
JMA: The Java-Multithreading Architecture for Embedded Processors
�

Panit Watcharawitch, Simon Moore
Computer Laboratory, University of Cambridge, UK�
Panit.Watcharawitch, Simon.Moore � @cl.cam.ac.uk

Abstract

Embedded processors are increasingly deployed in ap-
plications requiring high performance with good real-time
characteristics whilst being low power. Parallelism has
to be extracted in order to improve the performance at
an architectural level. Extracting instruction level paral-
lelism requires extensive speculation which adds complex-
ity and increases power consumption. Alternatively, paral-
lelism can be provided at the thread level. Many embed-
ded applications can be written in a threaded manner in
Java which can be directly translated to use hardware-level
multithreaded operations. This paper presents an archi-
tectural study of JMA, a high-performance multithreaded
architecture which supports Java-multithreading and real-
time scheduling whilst remaining low-power.

1. Introduction

In processor design, functional requirements and perfor-
mance goals are crucial factors. The functional require-
ments are inspired by the processor market. The trends
from the market indicate that personal hand-held devices
have an interesting potential to grow. These devices require
advanced functional features like complex multimedia an-
imation, images/audio encoding, cryptography and speech
recognition/synthesis. Many of these complex applications
are naturally written in a threaded manner (e.g. decoding
each block of encoded animation or calculating each HMM
node during speech recognition).

Today’s high-end processors execute many instructions
per cycle, in order to work effectively, speculative execu-
tion or branch prediction are required. Such techniques add
a great deal of complexity, increase the power consump-
tion, and make real-time performance difficult to predict.
Also of great concern is memory latency, since there is a
growing gap between processor cycle and memory access
times at approximately 50% per year [1]. Memory latency
should be hidden by increasing the parallelism in the system
such that a pending load instruction does not stall the whole�

This work is supported by the EPSRC (GR/N64427/01)

processor. However, memory latency tolerance is difficult
within a single thread because of limited single-thread in-
struction level parallelism. Thus, the system that supports
thread level parallelism seems to be the best alternative to
provide latency tolerance and offer predictable performance
gains.

For this study, we chose the Java concurrency model
because it is increasingly used in embedded applications,
and supports light weight threads through its Thread object
class. We used the MIPS instruction set as a basis for our
study, adding just four instructions (see section 3.4).

A brief background about Java-multithreading is pre-
sented in section 2. Section 3 illustrates the hardware ar-
chitecture. Experimental results are presented in section 4
followed by the conclusion in section 5.

2. Java Multithreading

Ready

suspend()

Joining
join()

I/O Request

/ Completestop()

sleep()

Waiting

Sleeping

wait()

start()
Dead

stop()

stop()

stop()

stop()

Quantum Expire

Dispatch

Joining Success

I/O completion

resume()

Sleep Interval Expire

stop()

new

Running

Blocked

Born

yield()

Suspended

stop()

/ Interrupt/

notify()/ notifyAll()

Figure 1: Java thread’s life cycle

Figure 1 shows a Java thread’s life cycle that requires the
following multithreading support [2]:

1. Synchronisation: Synchronisation prevents interfer-
ence between threads. Resources are guarded by hav-
ing locks on them. Only one thread is handed a key to
access its protected resources while the others have to
wait until it finishes. Each thread can hold many keys
simultaniously.

2. Interthread Communication: Threads communi-
cate by sharing data via the same memory space using
the synchronisation primitive.

3. Scheduling: Scheduling determines the execution or-
der of multiple threads using their priorities. A thread
can voluntarily pass its privilege to waiting threads by
using yield(), or via the time-slicing mechanism.

4. Daemon Thread: A daemon thread is an endless
loop waiting to provide important services to the other
threads (e.g. a low-priority garbage collector, a high-
priority timer thread that wakes up in regular interval).

