian and Eulerian graph complexity

The time required to run a computer implementation of Euler algorithm is roughly
proportional to the number of edges in the de Bruijn graph. In the Hamiltonian
approach, the time is potentially a lot larger, because of the large number of pairwise
alignments needed to construct the graph and the NP-Completeness of finding a
Hamiltonian cycle.
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De Bruijn assembler method

Sequencing is cheap, we generate sub-strings (reads) at random from throughout the
genome. In next generation sequencing we have 10s of millions of reads. The difficult
part is how we put them back together again in the right order. An intuitive way to do
this may be in all versus all comparisons to search for overlaps. This is how traditional
assemblers work. The solution offered by the De Bruijn approach is to represent the
data as a graph.

The first step of the De Bruijn assembler is to deconstruct the sequencing reads into its
constitutive k-mers. As specified before a K-mer is a substring of defined length. If we
split reads in k-mers we control the size and the overlapping. To Kmerize the
dataset, we move through our read in one letter increments from the beginning to the
end until we have recorded all possible 3 letter words. We then do this for all reads in
the dataset. From this point on the algorithm operates on k-mers rather than on the
reads.
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Details of the De Bruijn graph method

The next stage is to represent the stored k-mers in the De Bruijn graph. This is done by
searching for overlaps of k — 1. The graph has all consecutive k-mers by k — 1 bases.
Note that: 1) Adding k-mers from a second read of an overlapping region of the
genome shows how the graph can be extended. It also reveals the redundancy in the
data which need not be stored by the computer. This is how memory efficiency is
achieved. 2) Adding a k-mers from a third read that comes from a similar but
non-overlapping part of the genome illustrates the effect of repeats, i.e. we get a
branch in the graph. Long unbranched stretches represent unique sequence in
the genome, branches and loops are the result of repeats.
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Details of the De Bruijn graph method

Reads: theageofwi sthebestof astheageof  worstoftim
Kmers: 1A sth wor
(k=3) héa the st ors
eag heb the rst
age ebe ] sto
geo bes tof
eof est oft
ofw sto fti
fwi tof 0 tim

 the = hea > eag > age > geo —> eof
> sth

the = hea = eag = age = geo — eof = ofw = fwi

sth —> the \

heb = ebe = bes —> est = sto = tof
ste > tof
wor —> ors —> rst —
oft = fti —> tim

i

v

v\ L

— s —

The final assembly (k=3)

» times
vbe — o wisdom
. s of
» It was the - + foolishness
- s > belief
> spoch * incredultty

wor  times itwasthe  foolishness st wisdom

incredulity  age epoch  be  of  belief

Repeat with a longer “kmer” length

A better assembly (k=10)

C D

A, Kmerize the data; B, Build the graph; C, simplify the graph; D, get the final assembly.
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Details of the De Bruijn graph method

The final step is to remove redundancy, result in the final De Bruijn Graph
representation of the genome under study. Strengths and weaknesses of this
approach: 1) a strength is that the information from millions of reads is stored in
computer memory in a graph that is proportional to the genome size. Another strength
is that the overlaps between reads are implicit in the graph, so all the millions versus
millions of comparisons are not required. On the downside, information is lost as
repetitive sequences are collapsed into a single representation. While this may be
a satisfying solution to a computer scientist, it is not practically useful to a biologist who
wants to annotate repeats (repeats are often not junk DNA).
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Limitations and software

Sequencing errors: Mostly unaffected
sth the ehe ent  tof Lmers

k:/3Y heb ben nto
sthebentof
m

sthebentof 100% wrong kmer

De Bruijn method can only resolve k long repeat. Validation: look in your assembly for
gene that should be there; N50: Weighted median such as 50% of your assembly is
contained in contig of length >= N50

Given a set of contigs, each with its own length, the N50 length is defined as the length
for which the collection of all contigs of that length or longer contains at least half of the
sum of the lengths of all contigs, and for which the collection of all contigs of that length
or shorter also contains at least half of the sum of the lengths of all contigs.
Software implementation:

Velvet: http://www.ebi.ac.uk/ zerbino/velvet/;

ABySS: http://www.bcgsc.ca/platform/bioinfo/software/abyss;
SOAP-denovo: http://soap.genomics.org.cn/soapdenovo.html;
ALLPATH-LG: http://www.broadinstitute.org/software/allpaths-Ig/blog/;
IDBA-UD: http://i.cs.hku.hk/ alse/hkubrg/projects/idba_ud
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PHYLOGENY: Topics and List of algorithms

Phylogeny - parsimony-based - (Fitch, Sankoff). Phylogeny - distance based -
(UPGMA,Neighbor Joining) Bootstrap.

We reconstruct evolution (phylogeny) by studying the relationships among multiple
sequences.

The input is a multiple alignment, the output is a tree. There are several biological
applications but also applications in computer science.

Main question in this lecture: how related are the sequences | am observing?
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Phylogenetic analysis

The reconstruction of the evolutionary history of species formation could be done by
comparing DNA and amino acid sequences. A phylogeny is a tree where the leaves
are existing species; an internal node is node with degree greater than one. Internal
nodes represent common ancestors. We typically do not have DNA data for internal
nodes (except fossil). Here we use the terms species and taxa in a synonymous way.
We compute the tree for each column of a multiple alignment.

Internal Nodes
(hypothetical ancestors)
Branches

Existing
genes,
populations,
Of species

HY 0w

|

Root
(or ancestral node)

Leaves
(or terminal nodes)

Figure : tree representation: ((a, (b, ¢)), (d, e)); trees could also be unrooted
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Phylogeny using parsimony (= economy of mutations)

Biological aims: from sequence alignment to phylogeny (a tree) by minimising the number of
changes (mutations, see figure below from www.bioalgorithms.info). Parsimony means economy;
there are two main algorithms (developed by Fitch and Sankoff); the output trees are rooted
(below the difference between rooted, left, and unrooted trees, right).

(a) Parsimony Score=3 (b) Parsimony Score=

=

129/269



Fitch parsimony model for DNA sequences
Fitch downpass algorithm

Bottom-up phase: Determine set of possible states for each internal node; top-down
phase: Pick states for each internal node. If the descendant state sets Sy and S,
overlap, then the state set of node p will include the states present in the intersection of
Sq and S;. If the descendant state sets do not overlap, then the state set of p will
include all states that are the union of S; and S,. States that are absent from both
descendants will never be present in the state set of p.

Initialization: R; =[ s; ] ; Do a post-order
Q S« S5NS (from leaves to root) traversal of tree

Q if S, =0then Determine R; of internal node i with
Q S+ S,USs children j, k:

Q /41 g ) ANA iFRNR#0
Q endif ’ R;U Rk otherwise
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Fitch parsimony model for DNA sequences
Fitch uppass algorithm

Assume that we have the final state set F,
of node a, which is the immediate ancestor
of node p (Sp) that has two children q (S;)
andr (S;).

Q F+— SoNFa

Q if Fp # Fathen

Q if SgNSr # 0 then

Q R+ ((S3US)NFa)USp

Q else

Q R+ S UFa

@ endif

Q endif

Ri(s) = { 0 ifs _'s

oo otherwise
Ri (s) = ming {R; (s') + S(s',8)} +
ming {Ri (s') + S (s, 8)}
If the downpass state set of p includes all
of the states in the final set of a, then each
optimal assignment of final state to a can
be combined with the same state at p to
give zero changes on the branch between a
and p and the minimal number of changes
in the subtree rooted at p. If the final set of
a includes states that are not present in the
downpass set of p, then there is a change
on the branch between a and p.
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Ficth algorithm, details

{A.C,G}
ﬁ— {Aﬁ Aﬁ

A C G G} A} © {6} (©}

ACCC ACCC
1/°\ /N

ACCA ACCG ACCA ATCC

2 2 2 1
ATCG ATCC ATCG ACCG
Score: 6 Score: 5

The figure in the top shows the Fitch two-step procedure. The tree is the hypothesis
you are testing and you choose the tree that minimises the score. Bottom figure: you
can sum the score for all the column of the alignment for each candidate tree and then
you select the best tree. Choosing the candidate trees: there are algorithms for
exploring the tree space.
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Example of Fitch’s algorithm

T
FITCH STEP1: Do a post-order (from leaves to root) traversal of tree I
Find out possible states Ri of internal node i with children j and k T
R,UR, if R.NR, =¢ o
Ri = . CcT E‘r
R, MR, otherwise l l l I
C TG T A T
FITCH STEP2: Do a pre-order (from root to leaves) traversal of tree IT
Select state rj of internal node j with parent i
T
n if LER, AGT
r. =
7 \arbitrary state€R, otherwise ' a l l = l
c TG

AT B
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Sankoff general parsimony: each mutation costs differently
Sankoff downpass algorithm

@ forallido . .
) o @ Sankoff parsimony is based on a cost
Q M« miny(c; + g™ matrix C = cj, the elements of which
Q H" « miny(c; + gj(')) define the cost ¢; of moving from a state i
to a state j along any branch in the tree.

I

Q end for The cost matrix is used to find the minimum
Q@ forallido cost of a tree and the set of optimal states
o gi(P) - hf") + h?” at the interior nodes of the tree.

@ end for
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Sankoff: finding optimal state sets (left) and uppass algorithm (right)

Q@ R0

Q foralliin F;do

Q@ m—ci+g® @ foralljdo

Q forallj+#1do Q P« mini(f® — K + cy)

Q@ m « min(c; + g, m) Q endfor

Q end for Complexity: if we want to calculate the

@ foralljdo overall length (cost) of a tree with m taxa, n

characters, and k states, it is relatively easy

if ¢j + g = mth . .
O ifo;+ 9 m then to see that the Fitch algorithms has

Q R+ FUj complexity O(mnk) and the Sankoff
@ end if algorithm is of complexity O(mnk?).
@ end for
@ end for
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Example of Sankoff’s algorithm

© G} 0]
Let ¢; the matrix cost (on the right) co] 0 eo]eo] [0]ee]eo]eo] [oo] 0 oofoc] [@]eofoofoo] [oc] ~=J" o
and S,(k) be the smallest number of steps
needed to evolve the subtree at or above node
v, given that node v is in state k. EEEE EEEE) O[] cost matrix:
0 ifnodevh Id have) state & / "'”CGT
Sk = ifno ef/ as (or could have) state
v +o  otherwise
If vis a leaf (tip) ”"'“
If vis a node with descendants u and w /'

The minimum number of (weighted) steps is

5 ml n 5/"00 (k) T (‘?
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Sankoff: example of downpass

B agecet
(B) Flolald
Ay Cyla g ¢t
a |0 1 3 3
B |22 & 2 (131314
C 3 3 0 1
t 3 3 1 0
[olocfoloe]  fpo[0foofe]  [ocfocloc] 0]
agecet agecet agecect

Figure : If the leaf has the character in question, the score is 0; else, score is co Each mutation
a— > b costs the same in Fitch and differently in Sankoff parsimony algorithm (weighted matrix in
A). An example of a weighted matrix for Sankoff (for proteins) is the Blosum, presented before in
this course
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example of uppass

SO (e} — 1

Figure : Example of Sankoff algorithm. Note that in the parsimony approaches (Fitch and
Sankoff) the tree (i.e. the topology and leaves order) is the hypothesis you are testing. So you try
different trees and select the one that is most parsimonious for each column of the alignment,
then you select the tree that is the most representative.
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Phylogeny based on a matrix of distances

Distance methods convert the changes counted in each column of the alignment, top figure, into a
single distance matrix, bottom figure (dissimilarity matrix= 1 - similarity) to construct a tree and are
kin to clustering methods. We can use the same matrix we use for Blast search, for example the
Blosum matrix or others. The UPGMA outputs a rooted tree while the neighbour joining outputs
an unrooted tree.

