
Bluehive — A Field-Programable Custom Computing Machine
for Extreme-Scale Real-Time Neural Network Simulation

Simon W Moore, Paul J Fox, Steven JT Marsh, A Theodore Markettos and Alan Mujumdar
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom

{simon.moore, paul.fox, steven.marsh, theo.markettos, alan.mujumdar}@cl.cam.ac.uk

Abstract—Bluehive is a custom 64-FPGA machine targeted
at scientific simulations with demanding communication re-
quirements. Bluehive is designed to be extensible with a recon-
figurable communication topology suited to algorithms with
demanding high-bandwidth and low-latency communication,
something which is unattainable with commodity GPGPUs and
CPUs. We demonstrate that a spiking neuron algorithm can be
efficiently mapped to Bluehive using Bluespec SystemVerilog
by taking a communication-centric approach. This contrasts
with many FPGA-based neural systems which are very focused
on parallel computation, resulting in inefficient use of FPGA
resources. Our design allows 64k neurons with 64M synapses
per FPGA and is scalable to a large number of FPGAs.

Keywords-simulation; neural network; FPGA;

I. INTRODUCTION

Modern FPGAs offer large reconfigurable resources, and
high-speed serial and memory interfaces. These FPGAs
facilitate construction of highly parallel systems where each
FPGA is programmed with the same image to describe a
node in the system. This is in contrast to older approaches to
using FPGAs to prototype large systems, where one design
spans multiple FPGAs. Each node might be a more conven-
tional CPU and coherent memory system (à la RAMP [1]),
or an implementation of a highly parallel algorithm (e.g.
neural network simulation). Both of these application spaces
have high-bandwidth and low-latency communication re-
quirements and benefit from communication in 3D or higher
dimensions. They also require plenty of external memory
(e.g. 4GiB per FPGA).

We found it surprisingly difficult to find commodity
FPGA platforms which were symmetric (the same design
can be used on each FPGA), had plenty of external memory
and a suitable communication topology. There are some
more exotic boards (e.g. the BEE3 from BeeCube) but we
were looking for a more cost-effective commodity solution.
Section II describes the FPGA system we constructed using
commodity DE4 boards from Terasic together with our own
PCIe-to-SATA break-out board and parallel programming
solution. This system exploits the many high-speed serial
links found on Altera Stratix IV parts, which are becoming
a widespread feature of modern FPGAs. Our engineering

work has been placed into the public domain to help others
build similar systems.

We present a detailed case study of mapping a spiking
neural network simulation platform onto our FPGA system.
In contrast to much research in this space, we identify
that large-scale, real-time neural simulation is primarily
communication-bound and not compute-bound (Section III).

Having completed the requirements analysis, we proceed
to describe our custom spiking neural network simulator
implemented using Bluespec SystemVerilog (BSV [2]) (Sec-
tion IV). We include observations of the effectiveness of the
BSV language to construct such systems.

The performance of our neural network simulator is pre-
sented in Section V and we compare our work with that of
others in Section VI. Conclusions are drawn in Section VII.

II. BUILDING A FPGA CUSTOM COMPUTER

Modern FPGAs with integrated high-speed serial links
simplify the construction of cost-effective multi-FPGA sys-
tems. Previous generations of FPGAs had few links so it
was common to use as many parallel FPGA-to-FPGA links
as possible. Despite running at a lower clock rate, care still
needed to be taken to ensure good signal integrity and low
skew on these parallel interconnects. Consequently it was
common to put several FPGAs onto one large multilayer
PCB in order to meet these parallel electrical signalling
requirements. Such large PCBs are expensive to design
and build and tend to sell in low quantity, which makes
their commercial unit cost high. In contrast, single FPGA
boards sell in higher volume, thereby reducing unit cost, and
modern boards can be interconnected using the many high-
speed serial links. The next sections discuss the construction
of a 64-FPGA system.

