Rotary Pipeline Processors

Simon Moore, Peter Robinson, Steve Wilcox
Computer Laboratory, University of Cambridge

Submitted: 15 December, 1995
Revised: 30" May, 1996

Abstract

The rotary pipeline processor is a new architecture for su-
perscalar computing. It is based on a simple and regular
pipeline structure which can support several ALUs for effi-
cient dispatching of multiple instructions. Register values
flow around a rotary pipeline, constrained by local data de-
pendencies. During normal operation the control circuits are
not on the critical path and performance is only limited by
data rates. The architecture is particularly well suited to im-
plementation using self-timed logic.

1 Introduction

Most current designs for processors reflect their intended im-
plementation technology. In particular, the availability of ex-
traordinarily large scale integration and the benefits of clock-
ing have led to the current range of superscalar designs using
multiple instruction issue into parallel pipelines to increase
performance. However, the resolution of data dependencies
within and between these pipelines requires many special by-
passes which can only be synchronised by a single, central
clock. This introduces the further problem of distributing a
global clock across a large chip.

Alternative architectures that avoid central clocks are be-
ginning to show some promise. In these, timing is controlled
by completion detection or matched delays with local hand-
shakes between stages. The counterflow pipeline proces-
sor [12] is designed around a bi-directional pipeline carry-
ing instructions and arguments in one direction and results in
the other. This can be implemented in conventional clocked
logic, but it also lends itself to an asynchronous implemen-
tation using micropipelines [13]. However, the synchronisa-
tion required between the rising and falling pipelines appears
to impose a severe bottleneck on performance.

The rotary pipeline processor avoids the problem by only
passing data in a single direction. In principle, the proces-
sor’s registers continually circulate around a ring which links
various function units — ALUs, memory access and so on
— as shown in Figure 1. At each stage, the values are in-
spected and passed on, possibly after modification, with no
significant overhead for synchronisation. Instructions are
dispatched from the centre to the function units which allows
multiple instruction issue.

This paper introduces the concept of the rotary pipeline
and explores its practical implementation. Section 2 de-
velops the architecture and shows how it handles branches,

conditional execution, speculative execution and exceptions.
Section 3 considers the problems of a practical implementa-
tion and gives circuit details for the key components includ-
ing physical dimensions of their layout. Section 4 presents
the results of some preliminary simulations indicating the
likely performance of the architecture. Section 5 discusses
the relationship of this work to others. Finally conclusions
are drawn in Section 6.

2 Rotary Pipeline Concept

2.1 Overview

In its simplest conceptual form, a rotary pipeline circulates
all of the processor’s registers around a ring (see Figure 1).
As the register file flows around this ring, values are in-
spected by the various function units and results are inserted.

Registers are not kept in lock step although they are pre-
vented from lapping each other. This allows unused regis-
ters to be forwarded to subsequent ALUs so that operations
can occur in parallel. If there are data dependencies, how-
ever, the function units will wait for the new value. Thus it
is common for a function unit to be primed with an instruc-
tion which it will start to execute as soon as the data arrives.

2.2 Basic Pipeline Construction

A rotary pipeline is constructed from banks of flip-flops and
switch networks (see Figure 2). The first switch network in
a stage selects which registers a function unit requires for its
operands. The resultis then injected back into the register file
by a second switch network. Finally a set of flip-flops store

cyclic pipline where
register values
flow around

I instruction =
% 2 dispatch ' c

Figure 1: Rotary pipeline abstraction

memory
structure

and buffer the registers at this stage in the pipeline. These
allow the preceeding function unit to be reset and made ready
for the next operation.

Memory
Access

switch

network < — o
1 > nag! H
: 5 |
5|
. O H
all registers o |
eL< — |
G G- - C (G
flip-flops flip-flops
— — — — —
] [
» :
Q
o
& :

[

ALU

Figure 2: Wide rotary pipeline structure

2.3 Adding a register file

A simple rotary pipeline is quite a large structure if there are
many registers. However, if there are only a few function
units, then just a subset of the registers will be active. Only
this subset need be passed around the pipeline whilst the rest
remain in a register file (see Figure 3).

switch
network <—

register file
subset

(i

9|1} Joys16a1 papod-inw

Figure 3: Narrower rotary pipeline with register file

2.4 Rotary bus allocation

Required registers can be allocated to buses in the pipeline
on a first come, first served basis when instructions are dis-
patched. Some of the registers output by the register file may
only be read by the first function unit, for example. In which
case the function unit may reuse a bus for its output (see