Species Characters
A ACTGTTCGTTCTGA
B ACCGTTCCTTCTAG
c CCTGTTGCTTCTGA
D ACTGTCCCTTCTAG

A B Cc D

- 075 035 027
075 - 085 033
035 085 - 031
027 033 031 -

o O @ ®»
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Additivity: a distance matrix could be converted into a tree

A matrix D is additive if for every four indices i,j,k,| we can write the following:
Dj + Dy < D + Dy = Dy + Dj. If the distance matrix is not additive we could find the
tree which best fits he distance matrix.

D]\ Djb-c
| U]V WIX] U[VWX
G UN 5 (U
V|2 Vil
w|2][2 TR
X|2[1]1 FEIEE]
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The additivity property

Top: distance matrix does not turn into a tree; Bottom: the distance matrix turns into a
tree.

x|=s|<|c
[o%]

=)

. C
—

x|=|<|c
[ae]
%]
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UPGMA: Unweighted Pair Group Method with Arithmetic Mean

UPGMA is a sequential clustering algorithm that computes the distance between
clusters using average pairwise distance and assigns a height to every vertex in the
tree, effectively assuming the presence of a molecular clock and dating every vertex.
The algorithm produces an ultrametric tree : the distance from the root to any leaf is
the same (this corresponds to a constant molecular clock: the same proportion of
mutations in any pathway root to leaf). Input is a distance matrix of distances between
species; the iteration combines the two closest species until we reach a single cluster.
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UPGMA is also hierarchical clustering

@ Initialization: Assign each species to its own cluster C;

© Each such cluster is a tree leaf

Q lteration:

@ Determine i and j so that d(C;, C;) is minimal

@ Define a new cluster Cx = C;|J C; with a corresponding node at height d(C;, C;)/2
@ Update distances to Ci using weighted average

@ Remove C; and G;

© Termination: stop when just a single cluster remains

%
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In UPGMA when choosing the closest pair, we do not take into account the distance

from all the other nodes (as we do in Neighbor Joining).
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Neighbor Joining, NJ

6 6 6 6
5
2
2 ! 4 ! 4 2 ! 4 2 3 .
Figure : NJ starts with a star topology (i.e. no neighbors have been joined) and then uses the

smallest distance in the distance matrix to find the next two pairs to move out of the multifurcation
then recalculate the distance matrix that now contains a tip less.

@ Identify i,j as neighbor if their distance is the shortest.
© Combine i,j into a new node u.

© Update the distance matrix.

© Distance of u from the rest of the tree is calculated
@ If only 3 nodes are left finish.

%
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NJ: details

The distance between any taxon (=species) pair i and j is denoted as d(i, j) and can be
obtained from the alignment. NJ iteratively selects a taxon pair, builds a new subtree,
and agglomerates the pair of selected taxa to reduce the taxon set by one. Pair
selection is based on choosing the pair i, j that minimizes the following Q (matrix)
criterion:

Q(i,j) = (r = 2)d(i,j) = Th_y d(i, k) = S, d(j, k)

where r is the current number of taxa and the sums run on the taxon set. Let f, g be the
selected pair. NJ estimates the length of the branch (f, u) using

d(f,u) = 3d(f,9) + 5555 [y A, k) = o4y (g, k)]

and d(g, u) is obtained by symmetry. Finally, NJ replaces f and g by u in the distance
matrix, using the reduction formula:

d(u, k) = 3[d(f, k) — d(f, u)] + 3[d(g, k) — d(g, u)]

NJ still reconstructs the correct tree when the distance matrix is perturbed by small
noise and that NJ is optimal regarding tolerable noise amplitude.

&
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NJ: details

One NJ agglomeration step. In the current tree (a), the taxon set contains a, b, ¢, d, e, f, and g;
some are original taxa, whereas the others (i.e., a, f, and g) correspond to subtrees built during

the previous steps. Tree (b): after selection of the (f, g) pair, a new subtree is built, and both f and

g are replaced by a unique taxon denoted as u. NJ terminates when the central node is fully
resolved. Neighbor joining on a set of r taxa requires r-3 iterations. At each step one has to build
and search a Q matrix. Initially the Q matrix is size r?, then the next step it is (r — 1), etc. This
leads to a time complexity of O(r3). %
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NJ: Example

Distance matrix A B CDE U C D E u_c u U U Us
B |5 c|3 Gl U |2 Fls
cla 7 Dle 7 U3 4 Fle 6
Df7 10 7 El5 6 5 Flz 8 6
Ef6 9 6 5 Fl7 8 9 8
Fls 118 9 8
Step 1
Scalculations Sy= (5+4474648)4 = 7.5 B+64547)3 =7 Because N-2
5= (5+7+1049+11/4 = 105 (3+7+6=8)3 5., we cannot do this
So= (sumall DYIN-2), Sc=(4+7+7+6+8V4 = 8 5= (6+74549)3 Sy = (3+4+6)2 = 6.5 5= (6+6)1 = 2 calculation.
where Nisthe £0f  55= (7+10+74549/4 =95 S.= (5+6+5+8/3 =8 5= (748+6)2 = 105
OTUs in the set. 5S¢ = (6+9+6+5+8) 5 S = (7+48+9+8)3 = 10.6
Sp = (8+11+8+9+8)4 = 11
Step2
Calculate pair with Smallest are Smallest is Smallest is Smallest is
smallest (M), where My, =3-65-75=-11
My=Dy-5-5, Mo 9-
Choose one o these (AB here). Chmseun!ofﬂrse(DEhﬂE) Mos,=2-8-8--14
Choose one of these (M., here).
Step3
Create anode (U) that U joins A and B: U, joins D and E: U, joins Cand Uy: U, joins U, and Us: For last pair, connect
joins pair with lowest Sy, = Daw/2 + (Sa = Souz Dnrlz +(S0-502 =3 Scu; = Deuyf2 + (S~ SupV2 = S«qu Dupuaf2 + (Sua = Sual2 U, and F with branch
M; such that Syur = Dua/2 + S O T A A T 7 R T o Yo PR Y 1 o

Su=Dyl2 +(5,- Sy2.

Step 4

Join i and j according to S c
above and make all 8
other taxa in form of D, 4
astar, Branches in black U,
are of unknown length. f
Branches in red are of = N
known length.

Step5 F

Calculate new distance Note this s the same
matrix of all other taxa tree we started with

U with (drawn in unrooted

Dy = Dix+ DDy, form here).
where i and j are those
selected from above.

Comments

&
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The bootstrap algorithm

If there are m sequences, each with n nucleotides, a phylogenetic tree can be
reconstructed using some tree building methods.

@ From each sequence, n nucleotides are randomly chosen with replacements,
giving rise to m rows of n columns each. These now constitute a new set of
sequences.

@ A tree is then reconstructed with these new sequences using the same tree
building method as before.

© Next the topology of this tree is compared to that of the original tree. Each interior
branch of the original tree that is different from the bootstrap tree is given a score
of 0; all other interior branches are given the value 1.

© This procedure of resampling the sites and tree reconstruction is repeated several
hundred times, and the percentage of times each interior branch is given a value
of 1 is noted. This is known as the bootstrap value. As a general rule, if the
bootstrap value for a given interior branch is 95% or higher, then the topology at
that branch is considered “correct”.

&
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Biological examples

Did the Florida Dentist infect his patients with HIV?

DENTIST
Patient C
Patient A

Phylogenetic tree
of HIV sequences
from the DENTIST,
his Patients, & Local

Patient G
Patient B
Patient E
Patient A
DENTIST

HiV-infected People: “— | Yes:

The HIV sequences from
these patients fall within
the clade of HIV sequences
found in the dentist.

Local control 2
Local control 3
Patient F +~— No

Local control 9

Local control 35
Local control 3
Patientd < NoO

(Ealdase) " Uoscourtane

1992 W— 1996, 2000 W— 2004 W—
903 1997 2000 W 2005 w—
1994 1998 2002 W 2006 w—
1995 1999 2003 W 2007 w—

T
L
§\\ ATAY

>

S
Y
RN
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Computer science examples

'SIJEEPPSII'EMG cvHlloLHoHerHsllGsT i

LSCIJ'leG%-TJ'bH -J'h' ,C'erDE -J'M'|Y

mmgaw@cwgmmﬁ.h,,y

2% 95

g
. N Distance algorithm in computer science
% o A) A sequence logo for the FakeAV-DO function “ F1”. Positions
%, ~ with large characters indicate invariant parts of the function;
lagg < o positions with small characters vary due to code metamorphism
Q
B) A neighbour joining tree of FakeAV-DO set of procedures F1.
0¢92
C C) Neighbor joining tree of FakeAV-DO set of procedures F2 from
the same samples of B.
X\JQZ% b6,
’\’bg “{, 6 (W.M. Khoo Unity in diversity: Phylogenetic-inspired techniques for reverse
S o

engineering and detection of malware families) m
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References, additional material for supervision and acknowledgements

- UPGMA: http://www.southampton.ac.uk/ re1u06/teaching/upgma/

- Gascuel O. and Steel M. Neighbor-Joining Revealed Molecular Biology and Evolution 2006 -
http://mbe.oxfordjournals.org/content/23/11/1997 .full.pdf

- Atteson K. 1999. The performance of the neighbor-joining methods of phylogenetic
reconstruction. Algorithmica 25:25178.

- http://www.cs.princeton.edu/ mona/Lecture/phylogeny.pdf
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CLUSTERING: topics and list of algorithms

Algorithms for Clustering biological data (K-means, Markov Clustering)

Input: a table of gene activity measurements (usually an excel file) which is estimated
by measuring the amount of mRNA for a set of genes

More mRNA usually indicates more gene activity.

Technology: Microarray (gene chips).

Output: The clustering analysis allows scientists to identify the genes that change in
disease with respect to control.