A. Choice of FPGA board

A combination of technical merit and prior experience
of working with Terasic lead us to choose the DE4 FPGA
board. Its key characteristics are an Altera Stratix IV 230
FPGA with two DDR2 memory channels (satisfying our
memory requirements) and various serial links. Four bidirec-
tional serial links are presented as SATA connectors which

we can directly use. We also use the PCIe connector with
eight bidirectional serial links (see Figure 2), giving us 12 in
total, thus 12×6= 72Gbit/s of bidirectional communication
bandwidth per FPGA board. A further four serial links
presented as 1Gbit/s Ethernet were too slow for our uses.
There are also two HSMC connectors, one with four and
one with eight serial links which we are not using for the
moment.

B. Interconnect

We ascertained that we could fit sixteen DE4 boards in
an 8U 19” rack box, eight at the front and eight at the back
(Figure 1). Serial links from the PCIe 8× connector on each
DE4 board are used for communication within the box. We
could have designed one large motherboard to connect these
together, but this would have been a complex and expensive
PCB given the high-speed signalling. Instead we designed
a small four-layer PCIe-to-SATA adapter board to break the
DE4’s PCIe channels out to SATA connectors (Figure 2).
SATA links are normally used for hard disc communication
since they are very low cost and yet work at multigigabit
rates. Using SATA3 links we easily achieve 6Gbit/s of band-
width each way per link with virtually no bit errors (less than
10−15), a data rate much higher than that reported in [3] for
FPGA-to-FPGA links. We use these transmission standards
at an electrical level only and do not use SATA or PCIe
protocols. SATA also comes in an external variety, eSATA,
offering better electrical characteristics and a more robust
plug, so we use these for for box-to-box communication.
SATA and eSATA are capacitively decoupled which gives
some board-to-board isolation. A common ground plane
makes them suitable for rack scale systems but probably
no further due to cable length and three-phase power issues.

Figure 1. One of the Bluehive rack boxes with side panels removed
showing 16 × DE4 boards at the top. There are 16 × PCIe-to-SATA
adapters, SATA links and the power supplies at the bottom.

Figure 2. PCIe-to-SATA adapter board connected to a DE4 board providing
48Gbit/s of extra bidirectional bandwidth

The PCIe-to-SATA adapter board permits the intrabox
communication to use a reconfigurable (repluggable) topol-
ogy. We chose a PCIe edge connector socket, rather than
the more conventional through-hole motherboard socket, to
allow the adapter board to be in the same plane as the FPGA
board (Figure 2), thereby allowing a 3D “motherboard”
of adapter boards to be constructed. This adapter board
also provides power, JTAG programming and SPI status
monitoring (e.g. of FPGA temperature).

C. Programming and diagnostics

The DE4 board has on-board USB-to-JTAG and we could
have connected them via USB hubs to a PC to program them.
However Altera’s jtagd is only capable of programming
boards sequentially and, at 22s per board, this becomes
inconvenient for large arrays. Given that we often want to
program all FPGAs with the same image, we developed a
parallel broadcast programming mechanism using a DE2-
115 (Cyclone IV) board to fan-out signals from a single
USB-to-JTAG adapter. The DE2-115 board has a selectable
GPIO output voltage allowing us to easily match the DE4’s
JTAG chain requirements. A small NIOS processor system
on the DE2-115 board facilitates communication with the
programming PC allowing the multicast configuration to be
selected. This allows everything from broadcast of an image
to all FPGAs through to programming just one FPGA. In
broadcast mode, the PC only sees one FPGA but the image
file is sent to many FPGAs. We can also make the FPGAs
appear in one long JTAG chain, e.g. for communication with
JTAG-UARTs on each FPGA board post-configuration.

For diagnostic purposes we also wanted to monitor the
on-board temperature and power sensors on each DE4 via
an SPI interface. We use a small MAX II CPLD to multiplex
the SPI signals between the DE4 boards and the DE2-115
programming board. This MAX II part sits on a simple

Figure 3. Parallel programming and status monitoring board

two-layer custom PCB that we designed (Figure 3). This
PCB also fans out the JTAG programming signals using the
standard Altera JTAG header so it could easily be used to
program other Altera FPGA boards.

