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Abstract—Merging multi-exposure image stacks into a high
dynamic range (HDR) image requires knowledge of accurate ex-
posure times. When exposure times are inaccurate, for example,
when they are extracted from a camera’s EXIF metadata, the
reconstructed HDR images reveal banding artifacts at smooth
gradients. To remedy this, we propose to estimate exposure
ratios directly from the input images. We derive the exposure
time estimation as an optimization problem, in which pixels are
selected from pairs of exposures to minimize estimation error
caused by camera noise. When pixel values are represented in
the logarithmic domain, the problem can be solved efficiently
using a linear solver. We demonstrate that the estimation can
be easily made robust to pixel misalignment caused by camera
or object motion by collecting pixels from multiple spatial tiles.
The proposed automatic exposure estimation and alignment
eliminates banding artifacts in popular datasets and is essential
for applications that require physically accurate reconstructions,
such as measuring the modulation transfer function of a display.
The code for the method is available.

Index Terms—High dynamic range imaging; camera noise
model, statistical estimation, multi-exposure fusion

I. INTRODUCTION

WHEN the dynamic range of a scene exceeds the op-
erating range of a standard digital sensor, one can

overcome this limitation by capturing a stack of images with
different camera settings: modulating exposure times [13],
sensor gain [16], [22] or by capturing and averaging a burst of
images [20]. Then, the captured exposure stack can be merged
into a single image to both expand the dynamic range and
reduce noise.

Regardless of the approach, regions of the reconstructed
high dynamic range (HDR) images that contain smooth in-
tensity gradients often end up with banding artifacts, such as
those shown in Figure 1. Banding artifacts are highly visible
in both images and videos, and they have been the subject of
extensive research, particularly in the field of video streaming.
Banding tends to be more noticeable compared to other video
compression artifacts [27], [40], [44]. The reason for banding
in merged exposure stacks is a mismatch between the actual
capture parameters and those reported by the camera, typically
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Fig. 1. The first row depicts patches from images of overcast skies taken from
large HDR datasets [10], [18]. Misalignment between the reported camera
settings results in banding artifacts (pointed at by the red arrows) at the
boundary between two exposures. This problem is not limited to the sky
and affects other regions too, as shown by patches in the second row. We
carefully picked exposure stacks consisting of RAW spatially-aligned images
that do not require CRF inversion or motion compensation.

in the exchangeable image file format (EXIF) header. Such
inaccuracies could be caused by

• limited accuracy of the (mechanical) aperture and shutter
• wrongly reported EXIF data due to rounding (e.g. 1/60

exposure time could be reported instead of 1/64)
• changes in scene illumination, for example, due to flick-

ering lights or overcast skies with moving clouds
We stress that the artifacts shown in Figure 1 are not due
to spatial misalignment because we carefully selected image
stacks without camera or object motion. Further, since we
merged linear RAW images, the artifacts are not due to
incorrect camera response function (CRF) inversion.

The inaccuracies of exposure time found in the EXIF
metadata are substantial, reaching 40%, as shown in Figure 2.
To prepare this figure, we computed the relative error between
the reported EXIF exposure times and the times estimated
by the proposed method. The two plots show similar error
distribution for two datasets of multi-exposure HDR image
stacks [10], [18]. The errors of such magnitude can easily
introduce banding artifacts, as shown in Figure 1.

In this work, we propose to estimate exposure ratios directly
from a stack of images, which lets us eliminate the banding
artifacts from the merged HDR images. We formulate the
problem to be efficiently solved as a sparse linear system
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Fig. 2. Histograms of relative errors for two popular HDR datasets. The
computed sample standard deviations of relative errors are 9% for the
Fairchild survey [10] and 14% for the SI-HDR dataset [18].

while accounting for heteroskedastic camera noise with known
or unknown noise parameters. Thus, our exposure estimation
can be used to improve ground truth reconstructions of several
existing stack-based HDR datasets. Further, algorithms that
enhance merged reconstructions by iterative optimization [29],
as well as deep neural networks that use HDR images for
other related tasks [6], [46] stand to be improved by our more
accurate exposures.

Correctly estimating exposures is also relevant for HDR
merging with deghosting, which involves detecting and reg-
istering pixels that belong to moving objects [32], [41]. Erro-
neous capture parameters make this task more challenging, as
pixel differences could be caused by either object movement
or incorrect exposure time.

Although banding artifacts are visible only in smooth image
regions in Figure 1, inaccurate exposures affect all pixels in the
image. Incorrect pixel intensities pose a serious complication
for applications that utilize cameras in place of expensive light
measurement instruments. Multi-image exposure stacks often
serve as substitutes for more accurate measurements from
instruments such as spectrophotometers. In Section IV-D, we
highlight potential discrepancies in the measured modulation
transfer function (MTF) of an HDR display when the exposure
stack of a slant-edge [36] is merged with incorrectly reported
capture parameters.