3. Multithreaded Architecture

To operate multiple threads concurrently, most architec-
tures employ software support by translating each Java-
thread operation with a sequence of machine instructions.
Unfortunately, these sequences consume a number of cycles
that is often exacerbated by cache misses. Hence, an alter-
native system that can process multiple threads at the hard-
ware level using a minimised set of instructions has been
investigated. Our Java-Multithreading Architecture (JMA)
requires a smaller number of instructions per Java-thread
method and handles multithreading at the hardware level.

3.1. System Overview

Processing Element 0 (PE0)

Processing Element 1 (PE1)

shared resources

Multithreading control command

and information

Stop: stop()

Interrupt, and Complete

St
or

e

In
fo

Load Store Signal (Store to AF)

In
st

ru
ct

io
n

A
dd

re
ss

Processing Unit (PU)

Load-Store Unit (LSU)

Multithreading Service Unit (MSU)

In
fo

Memory Hierarchy

Mem I/O

Memory Management Unit (MMU)

newStart:

Signal:

and additional signals.
I/O or Memory Complete,

Switch:

I/O or Memory Request,
Quantum/Interval Expire,

start(), resume(),
notify(), notifyAll(),

join(), suspend(),
sleep(), wait(), yield(),

Fe
tc

h*

L
oa

d*

D
at

a*

Context*, Feedback

Transfer Context Between AF-Cache and Main Memory

Note: ’*’ indicates the priority-based transfer bus.

Figure 2: The multithreaded architecture for JMA

From the user level, a Java program is compiled into na-
tive code by additional compiler tools that are capable of
preserving Java-thread controls in the form of native plus
special multithreading instructions. These binaries will then
be executed by our multithreaded processor. A coarse-
grained context switching [3] is used so each short se-
quential thread segments is effectively executed. It com-
bines sequential behaviour from the control-flow architec-
tures [4] and concurrent execution from the data-flow archi-
tectures [5]. A directed graph represent a program where
nodes represent thread segments, arcs represent their com-
munication and control events. A matching-store mecha-

nism [6] indicates that a thread is runnalbe when all inputs
are present.

The system has four main components connected to one
another as illustrated in Figure 2. The Processing Unit
(PU) containing two pipelines. The Multithreading Service
Unit provides four operations (start, signal, switch and stop)
for synchronisation and scheduling mechanisms. Load and
store operations are handled by the Load-Store Unit. the
Memory Management Unit handles transactions for data,
instructions and I/O.

3.2. The Processing Unit

As presented in Figure 3, two five-stage RISC
pipelines [7] share four contexts, each of which is preloaded
with the highest-priority runnable thread from a ready
queue. The fetch stage was associated with eight-blocks
of small L0 instruction cache for pre-fetching up to four
multiple threads. Each thread is tagged with its own colour
(Thread ID) while executed in the pipeline. The decode
stage switches the context when receiving a context-switch
indication or detecting that it requires the data that is still in
a loading process. By providing pre-loading, pre-fetching,
and colour tagging features, each pipeline has a capability
to switch to another thread with zero overhead.

������������ ������������������	�		�	
�

�
������������
�

�

�
������ ���������
��������� ���������

��������� ���������
���������

������������ ������������ ������������ ������������
������������
��������� � � �

!"##$$

%%&&
''(()
)**
+,++,++,+-,--,--,-
../
/

R
eg

 S
et

s

Execute Mem WB

PE0

PE1

Decode

WBMemExecuteDecodeFetchL0

Figure 3: The PU for 0 context-switching overhead

3.3. Context and Activation Frame

The context of execution is a program counter + 31 reg-
isters (excluding register $zero whose data is always 0).
This context is preserved in the form of an Activation Frame
(AF) [8] when stored in memory. Each AF can be efficiently
cached in a special fully-associative AF-Cache located near
the PU. The place for register $zero is replaced by two
fields. The first 8 bits are the priority field for schedul-
ing purposes. The second 24 bits are the presence-flags
field indicating the presence/absence of 24 input parame-
ters for handling complex data dependencies that may arise
when parallelizing loops. A thread which has an incomplete
AF has to wait for data events to arrive. This allows syn-
chronisation of both data communication and thread control
events via the available load/store commands. When flags
are present, each AF will be ready to be dispatched to the
PU depending on its priority.