Inside each box we included a mini-ITX based Linux
PC to act as a remote programming device. A small power
supply powers this PC and the DE2-115 board. Via the DE2-
115, the PC can power up a server-class power supply which
powers the DE4 boards. This allows the box of FPGAs
to be brought up to run a task and then be put to sleep
afterwards, reducing standby power to under 10W. The PC
also monitors the DE4 temperatures/voltages and the server
power supply status (via an I2C link), and powers them down
if they go outside of the operating range.

D. Open-sourcing reusable components

We have open-sourced the PCIe-to-SATA adapter board
and the parallel programming board. The PCIe-to-SATA
adapter board is suitable for use with other PCIe based
FPGA boards, e.g. the NetFPGA10G. The parallel program-
ming board can be directly used to program other Altera-
based FPGA boards and with some adaptation would work
with Xilinx-based boards.

III. SPIKING NEURAL NETWORKS — A COMMUNICATION
REQUIREMENTS ANALYSIS

We have selected the Izhikevich spiking-neuron algorithm
[4] for our neural network simulations as we believe that
it offers a good compromise between biological accuracy
and computational efficiency [5]. The next subsection briefly
introduces the algorithm from a computational point of view
before we embark on a communication analysis.

A. An computational view of Izhikevich spiking-neurons

The Izhikevich algorithm uses equation (1) to simulate
the spiking behaviour of a neuron. This equation (1) is
designed to be evaluated in continuous-time using floating-
point arithmetic, however it is possible to derive suitable
discrete-time, fixed-point alternatives, which will be evalu-
ated every 1ms [6]. The variable v represents the membrane
voltage of the neuron and u the refractory voltage, with a
to d being parameters which control the behaviour of the
neuron. The variable I represents the sum of the magnitudes
of all spikes arriving via the neuron’s dendritic inputs. The
synapses, which connect neurons together, are represented
by tuples of source neuron, target neuron, delay and weight.

v′ =

{
0.04v2 +5v+140−u+ I v < 30mV
c v≥ 30mV

u′ =

{
a(bv−u) v < 30mV
u+d v≥ 30mV

(1)

The range of these variables and parameters is bounded,
allowing us to use 16-bit fixed-point arithmetic. We break
time down into discrete steps of 1ms, matching prior work
[6]. Equation (1) is easily laid out as a pipelined structure
that can be clocked at 200MHz. So if every neuron is eval-
uated once every 1ms, we can easily evaluate 105 neurons
using just one copy of the evaluation pipeline, leaving plenty
of space on the FPGA. Clearly the problem is not compute
bound, so it surprises us that many neuroscientists focus
on the computational problem even for the comparatively
simple Izhikevich model.

We now look at the data storage requirements of our
example of 105 neurons per FPGA. The parameters of
equation (1) take for a single neuron take less than 16bytes.
So 105 neurons requires around 1.6MB of storage. This
would just fit in the BRAM on the Stratix IV part that
we are using but we have chosen to store this in off-chip
memory since it does not use excessive bandwidth and
results in all of the neuron parameters being held with the
synaptic parameters (weights, delays, etc.). This makes it
easy to change the neural netlist without changing the FPGA
configuration.

B. A communication view of Izhikevich spiking-neurons

In addition to evaluating equation (1) for each neuron
it is necessary to communicate spikes between neurons,
apply appropriate delays and weights, and sum them to
provide the I-value for every neuron at each time step. As
the fan-in of a neuron increases, the computational cost of
summing I-values dominates that of evaluating equation (1).
But the computation is just addition, so the real challenge
is streaming the data through the addition units.

Typically neurons have a fan-out and fan-in of around
1000. Fan-in mirrors the fan-out so let us focus on fan-out.
The mean firing rate for neurons is 10Hz [7], so the fan-
out bandwidth for 105 neurons is 1000× 10× 105 = 109

events/s. In our model, each fan-out message consists of a
32-bit value to index the receiving neuron, 12-bits for the
weight and 4-bits for the delay giving 48-bits or 6-bytes per
event. So the mean fan-out bandwidth for 105 neurons is
6GB/s.