Main question: How many groups of sequences are there?

&
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The Biological problem

° Sample # 57
Experimental design ° —l
Stage 1 Compare normal vs diseased tissue, E EXPRESSION LEVEL OF GENE /
cells +/- drug, early vs late development I IN SAH . .
o
Stage 2 RNA prep and probe prep
¢ X isolate total RNA or mANA, label ,
with fluorescence (or radioactivity)
s 0
Compare two biological
Stage 3 Hybridize samples to micr o
Image analysis 0
Stage 4 Detect signals that repres:
expressed genes; quantite - 322 ‘
e §
H ’
Stage 5 ;’ I >
R o~ !
= PeFE3233%50 b 10 ) ) ) ® ]
Lo cmictAr o ey

1

Data analysis: Identify significantly regulated genes (e.g. using scatter plots)
Identify co-regulated genes (e.g. cluster analysis); classify samples

l Biological confirmation From P. Pevzner

Stage 6 Independently confirm that genes

are regulated e.g. by Northern analysis

L
Deposit data in a database
l (e.g. GEO, ArrayExpress)

Analyze data in the context of other, related experiments. Investigate
behavior of expressed genes in other experimental paradigms
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Clustering gene expression data

There are two typical experiments:

= Differentiation
® Compare expression levels under different conditions
* A lest Tyrepresents expression levels of a condition
® E g, cancer or drug-treated cell vs. normal cell

= Temporal expression E
® Explore temporal evolution of expression levels
* A test T;represents expression levels at a given time
® E g, study cell response to heat-shock, starvation

Gene expression profile

Figure : The color of the spot indicates activation with respect to control (red) or repression with
respect to the control (green) or absence of regulation (yellow) of a gene, or error in the
technological process (black). The sample can be all the genes of an organism (example the 6000
genes of yeast), or a selection of genes of interest (+ control genes). ER
-.'-.
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K-Means Clustering: Lloyd Algorithm

@ Arbitrarily assign the k cluster centers
© while the cluster centers keep changing

© Assign each data point to the cluster Ci corresponding to the closest cluster
representative (center) (1 < i < k)

© After the assignment of all data points, compute new cluster representatives
according to the center of gravity of each cluster, that is, the new cluster
representative is " v \ |C| for all v in C for every cluster C .

%
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Progressive greedy K-means Algorithm

@ Select an arbitrary partition P into k clusters
@ while forever

© bestChange« 0

© for every cluster C

@ for every elementinotin C

@ if moving i to cluster C reduces its clustering cost
@ if cost(P) — cost(P;_.c) > bestChange

@ bestChange « cost(P) — cost(P;_.¢)

Qi «i

Q@ C «cC

@ if bestChange > 0

@ Change partition P by moving /' to C’

@ else

@ return P

%
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Progressive greedy K-means Algorithm

=1 =2
1 1 1
. . .
08 - 08 e o8,
. . . .
* ey " L% .
. . . -, .
KA . s SRR
. . . . .
> .2 . > .t . > .
04 o4 04|
. . .
el ., R e .,
02 02 02,
. " . " .«
o o0z 04 08 08 1 o o0z 04 06 08 1 0 o0z 04 08 08 1
X X X
3 - 5
1 1 1
08 08 08,
. .
. " s s A
sl 40, . I osf 4 g ooen
> ) > . ;‘ ®e > .2 e
04 o4 3 04| ¢
e = e o . o
. e, e, e,
02 02 02|
. " . .
. . .
0
© o0z 04 08 o8 1 o o0z 04 06 08 1 o 02 o0s 08 08 1
X X

Figure : K-means progression from left to right and top to bottom; stars are center points (the
centers of the cluster).

-q'-.
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Progressive greedy K-means Algorithm

The quality of the cluster results could be assessed by ratio of the distance to nearest
cluster and cluster diameter. A cluster can be formed even when there is no similarity
between clustered patterns. This occurs because the algorithm forces k clusters to be
created. Linear relationship with the number of data points; the complexity is O(nKI)
where n = number of points, K = number of clusters, | = number of iterations.

distance=5
distance=20 @ sta=5
ANA)
\e o/
AR
o ¥

size=5

%
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Results of clustering on microarray data

The aims is clustering gene expression data: it is easy to interpret the data if they are partitioned
into clusters combining similar data points.

Figure : Clustering analysis obtained using Hierarchical clustering (UPGMA). The clusters are
coloured differently.

%
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Markov Clustering algorithm, MCL

Unlike most clustering algorithms, the MCL (micans.org/mcl) does not require the number of
expected clusters to be specified beforehand. The basic idea underlying the algorithm is that
dense clusters correspond to regions with a larger number of paths.

ANALOGY: We take a random walk on the graph described by the similarity matrix, but after each
step we weaken the links between distant nodes and strengthen the links between nearby nodes.
A random walk has a higher probability to stay inside the cluster than to leave it soon. The crucial
point lies in boosting this effect by an iterative alternation of expansion and inflation steps.

An inflation parameter is responsible for both strengthening and weakening of current.
(Strengthens strong currents, and weakens already weak currents). An expansion parameter, r,
controls the extent of this strengthening / weakening. In the end, this influences the granularity of
clusters.

&
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The input of MCL could be an adjacency matrix

The figure shows how to generate the input from a network.

01100000000000000O0T0TO0
1011000000000000000
1101010000000000000
0110110000000000000
0100011000000000000
0011IB1E00000000000
000011000000 0000000
0000 n[] 0011110000000
0000O0OOCOTMTO0OT11TM1TT1T00000O00O0
000000011010 1Eio 0000
000000011101 1000000
0000000110101000000
00000000011 10000000
DDUOOUOOOEOOO
00000000 0O0O0O0O0O0
0000O0OOCOOOOODOOOUO
000000O00O00O0O0O0O0O0
00000000 0O0O0O0O0O0
0000O0OOCODOOOODOOO
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MCL Algorithm

@ Input is an un-directed graph, with power parameter e (usually =2), and inflation
parameter r (usually =2).

© Create the associated adjacency matrix

. YA M,

© Normalize the matrix; Mpq = ﬁ

© Expand by taking the e-th power of the matrix; for example, if e = 2 just multiply
the matrix by itself.

(Mpg)"
> i(Mig)"

@ Inflate by taking inflation of the resulting matrix with parameter r : Mpq =

© Repeat steps 4 and 5 until a steady state is reached (convergence).

%
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MCL Algorithm complexity and entropy analysis

The number of steps to converge is not proven, but experimentally shown to be 10 to
100 steps, and mostly consist of sparse matrices after the first few steps. There are
several distinct measures informing on the clustering and its stability such as the
following clustering entropy:

S =—1/L};(Pjlog=Pj + (1 — Pj)logz(1 — Pj)) where the sum is over all edges and
the entropy is normalized by the total number of edges. This might be used to detect
the best clustering obtained after a long series of clusterings with different granularity
parameters each time.

The expansion step of MCL has time complexity O(n®). The inflation has complexity
O(n?). However, the matrices are generally very sparse, or at least the vast majority of
the entries are near zero. Pruning in MCL involves setting near-zero matrix entries to
zero, and can allow sparse matrix operations to improve the speed of the algorithm
vastly.

&
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MCL Algorithm

Figure : Example of various steps 1-6



TribeMCI: Algorithm

FastaFile o Family Cutput

Initial Preparation
3
3t
sjnsay

Parsed File

markov ) cichaten
Igererates. maax fckesaen marixg {peints famidiess]

TRIBE-MCL Clustering

Figure : example of mcl application from (www.ncbi.nlm.nih.gov/pubmed/11917018) ER
..'-.
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TribeMCL: output (each node is a protein)
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Hidden Markov Models: Topics and List of algorithms

Hidden Markov Models applications in Bioinformatics (Genescan, TMHMM). Input:
Sequence data.
Output: the prediction of the pattern.
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References, additional material for supervision and acknowledgements

- MCL: http://micans.org/mcl/ani/mcl-animation.html
- Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res. 2002 30:1575-84.
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Basics of Hidden Markov Models

HMMs form a useful class of probabilistic graphical models used to find genes, predict
protein structure and classify protein families.

Definition: A hidden Markov model (HMM) has an Alphabet = by, bo,, by , set of states
Q= 1, ..., K, and transition probabilities between any two states

aj = transition prob from state i to state j

ai + + ax =1, for all states i = 1,K

Start probabilities ap;

aot + + aok =1

Emission probabilities within each state e;(b) = P(x; = b|m; = k)

ei(b1) + + ei(bu) =1, for all states i = 1,K

A Hidden Markov model is memoryless: P(n:.1 = k| whatever happened so far) =
P(mts1 = K|y, w2, , T, X1, X2, , Xt) = P71 = K|m:) at each time step t, only matters the
current state ;.

&
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Example of HMM model of using dice

The dishonest casino model

0.05
0.95 0.95
P(1|F) = 1/6 P(1]L) = 1/10
P(2|F) = 1/6 P(2|L) = 1/10
P(3|F) = 1/6 0.05 P(3|L) = 1/10
P(4|F) = 1/6 P(4|L) = 1/10
P(5|F) = 1/6 P(5|L) = 1/10
P(6|F) = 1/6 P(BIL) = 1/2

http://ai.stanford.edu/ serafim/
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The dishonest casino: what is known, what we infer

@ Known: The structure of the model

@ The transition probabilities

@ Hidden: What the casino did (ex FFFFFLLLLLLLFFFF)

@ Observable: The series of die tosses, ex 3415256664666153...
@ What we must infer:

@ When was a fair die used?

@ When was a loaded one used?

%
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A “parse” of a sequence

! } | |

X X2 X3 Xy

L
F>r‘()(,7r) = ‘%Jﬂ] 1_1:63”[(.*? ). tjﬂ/ﬂ/ﬂ
i=1

Given a sequence x = x1 Xy, a parse of x is a sequence of states 7 = 71, , 7n.
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Given a sequence X = Xj.....Xy
and a parse &t = Ty, ......, Ty,

To find how likely is the parse:
(given our HMM)

P(x, 1) = P(Xy, o) Xy TTq, weens, T) =% X X3 %q
Plxy, 7oy | Toy1) P(Xyog, Ty | TOycp) e PXg, 785 | ty) P
(xy, 701) =
P(xy | my) Plmmy | 7y ) coeP(x, | 7,) P, | m,) P(x, | )
P(J'l:l) =

Qg1 Aty e Bt St (K)o B (Xy)
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The three main questions on HMMs

1. Evaluation
GIVEN aHMM M, and a sequence x,

FIND Prob[x | M ]
2. Decoding

GIVEN aHMM M, and a sequence x,

FIND the sequence &t of states that maximizes P[x, @ | M ]
3. Learning

GIVEN

a HMM M, with unspecified transition/emission probs.,
and a sequence X,

FIND parameters 8 = (e(.}, a;) that maximize P[ x | 8]

Evaluation: forward algorithm or the backwards algorithm; decoding: Viterbi; Learning:
Baum Welch = forward-backward algorithm (not in this course).