From a practical standpoint, our method is suitable for
large images (8k or more) from modern cameras. We achieve
this by solving a smaller system of equations by collecting
pixel-pairs with the lowest relative variances according to the
noise model we consider. Contrary to existing methods that
utilize pixel pairs from consecutive exposures in the stack, we
introduce a greedy algorithm that provides optimal pixel pairs
to ensure that all exposures are well-estimated. Our reduced
linear system is a union of the highest weighted spanning trees
induced on an exposure multigraph, resulting in a balanced
linear system. Additionally, our proposed method is spatially
balanced because we split the input image into tiles and collect
pixels from all tiles. This improves the robustness of our
estimator to ghosting caused by camera or object motion.

Here is a brief overview of the paper that summarizes
our contributions. We highlight that camera metadata may be
unreliable and motivate the need to estimate corrective per-

exposure ratios to obtain artifact-free HDR reconstruction. We
show that such exposure ratios can be estimated by solving a
large linear system of equations (Section III-C), where each
equation connects pixel intensities in the logarithmic domain.
To deal with underexposed pixels in shorter exposures, we
model heteroskedastic camera noise with inverse-variance
weights (Section III-D). Then, in Section III-F, we show
how to reduce the system of equations for faster equations
without sacrificing the estimation quality. We finally validate
our exposure estimation framework in Section IV, both on
synthetic and real image captures.

II. RELATED WORK

The problem of inaccurate capture parameters was identified
in very early works in HDR merging [7], [30]. However,
most of these focused on the challenging task of inverting
the CRF under the assumption of film or sensor reciprocity
[38]. Mitsunaga and Nayar [30] used a polynomial model to
jointly estimate the CRF and exposure times. Then, Grossberg
and Nayar [15] demonstrated how to recover the brightness
transfer function (BTF), a function that describes how the
brightness transfers from one image to another. They recovered
the BTF from image histograms and stipulated that it can
be used to estimate exposure ratios if the CRF is known.
More recently, Rodrı́guez at al. have shown that the previously
mentioned methods rely on incorrect assumptions [35] about
the independence of color channels and linearity of exposures,
resulting in estimation errors and hue shifts. We avoid those
problems by directly operating on demosaiced RAW images.

Based on [15], Cerman and Hlavac [3] assumed a linear
CRF by relying on RAW pixel values. They computed the
brightness-transferred image histograms and used them to
weight a system of equations in the linear pixel domain.

In contrast to their work, we solve a weighted linear system
in the logarithmic domain to estimate exposure ratios. The
weights in our system of equations are derived from a popular
statistical camera noise model and ensure a noise-optimal
solution. Our approach systematically handles heteroskedastic
camera measurements and provides accurate estimates even
when many pixels are under-exposed or affected by noise.

A. Camera noise model
A key contribution of our work is the use of a paramet-

ric noise model to weigh some pixel correspondences more
than others. Our weights are based on the popular Poisson-
normal statistical camera noise model [2], [12], [28] that has
signal-dependent and static (or signal-independent) compo-
nents. Many earlier works have used approximations of similar
noise models for noise-optimal HDR reconstructions [14],
[19], [21]. Although deep generative networks [1], [4] model
spatially-varying components of real camera noise better, the
Poisson-normal statistical model and its normal approximation
are better suited for our problem as they offer a convenient
algebraic form under the assumption that noise is independent
at each pixel.

Code for the method has been integrated into the software for noise-optimal
HDR merging (HDRutils) and can be found at https://github.com/gfxdisp/
HDRutils.

https://github.com/gfxdisp/HDRutils
https://github.com/gfxdisp/HDRutils
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B. HDR datasets

Merged HDR images of many multi-exposure datasets [10],
[17], [18], [24], [25], [32] can be improved with accurate ex-
posure estimation. We observed the banding artifacts depicted
in Figure 1 in various images from these datasets. Recent
HDR deep learning reconstruction methods for tasks like HDR
deghosting [5], [24], [33], [34], [47] and inverse tone-mapping
[8], [37], [43] utilize these as well as other multi-exposure
datasets for testing and evaluation. All these works are likely to
produce better results when trained with accurate ground truth
information due to our work on better exposure alignment.

III. METHODOLOGY

After introducing the camera model and some terminology,
we describe how to estimate exposure ratios directly from the
input image stack by solving a weighted linear system. We
then derive noise-optimal weights for the system based on
the widely-used Poisson-normal camera noise model. Finally,
we discuss practical considerations for making the system
agnostic to sensitive noise parameters and improve robustness
to ghosting caused by camera or object motion.