With 105 neurons per node, a fan-out of 103 and 6 bytes
per event, we need 6×108 bytes of storage (0.6GB), so these
values have to be stored in off-chip memory. Fortunately,
with two banks of DDR2 memory we have plenty of storage
(4GiB to 8GiB) and plenty of memory bandwidth (peak
12.8GB/s and we typically achieve 75% of the peak) so we

can stream the fan-out values from memory. Nevertheless, it
is clear that communication from memory to FPGA provides
a bound on the number of neurons we can simulate in
real-time per FPGA. However, there are two advantages of
storing parameters in external memory:

1) The external memory is effectively being used as
a giant switch, mapping neuron firings to lists of
firing events. This takes care of a great deal of the
communication complexity.

2) Neural netlists may be loaded without need to resyn-
thesize the FPGA.

FPGA-to-FPGA communication is governed by the local-
ity and overall size of the network. It has been shown that
interconnect in mammalian brains can be analysed using a
variant of Rent’s rule which is often used to analyse com-
munication requirements in VLSI chips [8]. This analysis
indicates that there is a great deal of locality. So, for very
large networks spanning many FPGAs, we see a great deal
of communication between neighbouring FPGAs and very
little communication travelling any distance provided the
communication topology has at least three dimensions. To
get an upper bound on the communication requirements, we
take the pathological case that all 105 neurons fan-out to
neurons off-FPGA, with all target neurons being on different
FPGAs. In this case all 6GB/s of bandwidth is needed
(calculated in the previous paragraph). Our 12 SATA links
per FPGA give us 72Gbit/s or 9GB/s of raw bandwidth
so, even with protocol overheads, we can manage 6GB/s of
FPGA-to-FPGA bandwidth. In practice we exploit locality
(grouping physically close neurons on the same FPGA) and
also use multicast routing between FPGAs. For the results
in Section V, we observe a mean bandwidth of 250Mbit/s
between each FPGA board.

Communication latency is also an important considera-
tion. For real-time simulation we must deliver spiking events
in well under a 1ms simulation time-step. Fortunately, our
FPGA-to-FPGA links have a mean latency of 10 clock cycles
at 200MHz, so just 50ns per hop. We aim to keep the
network lightly loaded to reduce the risk of congestion, and
use low-latency routing, so communication latency across a
large FPGA fabric is not a problem.

IV. ARCHITECTING A NEURAL NETWORK SIMULATOR IN
BLUESPEC

Given the analysis of the Izhikevich spiking neuron model
in Section III, we divided our design into the following
functional components:
• Equation Processor — performs the neuron computa-

tion, i.e. calculating equation (1).
• Fan-out Engine — takes neuron firing events, looks

up the work to be performed and farms it out.
• Delay-Unit — performs the first part of the fan-in

phase. Messages are placed into one of sixteen 1ms

bins, thereby delaying them until the right 1ms simu-
lation time step.

• Accumulator — performs the second part of the fan-in
phase, accumulating weights to produce an I-value for
each neuron.

• Router — routes firing events destined for other pro-
cessing nodes.

• Spike auditor — records spike events to output as the
simulation results.

• Spike injector — allows external spike events to be
injected into the simulated network. This is used to
provide an initial stimulus. It could also be used to
interface to external systems (e.g. sensors).

First we present our implementation method and then
discuss how the above functional components were coded.

A. Implementation method and the BSV language

We chose to implement our system using Bluespec Sys-
temVerilog (BSV) [2] since it is higher-level than Verilog
or VHDL but still allows low-level design optimisations.
In particular, channel communication can be concisely ex-
pressed both within and between modules. This allowed us
to easily express the architecture in a ‘communicating se-
quential processes’ style. Initially we broke our architecture
down into building blocks that could be implemented using
small NIOS processors interconnected by channels. These
NIOS processors could then be interchangeably replaced
by Bluespec components, facilitating incremental refinement
and unit testing.

B. Equation Processor

The Equation Processor needs to implement equation (1).
We use fixed-point arithmetic and the equation only requires
multiply, add, subtract and shift operations. We stream
parameters for thousands of neurons every 1ms (64k neurons
per FPGA for the results presented).

