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= Goal: understand the complexity of computational problems
= Strategy: Divide problems into complexity classes

= Post-Turing: Focus on subclasses of R

= Resolution: Polynomial (for now...)

= Most important class: P — tractable computation

Today we will go beyond tractable computation!
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This is the complement of the language
Is ?
Clearly, the answer is yes if, and only if,

Is there a conceptual difference between the two?
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A graph is called if it contains a Hamiltonian cycle.
The language is the set of encodings of Hamiltonian graphs.
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Polynomial Verification

The problems , , and have
something in common.

In each case, there is a of possible solutions.
The size of the search is in the length of the input.
Given a potential solution in the search space, it is to check whether

or not it is a solution.
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If V runs in time polynomial in the length of x, then we say that
is

Many natural examples arise, whenever we have to construct a solution
to some design constraints or specifications.
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Nondeterminism

If, in the definition of a Turing machine, we relax the condition on
being a function and instead allow an arbitrary relation, we obtain a

The yields relation is also no longer functional.

We still define the language accepted by V/ by:

though, for some x, there may be computations leading to accepting as

well as rejecting states.
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Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree
of successive configurations.

SN
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Nondeterminism

SN
¢ N\

For a language in , the height of the tree can be bounded by
when the input is of length
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Theorem
A language | is polynomially verifiable if, and only if, it is in

To prove this, suppose L is a language, which has a verifier \/, which
runs in time
The following describes a that accepts

1. input x of length
2. nondeterministically guess ¢ of length

3. run on
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Why NP and not EXP?