%
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Lets not be confused by notation

P[x ]| M]: The probability that sequence x was generated by
the model; The model is: architecture (#states, etc)

+ parameters 0 = ay, el.)
So, P[x ]| 8], and P[ x] are the same, when the architecture,
and the entire model, respectively, are implied
Similarly, P[x, w | M ] and P[ x, it ] are the same

In the LEARNING problem we always write P[x | 6] to
emphasize that we are seeking the 6 that maximizes P[x | 0]

&
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= Probability of most likely sequence of states
ending at statem, =k
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Decoding main idea

Given that for all states k, and for a fixed position i,
V(i) = maxy, gy PIXgeX g, T, oy Ty, X, T = K]

What is V,(i+1)?

From definition,

Vi(i+1) = maxy,  PIXpeX;, Ty, ey T, Xy, Tyq =1

= MaXy, P Xz Ty = 1] X0 X,70,.00, 76) P[xl...xi, TCy,.ey TG

=maXy, P, Ty =1 7)) PIXX g, T, o, T, X, 1]

= max,P(x;,,, T,, =1 ] = k) maxg PG g, 7T, X T=k] =

€ (x;,q) max, ay V(i)

%
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The Viterbi Algorithm

INpuUt: X = X; Xy

Initialization:
Vo(0)=1 (0 is the imaginary first position)
V. (0)=0,forallk>0

Iteration:
V(i) = g;(%;) x max, a,; V,(i-1)

Ptri(iy =argmax, a,; V,(i-1)

Termination:
P(x, m*) = max, V(N)

Traceback:

m,* = argmax, V,(N)
m,* = Ptr (i)

=
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Complexity of the Viterbi Algorithm

Xy X Mgiivecsuesuaiainizacsinsinsedehivesssnnssinanis Xy
State 1
<
2 ~
()
/]
K

Similar to “aligning” a set of states to a sequence
O(K?N)

Space:
O(KN)

=
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Valid directions

Valid directions in the Valid directions in the
alignment problem. decoding problem.

=
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Generating a sequence by the model

Given a HMM, we can generate a sequence of length n as follows:
@ Start at state m; according to prob ag-,
@ Emit letter x; according to prob e, (x1)
© Go to state m» according to prob ax,,
© until emitting x,
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Evaluation

P(x) Probability of x given the model
P(x...x;) Probability of a substring of x given the model
P(mt,=k | x) Probability that the it state is k, given x

A more refined measure of which states x may be in

=
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The Forward Algorithm

We want to calculate
P(x) = probability of x, given the HMM

Sum over all possible ways of generating x:
P(x)= 2 P(x,m) = X_P(x | ) P(x)

To avoid summing over an exponential number of paths x, define

fi(i) = P(x;...x, I, =k} (the forward probability)

%

185/269



The Forward Algorithm derivation

Define the forward probability:

f(i) = P(xp..x, ;= )

= 2::1...::1-1 PXgerXy g, TCpyens, Trg, T = 1) €)())

= 2:k Enl...m-z P(Xy.Xi g, Tp,eney Tp, Ty = K) 3 €1(X))

=e(x) X, fi(i-1) a

=
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The Forward Algorithm

We can compute f,(i) for all k, i, using dynamic programming!
Initialization:
f,(0)=1
f(0)=0,forallk>0
Iteration:
f,(i) = e/(x) Zk fli-1) ay
Termination:

P(x) = 2 f(N) a,q

Where, a,, is the probability that the terminating state is k
(usually = ag,)

%
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Comparison between Viterbi and Forward

VITERBI FORWARD

Initialization: Initialization:

Vy(0)= 1 f(0)=1

V,(0) =0, forallk>0 f,(0)=0, forallk >0
Iteration: Iteration:

V{(i) = e(x) max, V,(i-1) a (i) = ex) Z, fi-1) a
Termination: Termination:

P(x, m*) = max, V,(N) P(x) = Z f(N) a,
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Motivation for the Backward Algorithm

We want to compute
P(ni = k | )(),.
the probability distribution on the ith position, given x

We start by computing
P, = k, X) = P(X;.. X, T = K, Xiuge0Xy)
= P(X,..X;, 7 = K) P(XiyqeeXy | XqeX, 7T = K)

= P(x x,:‘: k) P(x =k
Wise's 2()( 1g alrd bkm)

%
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The Backward Algorithm (details)

Define the backward probability:

by (i) = P(x;,,..xy | T =k)
= 2 1o PGz o Xy Ty o Ty | T =K)
= ZI Z:rci+1...:rcN P(Xiu1 00 woes Xpy g = |, Ty oo, Ty | 3= k)
=2 €(Xiq) B Zing oy Piyar woor X Ty o T | g = 1)

=2 ex,1) ay bi+1)

=
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The Backward Algorithm

We can compute b, (i) for all k, i, using dynamic
programming

Initialization:
b.(N) = a,,, for all k

Iteration:
by (i) = Z; e/(x,,,) a by(i+1)

Termination:

P(x) = Z ag &(x1) by(1)

%
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Complexity

What is the running time, and space required, for Forward,
and Backward?

Time: O(K2N)
Space: O(KN)
Useful implementation technigue to avoid underflows
Viterbi: sum of logs

Forward/Backward: rescaling at each position by
multiplying by a constant

&
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Applications of Hidden Markov models (HMM): recognition of a human gene in

sequence data

The gene information starts with the promoter, which is followed by a transcribed (i.e. RNA) but
non-coding (i.e. not translated) region called 5’ untranslated region (5° UTR). The initial exon
contains the start codon which is usually ATG. There is an alternating series of introns and exons,
followed by the terminating exon, which contains the stop codon. It is followed by another
non-coding region called the 3° UTR; at the end there is a polyadenylation (polyA) signal, i.e. a
repetition of Adenine. The intron/exon and exon/intron boundaries are conserved short
sequences and called the acceptor and donor sites. For all these different parts we need to know
their probability of occurrence in a large database.

Startcodon  codons  ponor site

-SATGCCCTTCTCCAACAG.

Transcription
start

N

Promoter SUR  rermeaceetTaeacas
Acceptor site

Poly-A site
e
[GGCAGAAACAATAAALTES T

L

Stop codon

%

193/269



http://genes.mit.edu/GENSCAN.html

GenScan

* N-intergenic region

* P -promoter

¢ F-5 untranslated region

*  Ejq—single exon (intronless) (translation
start -> stop codon)

* E,—initial exon (translation start -> donor
splice site)

* E.—phase k internal exon (acceptor splice
site -> donor splice site)

*  E.m — terminal exon (acceptor splice site ->
stop codon)

(single-exon

e |, —phase kintron: 0 — between codon
after the first base of a codon; 2 — after the
second base of a codon

gene)

Forward (+) strand Forward (+) strand
——————————— (intergenic _——— — — — — — —
region) 393
Reverse (-) strand Reverse (-) strand 3
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Identifying genes and their parts (exons and introns)

In order to identify genes and their parts (exons and introns) we need to know their
length distribution (see example in figures below). Human genes comprise about 3% of
the human genome; average length: ~ 8,000 DNA base pairs (bp); 5-6 exons/gene;
average exon length: ~ 200 bp; average intron length: ~ 2,000 bp; ~ 8% genes have

a single exon and some exons can be as small as 1 or 3 bp. Below the statistics we
could implement into a HMM.

exon1 intron1 exon2 intron2 exon3

Length distributions of human introns an

ik

SN

=
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Identifying genes and their parts (exons and intron

GENSCAN (Burge & Karlin)

SAACANTTGT TITCTTTTGT TTANTTCTTG CTRTCTTIT TITTCTTCTC

COCARTTTIT ACTATTATAC TTANTGCCTZ ARCATTCTOT ATARCAAAAGI
GRAATATLTC TGAGATACAT TAAGTAMCTI ARARAAAARC TITACACAGT)
CTGCCTAGTA CATTACTATT TGGANTATA? GTGTGCTTAT TICCATATTC

Figure : The model (left) and the output (right) of Genscan prediction of a genomic region; the
result is a segmentation of a genome sequence, i.e. the colours map the HMM states with the %
predicted functional genomic segments
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Applications of HMM: recognition of the protein structure

Membrane proteins that are important for cell import/export. We would like to predict the position
in the amino acids with respect to the membrane. The prediction of gene parts and of the
membrane protein topology (i.e. which parts are outside, inside and buried in the membrane) will
require to train the model with a dataset of experimentally determined genes / transmembrane
helices and to validate the model with another dataset. The figure below describes a 7 helix
membrane protein forming a sort of a cylinder (porus) across the cell membrane.
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Prediction of aminoacid segments included in membrane proteins

outside loop

tail
tail
outside
¢ | membrane
: g ol inside
tail tail
tail
inside loop
amino acid sequence MGDVCDTEFGILVA. . ~SVALRPRKHGRWIV...FWVDNGTEQ...PEHMTKL HMM. ..
state sequence oooocoooccohhhhh.. . hhhhiiiiiiihhh...hhhoooooo... 000cooohhh...
tail tail tail tail loop tail
topology helix ———— heix
out short laop long loop

Figure : top: the 3D graph previous figure could be represented as a 2D graph; bottom, 3 state

prediction: each amino acid could be in the membrane (h), outside the cell (o) or inside the cell (%

198/269



THMM prediction

cylus};aesmlc non-cytoplasmic side
cap - cap short loop =
cyt. helix core non-cyt. > non-cyt., |«—
»| loop
— cyt
cap . cap long loop
cyt. helix core non-cyt. €7 non-cyt. e—

Figure : The THMM model: a three state prediction model (h,0,i) could be then refined adding
more states, for example caps, i.e. the boundary between outside and membrane and inside and
membrane. This refinement improves the prediction of the topology of the protein.
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TMHMM http://www.cbs.dtu.dk/services/TMHMM/

# Sequence Length: 274
# Sequence Wurber of predicted TMEs: 7
¥ Sequence Exp number of A= in TMH=: 153.74681
# Sequence Exp nunber, first 60 ARe: 22.08833
¥ Sequence Total prob of N-in: 0.04171
W Sequence POSSIBLE N-term signal sequence
Sequence TMEMMZ . 0 outside 1 6
Sequence TMEMME . O TMhelix 7 49
Sequence TMEMME . O imnsaide 50 61
Sequence THEMMZ .0 TheLix 62 84
Sequence THMEMME . 0 outside 85 103
Sequence TMHMMZ . 0 THheLix 104 126
Sequence TMHMMZ . O inside 127 130
Bequence TMHMME . O THMhelix 131 153
Sequence TMEMME O outsaide 154 157
Sequence THEMAZ .0 THhelix 158 180
Sequence THMHMMZ . O inside fLEY 200
Sequence THMHMMZ . O THhe Lix 201 223
Sequence TMEMME . 0 outside 24 227
Sequence THHMMZ .0 THhelix 2260 250
Sequence THMEMME O inside 35 74
TMHMM posternor probabilities for Sequence
12
[T T N —— I
1
\ U 4 | : ¥ |
f !
of | [ | i ‘ !
E | | |
] | /A
£ OB \l
g
B
04 I
0z ‘ I‘
i |- . OO SRS, SNV GUROTINE |
100 150 200 250
rransmembrane ingide — oulside

Other important and related application: Use of HMM in sequence alignment (PFAM:
http://pfam.xfam.org/)
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Sensitivity and Specificity

@ be predicted to occur: Predicted Positive (PP)

© be predicted not to occur: Predicted Negative (PN)

© actually occur: Actual Positive (AP)

@ actually not occur: Actual Negative (AN)

@ True Positive TP = PPN AP

©Q True Negative TN = PN AN

@ False Negative FN = PN AP

Q False Positive FP = PP AN

© Sensitivity: probability of correctly predicting a positive example Sn = TP/(TP + FN)

@ Specificity: probability of correctly predicting a negative example Sp = TN/(TN +
FP) or

@ Probability that positive prediction is correct Sp = TP/(TP + FP).