I-value updates come from on-FPGA memory but the
other parameters are burst-read from off-chip memory. The
logic to do this is written in BSV and relies on the BSV com-
piled Verilog going through the Altera Quartus II synthesis
system to map multiplication and addition functions onto
the embedded DSP blocks (multipliers, etc.). The Quartus
synthesis tool does a good job of this mapping allowing us
to focus on the higher-level issues of pipelining and stream
management. Note that the parameters a to d do not change,
and are only written back to external memory since 256-bit
writes are most efficient for our memory configuration.

Inputs: parameters streamed from external mem-
ory (256-bit chunks every clock cycle):
(a,b,c,d,u,v)
parameter fetched from on-FPGA memory:
I

Function: equation (1)
Outputs: written to external memory: (a,b,c,d,u,v)

conditionally output neuron number to the
Fan-out Engine on neuron firing
(v≥ 30mV)

C. Fan-out Engine

Firing events from the Equation Processors are sent to
the Fan-out Engine which uses the source neuron number to
read a list of destinations. One neuron firing event typically
fans-out to 1000 target neurons, so we use custom engines
to efficiently burst-read this information. The first stage
of the fan-out groups the synapses by destination node
and delay, with the second stage being performed by the
Accumulator on the target node.

Input: neuron number from Equation Processor
Function: requests list of work to be performed from

external memory
Output: a stream of tuples:

(destination node,delay,
pointer to neuron updates,length)

D. Delay Unit

The Delay Unit receives tuples from Fan-out Engines on
both the local node and other nodes in the system. It sorts
them into one of 16 FIFOs, one for each permitted delay (in
1ms discrete time steps). FIFOs are assigned to 1ms delay
periods in a cyclical fashion and every 1ms step, the “2ms”
FIFO logically becomes the “1ms” FIFO and the “1ms”
FIFO becomes the “0ms” FIFO, and so on. Work in the
current “0ms” FIFO is drained and sent to the Accumulator.

The number of spike events that can be generated in
a given time step is effectively unbounded (limited only
by the characteristics of the network), so the FIFOs in
the Delay Unit theoretically need to be able to store
an unbounded number of tuples. We achieve this using
a cached-FIFO design which spills contents to external
memory when it fills up. Care is taken to preserve FIFO
ordering and exploit burst reads and writes.

Input: a stream of tuples:
(delay,pointer to neuron updates,length)
burst-read FIFO data previously spilled to
external memory

Function: sort work into FIFO delay buckets
Output: a stream of tuples for the current time period:

(pointer to neuron updates,length)
burst-write FIFO data spilled to external
memory

E. Accumulator
The Accumulator is the inner loop of the algorithm

and as such it is the most performance-critical when
the fan-in is biologically plausible (e.g. 1000 inputs).
From the Delay Unit it receives a stream of tuples:
(pointer to neuron updates,length). For every tuple, the Ac-
cumulator burst-reads a stream of (neuron number,weight)
pairs and performs the I-value updates:

I[neuron number]+=weight

However, for good performance, we wish to burst-read
the update pairs four at a time per clock cycle and so four
accumulations need to be performed in parallel. We partition
the I-values across eight banks of BRAMs on-FPGA and
route the four pairs of updates to the banks that currently
represent the I-values that will be used in the next time step.
Together with some buffering, this statistical multiplexing
means that we will only stall when we get an unusually
high number of updates to one bank.

We hold two copies of the I-values on-FPGA, with one
copy holding the values that will be used in this time step,
and the other copy being updated ready for the next time
step.

Input: a stream of tuples:
(pointer to neuron updates, length)
a burst-read stream of pairs:
(neuron number, weight)

Function: read a stream of neuron updates and perform
I-value accumulation in parallel

Output: I-value updates from the previous time-step
held in BRAM for Equation Processor to
read

F. Router
Firing events destined for Delay Units on other FPGAs

are routed off-FPGA using a simple dimension-ordered
routing scheme. The destination node number in the tuples
produced by the Fan-out Engine is converted into a number
of hops in each plane of the network. Events coming into
the FPGA are routed to the Delay Unit along with other
events originating from the Fan-out Engine on that FPGA.