A. Camera model

To digitally represent an HDR scene, we start by captur-
ing N images with varying exposure times or gains (ISO).
Although earlier works included CRF estimation in their
image formation pipelines [7], [15], [30], we skip this step
since modern cameras provide access to linear RAW pixel
values. We model the captured RAW pixels as samples from
independent random variables, which are linearly related to
the scene radiance, and denote them as:

Yi(p), i = 1. . .N, p = 1 . . .M , (1)

where i is the exposure index with N total exposures, and
p is the pixel index with M total pixels. Throughout this
work, we use upper case for random variables and lower case
for observed values. Before merging (averaging) the exposure
stack, we need to convert them to relative radiance units by
compensating for exposure time ti, gain gi, and aperture f-
number ai:

Xi(p) =
Yi(p)

ti gi π
(

f
2 ai

)2 =
Yi(p)

di
, (2)

where f is the focal length. Typically, the scaling constant,

di = ti gi π
(

f
2 ai

)2
, is computed directly from the camera

EXIF header. The problem is that ti, gi, and ai could be
incorrect due to the limited accuracy of the mechanical shutter
or the rounding of exposure values. Incorrect values of di will
lead to inaccurate HDR reconstructions Thus, samples from
Xi(p), the exposure-compensated or absolute estimates in the
captured images, may represent biased measurements of the
true scene radiance. Merging images using the inaccurately
reported parameters results in the banding artifacts depicted in
Figure 1 and Figure 4. In all the images, the artifacts appear
when a longer exposure image saturates.

Fig. 3. A linear gradient spanning 13 stops is captured with exposure times
[0.5, 2, 4] (in seconds) by simulating the Sony ILCE-7R at ISO 3200. Each
capture is quantized to 8 bits for easy visualization. The left plot depicts
exposure-compensated pixels that represent samples from X(p) (according
to Eq. (2)) with inaccurate exposures (red, yellow, and brown dashed lines).
The reconstructed gradient (blue line) is jagged around ϕ = 211 and ϕ = 212

(green circles) due to misaligned exposures caused by biased exposure values.
We can reconstruct the smooth gradient by correctly aligning exposure ratios,
as shown in the right plot.

B. Banding due to inaccurate exposure

To better understand the reason for banding, consider the
one-dimensional linear gradient depicted in Figure 3 (left). The
noisy measurements (dashed lines), obtained by simulating
captures using calibrated noise parameters of the Sony ILCE-
7R, become misaligned when scaled with inaccurate exposure
times. Merging such images results in a jagged reconstruction
(solid blue line), causing banding in an otherwise smooth
output. Notice that although the reconstruction deviates from
the ground truth for almost all pixels, artifacts will be visible
only at transition points when an image in the stack saturates
as highlighted by the green circles.

While Figure 3 demonstrates the problem with simple
averaging, banding is further exaggerated when sophisticated
algorithms based on physical noise models [14], [19], [21]
are used. This is because pixels of longer exposures are more
reliable (due to smaller noise variance), but they saturate at
lower physical values. Thus, these estimators weigh longer
exposure pixels more, and there is a sharp change upon
saturation of any image in the stack.

If we are able to estimate relative exposure ratios w.r.t one
of the images correctly, we can align all exposures to produce
the reconstruction in Figure 3 (right). Note that the exposure-
aligned reconstruction may still not coincide with the ground
truth since we do not have the correct baseline. However,
accurately estimating relative ratios is sufficient to align the
capture parameters and eliminate banding.

C. Exposure estimation in real images

To prevent banding and obtain physically accurate pixel
values, we align the exposures of all images in the stack
by estimating all scaling constants di. However, computing
them directly from input pixels is impossible since the correct
absolute measurements representing observations of X(p)
from Eq. (2) are unknown. We thus eliminate these unknowns
by estimating the ratio of exposures between any two images
in the stack instead. For a scene with constant illumination and
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no scene motion, this ratio should be the same for all pixels
from a given pair of images. Its expected value is:

dij = Ep

[
Yi(p)

Yj(p)

]
, (3)

where i and j index different images in the exposure stack,
and Ep indicates that the expected value is computed over all
pixels. To allow for fast computation using linear solvers, we
operate on logarithmic values. Thus, let

eij = log dij andLi(p) = log Yi(p) . (4)

Although we cannot write a closed-form expression for the
density function of Li(p) because of the log transforma-
tion, it is possible to approximate the expected value of
any transformed random variable using its Taylor expansion.
Our results, detailed in Eq. (16) in the Appendix, are only
applicable to normally distributed random variables. It is thus
imperative to use only well-exposed pixels (we show how
to do this in Section III-F), since the Poisson photon noise
component of such pixels is well-approximated by a normal
distribution. We can obtain an approximate expression for the
expected value by applying the result for log Y (p):

eij = logEp

[
Yi(p)

Yj(p)

]
≈ Ep

[
log

Yi(p)

Yj(p)

]
= Ep [Li(p)− Lj(p)] .

(5)

The equality approximately holds for the operating range of
pixel values, as we will detail in Section III-D, Eq. (11). This
allows us to compute the expected value over all pixels by
setting up and solving a linear system. For the most reliable
estimate, we should utilize information from all the available
exposures (all possible values of i and j). Unlike previous
work [3], we thus consider not only ratios between neighboring
exposures but between all pairs. This results in a large yet
sparse linear system:

√
W


1 −1 0 · · · 0
1 −1 0 · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.
1 0 −1 · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.
0 0 0 · · · −1


 e1

e2

.

.

.
eN

 =
√
W


L1(1) − L2(1)
L1(2) − L2(2)

.

.

