
An Event-Triggered Programmable Prefetcher for Irregular Workloads
Sam Ainsworth, Timothy M. Jones

University of Cambridge

An Event-Triggered Programmable Prefetcher for Irregular Workloads
Sam Ainsworth, Timothy M. Jones

University of Cambridge

Overview

Current prefetching implementations in real systems are predominantly address-based:
these work well for regular patterns, but irregular workloads are increasingly important
in scientific and big data domains. Performance for these workloads is highly constrained
by the number of processor stalls generated as a result. Prefetchers targeted at irregular
workloads in the literature tend to match too few workloads and require too much state to
be useful.
So how do we design a prefetcher that knows about the workloads it is processing, and can
be programmed to adapt to a variety of complex access patterns?
We have developed an event-triggered prefetcher, which extracts memory-level parallelism
using a large set of microcontroller-sized miniature programmable cores integrated into the
main core, in a latency tolerant way, along with compiler-assistance techniques to ease
programmer efforts in targeting code to run on these prefetchers.

Memory-Level Parallelism

Instead of running computation on multiple threads, with complicated synchronisation and
inefficient work splitting, parallelise the loads via prefetching, and run the computation
code on a single core.

Parallel Units

Staying ahead of the main thread requires a lot of compute power. How can we provide
this in a power and space-efficient manner?

Solution: make use of parallelism in the data access rather than the computation, and run
prefetches on multiple tiny microcontrollers embedded in the core!

Large Speedups on Irregular Workloads

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5

G500-C
SR

G500-List
HJ-2

HJ-8

PageRank

RandAcc

IntSort

ConjG
rad

S
p

e
e

d
u

p

Stride
GHB (regular)

GHB(large)

Software
Pragma

Converted

Manual

Programmable Prefetcher Structure

• Send all loads and prefetches observed by the cache through to the prefetcher, to generate
new prefetches.

•Filter out uninteresting data: only send load observations within specified address ranges
through to the microcontrollers.

•Use moving average hardware to schedule appropriate prefetch lookahead.

•Use latency tolerant queues to allow for decoupling of processing and loads.

•Disallow loads and stores from the prefetcher units: no synchronisation required, so can
be speculative, and no stalling on memory. Only allow latency tolerant prefetches, which
may cause another prefetch to be triggered later.

•Reconfigurable registers to store important long-term values such as array bounds.

Events

•To keep up with many parallel loads, make sure prefetcher units don’t stall.

•Use events: trigger a new prefetch by reacting to old prefetches and loads from the main
core, do some computation, issue a prefetch, then end the event - highly parallel!

•No loads: just prefetches, which may or may not return data for another event to process!

Compilation

Automate the generation of event code for the programmer, to ease manual effort.
Convert software prefetches in code into non-blocking events, or try to automatically gen-
erate events from loops marked as important by the programmer using annotations.

Acknowledgements

This work was supported by Arm Ltd and the Engineering and Physical Sciences Research
Council (EPSRC) through grant references EP/K026399/1 and EP/M506485/1.

Parallelise memory accesses,

not computation!

Report memory accesses to micro-

controllers, for fine-grained progress

tracking without synchronisation.

Split up code

generated

for software

prefetches

into separate

events!


