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This supplementary document describes:

• the procedure used to convert from the cone contrast units

used in castleCSF to the DKL contrast used in ColorVideoVDP

(Sec. 1);

• the contrast encoding (Sec. 2) and contrast masking functions

(Sec. 3) that were considered for ColorVideoVDP and are

included in the ablations;

• several mathematical techniques that were necessary to make

the model di�erentiable (Sec. 4);

• timings of ColorVideoVDP compared to VMAF (Sec. 5);

• the experiment used to obtain a JOD quality scaling for the

LIVEHDR dataset (Sec. 6);

• details on the content used for XR-DAVID dataset (Sec. 7).

1 CONTRAST SENSITIVITY IN THE DKL COLOR SPACE

The castleCSF [Ashraf et al. 2024] model predicts sensitivity in

di�erent contrast units than those used by ColorVideoVDP. To use

castleCSF in ColorVideoVDP, we need to convert between the two

contrast units. The contrast conversion procedure is similar to the

one used in [Kim et al. 2021].

The sensitivity used in castleCSF is de�ned as the inverse of cone

contrast:

(cc =
√
3

(

(

ΔL

L0

)2

+
(

ΔM

M0

)2

+
(

ΔS

S0

)2
)−0.5

, (1)
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where ΔL, ΔM, and ΔS are the amplitudes of the cone responses

for the stimuli and L0,M0, andS0 are the cone responses for the

corresponding background. ColorVideoVDP encodes contrast for

the three cardinal dimensions of the DKL space (2 ∈ {Ach, RG, YV})
as:

�2 =
L2
!

, (2)

where ! = L0 +M0 is luminance, and L2 is the amplitude of the

achromatic, red-green, or yellow-violet response in the DKL space

(an increment in that space and also the coe�cient of the Laplacian

pyramid). Here, we omitted unnecessary indices from Eq. (6) in the

main paper. The sensitivity in the DKL-contrast units is the inverse

of Eq. (2):

(DKL,2 = �−1
2 =

!

L2
, (3)

To convert (cc into (DKL,2 , we �rst obtain from castleCSF the sen-

sitivity (cc along each cardinal color direction (2) of the DKL color

space. Then, we �nd the contrast �2 that results in the threshold

cone contrast corresponding to the predicted sensitivity ((−1cc since

the threshold contrast is the inverse of the sensitivity). As there is

no closed-form solution, �2 needs to be found by non-linear root

�nding. In the optimization loop, we allow the DKL contrast �2 to

change only along the given cardinal color direction. This calcu-

lation is repeated for each spatial frequency, luminance, and color

direction. The sensitivities in the DKL contrast space are precom-

puted and stored in a look-up table for later use by ColorVideoVDP,

as explained in Sec. 3.4 of the main paper.

2 CONTRAST ENCODING

Multiplicative contrast normalization. Once we have separated

the band-limited contrast in each frequency band and visual channel

(two achromatic and two chromatic), we want to encode it in a way

that correlates well with the perceived magnitude of the contrast.

To this end, many visual models employ the normalization by the

contrast sensitivity function ( (·)
�′

= � ( (d1 , !bkg, 2) , (4)

where � is the physical and �′ is encoded contrast, d1 is the peak

frequency of the band 1, 2 is the channel index, and !bkg is the

background luminance. Since contrast can be expressed as � =

Δ!/!bkg, we can write:

�′
= � ( (d1 , !bkg, 2) =

Δ!

!bkg

!bkg

Δ!thr
=

Δ!

Δ!thr
, (5)

where Δ!thr is the luminance di�erence corresponding to the detec-

tion threshold. It follows that �′ encodes multiples of the detection

SIGGRAPH ’24 Technical Papers, July 28–Aug 1, 2024, Denver, USA.