.
L1(1) − L3(1)

.

.

.
LN−1(M) − LN (M)

 ,

(6)

or more compactly,
√
WOe =

√
Wm , (7)

where W is a diagonal weight matrix denoting the relative
importance of each row of the system. In practice, we found
that the weighted system does not always provide a good
solution for shorter exposures. Since a rough estimate of
exposure values e0 is available in the image metadata, we
introduce a Tikhonov penalty with weight λ and solve to get:

êWLS = argmin
e

∥∥∥√W (Oe−m)
∥∥∥2
2
+ λ∥e− e0∥22

= (OTWO + λI)−1(OTWm+ λe0) .

(8)

To demonstrate the effectiveness of exposure alignment, we
captured an exposure stack of a simple HDR scene consisting
of a bright light shining at an angle, which produces an

(a) Parameters from EXIF (b) Estimated parameters
Fig. 4. The left column shows exposures (gamma-encoded for visualization,
γ = 2.2) of the HDR image reconstructed with EXIF parameters, while the
right column shows exposures (encoded with γ = 2.2) of the HDR image
reconstructed by solving the linear system represented by Eq. (6) with W =
I . Banding artifacts are visible in dark (top row) and bright (bottom row)
regions of the reconstruction using EXIF metadata (a). Aligning exposures
according to Eq. (8) fixes the problem (b).

inverse-square fall-off in intensity. Since most pixels are well-
exposed, as shown in Figure 4, we could assume that they
are equally reliable and set W = I . This works well for the
carefully controlled scene and eliminates banding artifacts that
would have appeared when merging with EXIF parameters.
However, the constant noise assumption breaks down for
real-world HDR stacks since the noise in camera pixels is
heteroskedastic [11] and thus, different pixels provide different
amounts of information.

D. Heteroskedastic pixels

To determine noise-optimal weights for images of real
cameras, we need to derive an expression for the variance
of each row of Eq. (6). Then, we populate W with inverse-
variance weights (i.e., each weight is given by the reciprocal of
variance) to obtain the weighted least-square estimate êWLS.
This is equivalent to maximum likelihood estimation (MLE)
under the assumption that the system of equations models
additive, normally distributed noise, where the variance is
different for different rows. Since each entry of the output
vector m is a difference of two random variables, the inverse-
variance weight for each row of the system is given by:

wk,k =
1

V[Li(p)− Lj(p)]
=

1

V[Li(p)] + V[Lj(p)]
. (9)

Here, k indexes each row of Eq. (6) since W is diagonal. For
instance, the second row corresponds to k = 2, i = 1, j = 2.

In order to get an expression for the denominator in Eq. (9),
we refer to detailed studies of the noise characteristics of cam-
eras [2], [28], which indicate that real camera noise follows a
compound Poisson-normal distribution. For the working range
of pixels in most images, this can be approximated by zero-
mean additive noise that follows a normal distribution. Tem-
porarily dropping the exposure index for brevity of notation,
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the variance at each pixel thus consists of a signal-dependent
component as well as a static component and is equal to,

σ2
Y (p) = V[Y (p)] = αE[Y (p)] + β , (10)

where α and β are camera-specific noise parameters, which
also depend on the sensor’s gain.

Since L(p) is a random variable obtained by applying the
log transformation to Y (p), its density function does not
have an exact expression. This is because the domain of
Y (p) includes negative values for which the log function is
undefined. As we will show in Section III-F, we operate on a
small subset of available pixels, selected for the lowest relative
variances, and whose intensities tend to be much greater than
0. We show, in Eq. (17) in the Appendix, how to approximate
the variance when any random variable is transformed by an
invertible function. Here, we apply the result for Y (p) when
it is transformed by the log function,

E[L(p)] ≈ logµY (p) ,

V[L(p)] ≈ σ2
Y (p)

µ2
Y (p)

,
(11)

where σ2
Y (p) is the variance of the noise from Eq. (10) and

µ2
Y (p) is the expected pixel value, which we approximate by

E[Y (p)] = µY (p) ≈ y(p). We reiterate that we are able to
use this result because we work with well-exposed pixels,
that are approximately normal. After substituting the computed
variance in Eq. (9), the diagonal weights become:

wk,k =

(
αyi(p) + β

y2i (p)
+

αyj(p) + β

y2j (p)

)−1

. (12)

E. Camera noise calibration

While the inverse-variance weights in Eq. (12) help us
compute noise-optimal estimates of the exposure ratios, a
fundamental limitation is their dependence on calibrated noise
parameters α and β. In the considered noise model [12], these
are camera and gain specific and may not be available at the
time of HDR merging. Moreover, the quality of HDR recon-
structions is highly sensitive to accurate noise parameters [2],
motivating the need for methods that do not rely on them.

If noise parameters are unavailable or inaccurate, it is still
possible to solve the weighted linear system by assuming that
the static noise parameter β is 0 as we work with well-exposed
pixels (see Section III-F). Since the entries of W determine
the relative importance of the different rows of Eq. (6), we
can eliminate the common signal-dependent constant, α as
well. The new weights which no longer depend on calibration-
sensitive parameters are:

w′
k,k =

(
1

yi(p)
+

1

yj(p)

)−1

. (13)

In practice, we can get away with using camera-independent
W ′ instead of camera-specific W from Eq. (12).