&
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References, additional material for supervision and acknowledgements

- Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids Richard
Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison
http://books.google.co.uk/books/about/Biological_Sequence_Analysis.html?id=R5P2GIJvigQC
- Viterbi: http://www.cs.umb.edu/ srevilak/viterbi/

- Lenwood S. Heath Naren Ramakrishnan (Eds) Problem Solving Handbook in Computational
Biology and Bioinformatics

- http://web.mit.edu/seven/doc/genscan/genscan.txt
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Topics and List of algorithms

Patterns in sequence alignment (Gibbs sampling).
Input: a multi sequence alignment. Output: a previously unknown pattern occurring
with some variation, in all the sequences. Main question: is there a sequence pattern

common to the group of sequences | am analysing? This is a qualitative (non
mathematical) introduction.

%
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Gibbs sampling: the string searching problem

atgaccgggatactgatAgAAgAAAGGTtGGGggegtacacattagataaacgtatgaagtacgttagactcggegecgecg

acccctattttttgagcagatttagtgacctggaaaaaaaatttgagtacaaaacttttccgaatacAAtAAAACGGCGGGA

tgagtatccctgggatgacttAAAAYAATGGaGtGGtgctctcccgatttttgaatatgtaggatcattcgecagggtecga
gctgagaattggatgcAAAAAAAGGGALtGEccacgcaatcgecgaaccaacgcggacccaaaggcaagaccgataaaggaga
tcccttttgeggtaatgtgccgggaggctggttacgtagggaagecctaacggacttaatAtAAtAAAGGHAGGGCttatag
gtcaatcatgttcttgtgaatggatttAAGAATAAGGGCTGGgaccgettggegcacccaaattcagtgtgggcgagegeaa

cggttttggcccttgttagaggcccccgta caattat taatct

aacttgagttAAAAAATAGGGaGCcctggggcacatacaagaggagtcttccttatcagttaaygctgtatgacactatgta

ttggcccattggctaaaagcccaacttgacaaatiggaagatagaatccttgcatact GGaGcGGaccgaaagggaag

ctggtgagcaacgacagattcttacgtgcattagctcgettccggggatctaatagcaggaagcttACtAAAAAGGAGCGGA
A%AA%AAAGGttGGG
el LT
CAATAAAACGGCGGG

Figure : Inserting a 15-bases motif with 4 mutations: why finding the motif is difficult? Reason to

search for motifs: we know from microarray analysis that n genes are activated together so there
may be a protein that binds somewhere before the start of each of them.

=
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Gibbs sampling: the Biological problem

Given a set of sequences, find the motif shared by all or most sequences; while its
starting position in each sequence is unknown, each motif appears exactly once in one
sequence and it has fixed length.

motif start index

gene start
<
S - ==
K
- Sz - ==
> > W
x ¥ x © = = £ RNA transcript s
424823838 4 3 .
v S e -
Promoter (control) Region Protein Coding Region
g g Reg 8

Figure : The regulation of a gene could be very complex with several binding proteins
(transcription factor) involved (left). Right: several genes are co-regulated (activated or repressed)
by same protein that binds before the gene start (co-regulated genes could be identified with
microarray).
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Gibbs sampling

Gibbs Sampling is an example of a Markov chain Monte Carlo algorithm; it is an
iterative procedure that discards one |-mer after each iteration and replaces it with a
new one. Gibbs Sampling proceeds slowly and chooses new I-mers at random
increasing the odds that it will converge to the correct solution. It could be used to
identify short strings, motifs, common to all co-regulated genes which are not
co-aligned. The algorithm in brief:

@ Randomly choose starting positions s = (s1,...,St) and form the set of I-mers
associated with these starting positions.
© Randomly choose one of the t sequences

© Create a profile p from the other t -1 sequences (or you can also use all the t
sequences).

© For each position in the removed sequence, calculate the probability that the I-mer
starting at that position was generated by p.

© Choose a new starting position for the removed sequence at random based on the
probabilities calculated in step 4.

@ Repeat steps 2-5 until there is no improvement.

&
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Introduction to Gibbs sampling

Considering a set of unaligned sequences, we choose initial guess of motifs

1. Select a random position in each sequence

Sequence set motif instance

Figure : motifs in purple, the rest of the sequences in green; next figures: theta is the weight
matrix i.e. the frequency of each base in the aligned set of motifs; red the best fitting motif; in y
axis the likelihood of each motif with respect to the current weight matrix.

First Gibbs Sampling implementations: AlignACE
(arep.med.harvard.edu/mrnadata/mrnasoft.html) and BioProspector
(ai.stanford.edu/ xsliu/BioProspector/). See ccmbweb.ccv.brown.edu

%
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Gibbs sampling

2. Build a weight matrix

[ | I— 1 (—
[ | E— 1 (—
e — ([
0 | — | 1 ]
[ | E— 1 —
®
3. Select a sequence at random
[ | I— | —
P : —
.. eeansmavseseteresresenesenearsennesrenonesnras] —
[ T 1 [ ]
[ TR | [
®

A weight matrix 6 has one row for each symbol of the alphabet and one column for
each position in the pattern. It is a position probability matrix computed from the
frequency of each symbol in each position. :
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Gibbs Sampling

4. Score possible sites in seq using weight matrix

Likelihood . _ -
(probability) — — —

Score=0.2+0.5+0.2+0.2+0.2+0.1=14

5. Sample a new site proportional to likelihood

Likelihood _ _ _
(probability) L — _ .
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Gibbs Sampling

6. Update weight matrix

Likelihood |
(probability)

o—I1I

:

/

Doesnt do reinitializations in the middle to get out of local maxima. Doesnt optimize th%
width (you have to specify width explicitly).
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References, additional material for supervision and acknowledgements

- http://www.bio.davidson.edu/courses/genomics/chip/chip.html

- Lawrence, Altschul, Boguski, Liu, Neuwald, Wootton, Detecting Subtle Sequence Signals: a
Gibbs Sampling Strategy for Multiple Alignment Science, 1993

- http://ccmbweb.ccv.brown.edu/cgi-bin/gibbs.12.pl

- https://github.com/mitbal/gibbs-sampler-motif-finding
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Biological Networks: Topics and List of algorithms

Biological Networks reconstruction (Wagner) and simulation (Gillespie). Input: a table
(say an excel table) from a microarray experiment (say gene in y axis and conditions or
time in x axis); output is a graph showing the quantitative relationships among all
genes (nodes). Usually the experiments are replicated so averages and distances
could be computed. Main question: find the direct dependencies among genes.

&
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The biological problem

A biological network is a group of genes in which individual genes can influence the
activity of other genes.Let assume that there are two related genes, B and D neither is
expressed initially, but E causes B to be expressed and this in turn causes D to be
expressed the addition of CX by itself may not affect expression of either B or D both
CX and E will have elevated levels of mRNAg and low levels of mRNAp

MRNAg | —— MRNAy

~
Transcription Translation .

(e ] O KR

Figure : We have E only; B is a Primary Target of E; Production of mRNAg is enhanced by E; D is
a Secondary Target of E; Production of mRNAp is enhanced by B; mRNAg and mRNAp
quantified by microarray.
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A genetic perturbation is an experimental manipulation of gene activity by

manipulating either a gene itself or its product

Such perturbations include point mutations, gene deletions, overexpression, inhibition
of translation, or any other interference with the activity of the product.

MRNA,

No mRNA,
Transcription

No Translation
©-=m o]

Figure : E and CX both present; B is a Primary Target; Production of RNAg is enhanced by E;
Production of RNAp is decreased (prevented)

=
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Network reconstruction: direct and indirect effects

When manipulating a gene and finding that this manipulation affects the activity of
other genes, the question often arises as to whether this is caused by a direct or
indirect interaction?

An algorithm to reconstruct a genetic network from perturbation data should be able to
distinguish direct from indirect regulatory effects.

Consider a series of experiments in which the activity of every single gene in an
organism is manipulated. (for instance, non-essential genes can be deleted, and for
essential genes one might construct conditional mutants). The effect on mRNA
expression of all other genes is measured separately for each mutant.

&
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Network reconstruction

@ How to reconstruct a large genetic network from n gene perturbations in fewer
than n? steps?

@ Motivation: perturb a gene network one gene at a time and use the effected genes
in order to discriminate direct vs. indirect gene-gene relationships

@ Perturbations: gene knockouts, over-expression, etc.

@ Method: For each gene g; , compare the control experiment to perturbed
experiment and identify the differentially expressed genes Use the most
parsimonious graph that yields the graph as its reachable graph.

&
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Network reconstruction

The nodes of the graph correspond to genes, and two genes are connected by a
directed edge if one gene influences the activity of the other.

(a)
(b) o: 16 (€) o 216
1: 1
2 2:
3% 258 3 0258121416
4: 4:
5 12 5 02121416
6 512 6 025121416
7217 7 2817
8: 8:
% 1015 9: 0125610121415161820
10: 120 10: 01256121416 1820
1 20 11: 025612141618 20
12 14 12: 021416
13 817 13: 817 %
4 0 14: 0216 §
1s: 15: 0216

0
16: 2 16: 2
]
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Wagner algorithm

(a)

(©)

Figure : The figure illustrates three graphs (Figs. B,C,D) with the same accessibility list Acc (Fig.
A). There is one graph (Fig. D) that has Acc as its accessibility list and is simpler than all other
graphs, in the sense that it has fewer edges. Lets call Gpars the most parsimonious network
compatible with Acc.