HTTPS://ORCID.ORG/0000-0003-2353-0349
HTTPS://ORCID.ORG/0000-0002-8142-5611
HTTPS://ORCID.ORG/0000-0002-8142-5611
HTTPS://ORCID.ORG/0009-0003-8612-9349
HTTPS://ORCID.ORG/0000-0002-7367-0131
https://doi.org/10.1145/3658144
https://github.com/gfxdisp/ColorVideoVDP
https://github.com/gfxdisp/ColorVideoVDP
https://github.com/gfxdisp/ColorVideoVDP
https://github.com/gfxdisp/ColorVideoVDP
https://github.com/gfxdisp/ColorVideoVDP
https://orcid.org/0000-0003-2353-0349
https://orcid.org/0000-0002-8142-5611
https://orcid.org/0000-0002-8142-5611
https://orcid.org/0000-0002-8142-5611
https://orcid.org/0009-0003-8612-9349
https://orcid.org/0000-0002-7367-0131
https://orcid.org/0000-0002-7367-0131
https://doi.org/10.1145/3658144
https://github.com/gfxdisp/ColorVideoVDP
https://github.com/gfxdisp/ColorVideoVDP


129:2 • Rafał K. Mantiuk, Param Hanji, Maliha Ashraf, Yuta Asano, and Alexandre Chapiro

threshold. Notably, it is equal to 1 when the contrast � is exactly

at the threshold value. This property is necessary for any contrast

encoding employed by our method because masking models, dis-

cussed in the next section, rely on it. The encoding is plotted in the

left panel of Fig. 1.

The above contrast normalization by sensitivity brings several

bene�ts. Daly [1993] showed that such a normalization is necessary

to unify masking predictions across spatial frequencies. Peli et al.

[1991] demonstrated that this normalization accounts for contrast

matching across luminance levels.

Additive contrast normalization. The multiplicative normalization

from Eq. (5) can be justi�ed by the physical limits of the eye’s optics

at high frequencies, or by the lateral inhibition at low frequencies

[Barten 1999]. However, it does not explain contrast constancy

across spatial frequencies [Georgeson and Sullivan 1975] — that

is, the observation that the perceived magnitude of large supra-

threshold contrast appears the same regardless of spatial frequency.

Contrast constancy can be better explained by Kulikowski’s model

of contrast matching [Kulikowski 1976], in which the detection

threshold is subtracted from (rather than divided by) the absolute

contrast

�′
 = � − 1

( (d1 , !bkg, 2)
. (6)

Note that the inverse of the contrast sensitivity in this equation is

the threshold visibility contrast. Kulikowski [1976] demonstrated

that perceived contrast is matched across luminance levels when

the corresponding �′
 
is matching (the sensitivity ( in the equation

varies across luminance levels). Kulikowski’s model assumes that

the detection thresholds are caused by additive (neural) noise, and

therefore, the visual system "eliminates" the noise by subtracting it

from the contrast signal.

To support both contrast polarities, we modify the above formula

as follows:

�′
= sgn(�)max

{

6

(

|� | − 1

( (d1 , !bkg, 2)

)

+ 1, 0

}

, (7)

where 6 is the gain that controls the strength of the contrast above

the threshold. As in the previous case, the constant 1 is used to en-

sure that the encoded contrast has a value of 1 at the threshold. This

is an important modi�cation as it allows us to represent contrasts

below the detection threshold. The sign function ensures that we

preserve the polarity of the contrast. The encoding is plotted in the

right panel of Fig. 1.

To check how well each contrast encoding represents perceived

contrast, in the following sections we generate contrast-matching

predictions and compare them with those reported in the literature.

2.1 Matching chromatic and achromatic contrast

Since our metric needs to evaluate the impact of both achromatic

and chromatic distortions, we need to ensure that the magnitude

of both is correctly matched. Switkes and Crognale [1999] mea-

sured color matches along multiple directions in the color space,

including the cardinal directions of the DKL space that we use on

ColorVideoVDP. They found that suprathreshold contrast can be

matched across achromatic and chromatic dimensions by simple

multiplicative scaling. In Fig. 2, we plot their contrast-matching
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Fig. 1. Mapping from input physical contrast to encoded contrast for multi-

plicative (left) and additive (right) encoding.
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Fig. 2. The lines connecting the perceived magnitude of achromatic contrast

that matches in appearance the perceived magnitude of chromatic contrast,

either red-green or yellow-violet. The dashed lines represent the model based on

the measurements of Switkes and Crognale [1999]. The dotted lines show the

predictions of the original models from Eq. (5) and Eq. (7) and the continuous

lines the same models but after the adjustment. Note that in the right plot for

additive contrast encoding the two dotted lines overlap each other.