F. Reducing the linear system

The linear system given by Eq. (6) contains up to M
(
N
2

)
equations corresponding to all pixels (M ) and all pairs of
exposures in the stack (N ). Solving such a large system may
be impossible for large images or deep exposure stacks due to
computation and memory limitations. However, this system is
strongly overdetermined as only N − 1 exposure ratios need
to be estimated. Therefore, we only need a small percentage
of equations to solve Eq. (8). Another reason for reducing
the system is to eliminate underexposed pixels pairs because
they do not satisfy the assumptions made in the derivations of
previous sections. For example, dark pixels may be negative
or poorly approximated by a normal distribution.

A logical reduction strategy is to select pixels pairs with
the highest weights since they are least affected by noise.
However, such a strategy is heavily biased towards longer
exposures because pixel pairs that include these images will
have the highest weights. The shorter exposures will then be
poorly represented and, thus, poorly estimated. Another issue
is related to the spatial location of bright objects in the scene,
such as the Sun or other light sources. If we select a small
fraction of pixels (say 5% of the pixels per image), all of
them are likely to be concentrated in one portion of the image,
corresponding to these bright objects. If those objects happen
to be in motion, the exposure estimation will fail.

We propose two orthogonal design choices to balance the
system of equations and handle both these biases in estimated
exposure ratios.

1) Spatial balance: Tiling: To ensure that the linear system
contains samples from all parts of a scene, we split the input
image stack into t× t pixel tiles (16×16 in our experiments).
We can then select a fixed number of pixel pairs from each
tile and pixels from a few bright objects will not dominate the
system of equations.

The tiled processing provides a convenient way to vectorize
the construction of the reduced linear system. Several tiles can
be processed in parallel for faster execution with multi-core
or multi-threaded systems.

Our noise-based solution helps provide a robust estimation
even though some tiles may contain noisy pixels corresponding
to dimly-lit parts of the scene. Variance-optimal balancing of
exposures is crucial for such tiles, as we will show in the next
section.

2) Exposures balance: Spanning trees: The next objective
is guaranteeing that all N − 1 exposure ratios are correctly
estimated. Within each spatial tile, we need to include pix-
els from all exposure pairs, including noisy short exposures
despite their relatively smaller weights.

Consider the exposure graph: an undirected weighted multi-
graph (a graph that contains more than one edge between two
vertices as shown in Figure 5a), whose vertices represent the
N exposures and edges link pairs of co-located pixels from
two exposures. Each edge corresponds to one row of Eq. (6),
with its weight given by Eq. (12) or Eq. (13). The different
colored vertices and edges in Figure 5a represent different
pixel locations. Reducing the linear system from Eq. (6) is
then equivalent to removing edges from this dense multigraph.
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Fig. 5. Consider the exposure multigraph in (a) where different colored vertices and edges represent different pixels. The MST may connect pairwise exposures
(b) or connect the longest exposure to all others (c). Algorithm 1 will provide different solutions for different inputs. For example, the MST for the blue
horizontal tile near the Sun in (d) is the pairwise-connected spanning tree connected at pixels marked by the two triangles in plot (e). However, for the orange
tile, the MST is given by the longest-exposure spanning tree at the pixel marked by the star in plot (e).

The optimal subset contains (N−1)k edges with the largest
weights that connect all exposures in a balanced manner.
Such a subset can be found by computing the k highest-
weighted spanning trees of the multigraph, where the weight
of a spanning tree is the sum of the weights of its edges.
The previous work directly linked pixels from neighboring
exposures [3], resulting in pairwise connectivity as shown in
Figure 5b. However, this solution is sub-optimal for some
inputs (such as the orange tile in Figure 5d) because using
edges linked to the longest exposures, as shown in Figure 5c),
results in higher weights and, therefore better estimates.

An optimal solution would sequentially extract k MSTs
using Kruskal’s or Prim’s algorithm. Better algorithms [9],
[26] extract the k highest spanning trees more efficiently.
However, explicitly creating a large multigraph and computing
MSTs is both memory and computationally expensive. Below
we show that the optimal solution can be found by a simpler
greedy algorithm.

Algorithm 1: Greedy MST algorithm
input : y1, . . . , yN (Images sorted by exposure time)
output: MST (Maximimum spanning Tree)

1 Function greedyMST(y[ ])
2 N ← length(y)
3 MST← [ ]
4 for i← 1 to N − 1 do

/* Iterate over all exposures starting

from the shortest */

5 mask ← isValid(yi) and isValid(yi+1)
6 p∗ ← maxWeight(yi[mask], yi+1[mask])

// Location of the highest weighted

edge connecting images yi and yi+1

7 for j ← N to i+ 1 do
8 if isValid(yj(p∗)) then
9 MST.addEdge(i •−• j)

10 break

11 return MST

Greedy MST solution: We start by extracting all valid
pixels — those that are unsaturated and sufficiently above

the noise floor. We iterate through all exposures from the
shortest to the longest. For each exposure i, we identify p∗, the
pixel location that contains the highest-weighted edge between
exposures i and i+1. This is typically the brightest pixel that
is not saturated in exposure i + 1. Then, we find the longest
exposure j > i in which pixel p∗ is not saturated. We add an
edge between i and j. By selecting the longest exposure, we
ensure that the weight of the edge is maximized.