ALU 1 in Figure 4). Conversely, a register may be read by
more than one ALU which also allows the number of buses to
be reduced. However, too few buses will be restrictive when
instructions are independent. If there are insufficient buses
then instances will arrive when some ALUs will have to be
issued NOPs to prevent deadlock from occurring. Again, this
can be handled by the central dispatcher.

r4=r4+r1 r1=load(r5)
ALU Memory
3 Access
= i
3 S a3 3
: oY \—— 5 4 14 3
7R § 5 I <
—J S
S
o3
[flip-flops } e
@
[Q
1%
5 0 et 5 @
a <
4 >% S 4 4 =
L3 = = L3 L3 [
1 i3 *% 2
= *
—J

ALU
2

r4=r4 OR 3

ALU
1

r1=r2+r3

Figure 4: Example of rotary bus usage

2.5 Instruction issue

In the simple case, sequential instructions are issued in clock-
wise order around the ring in the same direction as the regis-
ter flow. This ensures that register dependencies are resolved
correctly provided registers are prevented from lapping each
other. The latter is enforced by the clean-up logic at each
stage which sweeps up behind the register flow and prevents
registers from advancing into unclean areas.

Some function units (e.g. the ALUs) can execute many
instructions but others (e.g. memory access) are more spe-
cialised. Consequently, there are times when an instruction
cannot be executed by the next available function unit —
a no-operation (NOP) instruction is issued instead and the
subsequent function unit is tried. Fortunately NOPs execute
quickly (2 to 3 gate delays) because they just pass on the reg-
ister values around the ring.

Dynamic instruction reordering can be used to improve
execution unit utilisation. For example, a LOAD followed by
aindependent ADD might be swapped so that the ALU before
the memory access unit can be issued with the ADD rather than
a NOP. However, our initial results (see Section 4.2) indicate
that function unit utilisation is only increased by 3% on code
which is not optimised for this particular architecture (where
one would expect to see the most benefit). This also has to be
balanced against the expense of lengthening the decode stage
which will detract from pipeline refill performance, e.g. after
a mispredicted branch.

Even when instructions are issued in-order, the data driven
nature of rotary pipelines allows out-of-order execution and
completion. Consequently the penalty for issuing an instruc-

tion in the wrong order is less critical than with clocked pro-
Cessors.

Figure 4 presents an example of in-order instruction is-
sue and out-of-order completion. The two instructions
(r1=r2+r3 and r4=r4 OR r3) may execute in parallel, the
latter completing first because there is no carry propagation.
The third instruction (r4=r4+r1) is dependent upon the re-
sult of the first two instructions and will, therefore, wait for
the results to flow around. Finally, the fourth instruction
(r1=load(r5))is independent from the first three and may
well complete (assuming a cache hit) before the third instruc-
tion.

2.6 Condition flags

If a register is required to hold condition codes then it may
be passed around the rotary pipeline as a specialised register.
This runs the risk of introducing a dependency between ev-
ery pair of instructions. However, some instructions will not
modify the condition codes so they can be passed on quickly.
Other instructions will set or clear conditions irrespective of
their initial state so it is possible for some or all condition bits
to be generated early. Alas, other instructions (e.g. add-with-
carry) will have to wait for the appropriate condition bits to
arrive and will hold some of them up until the calculation is
complete.

Of course the condition codes dependency problem is not
anew one and existing techniques can be used to avoid them:

1. Do not have condition codes — e.g. Digital’s Al-
pha [10].

2. Have many copies of them — e.g. Motorola’s Pow-
erPC [11].

2.7 Conditional execution

Conditional execution of arithmetic and logical instructions
(e.g. as used by the ARM [1]) may be supported by a little
extra control logic at each ALU. The extra control logic de-
termines whether the result of the ALU operation is written to
the rotary pipeline by controlling the output switch network.
A copy of the destination register must be passed around the
rotary pipeline in case it is not updated by the conditional in-
struction but is consumed later on. Conditional updates of
the program counter (PC) are performed by the branch unit
in a similar manner (see the next section).