model as two dashed lines — matching achromatic contrast to either

reg-green or yellow-violet chromatic directions. The dotted lines,

representing the predictions of our contrast encoding models from

Eq. (5) and Eq. (7). The dotted lines in the left plot show that the

multiplicative encoding with the normalization by the CSF is close

to the measurements of Switkes and Crognale, but with some inaccu-

racy that grows with contrast. This is because the CSF is measured

for very small (threshold) contrasts, and any inaccuracy at such

�ne scales is ampli�ed for large contrast values. The additive model,

shown as two overlapping dotted lines in the right plot, cannot

predict contrast matches across color directions.

To improve the accuracy of these matches, we introduced cor-

rections into the contrast encoding equation for the multiplicative

contrast encoding:

�′
=<2 � ( (d1 , !bkg, 2) , (8)

where<2 =
[

1 1 1.45 0.95
]

for the color channels:

2 ∈ {AchS,AchT , RG, YV} (9)

corresponding to the achromatic sustained, achromatic transient,

chromatic red-green, and chromatic yellow-violet channels. The
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Fig. 3. The lines connecting the matching magnitude of contrast across fre-

quencies, as predicted by the multiplicative (left) and additive (right) contrast

encoding.

additive contrast encoding needs to include an additional gain factor:

�′
= sgn(�)max

{

6<2

(

|� | − 1

( (d1 , !bkg, 2)

)

+ 1, 0

}

, (10)

where<2 =
[

1 1 1.7 0.237
]

. The adjusted contrast encoding

equations are plotted as continuous lines Fig. 2.

2.2 Matching contrast across frequencies

The seminal paper of Georgeson and Sullivan [1975] demonstrated

contrast constancy — the observation that the perceived magnitude

of contrast di�ers across spatial frequencies when the contrast is

small (near the detection threshold) but when the contrast is far

above the threshold, there is little di�erence in the perceived mag-

nitude of contrast. This property is better captured by the additive

contrast encoding model, shown in the right panel of Fig. 3. This

contrast constant e�ect is easy to observe in everyday life — ob-

jects seen from close and far distances will fall into very di�erent

spatial frequency ranges. Yet, we do not observe changes in object

appearance as we move closer or further away from them. The mul-

tiplicative contrast encoding technique does not directly model the

property of contrast constancy.

2.3 Matching contrast across luminance

Multiple authors investigated whether contrast constancy gener-

alizes across luminance levels [Georgeson and Sullivan 1975; Hess

1990; Kulikowski 1976; Peli 1995; Peli et al. 1991] and they all ob-

served quite a signi�cant deviation from contrast constancy, es-

pecially when the luminance drops signi�cantly below photopic

levels. However, there is no agreement on how to model such a

deviation from contrast constancy. Both Kulikowski [1976] and

Georgeson [1991] proposed additive contrast encoding to explain

their contrast matching data. However, Peli [1995] demonstrated

that a multiplicative model better explains the data when contrast

is seen naturally rather than using a dichoptic presentation used in

other studies (each eye sees a di�erent luminance). The predictions

for both models are shown in Fig. 4.

3 CONTRAST MASKING

The main purpose of the masking model is to transform physical

di�erences in contrast between two images or frames into perceived
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Fig. 4. The lines connecting the matching magnitude of contrast across lumi-

nance, as predicted by the multiplicative (left) and additive (right) contrast

encoding.

di�erences. Here, consider three models of masking: a model based

on contrast transducer functions, such as the one proposed by Wat-

son and Solomon [Watson and Solomon 1997], a model based on

mutual masking, such as the one proposed in Daly’s original VDP

[Daly 1993], and the similarity formula, used in SSIM and other

metrics.