This procedure, summarized in Algorithm 1, can be repeated
k times to extract the k highest-weighted spanning trees
without explicitly constructing a graph. If all longer exposures
yN (p∗), yN−1(p∗), . . . yi+2(p∗) are invalid due to saturation,
the solution reduces to pairwise connectivity depicted in
Figure 5b.

Note that while a pair of pixels forming an edge must have
the same position, each edge in the MST can come from a
different pixel position. Consider the 1-dimensional blue tile in
the tonemapped image in Figure 5d and its horizontal scanline
in Figure 5e. The MST is given by two edges: an edge between
the medium and long exposures and an edge between the
medium and short exposures (marked by triangles in the plot).
Note that these are the brightest unsaturated pixels in the long
and medium exposures. The MST for the blue tile is thus the
pairwise connected spanning tree. The limited dynamic range
of the orange tile means that a single pixel, marked by the
star in Figure 5e, aligns all three exposures for the orange tile,
resulting in the spanning tree in which the longest exposure
is linked to all other exposures.

G. Handling outliers and pixel misalignment
The weighted least-squares solution Eq. (8) using rows of

the reduced system will provide an accurate estimate only if
there is no movement in the scene and all pixels are well
aligned. If there is motion across exposures, for example, due
to camera shake or object motion, those pairs of pixels will
affect our estimates of exposure ratios, as shown in Figure 6.
Notice the artifacts surrounding bright regions such as the
windows and red lights in Figure 6a due to camera motion.
Here, we estimated the exposures using the original stack and
then registered the images with homography alignment [39]
before merging. Thus, any visible artifacts are due to incorrect
exposure alignment and not due to ghosting.
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(a) Regular êWLS (b) êWLS with outlier re-
moval

Fig. 6. For an exposure stack containing some spatially misaligned pixels,
solving the weighted linear system Eq. (7) results in inaccurate estimates. In
this scene, camera motion causes pixels of the building to be misaligned due to
camera motion, producing artifacts near the windows in Figure 6a. However,
pixels from other areas, such as the sky, can still be utilized for exposure
estimation. Figure 6b demonstrates the advantage of using the outlier-removal
procedure described in Section III-G to improve robustness.

The spatial tiling described in Section III-F1 ensures that
motion in a few bright objects does not adversely affect the
estimated exposures, i.e., our procedure is robust to localized
object motion. In case of widespread pixel misalignment (e.g.,
due to camera motion), we can still provide reasonable expo-
sure estimates if the scene contains uniform image patches.
We identify usable tiles by collecting k MSTs within a tile
and solving the smaller per-tile system of equations separately.
If the predictions of a tile deviate too much from the EXIF
values, we treat the tile as an outlier and do not include the
corresponding MSTs in the final system.

The added overhead of solving per-tile linear systems is
negligible because each system contains only k equations (k =
50 in our experiments). This outlier removal is much faster
than an iterative algorithm such as the one described in [3].

IV. RESULTS AND APPLICATIONS

The primary application of our method is merging exposure
stacks with varying exposure times or gains. We first validate
our results on synthetically generated stacks, for which we
know the ground truth, and then show qualitative comparisons
on real captures. Finally, in Section IV-D, we show how our
method can improve the estimate of the MTF of a display. All
our results use λ = 10 for the Tikhonov penalty term described
in Eq. (8). For merging exposures stacks after exposure esti-
mation, we used a noise-aware HDR estimator [19]. However,
our results hold for other simpler methods too.

Fig. 7. Accuracies of exposure estimation methods with increasing ISO
computed by simulating captures on an existing HDR dataset [10]. Error
bars indicate 95% confidence intervals computed across all images. The blue
line represents corrupted exposures according to Eq. (14), while the baseline,
in green, was obtained by directly estimating exposures by solving a system
based on Eq. (3).

TABLE I
NOISE PARAMETERS MEASURED FROM THE Canon PowerShot S100 AT
VARIOUS ISOS. THESE PARAMETERS HAVE BEEN CALCULATED AFTER
NORMALIZING THE CAMERA SENSOR VALUES TO A RANGE OF 0 TO 1.