2.8 Branches

Branches always have the potential to disrupt pipeline effi-
ciency, so they need to be intercepted early. Non-conditional
branches and jumps are independent of the execute stage and
may be successfully taken at the decode stage. Conditional
branches are always a problem because they are dependent
upon the execute stage. In such cases a prediction about the
result of the branch may be made and instructions fetched ac-
cordingly for speculative execution (see the next section).

The branch still needs to be issued to the execute stage
to ensure that the prediction was correct. This may be per-
formed by a specialised function unit.

2.9 Speculative execution

It is essential that speculatively executed instructions can be
revoked, i.e. it must be possible to restore the state of the pro-
cessor after unsuccessful speculative execution. If a regis-
ter file is used then one can simply ensure that registers are
not written until it is known that the results are correct. Al-
ternatively, a larger register file may be used and specula-
tive results written to temporary registers (e.g. as used on the
Power PC). Mapping register numbers to physical registers
is then a process of colouring, which may be undone if the
speculative execution fails.

If a wide rotary pipeline is in use without a register file,
then instructions marked as speculative simply prevent the
flip-flops from the previous stage from resetting. Thus, the
old register values may be reintroduced if the speculatively
executed instructions have to be removed.

2.10 Exceptions

Precise exceptions are easy to achieve in a pipeline with-
out a register file because instructions being executed further
around the pipeline may be cancelled by resetting the appro-
priate stages. Registers then revert to the snapshot of regis-
ters before the offending instruction.

If a register file is used then all instructions have to be
treated as speculative until the preceeding one succeeds.
Thus, registers may only be retired to the register file once
it is known that the previous instruction has succeeded. This
may be relaxed if an imprecise exception model is used for
arithmetic operations. Precise exceptions are still required
for memory accesses, however, because page and TLB faults
need to be intercepted transparently. In this case, only the
memory access unit needs to prevent updates reaching the
register file.

3 Implementation Issues

3.1 Data encoding and completion
detection

There are two principle methods for determining when a
logic block has completed an evaluation [7, 9, 5]:

1. embedding a completion signal within the data,

2. localised timing using matched delays.

Whilst the latter can use conventional binary encoding, the
former requires a less efficient encoding which includes a
completion signal. For example, 1 of 2 or 1 of 4 encoding
might be used (see Figure 5). 1 of 2 encoding has the advan-
tage of replacing binary directly but 1 of 4 encoding (radix
4 data) has fewer transitions per cycle (per pair of logical
bits) and so consumes less power but without complicating
the arithmetic unit.

A completion detection circuit is also required which
may be constructed using OR gates and a tree of Muller C-
elements [2] (see Figure 6). The OR gates determine when

code | meaning code | meaning

00 clear 0000 | clear

01 logical 0 0001 logical 0

10 logical 1 0010 | logical 1
0100 | logical 2
1000 | logical 3

(a) 1 of 2 encoding (b) 1 of 4 encoding

Figure 5: Data encodings

a valid logic encoding has been reached and a tree of C-
elements indicates when all logic values are set and then
when all are cleared.

Localised timing uses matched delays and bundled data
epitomised by Sutherland’s Micropipelines [13]. Bundled
data just uses binary encoding which uses half as many wires
as 1 of4 encoding. However, inverting a 1 of 4 encoded num-
ber is just a matter of swapping wires over where as binary
encoding requires inverter gates. Consequently the area dif-
ference is not quite as large as one might expect.

Moreover, matched delays require a good margin for error
(often at least 50%) when estimating delays due to manufac-
turing tolerances and any localised thermal effects. This tim-
ing margin is directly in the data path so it has a substantial
effect on performance. On the other hand, completion detec-
tion need only affect when a pipeline stage can be reset for
reuse. The completion signal does not need to travel forward
on the critical data-path since the data has the completion in-
formation embedded in it. Consequently 1 of 4 encoded data
with completion detection is faster than bundled data for ro-
tary pipelines.