Input: a stream of tuples from the Fan-out Engine
and SATA links:
(destination node,delay,
pointer to neuron updates,length)

Function: route tuples destined for this node to the
Delay Unit, otherwise to external SATA links

Output: a stream of tuples to the Delay Unit:
(delay,pointer to neuron updates,length)
and the SATA links:
(destination node,delay,
pointer to neuron updates,length)

For the board-to-board SATA links we use a reliable link
overlay layer which uses conventional CRC protection and a
replay mechanism to guarantee correct delivery. In practice
the links are very reliable so the error detection and replay
mechanism is rarely needed.

G. Spike Auditor and Spike Injector

The Spike Auditor records the spike events that are
generated by the simulation. Each FPGA maintains a record
of spike events generated by the neurons that it hosts, which
are saved off-chip in simple tuples of simulation time and
neuron number. The spike event records from each FPGA are
downloaded by the host PC post-simulation and combined
to form the record of spike events for the whole simulation.

The Spike Injector allows spike events from outside the
simulation to be introduced. This is used to provide some
initial stimulus to start the simulation, and could also be
used to interface to external systems. The initial spikes are
fetched from off-chip memory as tuples of simulation time,
neuron number and injected I-value.

H. Parallel System Overview

Figure 6 illustrates the complete system and its hierarchy.
The design scales to a large number of FPGAs. The only
limiting factor is the FPGA-to-FPGA bandwidth but with
our current 3D torus configuration, we achieve a massive
12Gbit/s of bidirectional bandwidth per channel and require
few hops, so the system is highly scalable.

V. RESULTS

Given the absence of widely used neural netlist bench-
marks, we created our own networks to test our system.
Initially netlists were created using the PyNN [9] tool
created by the neuroscience community. Whilst PyNN can
produce a range of complete neural netlists, it appears not
to scale much beyond 8k neuron, which is insufficient to
demonstrate a 4-FPGA system with 64k neurons per FPGA.
Therefore we created our own generator tool to produce a
neural netlist with biologically-plausible parameters – an
average neuron firing rate of 10Hz and fan-out of 1000.
Care had to be taken to generate an appropriate network
which neither extinguishes itself or explodes in activity.
Chunks of 1000 neurons were grouped into populations.
This helped to achieve our network activity goal by biasing
synaptic connections towards the next adjacent population
whilst keeping the fan-out constant. This results in a network
where around 1% of the neurons fire in any 1ms time step,
though this varies slightly over time as shown in Figure 4.

Figure 4 presents a scatter plot (in fine red dots) showing
neuron firing events, and the total number of clock cycles
needed to complete each 1ms time step shown (black line).
Figure 5 is a larger-scale copy of a small section of Figure 4
which more clearly shows the neuron firing pattern.

Figure 4. Graph showing per-neuron activity (fine red dots) and the total
number of cycles needed to complete every 1ms step (black line). Real-
time achieved if the total number of cycles per 1ms never exceeds 2×105,
i.e. 200MHz operating rate.

 150000

 152000

 154000

 156000

 158000

 160000

 100 102 104 106 108 110
 165000

 170000

 175000

 180000

 185000
N

eu
ro

n
N

um
be

r

C
lo

ck
 C

yc
le

s

Time / ms

Figure 5. Graph showing a small section of Figure 4 to more clearly show
the neuron firing pattern.

Our aim is to build a real-time system (no faster, no
slower), and we can run our design at 200MHz and since
the maximum workload for any 1ms period is completed in
2×105 clock cycles, we have met our target.

We also compared the performance of our FPGA-based
system to a CPU-based system using the same network.
Our single-threaded neural network simulator written in C
required 48.8s to calculate 300ms of simulation time on a
single thread of a 16-thread, 4-core Xeon X5560 2.80GHz
server with 48GB RAM. So the four-FPGA version is
162 times faster than the software simulator and our C
simulator has similar performance to other reported software
simulators [10].