ISO αR αG αB βR βG βB

100 2.46e-5 1.67e-5 7.41e-5 3.58e-8 2.13e-8 1.28e-7
200 4.57e-5 3.02e-5 1.32e-4 9.89e-8 6.07e-8 2.66e-7
400 9.12e-5 5.95e-5 2.59e-4 2.21e-7 1.72e-7 5.61e-7
800 1.85e-4 1.19e-4 5.26e-4 4.94e-7 4.28e-7 1.14e-6

A. Validation on synthetic dataset

First, we rely on synthetic exposure stacks to compare the
accuracy of different methods for exposure estimation. We
simulated HDR exposure stacks using the noise parameters
of the Canon PowerShot S100 with exposure times [1/64, 1/8, 1,
8] (in seconds). All images were quantized to 14 bits to match
the bit-depth of the camera, and the experiment was repeated
for ISO settings between 100 and 800. We simulated noise
according to Eq. (10), with noise parameters listed in Table I.

Source HDR images were taken from the Fairchild photo-
graphic survey [10] containing 105 scenes at a resolution of
4312×2868. All simulated captures are linearly related to the
HDR image, i.e., we do not apply a CRF since it is likely to
introduce artifacts.

Before merging the images, we corrupted the exposure times
by introducing a small amount of normally distributed noise:

e′i = ei + ηi where ηi ∼ N (0, 0.15 ei) . (14)

The relative standard deviation factor 0.15 was selected to
match real camera EXIF errors plotted in Figure 2.

Figure 7 plots the relative root-mean-squared error (RMSE)
(in percent) of the exposure ratios, for different ISO levels.

Code for noise simulation is available at https://github.com/gfxdisp/
HDRutils/tree/main/HDRutils/noise modeling.

https://github.com/gfxdisp/HDRutils/tree/main/HDRutils/noise_modeling
https://github.com/gfxdisp/HDRutils/tree/main/HDRutils/noise_modeling
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Note that we can compute such relative errors only for
synthetic datasets. We include results of a simple baseline by
solving a linear system that realises Eq. (3) without relying
on a noise model. Note that the baseline includes other com-
ponents described in Section III, such as spatial balance via
tiling and exposure balance via MSTs. The blue line shows the
error of noisy exposures according to Eq. (14). The synthetic
exposure stacks represent a challenging estimation problem
with exposures three stops apart. As a result, the simple
baseline (green) and the histogram-based BTF method [3]
(orange) are unable to provide good results due to the adverse
impact of pixels in shorter exposures. A key limitation of both
methods is not explicitly modeling camera noise, which we
address in our formulation.

Figure 7 depicts results for the two versions of our weighted
least-squares solution (Eq. (7)), showing both pairwise connec-
tivity (in red) and the greedy MST heuristic (in purple). Both
our solutions use weights that model the noise characteristics
of the camera. Thus, they result in better estimates with
smaller errors. Overall, the greedy MST heuristic is the best-
performing estimator of exposure ratios.

Execution times: Histogram matching used in [3] is compu-
tationally expensive for high-resolution images, resulting in an
average execution time of 2.11 seconds. Further, we observed
that the expensive iterative procedure for removing outliers is
needed for good estimates increasing time to 8.54 seconds.
Our tiled reduction (Section III-F1) results in a significantly
faster average execution time of 0.265 seconds for pairwise
connected exposures and 0.29 seconds for the greedy MST
solution. The reported times were computed on an Intel i7-
8700 CPU for images of resolution 4312× 2868.

B. Performance on real captures
Next, we show the advantage of our proposed exposure

estimation over naive merging using EXIF data and compare it
with the histogram-based BTF approach [3]. The RAW images
have a bit-depth of 14 and are linearly related to the scene
radiance. We did not apply CRF or tone-mapping for any
image shown in this section. Thus, all artifacts visible are due
to incorrect exposures. For all results in this section, we use
calibration-free weights given by Eq. (13).

Banding artifacts are visible for scenes containing a smooth
gradient at the transition point when one of the input exposures
saturates. This frequently occurs very close to bright light
sources such as the Sun during the day or street lights at night,
as indicated by red arrows in Figure 8 (a). Pixels close to
light sources tend to be unsaturated only in shorter exposures
where other parts of the image are strongly affected by noise.
Aligning exposures under these conditions is challenging,
resulting in the poor performance of the baseline as well as
the histogram-based BTF weights [3]. The baseline method
obtained by directly solving Eq. (3) completely fails to recover
exposure ratios. When using the BTF weights, the banding
artifacts also persist at the same locations or are introduced
in other locations as shown in Figure 8 (c). By accounting
for heteroskedastic noise with inverse-variance weights in
Figure 8 (d), we can correctly align all the exposures to
produce banding-free results.

Fig. 8. Zoomed in patches of light sources, appropriately exposed to
highlight banding close to the source due to inaccurately reported EXIF
exposures (first row). The baseline method (second row) that does not model
camera noise is unable to estimate shorter exposures, resulting in artifact-
ridden reconstructions. Similarly, only some exposures can be aligned with
histogram weights based on BTF (third row). By modeling camera noise, we
simultaneously align all exposures (last row).

Even in the absence of point light sources, banding can
appear at natural smooth gradients or due to defocus blur,
as shown in Figure 9. Large regions of the images are well-
exposed in such scenes, and most methods work reasonably
well. However, the baseline and BTF weights can still some-
times fail to recover the exposure ratio for shorter exposures
(for example, see the red patch in the third column and green
and blue patches in the second column of the first scene).
Our noise-model motivated approach consistently aligns all
exposures to produce banding-free reconstructions across the
scenes.