3.2 Using dynamic logic

Dynamic logic and inverted 1 of 4 encoded data dovetail
rather nicely because precharging the dynamic logic corre-
sponds to clearing a 1 of 4 encoded function before evalua-
tion. If dynamic logic is used then the time taken to perform
an evaluation is data dependent but the time to reset the cir-
cuit is not. This fact can be used to simplify completion de-
tection: replace the tree of C-elements with AND gates (actu-
ally a NAND and NOR tree) to detect data completion (as used
by Unger [14]), and a delay based on precharging to deter-
mine reset completion (see Figure 7).

inverted 1 of 4
encoded data

complete/cleared

Figure 6: C-element based completion

inverted 1 of 4
encoded data

complete

precharge
clear

Figure 7: Combining completion detection with delayed clear sig-
nal (the capacitor is adjusted to match delays)

precharge
data in N-tree N-tree —>data out
) o =) Q
5 h=3y 5 SRS
23
58
< 3
(E Q
)
Figure 8: ALU outline
to ALU to ALU result
operand A operand B from ALU
0000
ready " Il read) 0 T bbby wiite
reg,lw ICHCIL reg"j ICHCEL i r\ reg.
== el
o E
Y= s qf e
3 | &
=3 =— @
3)
g] g
So Eal =4
He]
bypass reset
register stage
to completion

detector

Figure 9: Pipeline stage

3.3 Outline of a stage in the
pipeline

Each stage of the rotary pipeline consists of some function
unit (e.g. Figure 8) and a switch network (Figure 9) to in-
tercept the appropriate register values and inject results back
into the pipeline.

The switch network consists of n-transistors which pass
zeros well so an inverted 1 of 4 encoding is used. Banks of
transistors select which registers are to be passed as operands
to the ALU. Another bank allows register values to be passed
through without modification and a further one allows the re-

sult to be injected. Then a bank of SR flip-flops are used to
store the result of this stage which is followed by comple-
tion detection. The humble SR flip-flop (Figure 10) is used
because it is simple and has the right functionality: capture
zeros when R is high and reset when R is low.

S

R Q

Figure 10: not-S not-R flip-flop

3.4 Controlling the pipeline

Each stage of the pipeline passes through the following
states:

e empty — after the ALU is precharged and the flip-flops
are reset

e waiting for data — precharge and reset are released

e latching data — SR flip-flops store the result and com-
pletion is detected

e precharge — once data has been latched, ALU
precharge may commence

e reset — once the next stage has indicated completion
(i.e. the data has been consumed) then the latches of this
stage may be reset.

e empty — to complete the cycle

A simple implementation of the control structure which
embodies the above is shown in Figure 11. This does not
include waiting for the instruction to arrive and then being
cleared during precharge. However, this may be added by a
simple extension to the precharge logic.

3.5 Synthesising complex functions

Complex functions, for example multiply or divide, may be
issued as micro-instructions to the multiple ALUs in the ro-
tary pipeline. In this instance the rotary pipeline acts in an
analogous manner to Williams’ divider [17] — intermediate
results flow around as quickly as they are produced.

Multiplies may use a 2-bit Booth’s algorithm to multiply
two bits per ALU [3]. The only extra hardware required is a
two bit shift register which needs to be loaded with the multi-
plicand and forms part of the control logic. The control logic
then issues the correct micro-instruction for each pair of bits
in the multiplicand.

Division may be tackled using conventional ALUSs by im-
plementing nonrestoring division [6]. A modicum of extra
hardware is required for accumulating the quotient bits and

completion signal
from the next
pipeline stage

precharge reset| fomp
Q
switch 5 3
— > = | 'Q —>
network 3 3
and ALU i g

Figure 11: Simplistic pipeline control

extending the control logic to allow the ALUs to make the lo-
cal decision to add or subtract the quotient depending upon
the sign of the previous intermediate result.

3.6 Sizes

The switch network (Figure 12) and banks of SR flip-flops
(Figure 13) were laid out using a double metal 1.0xm CMOS
process in order to estimate silicon real estate usage. The
switch network to intercept A and B operands from one 32 bit
1 of 4 encoded register measures 408um by 246pm. Thus,
if the rotary pipeline transported six registers then it would
be 1476pm wide. There are 128 SR flip-flops in Figure 13
with a pitch which matches the switch network. The length
is 526pum. Once all of the switch network is complete and
joined to the flip-flops the structure is expected to be less than
2mm by 1.5mm. A better CMOS process with more layers of
metal would improve these figures.

Figure 12: Switch network excerpt

Figure 13: 128 SR flip-flops

4 Simulation

4.1 Instruction set choice — ARM

Currently our investigations have pivoted around the ARM
instruction set [1, 15] because it serves as a good basis for
comparison with existing clocked (from Advanced RISC
Machines Ltd) and self-timed (from the Amulet group [4, 8])
implementations.