Contrast transducer. The di�erence between two band-limited im-

ages inWatson and Solomon’s [Watson and Solomon 1997] masking

model is expressed as a di�erence between two contrast transducer

functions:

�1,2,5 (x) =
�

�

�C (�′test
1,2,5

(x)) − C (�′ref
1,2,5

(x))
�

�

� (11)

where 1 is the index of the spatial frequency band, 2 is the channel

index (two achromatic and two chromatic), and 5 is the frame index.

�′test
1,2,5

and �′ref
1,2,5

correspond to the encoded contrast in the test and

reference images (refer to the main paper). The transducer function

is formulated as:

C (�′
1,2,5

) = 6T

sgn(�′
1,2,5

(x))
�

�

��′
1,2,5

(x)
�

�

�

?

0.2 + ∑

8 :8,2

(�

�

��′
1,8,5

�

�

�

@2
∗ 6fsp

)

(x)
, (12)

where ? and @2 are the parameters of the model. The masking

parameter @2 is set separately for each channel (two achromatic and

two chromatic channels). 6T is the gain of the transducer that lets us

control the range of visual di�erence values. The constant of 0.2 was

selected so that the facilitation (the dip in the contrast discrimination

function) coincides with the measurements, as explained in Sec. 3.2.

The expression in the denominator pools contrast in a local spatial

neighborhood by convolving with a Gaussian kernel 6fsp with the

standard deviation of fsp. The sum in this expression pools contrast

across channels according to the cross-masking coe�cient :2,8 . �
′

is the encoded contrast, as explained in Sec. 2.

Mutual masking. Alternatively, the di�erence between two band-

limited images can be expressed using the mutual masking model,

as proposed by Daly [Daly 1993]:

�1,2,5 (x) =

�

�

��′ test
1,2,5

(x) −�′ ref
1,2,5

(x)
�

�

�

?

1 + (�mask
1,2,5

(x))@2
(13)
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First, the mutual masking of test and reference bands is calculated

as [Daly 1993, p.192]:

�mm
1,2,5

(x) = min

{�

�

��′ test
1,2,5

(x)
�

�

� ,
�

�

��
′,ref
1,2,5

(x)
�

�

�

}

. (14)

Then, similarly to the previous model, the mutual masking signal is

pooled in a small local neighborhood by convolving with a Gaussian

kernel 6fsp , and combined across channels, accounting for cross-

channel masking:

�mask
1,2,5

(x) =
∑

8

:8,2 (�mm
1,8,5

∗ 6fsp ) (x) . (15)

One shortcoming of the mutual masking model is that it does not

account for self-masking — the case in which the reference contrast

is 0 and the test contrast is attenuated when its value is high. In

practice, �1,2,5 can reach very high values (over 10 000) when the

sensitivity is high. This is unrealistic behavior as neurons cannot

encode values of such high dynamic ranges. For that reason, we

need to limit the range of contrast di�erence values with a smooth

clamping function:

�̂�,2,5 (x) =
�max ��,2,5 (x)
�max + ��,2,5 (x)

, (16)

where �max is the maximum value that the visual di�erence can

attain.

Similarity. The alternative masking model, found in SSIM and

many other metrics, can be formulated as:

�1,2,5 (x) = �max − �max

2

�

�

��′ test
1,2,5

(x)
�

�

�

�

�

��′ ref
1,2,5

(x)
�

�

� + n

(

�̂test
1,2,5

)2

(x) +
(

�̂ref
1,2,5

)2

(x) + n

, (17)

where n = �max − 1 is selected so that the resulting visual di�erence

is 1 when the test contrast is at the detection threshold (�′ test
1,2,5

= 1)

and the reference contrast is 0. �max controls the maximum value

of the visual di�erence. The standard formula typically uses the

same values in both nominator and denominator. Here, we modify

the denominator so that it contains masking signal �̂test
1,2,5

and �̂ref
1,2,5

associated with the test and reference images. For the test image

�̂test
1,2,5

(x) =
∑

8

:8,2 (�′test
1,8,5

∗ 6fsp ) (x) . (18)

and the masking signal for the reference frame is computed analo-

gously.