C. Deghosting for scenes with motion

When multi-image stacks with misaligned exposures are
fused, the resulting HDR reconstructions often exhibit ac-
centuated ghosting artifacts. Even recent deep learning-based
methods [24], [42], [45] are unable to account for inaccurate
exposure ratios. Figure 10b illustrates the artifacts that arise
when exposures are corrupted according to Eq. (14). It is
important to note that these artifacts are in addition to the
ghosting artifacts visible in Figure 10a. Our proposed algo-
rithm, which includes tile-based outlier detection to account
for scene motion, effectively aligns exposures.
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Fig. 9. Fixing banding in smooth image gradients when images contain sufficient well-exposed pixels to populate the linear system. Our inverse-variance
solution (last column) is more robust and produces better reconstructions.

(a) Aligned
exposures

(b) Corrupted
exposures

(c) Reference

Fig. 10. Comparison of HDR reconstructions of an attention-based deep
network [42] with aligned (first column) and corrupted (middle column)
exposures. These insets are from the HDR deghosting dataset [24], which
the deghosting network was trained on.

D. Measuring display MTF

Digital cameras are often used as inexpensive light measur-
ing instruments, for example, for measuring the spatial char-
acteristic of an electronic display, such as spatial uniformity
of a modulation transfer function (MTF) [48]. Inaccuracies in
pixel values due to exposure misalignment may lead to errors
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Fig. 11. Edge profile of an HDR display recovered from a slant edge captured
with an exposure stack. Errors in EXIF metadata lead to deviation from the
actual edge spread function, affecting MTF estimation. On inspecting the
captured images, we observed the banding artifacts close to the captured slant-
edge when the image was merged with EXIF exposures.
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in the estimated display characteristics. Here, we demonstrate
the need for exposure alignment for measuring MTF of HDR
displays.

The MTF measurement involves taking an image of a
slanted edge [36], where one side has its pixels set to 0 and the
other side to the maximum pixel value. Modern displays can
reach very high contrast levels, so such a slanted-edge image
can be faithfully captured only using an exposure stack. The
inaccuracies of exposure times can easily introduce bias to our
measurements.

Figure 11 shows the edge profile computed with (blue)
and without (orange) exposure estimation. The difference in
reconstructions is due to inaccurate EXIF exposure values,
visible as banding in the merged image. This translates to the
bias at low-radiance pixels in Figure 11 and shows that errors
in exposure times can easily lead to biases in the final MTF
estimates.

V. CONCLUSIONS

We propose to estimate relative exposures directly from
images of an HDR exposure stack instead of relying on inac-
curate camera EXIF metadata. The problem can be formulated
as a weighted linear system of equations with Tikhonov regu-
larization. Our formulation considers the noise characteristics
of a camera to derive weights. We show that good performance
on a large number of scenes is possible without the need for
camera- and gain-specific noise parameters.

We also describe an efficient approach based on the union of
the highest weighted spanning trees of the exposure multigraph
to reduce the size of the system for large images. When applied
to multi-image HDR stacks, our method eliminates banding
artifacts at smooth image gradients close to light sources or
due to defocus blur. The exposure-aligned images are closer
to physical quantities, making our work essential for using a
camera as a light-measurement instrument.
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APPENDIX
MOMENTS OF A TRANSFORMED RANDOM VARIABLE

Here, we use the Taylor expansion to derive expressions
for the first and second moments (expected value and variance
respectively) of a random variable under an arbitrary invertible
function. In Section III-D we apply these results to obtain
expressions for the log of a normally distributed random
variable.

To get an approximate variance for a nonlinear function of a
random variable, we describe the Delta method [23], [31] that
uses a Taylor expansion. Let Z be an asymptotically normal
random variable with a known mean µZ and variance σ2

Z ,
and let f be an invertible and differentiable function. To get

expressions for the expected value and variance of f(Z) we
use its first order Taylor expansion about the mean µZ ,

f(Z) = f(µZ) + f ′(µZ)(Z − µZ)

+ higher-order terms .
(15)

Ignoring the diminishing contributions of higher-order terms,
the expected value is,

E[f(Z)] ≈ E[f(µZ)] + E[f ′(µZ)(Z − µZ)]

= E[f(µZ)] + f ′(µZ)(E[Z]− E[µZ)])

= f(µZ) + f ′(µZ)(µZ − µZ)

= f(µZ) ,

(16)

and the variance is
V[f(Z)] ≈ V[f(µZ)] + V[f ′(µZ)(Z − µZ)]

= V[f(µZ)] + f ′(µZ)
2 V[Z − µZ ]

= V[f(µZ)] + f ′(µZ)
2 (V[Z] + V[µZ ])

= 0 + f ′(µZ)
2 (σ2

Z + 0)

= f ′(µZ)
2 σ2

Z .

(17)
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