
Prefetching in Functional Languages

Sam Ainsworth and Timothy M. Jones

University of Cambridge

Prefetching in Functional Languages

Sam Ainsworth and Timothy M. Jones

University of Cambridge

Summary

Functional programming languages contain a number of runtime and lan-
guage features, such as garbage collection, indirect memory accesses,
linked data structures and immutability, that interact with a proces-
sor’s memory system. These conspire to cause a variety of unintuitive
memory-performance effects, which can cause significant slowdown.

We mitigate by adding software prefetching primitives into OCaml,
which can provide significant speedup. In addition, we observe just how
important existing hardware prefetchers, in most modern devices, are to
the performance of functional code: surprisingly, hardware prefetchers
are even more effective for linked list code than they are for arrays.

List Prefetching

When a list gets allocated, it is often stored approximately in the same
order, meaning memory accesses are roughly contiguous.

hd tl
hd tl

hd tl
hd tl

hd tl

(35,35)
(14,14)

(5,5)
(72,72)

(1,1)

hd tl
hd tl

hd tl
hd tl

hd tl

However, when that data is sorted, the objects get reordered, and though
the linked list is still roughly sequential, performance drops on the asso-
ciated connections, which become unpredictable to the memory system.

Still, we can mitigate through software prefetching, by 1) jumping ahead
in a list and storing the location, 2) using this stored location, increment-
ing it, and issuing a prefetch on each walk through the list, and 3) specu-
latively prefetching off the tail, in the hope of discovering other list cells.

Acknowledgements

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC), through grant references EP/K026399/1,
EP/P020011/1 and EP/M506485/1, and ARM Ltd.

Array Prefetching

Unlike lists, array cells are guaranteed to be stored contiguously in mem-
ory, and thus sequential accesses are always easily predicted by the mem-
ory system and its prefetchers.

hd hd hd hd hd

(35,35)

(14,14)

(5,5)

(72,72)

(1,1)

hd hd hd hd hd

(35,35)

(14,14)

(5,5)

(72,72)

(1,1)

Still, under operations such as sorting, the pointers inside the array may
become jumbled in memory, rather than being stored contiguously, sig-
nificantly reducing performance as the hardware prefetcher can no longer
predict them and bring them in early from main memory.

Here, we can mitigate by 1) looking ahead in the array, to prefetch the
element we will access in a few iterations’ time, and 2) prefetching ahead
in the array itself, staggered from the first prefetch, to bring in the pointer
address we will access for the first prefetch in a few further iterations.

Speedups

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

Graham-Scan
Quickhull

CG-Adjlist
SpMV-CSR

Hash-Create
Hash-Read

Geomean

S
pe

ed
up

Haswell
A53
KNL

Speedups on a variety of list- and array-based code, ranging from sorting
algorithms, sparse matrices, hash tables, library operations, and many
others in the full paper - up to 2× on the out-of-order superscalar Intel
Haswell, and up to 3× on the in-order Arm Cortex A53.

The Full Paper

See the ISMM talk, or https://dl.acm.org/doi/
10.1145/3381898.3397209 for more information!

https://dl.acm.org/doi/10.1145/3381898.3397209
https://dl.acm.org/doi/10.1145/3381898.3397209