=

218/269



A gene network

Figure A shows a graph representation of a hypothetical genetic network of 21 genes.
Figure B shows an alternative representation of the network shown in A. For each gene
i, it simply shows which genes activity state the gene influences directly. In graph
theory, a list like that shown in Fig. B is called the adjacency list of the graph. We will
denote it as Adj(G), and will refer to Adj(/) as the set of nodes (genes) adjacent to
(directly influenced by) node i. One might also call it the list of nearest neighbors in the
gene network, or the list of direct regulatory interactions.

When perturbing each gene in the network shown in Figure A, one would get the list of
influences on the activities of other genes shown in Figure C.

Starting from a graph representation of the network in Figure A, one arrives at the list of
direct and indirect causal interactions in Figure C by following all paths leaving a gene.
That is, one follows all arrows emanating from the gene until one can go no further.
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The adjacency list completely defines the structure of a gene network

In graph theory, the list Acc(G) is called the accessibility list of the graph G, because it
shows all nodes (genes) that can be accessed (influenced in their activity state) from a
given gene by following paths of direct interactions.

In the context of a genetic network one might also call it the list of perturbation effects
or the list of regulatory effects.

Acc(i) is the set of nodes that can be reached from node i by following all paths of
directed edges leaving i. Acc(G) then simply consists of the accessibility list for all
nodes i

&
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Adjacency list

The adjacency matrix of a graph G, A(G) = (&;) is an n by n square matrix, where n is
the number of nodes (genes) in the graph. An element (a;) of this matrix is equal to
one if and only if a directed edge exists from node i to node j. All other elements of the
adjacency matrix are zero.

The accessibility matrix P(G) = pj is also an n by n square matrix. An element p; is
equal to one if and only if a path following directed edges exists from node i to node j.
otherwise p; equals zero.

Adjacency and accessibility matrices are the matrix equivalents of adjacency and
accessibility lists.

Lets first consider only graphs without cycles, where cycles are paths starting at a node
and leading back to the same node. Graphs without cycles are called acyclic graphs.
Later generalize to graphs with cycles.

An acyclic directed graph defines its accessibility list, but the converse is not true.

In general, if Acc is the accessibility list of a graph, there is more than one graph G with
the same accessibility list.
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What is a Shortcut

e .
r(e)=k+1 3.
(&)
, 7/
-~ e

Figure : A shortcut is an edge connecting two nodes, i and j that are also connected via a longer
path of edges. The shortcut e is a shortcut range k+1. That is, when eliminating e, | and j are still
connected by a path of length k+1.
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Wagner Algorithm

« Stepl: Graphs without cycles only (acyclic directed
graph)
» Step2: Graphs with cycles

* Step 1: Shortcut: \

o—@

* Ashortcut-free graph compatible with an accessibility
list is a unique graph with the fewest edges among all
graphs compatible with the accessibility list, i.e, a
shortcut-free graph is the most parsimonious graph.

&
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@ Let Acc be the accessibility list of an acyclic digraph. Then there exists exactly one
graph Gpars that has Acc as its accessibility list and that has fewer edges than
any other graph G with Acc as its accessibility list.

@ This means that for any list of perturbation effects there exists exactly one genetic
network G with fewer edges than any other network with the same list of
perturbation effects.

@ Definition: An accessibility list Acc and a digraph G are compatible if G has Acc as
its accessibility list. Acc is the accessibility list induced by G.

@ Definition: Consider two nodes i and j of a digraph that are connected by an edge
e. The range r of the edge e is the length of the shortest path between i and j in
the absence of e. If there is no other path connecting i and j, then r: = co.
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Let Acc(G) be the accessibility list of an acyclic directed graph, Gpars its most
parsimonious graph, and V(Gpars ) the set of all nodes of Gpars . We have the
following equation (1):

Vi€ V (Gpars) ... Adj (i) = Acc (i) \ Ujeace(hAcc ()

In words, for each node i the adjacency list Adj(i) of the most parsimonious genetic
network is equal to the accessibility list Acc(i) after removal of all nodes that are
accessible from any node in Acc(i).

%
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Figure : Adj(1) = Acc(1) — (Acc(2) + Acc(3) + Acc(4) + Ace(5) + Acc(6)) =(2,3,4,5,6) -
(BuU(5,6)UB) =(2,4)
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Proof: | will first prove that every node in Adj(i) is also contained in the set defined by
the right hand side of (1).

Let x be a node in Adj(i). This node is also in Acc(i). Now take, without loss of
generality any node j € Acc(i). Could x be in Acc(j)? If x could be in Acc(j) then we
could construct a path from i to j to x. But because x is also in Adj(i), there is also an
edge from i to x. This is a contradiction to Gpars being shortcut-free. Thus, forno j €
Acc(i) can x be in Acc(j). x is therefore also not an element of the union of all Acc(j)
shown on the right-hand side of (1). Thus, subtracting this union from Acc(i) will not
lead to the difference operator in (1) eliminating x from Acc(i). Thus x is contained in
the set defined by the right-hand side of (1).
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Acc and Adj

Next to prove: Every node in the set of the right-hand side of (1) is also in Adij(i).

Let x be a node in the set of the right-hand side of (1). Because x is in the right hand
side of (1), x must a fortiori also be in Acc(i). That is, x is accessible from i. But x can
not be accessible from any j that is accessible from i.

For if it were, then x would also be in the union of all Acc(j). Then taking the
complement of Acc(i) and this union would eliminate x from the set in the right hand
side of (1). In sum, x is accessible from i but not from any j accessible from i. Thus x
must be adjacent to i.
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Leti, j, and k be any three pairwise different nodes of an acyclic directed shortcut-free
graph G. If j is accessible from i, then no node k accessible from j is adjacent to i.
Proof: Let j be a node accessible from node i. Assume that there is a node k accessible
from j, such that k is adjacent to i. That is, j € Acc(i), k € Acc(j) and k € Adj(i). Thatk is
accessible from j implies that there is a path of length at least one from j to k. For the
same reason, there exists a path of length at least one connecting i to j. In sum, there
must exist a path of length at least two from i to k. However, by assumption, there also
exists a directed edge from i to k. Thus, the graph G can not be short-cut free.
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Step 2: How about graphs with cycles?

Two different cycles have the same accessibility list

Perturbations of any gene in the cycle influences the activity of all
other genes in the same cycle

Cant decide a unique graph if cycle happens

Not an algorithmic but an experimental limitation

0: 1234
1: 0234
2: 0134
3: 0124
4: 0123
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Condensation graph

(a)

0
6 10
= -9
-

®)
134,515

0 e
69,12

8 —~
10 ~
T

Figure : Basic idea: Shrink each cycles (strongly connected components) into one node and
apply the algorithm of step 1. A graph after shrinking all the cycles into nodes is called a
condensation graph
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How good is this algorithm?

@ Unable to resolve cycled graphs
© Require more data than conventional methods using gene expression correlations.

© There are many networks consistent with the given accessibility list. The algorithm
construct the most parsimonious one.

© The same problem was proposed around 1980 which is called transitive reduction.

@ The transitive reduction of a directed graph G is the directed graph G’ with the
smallest number of edges such for every path between vertices in G, G’ has a
path between those vertices.

Q@ An O(V) algorithm for computing transitive reduction of a planar acyclic digraph
was proposed by Sukhamay Kundu. (V is the number of nodes in G)
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Complexity

@ Measures of algorithmic complexity are influenced by the average number of entries in a
nodes accessibility list. Let k < n — 1 be that number.

@ For all practical purposes, there will be many fewer entries than that, not only because
accessibility lists with nearly n entries are not accessibility lists of acyclic digraphs, but also
because most real-world graphs are sparse.

@ During execution, each node accessible from a node j induces one recursive call of
PRUNEACC, after which the node accessed from j is declared as visited. Thus, each entry
of the accessibility list of a node is explored no more than once.

@ However, line 15 of the algorithm loops over all nodes k adjacent to j. If a = |Adj(j)|, on
average, then overall computational complexity becomes O(nka).

@ For practical matters, large scale experimental gene perturbations in the yeast
Saccharomyces cerevisiae (n = 6300) suggests that k < 50, a < 1 and thus that nka < r?
in that case.
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The algorithm itself takes the accessibility list of
a graph and eliminates entries inconsistent with
Theorem 2 and Corollary 2.

It does so recursively until only the adjacency
list of the shortcut-free graph is left.

The algorithm is shown as pseudocode. Because
it operates on lists, programming languages such
as perl or library extensions of other languages
permitting list operations will facilitate its
implementation.

(In Appendix a perl implementation of the
algorithm, where accessibility and adjacency list
are represented by a two-dimensional hashing
array.)

(= Y ¥}

Comments on the code

for allnodes i of G
Adj(i)=Acc(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(i)

end if

PRUNE_ACC(i)
for all nodes j Ace(i)
if dce(j)=2
declare ; as visited
else
call PRUNE_ACC(j)
end if

for all nodes j € Acefi)
for all nodes k = Adj(j)
if k edee(i)
delete £ from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)

=
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Comments on the code

The algorithm needs an
accessibility list for each node ;,
Ace(i), which would be obtained
from gene perturbation data and
subsequent gene activity
measurements for a genetic
network.

In lines one and two, for each not
i the adjacency list Adj(i) is
initialized as equal to the
accessibility list.

The algorithm will delete elemen
from this Adj(i) until the adjacenc
list of the most parsimonious
network of 4ce(G) is obtained.

[
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10
11
12

13

14

16

-
18
19
20

forallnodes i of G
Adjii)=Acc(i)

forallnodes i of G
if node 7 has not been visited
call PRUNE_ACC())
end if

PRUNE_ACC(7)
for all nodes j sdecri)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Aecfi)
for all nodes k = Adj(j)
if k edcefi)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(i)
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Comments on the code

The master loop in lines 3-6 cycles
over all nodes of G, and calls the
routine PRUNE_ACC for each
node i.

In the last statement of this routine
(line 19) the calling node is
declared as visited.

A visited node is a node whose
adjacency list Adj(i) needs not be
modified any further.

This is the purpose of the
conditional statement in the master
loop (line 4), which skips over
nodes that have already been
visited.

[
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10

12

13

14
15

16

-
18
19
20

forallnodes i of G
Adjii)=Acc(i)

forallnodes i of G
if node 7 has not been visited
call PRUNE_ACC())
end if

PRUNE_ACC(7)
for all nodes j sdecri)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Accfi)
for all nodes k = Adj(j)
if k edcefi)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(i)
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Comments on the code

Aside from storing Acc and Adj, the
algorithm thus also needs to keep
track of all visited nodes.