There are three important characteristics of this instruction
set which are pertinent to this paper:

1. conditionals — every instruction can be conditionally
executed;

2. PC — the program counter is one of the general pur-
pose registers and may be written to, thereby causing a
branch;

3. load and store multiple registers in one instruction.

The first characteristic may be efficiently implemented
by allowing functions to evaluate unconditionally but only
switch the result out onto the rotary pipeline when the con-
dition code has been checked.

The second problem may be resolved by making instruc-
tions with PC as a destination a special case. These may
be dealt with by the unit that performs conditional branches.
Branch prediction is difficult in such situations and it is prob-
ably best to simply wait until the correct path has been deter-
mined.

Multiple memory accesses can be handled by the decode
logic which turns them into a stream of single memory op-
erations. The performance will be limited by memory band-
width and no use will be made of most of the ALUs in the
rotary pipeline.

4.2 Initial results

A discrete event simulation of the rotary pipeline has been
undertaken using the ARM instruction set for the program-
mer’s model. Dhrystone and compress benchmarks were
used to test performance. The standard ARM C compiler and
GNU CC were also compared because the ARM compiler is
targeted towards their commercial single issue clocked pro-
cessor where as GNU CC is more general purpose and can
unroll ARM code to assist multiple issue.

A number of rotary pipelines were tested. Initially just
three function units were used: an ALU, a memory access
unit and a branch unit. Then further ALUs were added. The
results in Figures 14 and 15 indicate the percentage of time
when each function unit can be issued with an instruction.
As one would expect, adding more ALUs increases perfor-
mance but with diminishing returns. Like any RISC proces-
sor, memory accesses soon limit performance.

Dynamic instruction reordering improved ALU utilisation
by around 3% but at the expense of complicating instruction
dispatch which slows pipeline refills (e.g. due to exceptions).
Performance could be improved by using inlined functions,
hardware branch prediction and an architecture with a larger
register file [16]. This is left to future studies.

Carry propagation was also measured. For 1 of 4 encoded
data the carry had to propagate around 7 2-bit stages for com-
press and 9.8 stages for Dhrystone. This compares with the
binary (or 1 of 2 encoded) case of 14 stages for compress and
20.6 stages for Dhrystone. These figures are above the aver-
age for random data so fast carry propagation circuits are de-
sirable, although self-timed circuits are not limited by worst-
case performance.

5 Relation to other
approaches

Rotary pipelines contrast with current superscalar processors
by avoiding global communication. We believe that this is
important if the designs are to scale.

Rotary pipelines make heavy use of the fact that data can
be passed through latches between pipeline stages at any
time. This differs from clocked design where latches only
pass data in lockstep with the clock. Other asynchronous
processors (e.g. Amulet [4, 8] and the CFPP [12]) also ex-
ploit the self-timed nature of latches.

Amulet [4, 8] is a single issue processor designed using
matched delays. The pipeline structure closely resembles
clocked counterparts. However, in situations like pipeline re-
fills the latches between stages can initially be left transpar-
ent which allows rapid data transfer.

The counterflow pipeline processor (CFPP) [12] has an
unusual pipeline structure where instructions traverse up the
pipeline and register values filter down. Instructions pick up,
or “garner”, operands from the register pipeline and may be
executed once all operands have been garnered. The result
is kept with the instruction and a copy is also sent down the
register pipeline so that it may be garnered by following in-
structions. Instructions reaching the top of the pipeline have
their results retired to a register file.

compress with ARM CC

80
g 70 1
c
2 60
o
2
2 50
g
2‘40
2 30
@ g g g
o g g g
® 20 8 8 8
5l s 5l s 5| s
0] 5| E| 2 syl e]2 syl gl e
2| e8| [2[22]5 222 &8
0
number of ALUs
compress with GNU CC
80 —
g 70
c
2 60]
o
e | |
2 50
g .
2‘40
3 5
© @ @ @
S g g g
® 20 8 1 & — &
= 2| < 2| <
- S S S S
10l 5| | g S| S| E] € S| SESHd E| €
(e 8[2]|2[8]5)=2]|2[2]8]E
number of ALUs
Figure 14: Function unit utilisation for compress

Dhrystone with ARM CC

% activity per function unit

2 N W s
s 8 8 &
ALU1
memory access
branch
ALU1
memory access
branch
ALU1
ALU2

ALU3

1
memory access
branch

«
=1
o
<

number of ALUs

Dhrystone with GNU CC

% activity per function unit

> 8 8 3

ALU1

memory access

branch

ALU1

ALU2

memory access

branch

ALU1

ALU2

ALU3
memory access

!