3.1 Self-masking

To givemore insights into the threemaskingmodels explained above

and the two contrast encodings, we plot the model predictions for

the case of self-masking in Fig. 5. Self-masking is the case in which

the contrast (in the test) is masked by itself and is not in�uenced by

the contrast in the reference image (the reference contrast is). This

scenario may appear e.g. when the reference image is a uniform �eld,

and the test image contains a pattern that we want to detect. All the

plots in Fig. 5 show that the visual di�erence is equal to 1 (the dashed

horizontal line) when the test contrast is at the detection threshold

(equal to 1/(). The additive contrast encoding (right column) will

result in small contrast being ignored when the sensitivity is low,

while the multiplicative encoding will compress contrast below the
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Fig. 5. Model response for self-masking — when the reference contrast is 0 (is

a uniform �eld) but the test contrast (x-axis) and sensitivity (colors) vary. The

predictions are shown for all combinations of contrast coding (columns) and

masking models (rows). The dashed horizontal line at � = 1 represents the

di�erence at the detection threshold.

detection threshold. The mutual masking and similarity models are

remarkably similar to each other in terms of self-masking.

3.2 Contrast masking

The standard contrast masking experiment involves showing a test

pattern superimposed on top of a masking pattern, such as the one

shown in Fig. 7. We simulate the same scenario for our six combi-

nations of masking models and contrast encodings and show the

results in Fig. 6. In each plot, we include the measurements of con-

trast masking from [Foley 1994] as red dots. We expect the contour

lines to follow the curve formed by those measurements. In the

plots, we can see that only the transducer models the facilitation

that makes patterns easier to detect when the masker is near the
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Fig. 6. Model response for contrast masking. The reference image contains a

certain physical contrast�mask (x-axis), and the test image contains the physi-

cal contrast of�mask + Δ� test (y-axis). The contour lines denote the response

of the model (blue for the smallest and yellow for the largest values). The red

circles denote the contrast masking measurements from [Foley 1994, Figure 3b,

data for KMF]. The axes roughly correspond to those found in the example in

Fig. 7.

detection threshold. This is shown as a small dip in the measure-

ments by Foley [1994]. Mutual masking and similarity models show

similar behavior.

4 TRAINING CONSIDERATIONS

While the contrast encoding and masking models proposed in the

previous section are well-de�ned for an arbitrary contrast, these

models are not di�erentiable out-of-the-box and, therefore, cannot

be used in gradient-based optimization. To make them di�erentiable,

we replace the sign function with a hyperbolic tangent function:

sgn(�) ≈ tanh(10000�) . (19)

Fig. 7. The example of typical stimuli used in contrast masking experiments.

A test Gabor patch is superimposed (added) on the background of a sinusoidal

grating of the same frequency (a masker). As the contrast of the masker is

increased (towards the right), a higher test contrast of the Gabor patch is needed

to detect it.

The exponential function is not di�erentiable at 0, therefore, we

need to approximate it as:

|� |? ≈ (|� | + n)? − n? , (20)

where n = 0.00001.

5 QUALITY METRIC TIMINGS

We measured the times required to process 50 video frames at reso-

lutions ranging from 720p to 4K. The measurements were averaged

across 5 runs and excluded the times required to load and decode

the frames. The measured times, illustrated in Fig. 8, show that

ColorVideoVDP processes large videos faster than VMAF (note

however, that VMAF was running on a CPU) and in about the same

time as FovVideoVDP. It must be noted, however, that unlike Col-

orVideoVDPboth VMAF and FovVideoVDP operate only on luma

or luminance and ignore color channels. VMAF features are much

less expensive to extract and FovVideoVDP processes only 2 visual

channels (sustained and transient achromatic) compared to the 4

channels processed by ColorVideoVDP.