In an actual implementation, 4cc,
Adj, and any data structure that
keeps track of visited nodes would
need to be either global variables or
passed into the routine
PRUNE_ACC, preferably by
reference.

In contrast, the calling node i needs
to be a local variable because of the
recursivity of PRUNE_ACC.
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for all nodes i of G
Adj(i)=Acc(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(#)
end if

PRUNE_ACC(1)
for all nodes j edecfi)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j & Ace(i)
for all nodes k € Adj(j)
if k edeefi)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(i)
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Comments on the code

Function PRUNE_ACC

It contains of two loops. The
first loop (lines 8-13) cycles
over all nodes j accessible
from the calling node i. If
there exists a node accessible
from j, then PRUNE_ACC is
called from j. If no node is
accessible from j, that is, if
Ace(j) =D, thenj is declared
as visited.

Because its accessibility list
is empty, its adjacency list
must be empty as well (4dj(i)
CAecc(i)), and needs no
further modification.

(&)
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for allnodes i of G
Adjfi)=Ace(i)

for allnodes i of G
if node 7 has not been visited
call PRUNE_ACC(f)
end if

PRUNE_ACC(7)
for all nodes j sAcefi)
if Ace(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j = Acc(i)
for all nodes k & Adj(j)
if k edecfi)
delete &k from Adji)
end if
declare node 7 as visited
end PRUNE_ACC(i)
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Comments on the code

Thus, through the first loop

PRUNE_ ACC calls itself recursively
until a node is reached whose
accessibility list is empty.

There always exists such a node,
otherwise the graph would not be
acyclic.

This also means that infinite recursion
is not possible for an acyclic graph.

Thus, the algorithm always terminates.

More precisely, the longest possible
chain of nested calls of PRUNE_ACC
is (n-1) if G has n nodes.

For any node i calling PRUNE_ACC,
the number of nested calls is at most
equal to the length of the longest path
starting at i.
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for all nodes i of G
Adji)=Ace(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(7)
end if

PRUNE_ACC(7)
for all nodes j eAdcefi)
if dec(j)=2
declare j as visited.
else
call PRUNE_ACC(j)
end if

for all nodes j € Acefi)
for all nodes k = Adj(j)
if k edee(i)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)
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Comments on the code

The second loop of PRUNE ACC

lines 14-18) only starts once the
algorithm has explored all nodes
accessible from the calling node i, that
is, as the function calls made during the
first loop return.

In the second loop the principle of
Corollary 2 is applied.

Specifically, the second loop cycles
over all nodes j accessible from i in line
14.
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for all nodes i of G
Adj{i)=Acc(i)

for allnodes i of G
if node 7 has not been visited
call PRUNE_ACC(i)
end if

PRUNE_ACC(7)
for all nodes j edecti)
if dee(ji=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Ace(i)
for all nodes k & Adj(j)
ifk sdec(i)
delete k from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)
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In a slight deviation from what Corollary 2
suggests, line 15 cycles not over all nodes
kE&Ace(j) , but only over k € Adj(j).

All nodes k €.A4dj(j) are deleted from Adj(i) in
lines 16-18. Cycling only over k € Adj(j) saves
time, but does not compromise the requirement
that all nodes k € 4dj(i) be removed, because
line 14 covers all nodes j accessible from i.

Because of the equality proven in Theorem 2,
once this has been done, the adjacency list need
not be modified further. This is why upon
leaving this routine, the calling node is declared
as visited.

Notice also that if a node j with dee(j) = Eis
encountered, the loop in line 15 is not executed.

L) b -

(=0

Comments on the code

for all nodes i of G
Adj(i)=Ace(i)

for all nodes i of G
if node 7 has not been visited
call PRUNE_ACC(i)
end if

PRUNE_ACC(7)
for all nodes j edceli)
if Aec(j)=2
declare j as visited.
else
call PRUNE_ACC())
end if

for all nodes j € Aec(i)
for all nodes k = Adj(j)
ifk edcefi)
delete & from Adj(i)
end if
declare node 7 as visited
end PRUNE_ACC(1)
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Comments on the code

1 for all nodes | of &

2 if component(i] has not been defined

3 create new node x of G*

4 componentfij=x

5 for all nodes jeAccii)

6 if icAccij)

7 compement[j=x

8 end if

9 end if

10 for all nodes { of G*

11 Accgr(i)=2

12 for all nodes | of &

13 for all nodes j = Accii)

14 if componentfi] £ componentfj]

15 if componentfj]e Accas component(if)
16 add componentfj] to Accg={component{if)
17 end if

18 end if
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References, additional material for supervision and acknowledgements

- A. Wagner Bioinformatics 17, 2001
(a different method: ARACNE: an algorithm for the reconstruction of gene regulatory networks in
a mammalian cellular context http://www.ncbi.nIm.nih.gov/pubmed/16723010)
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Gillespie algorithm: The Biological problem

Many studies have reported occurrence of stochastic fluctuations and noise in living systems.
Observation of gene expression in individual cells has clearly established the stochastic nature of
transcription and translation. When using deterministic modeling approaches, for examples
differential equations, we assume that the biological system evolves along a fixed path from its
initial state. Such an approach cannot be taken for modeling stochastic processes such as gene
networks. Using deterministic methods, it is not possible to capture emergent phenomena that
arise from inherent randomness. Example below: virus decision (hide in the genome vs kill the
host and exit) is dictated by noise.

(0}
J

|

\ ’ o ﬁ
Lysogeny %
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Gillespie algorithm

Consider a system of N molecular species Si,, Sy interacting through M elemental
chemical reactions Ry, , Ru.

We assume that the system is confined to a constant volume W and is well stirred and
at a constant temperature. Under these assumptions, the state of the system can be
represented by the populations of the species involved.

We denote these populations by X(t) = Xi(t),, Xn(t), where Xi(t) is the number of
molecules of species S; in the system at time t. The well stirred condition is crucial. For
each reaction R;, we define a propensity function g;, such that a;(x)dt is the probability,
given X(t) = x, that one R; reaction will occur in time interval [t, t 4 dt). State change
vector v;, whose ith component is defined by v;; the change in the number of S;
molecules produced by one R; reaction.
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The most important method to simulate a network of biochemical reactions is the
Gillespies stochastic simulation algorithm (SSA)

The Gillespie algorithm is widely used to simulate the behavior of a system of
chemical reactions in a well stirred container

The key aspects of the algorithm is the drawing of two random numbers at each
time step, one to determine after how much time the next reaction will take place,
the second one to choose which one of the reactions will occur.

Each execution of the Gillespie algorithm will produce a calculation of the evolution
of the system. However, any one execution is only a probabilistic simulation, and
the chances of being the same as a particular reaction is vanishingly small.
Therefore it should be run many times in order to calculate a stochastic mean and
variance that tells us about the behaviour of the system.

the complexity of the Gillespie algorithm is O(M) where M is the number of
reactions.
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Gillespie Algorithm

@ Initialise: set the initial molecule numbers, set time t = 0.
© Calculate the propensity function a; for each reaction, and the total propensity
according to equation ap (x) = Z;‘L g(x),j=1,..M.

© Generate two uniformly distributed random numbers rand; and rand. from the
range (0, 1).

@ Compute the time 7 to the next reaction using equation 7 = #(X)In (ra;d1) .

@ Decide which reaction R, occurs at the new time using equation
randy > Y i ak...and ...rande < L Y01 ak .

@ Update the state vector v (molecules quantity) by adding the update vector :
v(t+7) = v(t) + (¥)u

@ Sett = t+ 7. Return to step 2 until t reaches some specified limit fyax.
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In each step, the SSA starts from a current state x(t) = x and asks two questions:
When will the next reaction occur? We denote this time interval by t .

When the next reaction occurs, which reaction will it be? We denote the chosen
reaction by the index j. To answer the above questions, one needs to study the joint
probability density function p (,/ | x, t) that is the probability, given X(t) = x, that the
next reaction will occur in the infinitesimal time interval [t + 7, t + 7 + df]. The
theoretical foundation of SSA is given by p(7,j | x,t) = a;j (x) exp (—ao (x) 7),

where & (x) = Z;‘L a; (x). It implies that the time t to the next occurring reaction is an
exponentially distributed random variable with mean 1/ay (x) , and that the index j of
that reaction is the integer random variable with point probability a; (x) /a0 (x). The 7 is
=i ().

The system state is then updated according to X (t + 7) = x + 15 and this process is
repeated until the simulation final time or until some other terminating condition is
reached.
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Qualitative example of results

Reactions: ODE’s:

A+BX, C dA/dt = -k,*A*B + ky*C — k3*A
cl A+B ﬁ\ dB/dt = -k,*A*B + ky*C + ky*A
A%' B dC/dt = ky*A*B - k,*C - k,*C
C4

In a deterministic modeling approach, given a set of reactions and the initial conditions,
we integrate the coupled equations for some period of time.
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Deterministic Solution

2000

A+B->C

C>A+B 1500
A->B

c-> 1000

dA/dt = -k,*A*B + k,*C — k;*A
dB/dt = -k,*A*B + k,*C + ks*A | 500
dC/dt = k,*A*B — k,*C — k,*C

0 5 10
. t
» Continuous

« Average Kinetic rates represent
reaction probabilities

Solving the systems of ODEs we obtain the concentrations/numbers of species A,B,C
in time.
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Validity of Deterministic Solution

0000004 ¢

The deterministic approach works well with large numbers.
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Validity of Deterministic Solution

0 200 400 600 800

With small number of molecules the approach shows limitations.
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Reaction Probabilities

* ¢, dt = average probability that a particular combination
of reactants will react according to R, in the next
time interval dt

. hu= number of reactant combinations

* h,c, dt=a, df = average probability thatan R,
reaction will occur somewhere inside V
in the next time interval dt

R;: A+B>C

X molecules of A e
h; = XY reactant combinations
Y molecules of B

XYc, dt = probability that an R, reaction will occur somewhere
inside Vin the next time interval dt
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Exact Stochastic Simulation

» Avoid averaging assumptions
+ Probabilistic formulation
— When does next reaction occur?
— Which reaction occurs next?
» Reaction probability density function:

P(t,u)dt = probability at time £ that the next reaction
is R,, and occurs in interval (t+1,t+1+d7)

System State:
Ry t [t
m Ry C>A+B| [A]1 ]2
} F+— B |1
t tht thrkde cls
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t t+t  t+r+dt

P(t,u)dt = Py(t) h,c,dt
probability that reaction p occurs during (t+1, t+t+dt)

probability that no reaction occurs during (t,t+1)

=
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Deriving Reaction PDF

« Divide (t,t+1) into K '
subintervals of width ¢ ! :

- Probability that none of the reactions occur in any of

the K subintervals:
K M
M
" hert -> il
= e i=l

i=1 7

R(r)= [1—2;_‘1111icig]K = lim| 1- 2 -
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Deriving Py(7) for Reaction PDF