Figure 15: Function unit utilisation for Dhrystone 2.1 (1000 itera-
tions)

branch

number of ALUs

The CFPP provides a conceptually elegant method for lo-
calising instruction dependency — results are passed quickly
down the register pipeline and can be garnered by instruc-
tions below. However, flow control in counterflow pipelines
is complex, requiring arbiters or “traffic cops”. On average at
least two arbitrations are required to move an instruction up
one stage in the pipeline, which severely limits performance.

Furthermore, multiple issue of instructions is difficult, if not
impossible.

6 Conclusions

Rotary pipelines have been introduced as a simple and regu-
lar self-timed structure to allow efficient multiple instruction
issue. Two variations have been investigated: one passes the
complete register file around the rotary pipeline and the other
only passes the active registers and caches the rest in a reg-
ister file.

The emphasis was on performance rather than small size
or low power. The large number of buses and 1 of 4 encoded
data do make the structure fairly large. However, this should
be compared with clocked superscalar processors which em-
ploy large collections of buses to forward data via bypasses.

Preliminary designs and simulation have been presented
to demonstrate the architectural feasibility. Further work to
elaborate these is being undertaken.

The design was motivated by the data driven nature of
self-timed circuits and would, therefore, be unsuitable for a
clocked implementation. Perhaps the future of self-timed cir-
cuits lies with new architectural possibilities.

Acknowledgements

This work was funded by EPSRC grant GR/J62708.

References

[1] ARM. ARM 7TDMI Data Sheet. Advanced RISC Ma-
chines Ltd, 1995.

[2] L. David, R. Ginosar, and M. Yoeli. An efficient imple-
mentation of boolean functions as self-timed circuits.
IEEFE Transactions on Computers, 41(1):2-11, 1992.

[3] S.B. Furber. VLSI RISC architecture and organization.
Marcel Dekker, 1989.

[4] S.B. Furber, P. Day, J.D. Garside, N.C. Paver, S. Tem-
ple, and J.V. Woods. The design and evaluation of
an asynchronous microprocessor. In Proceedings of
ICCD 94, pages 217-220, Boston, Massachusetts, Oc-
tober 1994.

[5] S. Hauck. Asynchronous design methodologies. Pro-
ceedings of the IEEE, 83(1):69-93, 1995.

[6] J.L. Hennessy and D.A. Patterson. Computer Architec-
ture — A Quantitative Approach. Morgan Kaufmann,
1996. Appendix A, page A-5.

[71 R.E. Miller. Sequential circuits. In Switching The-
ory, volume 2. Wiley, NY, 1965. In Chapter 10
David Muller’s work on speed-independent circuits is
reviewed.

[8] N.C. Paver. The Design and Implementation of an
Asynchronous Microprocessor. PhD thesis, Dept. of
Computer Science, University of Manchester, 1994.

[9] C.L. Seitz. System timing. In C.A. Mead and L. Con-
way, editors, Introduction to VLSI systems. Addison-
Wesley, 1992.

[10] R.Sites. Alpha Architecture Reference Manual. Digital
Press, 1992.

[11] J.E. Smith and S. Weiss. PowerPC 601 and Alpha
21064: a tale of two RISCs. Computer, 27(6):46-58,
1994.

[12] R.F. Sproull, LE. Sutherland, and C.E. Molnar. The
counterflow pipeline processor architecture. IEEE De-
sign & Test of Computers, 11(3):48-59, 1994.

[13] LE. Sutherland. Micropipelines. Communications of
the ACM, 32(6):720-738, June 1989.

[14] S.H. Unger. Asynchronous Sequential Switching Cir-
cuits. John Wiley & Sons, 1969.

[15] A. Van Someren and C. Attack. ARM RISC chip: A
Programmer’s Guide. Addison-Wesley, 1993.

[16] D.W. Wall. Limits of instruction-level parallelism.
Technical Report 93/6, Digital, Western Research Lab-
oratory, 1993.

[17] T.E. Williams and M.A. Horowitz. A zero-overhead
self-timed 160-ns 54-b CMOS divider. IEEE Journal
of Solid-State Circuits, 26(11):1651-1661, 1991.