6 LIVEHDR DATASET ALIGNMENT EXPERIMENT

In order to enable training onmultiple datasets, it is essential to bring

their quality scores to a common scale. This ensures that quality

scores from one dataset are directly comparable and equivalent

to those from another dataset. While both XR-DAVID and UPIQ

employ the same quality units (JODs), LIVE HDR was originally

collected using the mean-opinion-score (MOS) units. To account for
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Fig. 8. The processing times for 50-frame video of di�erent resolutions (x-

axis). ColorVideoVDP and FovVideoVDP were run on an Nvidia Quadro RTX

8000 GPU, while VMAF was run on 4 cores of an Intel Xeon Gold 5218 CPU
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from 720p to 2160p (4K). All the reported times were averaged across �ve runs.
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Fig. 9. We conducted a subjective study, obtaining JOD scores for a subset

of videos from the LIVE HDR dataset. A linear �t was obtained as follows:

JOD = −0.054 ∗DMOS+ 0.037, which was deemed acceptable. JOD values are

shifted from 0 to 10 by convention.

this discrepancy, we ran an additional experiment that let us scale

LIVE HDR MOS values in the JOD units.

We �rst calculated di�erences of mean opinion scores (DMOS) by

subtracting the score of the reference (highest quality video) from

each condition. Next, in order to maximize the sampling of quality

across the dataset, we carefully selected 10 videos that contained

a wide distribution of MOS values. For each of these videos, we

then selected 6 di�erent levels of distortion. We used this content to

conduct an experiment using the same experimental procedure as for

XR-DAVID, as explained in themain paper. Display and environment

settings were adapted to mimic those used in the original LIVE HDR

study. 12 participants took part in the study, and completed 10

repetitions (batched) of ASAP sampling, for a total of 10 × 6 × 10 =

600 trials each. The resulting JOD values for each condition were

used to �nd a linear mapping from the LIVE HDR DMOS scores

to our experimentally derived JOD scores. The resulting linear �t,

illustrated in Fig. 9, demonstrates a satisfactory level of accuracy.

Thus, we applied this mapping to the entire LIVE HDR dataset,

e�ectively rescaling it to JOD units.

Table 1. XR-DAVID assets

Video Source Duration

Bon�re Kindel Media [link] 5.6s

Business Kindel Media [link] 5.6s

Caminandes Blender Foundation [link] 4.8s

Couple RDNE Stock project [link] 5.6s

Dance Anna Shvets [link] 5.6s

Emojis emirkhan bal [link] 5.6s

Foliage German Korb [link] 5.6s

Icons Generated by the authors 5.6s

Panel Generated by the authors 5.6s

Cellphone Lina Fresco [link] 5.6s

River Theresa. Nguyen [link] 3.7s

Snow SwissHumanity Stories [link] 5.6s

River Theresa. Nguyen [link] 3.7s

VR Generated by the authors 5.6s

Wiki Generated by the authors 5.2s

7 XR-DAVID CONTENT

Thumbnails of select scenes used in the XR-DAVID dataset are

shown in Fig. 10. The source data for each video is shown in Table 1.

Note that for longer videos, sections of approximately 5 seconds

from the start of each video were used in the study, with the excep-

tion of Caminandes where a shot from approximately 1:54-2:00 of

"Caminandes 3: Llamigos" was used. Videos were downsampled to

a resolution of 910 × 540 using bilinear interpolation, which pro-

duces an e�ective visual resolution of ≈ 40ppd when seen by users

from a distance of 28.9’. Prior to display, videos were upscaled using

nearest-neighbor interpolation by a factor of 2 to 1920 × 1080 to

match the native resolution of the display. Detailed numerical re-

sults of our experiment are shown in Fig. 11 for each of the 3 levels

of intensity per artifact studied.
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on a CIELAB a* b* plane. The thumbnails of the videos containing human subjects could not be included due to institutional policy.
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Fig. 11. The results of our XR-DAVID color video quality experiment. For each base video, 8 di�erent artifacts were studied at 3 intensity levels (1:top, 2:middle, and

3:bottom). The responses are scaled on a single perceptual JOD scale, counting down from 10 by convention. Increasing magnitudes of perceived distortion can be

observed at stronger distortion levels (top-to-bottom). In addition, large di�erences in artifact visibility can be observed across content (columns).
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