Router Interface

Off-Chip Memory Interface

FanoutEquation

Spike
Injector

Spike
Auditor

Accumulator

Delay

Processing
Engine

Processing
Engine

Processing
Engine

Processing
Engine

Router

Off-Chip Memory Interface

High Speed Serial Links

Processing
Node

Processing
Node

Processing
Node

Processing
Node

Figure 6. Block diagram of the complete multi-FPGA system

VI. RELATED WORK

Given the requirements in Section III, current GPGPUs
and multicore CPUs do not have the communication band-
width needed for scalable massively-parallel spiking neuron
simulation (e.g. thousands of CPUs or GPUs). The custom
SpiNNaker machine [6] scales to 106 ARM processors
using a custom ASIC with custom interconnect providing a
reprogrammable platform suited to neural simulation. This
is an alternative approach to our proposed FPGA system
but the custom ASICs are likely to be moderately expensive
for a few thousand parts and will be on an implementation
technology which is several generations behind FPGAs.

FPGAs pay a significant area and performance penalty
for being reconfigurable, however they can be produced
cost-effectively using small feature-size processes (40nm
for Stratix IV parts), which allows integrated high-speed
memory interfaces and serial transceivers not possible using
older implementation technologies. Since large-scale neuron
simulation is communication-bound, FPGAs have an advan-
tage. On the other hand, current FPGAs are more power
hungry than SpiNNaker chips. Given these advantages and
disadvantages it remains to be seen whether the SpiNNaker

approach is more competitive than FPGAs in this space for
large machines.

Much research has been undertaken on FPGA based
artificial neural-network simulators, often for multi-layer
perceptron models [11]. In contrast, our work is focused on
spiking neuron models [5]. Often research focuses on single
FPGA implementations [12] where we are interested in
parallel FPGA machines, for example Thomas and Luk [10]
present an implementation of 1k Izhikevich neurons running
100× faster than real-time whereas we have focuses on
real-time simulation and can easily manage 64k neurons
per FPGA. We achieve comparable performance but with
a design scalable to far more neurons per FPGA and many
FPGAs.

In common with [12], [13], we time-multiplex the hard-
ware and stream neuron parameters from external memory
but we have a multi-FPGA implementation allowing more
neurons to be simulated in real-time (for the same com-
plexity of neuronal algorithm, numerical precision used and
fan-in:neuron ratio).

VII. CONCLUSIONS

Three contributions are made in this paper:
Firstly, a report on engineering work to build a scal-

able FPGA custom computer called Bluehive. Unlike many
other systems, this uses commodity evaluation cards which
amortises the development costs over a larger market. We
have created custom PCBs to break out serial links to
pluggable SATA channels (12× 6Gbit/s links per FPGA)
and to facilitate broadcast programming of multiple FPGAs.
These designs have been placed into the public domain to
help others build similar systems.

Secondly, a characterisation of large-scale real-time neural
network simulation and an analysis of why FPGAs are much
better than current GPGPUs and commodity CPUs for this
problem space due to the low-latency and high-bandwidth
communication needs.

Thirdly, details of a custom architecture to simu-
late spiking neural networks in real-time. We take a
communication-centric approach which is in contrast to the
many computation-centric designs in the literature. This
design approach allows us to simulate large networks: 64k
spiking neurons per FPGA with 64M synapses. Also, the
design is highly scalable to large numbers of FPGAs and we
have already demonstrated a four-FPGA system with 256k
neurons and 256M synapses. Given the low utilisation of
the inter-FPGA bandwidth, we predict linear scaling to at
least 64 FPGAs. All of the neural network parameters are
held in external memory so changing the netlist is simply a
matter of downloading fresh data: no reconfiguration of the
FPGAs is necessary. It also allows for run-time plasticity
of the network (e.g. for learning). This is in stark contrast
to many other FPGA designs where the neural netlist is an
integral part of the design and a change to the neural netlist
demands resynthesis of the design.

Further work is needed to bring FPGA-based tools to the
neuroscience community. Currently the community focuses
on smaller networks and produces tools (e.g. PyNN) that do
not scale to larger networks. This presents both a challenge
and opportunity. The challenge is that the neuroscience
community does not provide large neural benchmarks, so
we have no clear targets. But there is also an opportunity
for FPGA designers to provide tools (hardware and software)
to enable extreme-scale neural simulation. We have made a
significant further step along this path.