=a,e ‘.
R
— ( —T a_f‘ — P . P
=\dpe a1 () (ﬂlT)
0 — S <«—rand,a,
when which

next reaction
reaction occurs
occurs

-1 #
u is the integer for which lel a, <rand,a, < Z e

1= (1/ag)In(1/rand,)

-q'-.
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Core of the algorithm

1. Initialization
— Set values of ¢, for the M reactions.
— Set initial population sizes
2. Calculate the M values a, and a,= X a,,.
3. Generate (t,u) based on P(t,u)
4. Adjust population levels according to the
reaction R , and increase t by ©

w

5. Return to Step 2

%
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Deterministic and Stochastic: Pros and Cons

* Advantages
— continuous time, discrete population changes
— captures effects of noise
— simple implementation
— small memory requirements

« Disadvantages
— CPU intensive
— typically must simulate many runs

— must use good random number generator
« periodicity affects size of simulation
« resolution limits range of probabilities

%
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References, additional material for supervision and acknowledgements

- D.T. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of
Coupled Chemical Reactions. 1976. J Comput Phys 22:403-434. D.T. Gillespie. Exact Stochastic
Simulation of Coupled Chemical Reactions. 1977. J Phys Chem 81:2340-2361

- https://www.youtube.com/watch?v=46ruoTTLL5g

- http://www.staff.ncl.ac.uk/d.j.wilkinson/software/ - Example: A. Arkin, J. Ross, H. McAdams.
Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage-Infected Escherichia
coli Cells. 1998. Genetics 149:1633-1648
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References, additional material for supervision and acknowledgements

-LECTURE 1 - http://bionumbers.hms.harvard.edu/

- http://www.thomas-schlitt.net/Bioproject.html; http://www.biostat.wisc.edu/ craven/hunter.pdf
-LECTURE 2 - N. Jones, P. Pevzner An Introduction to Bioinformatics Algorithms

- T.F. Smith, M.S.Waterman, Identification of common molecular subsequences, J Mol Biol 147,
195197, 1981.

- https://www.youtube.com/watch?v=P-mMvhfJhu8 - affine gaps:
http://courses.cs.washington.edu/courses/cse527/00wi/lectures/lect05.pdf - D.S. Hirschberg, A
linear space algorithm for computing longest common subsequences, Communications of the
ACM 18, 341343, 1975; http://drp.id.au/align/2d/AlignDemo.shtml.

- Nussinov, R., Pieczenik, G., Griggs, J. R. and Kleitman, D. J. (1978). Algorithms for loop
matchings, SIAM J. Appl. Math

LECTURE 3

- Altschul, S.F. and Gish, W. (1996) "Local alignment statistics.” Meth. Enzymol. 266:460-480 -
Altschul, S.F,, et al. (1990) "Basic local alignment search tool.” J. Mol. Biol. 215:403-410 -
https://www.youtube.com/watch?v=LInMtI2Sg4g - Ma B., Tromp J., and Li M. (2002)
PatternHunter: faster and more sensitive homology search, Bioinformatics.
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References, additional material for supervision and acknowledgements

LECTURE 4

D.G. Higgins, J.D. Thompson, and T.J. Gibson. Using CLUSTAL for multiple sequence alignments.
Methods in Enzymology, 266:383402, 1996.

LECTURE 5

- Li, H and Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics 25:1754-60.

- Compeau P, Pevzner P and Tesler G. How to apply de Bruijn graphs to genome assembly.
Nature Biotechnology 29: 987 2011

- http://www.homolog.us/Tutorials/index.php?p=2.1&s=1

- https://www.youtube.com/watch?v=4n7NPk5Iwbl

- Schatz, M., Delcher, A. and Salzberg, S. Genome Res. 20, 11651173 (2010).

LECTURE 6,7

- UPGMA: http://www.southampton.ac.uk/ re1u06/teaching/upgma/

- Gascuel O. and Steel M. Neighbor-Joining Revealed Molecular Biology and Evolution 2006 -
http://mbe.oxfordjournals.org/content/23/11/1997 .full.pdf

- Atteson K. 1999. The performance of the neighbor-joining methods of phylogenetic
reconstruction. Algorithmica 25:25178.

- http://www.cs.princeton.edu/ mona/Lecture/phylogeny.pdf

LECTURE 8

- MCL: http://micans.org/mcl/ani/mcl-animation.html

- Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of
protein families. Nucleic Acids Res. 2002 30:1575-84.
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References, additional material for supervision and acknowledgements

LECTURE 9

- Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids Richard
Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison
http://books.google.co.uk/books/about/Biological_Sequence_Analysis.html?id=R5P2GIJvigQC
- Viterbi: http://www.cs.umb.edu/ srevilak/viterbi/

- Lenwood S. Heath Naren Ramakrishnan (Eds) Problem Solving Handbook in Computational
Biology and Bioinformatics

LECTURE 10

- http://www.bio.davidson.edu/courses/genomics/chip/chip.html

- Lawrence, Altschul, Boguski, Liu, Neuwald, Wootton, Detecting Subtle Sequence Signals: a
Gibbs Sampling Strategy for Multiple Alignment Science, 1993

LECTURE 11

- A. Wagner Bioinformatics 17, 2001

LECTURE 12

- D.T. Gillespie. A General Method for Numerically Simulating the Stochastic Time Evolution of
Coupled Chemical Reactions. 1976. J Comput Phys 22:403-434. D.T. Gillespie. Exact Stochastic
Simulation of Coupled Chemical Reactions. 1977. J Phys Chem 81:2340-2361

- https://www.youtube.com/watch?v=46ruoTTLL5g

- http://www.staff.ncl.ac.uk/d.j.wilkinson/software/ - Example: A. Arkin, J. Ross, H. McAdams.
Stochastic Kinetic Analysis of Developmental Pathway Bifurcation in Phage-Infected Escherichia
coli Cells. 1998. Genetics 149:1633-1648
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You as a Bioinformatics practicioner

- Data Repository: http://www.ncbi.nlm.nih.gov/ ; Human Genome Browser Gateway
http://genome.ucsc.edu/ www.ensembl.org ; http://www.ebi.ac.uk

- Progressive alignment: http://www.ebi.ac.uk/Tools/msa/clustalw2/;

- Phylogenetic software: http://evolution.genetics.washington.edu/phylip/software.html
- HMM: http://www.cbs.dtu.dk/services/TMHMM/

- http://genes.mit.edu/GENSCAN.html

- Gibbs sampling http://bayesweb.wadsworth.org/cgi-bin/gibbs.8.pl?data_type=DNA

- Various libraries to help with Biological data : www.biojava.org; www.bioperl.org;
www.biopython.org; C++ www.ncbi.nim.nih.gov/IEB/ToolBox/; Bioconductor
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Figures acknowledgement (also orally during the lecture; it refers to the numbers

in the copies distributed during the lectures, i.e. 4 slides/pages)

- pag 3, Church et al, Next-Generation Digital Information Storage in DNA, 28 SEPTEMBER 2012 VOL 337 - pag 4 from Bower and Boulori Computational
modeling of genetic and biochemical networks, MIT Press, from Shalini Venkataraman and Vidhya Gunaseelan CS 594: An Introduction to Computational
Molecular Biology, Nir Friedmans and Shlomo Moran lectures. - pag 5 H Koeppl's Lecture at ETH. - pag 11 from Pevzner P Computational Molecular Biology:
An Algorithmic Approach, MIT Press. - pag 14 from Volker Sperschneider Bioinformatics: Problem Solving Paradigms, springer. - pag 18,19 from Ming Li,
University of Waterloo. - pag 21,22 from Wall lab website, Harvard. - pag 23,24 from Compeau Nature Biotechnology 29, 987991, (2011). - pag 22,26 from
Alicia Clum, DOE Joint Genome Institute. - pag 33 from G Caldarelli at the European Complex Systems Conference. - pag 34 from paper on TribeMCL (see
previous slide). - pag 36,37,38 from Nir Friedmans and Shlomo Moran lectures at at www.cs.huiji.ac.il. - pag 40, 41 from C. Burge and S. Karlin Prediction of
Complete Gene Structures in Human Genomic DNA.J. Mol. Biol. (1997) 268, 78-94. - pag 42,43 Chris Burge’s lecture on DNA Motif Modeling and Discovery
at MIT. - pag 52 from Wilkinson Stochastic Modeling, CRC Press.
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Examples of Exam Questions

@ Align the two strings: ACGCTG and CATGT, with match score =1 and mismatch,
gap penalty equal -1
@ Describe with one example the difference between Hamming and Edit distances

@ Discuss the complexity of an algorithm to reconstruct a genetic network from
microarray perturbation data

@ Discuss the properties of the Markov clustering algorithm and the difference with
respect to the k-means and hierarchical clustering algorithms
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Examples of Answers

Align the two strings: ACGCTG and CATGT, with match score =1 and mismatch, gap
penalty equal -1

cl|a T|G
0|12 |3 |4a|5 6
0 Q-1 -2 84 56
t
C1|-1 | 1+1s0+t-1-F-2+1-3
A2|-2 140 | 0+-1f2F-3
r3|-3/0|0-1]-1]1:f0
Ga|-4|1 -1 2+1,0 3
T 5|5 2| 2|11 34D

Describe with one example the difference between Hamming and Edit distances
TGCATAT — ATCCGAT in 4 steps; TGCATAT (insert A at front); ATGCATAT (delete 6th

T); ATGCATA (substitute G for 5th A); ATGCGTA (substitute C for 3rd G); ATCCGAT
(Done).
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Examples of Answers

Discuss the complexity of an algorithm to reconstruct a genetic network from
microarray perturbation data

Reconstruction: O(nka) where n is the number of genes, k is the average number of
entries in the accession list; a is the average number of entries in adjacency list. Large
scale experimental gene perturbations in the yeast Saccharomyces cerevisiae
(n=6300) suggests that k < 50, a < 1, and thus that nka << r.
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Discuss the properties of the Markov clustering algorithm and the difference with
respect to the k-means and hierarchical clustering algorithms

MCL algorithm: We take a random walk on the graph described by the similarity matrix
and after each step we weaken the links between distant nodes and strengthen the
links between nearby nodes.

The k-means algorithm is composed of the following steps: 1) Place K points into the
space represented by the objects that are being clustered. These points represent
initial group centroids. 2) Assign each object to the group that has the closest centroid.
3) When all objects have been assigned, recalculate the positions of the K centroids. 4)
Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation
of the objects into groups from which the metric to be minimized can be calculated.
Hierarchical clustering: Start with each point its own cluster. At each iteration, merge
the two clusters; with the smallest distance. Eventually all points will be linked into a
single cluster. The sequence of mergers can be represented with a rooted tree.
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