3.4. Additional Multithreading Instructions

The architecture can support most multithreading control
using load/store instructions (e.g. to access the AF to obtain
a thread’s data or signalling by setting a thread’s presence
flags). Four additional instructions are added for faster mul-
tithreading based on MIPS R3000 ISA as follows:

1. start 02143 , 5,676802129:9 0x18 ;=<?> @BACA=;=<EDED
6 bits 5 bits 21 bits

2. wait 02143 0x19 ;F<G> 0

6 bits 5 bits 20 bits 1

3. switch 0x19 1

6 bits 25 bits 1

4. stop 02143 0x1A ;=<?>
6 bits 5 bits 21 bits

Using these four additional instructions, Java’s thread
life cycle (Figure 1) is reduced to a simpler diagram as
shown in Figure 4, where both wait and store instructions
are associated with suitable arguments.

{store} but all inputs are not present

{store} and all inputs are presentBorn,
Joining,
Blocked,
Suspended,
Sleeping,

Running

Ready
Waiting

{stop}, {wait 0}

{start}

Dead

{s
w

itc
h}

D
is

pa
tc

h

{s
to

p}

{stop}

{wait $reg}

Figure 4: The real life cycle of thread in JMA

4. Results

The proposed system has been simulated. The simulator
is used for simulating both the normal MIPS architecture
and the JMA. The memory hierarchy used for this simula-
tor has a main memory access latency of 200 clock cycles.
IL1 is the first 4K direct-mapped instruction-level cache
with a 5-cycle access latency. D-cache is a 4K 2-way set-
associative data cache with a 5-cycle access latency. Both
caches use an LRU replacement policy with write back.

Two version of Livermore Loop 7 (LL7) with H =1000
iterations is used as a benchmark. One is single-threaded
code and the other is multithreaded code. The multithreaded
version can fork 5 threads, each of which is assigned to han-
dle 200 iterations. The experimental results is displayed in
Figure 5. The workload is the number of LL7 programs
operating in the system.

The results indicate that with a multiple Single-threaded
workload, the JMA tolerates long latencies by switching in
another workload, thereby offering a better execution time.

Figure 5: Speedup results compared with a single-
thread performance operating on a normal MIPS

In particular, efficiency improves when executing multi-
threaded workloads.

5. Conclusions

The architecture of JMA provides high-performance
multithreading based on a simple design without specula-
tion or branch prediction. It hides long latency transactions
like cache misses and I/O accesses using a low overhead
(often zero cycle) context switch to another thread to avoid
stalling the pipeline. The pipelines are similar to simple
RISC with slightly more complex register files, an activa-
tion frame cache (which is similar in complexity to the in-
struction and data caches) and a real-time scheduler. Ef-
ficient scheduling and synchronisation mechanisms result
in good resource utilisation with real-time characteristics
which are ideal for many embedded applications.

References

[1] D. Patterson. New direction in computer architecture.
In PARCON: Symposium on New Directions in Parallel
and Concurrent Computing, November 1998.

[2] Laurence Vanhelsuwé and et al. Mastering Java. BPB
Publications, 1996.

[3] G. T. Byrd and M. A. Holliday. Multithreaded proces-
sor architectures. In IEEE Spectrum.

[4] J. Hennessy and D. Patterson. Computer Architecture:
A Quantitative Approch. Morgan Kaufmann, 1996.

[5] J. A. Sharp. Data flow Computing: Theory and Prac-
tice. Ablex Publishing Corporation, 1992.

[6] R. A. Iannucci. Multithreaded Computer Architecture:
A summery of the state of the art. Kluwer Academic
Publishers, January 1994.

[7] D. A. Patterson and J. Hennessy. Computer Organiza-
tion and Design. Morgan Kaufmann Publisher, 1996.

[8] Simon W. Moore. Multithreaded Processor Design.
Kluwer Academic Publishers, June 1996.