ACKNOWLEDGEMENTS

Many thanks are due to Chuck Thacker (Microsoft Re-
search) for giving us advice on the PCIe-to-SATA adapter
board and to our colleagues Prof. S.B. Furber (University of
Mancheter), Prof. A.D. Brown (University of Southampton)
and Prof. D. Allerton (University of Sheffield) for collaborat-
ing on neural simulation. The UK research council, EPSRC,
provided much of the funding through grant EP/G015783/1.

REFERENCES

[1] Arvind, K. Asanovic, D. Chaiu, J. Hoe, C. Kozyrakis, S.-L.
Lu, M. Oskin, D. Patterson, J. Rabaey, and J. Wawrzynek,
“RAMP: Research accelerator for multiple processors — a
community vision for a shared experimental parallel HW/SW
platform,” Berkeley, Tech. Rep., 2005. [Online]. Available:
http://ramp.eecs.berkeley.edu/Publications/ramp-nsf2005.pdf

[2] R. S. Nikhil and K. R. Czeck, BSV by Example. CreateSpace,
Dec. 2010.

[3] A. Schmidt, W. Kritikos, S. Datta, and R. Sass, “Reconfig-
urable computing cluster project: Phase I brief,” in Field-
Programmable Custom Computing Machines, 2008. FCCM
’08. 16th International Symposium on, Apr. 2008, pp. 300–
301.

[4] E. Izhikevich, “Simple model of spiking neurons,” Neural
Networks, IEEE Transactions on, vol. 14, no. 6, pp. 1569–
1572, Nov. 2003.

[5] E. Izhikevich, “Which model to use for cortical spiking
neurons?” Neural Networks, IEEE Transactions on, vol. 15,
no. 5, pp. 1063–1070, Sept. 2004.

[6] X. Jin, S. Furber, and J. Woods, “Efficient modelling of
spiking neural networks on a scalable chip multiprocessor,” in
Neural Networks, 2008. IJCNN 2008. (IEEE World Congress
on Computational Intelligence). IEEE International Joint
Conference on, 1-8 2008, pp. 2812–2819.

[7] C. Mead, “Neuromorphic electronic systems,” Proceedings of
the IEEE, vol. 78, no. 10, pp. 1629–1636, Oct. 1990.

[8] D. S. Bassett, D. L. Greenfield, A. Meyer-Lindenberg, D. R.
Weinberger, S. W. Moore, and E. T. Bullmore, “Efficient
physical embedding of topologically complex information
processing networks in brains and computer circuits,” PLoS
Comput Biol, vol. 6, no. 4, p. e1000748, 04 2010.

[9] A. P. Davison, D. Bruderle, J. M. Eppler, J. Kremkow,
E. Muller, D. Pecevski, L. Perrinet, and P. Yger, “PyNN: a
common interface for neuronal network simulators,” Frontiers
in Neuroinformatics, vol. 2, no. 11, 2009.

[10] D. Thomas and W. Luk, “FPGA accelerated simulation of
biologically plausible spiking neural networks,” in Field Pro-
grammable Custom Computing Machines, 2009. FCCM ’09.
17th IEEE Symposium on, Apr. 2009, pp. 45–52.

[11] A. R. Omondi and J. C. Rajapakse, FPGA Implementations
of Neural Networks. Springer, 2006.

[12] L. P. Maguire, T. M. McGinnity, B. Glackin, A. Ghani,
A. Belatreche, and J. Harkin, “Challenges for large-scale
implementations of spiking neural networks on FPGAs,”
Neurocomput., vol. 71, no. 1-3, pp. 13–29, 2007.

[13] J. Martinez-Alvarez, F. Toledo-Moreo, and J. Ferrandez-
Vicente, “Discrete-time cellular neural networks in FPGA,”
in Field-Programmable Custom Computing Machines, 2007.
FCCM 2007. 15th Annual IEEE Symposium on, Apr. 2007,
pp. 293–294.

