Complexity Theory

Lecture 4: The class NP

Tom Gur
http://www.cl.cam.ac.uk/teaching/2324 /Complexity



The four stages of learning complexity theory



The four stages of learning complexity theory

1) Unconscious ignorance



The four stages of learning complexity theory

1) Unconscious ignorance

2) Conscious ignorance



The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance

3) Conscious knowledge



The four stages of learning complexity theory

1) Unconscious ignorance
2) Conscious ignorance
3) Conscious knowledge

4) Unconscious knowledge



= Goal: understand the complexity of computational problems



= Goal: understand the complexity of computational problems

= Strategy: Divide problems into complexity classes



= Goal: understand the complexity of computational problems
= Strategy: Divide problems into complexity classes

= Post-Turing: Focus on subclasses of R



= Goal: understand the complexity of computational problems

Strategy: Divide problems into complexity classes
= Post-Turing: Focus on subclasses of R

= Resolution: Polynomial (for now...)



= Goal: understand the complexity of computational problems
= Strategy: Divide problems into complexity classes

= Post-Turing: Focus on subclasses of R

= Resolution: Polynomial (for now...)

= Most important class: P — tractable computation



= Goal: understand the complexity of computational problems
= Strategy: Divide problems into complexity classes

= Post-Turing: Focus on subclasses of R

= Resolution: Polynomial (for now...)

= Most important class: P — tractable computation



= Goal: understand the complexity of computational problems
= Strategy: Divide problems into complexity classes

= Post-Turing: Focus on subclasses of R

= Resolution: Polynomial (for now...)

= Most important class: P — tractable computation

Today we will go beyond tractable computation!



Consider the decision problem (or ) defined by:



Consider the decision problem (or ) defined by:

This is the complement of the language



Consider the decision problem (or ) defined by:

This is the complement of the language

Is ?



Consider the decision problem (or ) defined by:

This is the complement of the language
Is ?

Clearly, the answer is yes if, and only if,



Consider the decision problem (or ) defined by:

This is the complement of the language
Is ?
Clearly, the answer is yes if, and only if,

Is there a conceptual difference between the two?



Hamiltonian Graphs

Given a graph , a in G is a path in the
graph, starting and ending at the same node, such that every node in
appears on the cycle



Hamiltonian Graphs

Given a graph , a in G is a path in the
graph, starting and ending at the same node, such that every node in
appears on the cycle



Hamiltonian Graphs

Given a graph , a in G is a path in the
graph, starting and ending at the same node, such that every node in

appears on the cycle

A graph is called if it contains a Hamiltonian cycle.



Hamiltonian Graphs

Given a graph , a in G is a path in the
graph, starting and ending at the same node, such that every node in

appears on the cycle

A graph is called if it contains a Hamiltonian cycle.

The language is the set of encodings of Hamiltonian graphs.



Hamiltonian Graphs

Given a graph , a in G is a path in the
graph, starting and ending at the same node, such that every node in

appears on the cycle

A graph is called if it contains a Hamiltonian cycle.
The language is the set of encodings of Hamiltonian graphs.
Is 7



Graph Isomorphism

Given two graphs and , is there a

such that for every ,



Graph Isomorphism

Given two graphs and , is there a

such that for every ,



Polynomial Verification

The problems , , and have
something in common.



Polynomial Verification

The problems , , and have
something in common.

In each case, there is a of possible solutions.



Polynomial Verification

The problems , , and have
something in common.

In each case, there is a of possible solutions.



Polynomial Verification

The problems , , and have
something in common.

In each case, there is a of possible solutions.

The size of the search is in the length of the input.



Polynomial Verification

The problems , , and have
something in common.

In each case, there is a of possible solutions.
The size of the search is in the length of the input.
Given a potential solution in the search space, it is to check whether

or not it is a solution.



A verifier /' for a language L is an algorithm such that



A verifier /' for a language L is an algorithm such that

If V runs in time polynomial in the length of x, then we say that
is



A verifier /' for a language L is an algorithm such that

If V runs in time polynomial in the length of x, then we say that
is



A verifier /' for a language L is an algorithm such that

If V runs in time polynomial in the length of x, then we say that
is

Many natural examples arise, whenever we have to construct a solution
to some design constraints or specifications.



Nondeterminism

If, in the definition of a Turing machine, we relax the condition on
being a function and instead allow an arbitrary relation, we obtain a

The yields relation is also no longer functional.



Nondeterminism

If, in the definition of a Turing machine, we relax the condition on
being a function and instead allow an arbitrary relation, we obtain a

The yields relation is also no longer functional.

We still define the language accepted by V/ by:

though, for some x, there may be computations leading to accepting as

well as rejecting states.



Computation Trees

10



Computation Trees

With a nondeterministic machine, each configuration gives rise to a tree
of successive configurations.

SN
f N\

10



Nondeterministic Complexity Classes

We have already defined and

11



Nondeterministic Complexity Classes

We have already defined and

is defined as the class of those languages L which are
accepted by a Turing machine M, such that for every
, there is an accepting computation of // on x of length ,
where 1 is the length of

11



Nondeterministic Complexity Classes

We have already defined and

is defined as the class of those languages L which are
accepted by a Turing machine M, such that for every
, there is an accepting computation of // on x of length ,
where 1 is the length of

11



Nondeterminism

SN
¢ N\

12



Nondeterminism

SN
¢ N\

For a language in , the height of the tree can be bounded by
when the input is of length

12



Nondeterminism vs Verification

Theorem
A language | is polynomially verifiable if, and only if, it is in

13



Nondeterminism vs Verification

Theorem
A language | is polynomially verifiable if, and only if, it is in

13



Nondeterminism vs Verification

Theorem
A language | is polynomially verifiable if, and only if, it is in

To prove this, suppose L is a language, which has a verifier \/, which
runs in time

13



Nondeterminism vs Verification

Theorem
A language | is polynomially verifiable if, and only if, it is in

To prove this, suppose L is a language, which has a verifier \/, which
runs in time

The following describes a that accepts

1. input x of length

13



Nondeterminism vs Verification

Theorem
A language | is polynomially verifiable if, and only if, it is in

To prove this, suppose L is a language, which has a verifier \/, which
runs in time

The following describes a that accepts

1. input x of length

2. nondeterministically guess ¢ of length

13



Nondeterminism vs Verification

Theorem
A language | is polynomially verifiable if, and only if, it is in

To prove this, suppose L is a language, which has a verifier \/, which
runs in time
The following describes a that accepts

1. input x of length
2. nondeterministically guess ¢ of length

3. run on

13



m vs Verification

In the other direction, suppose M is a nondeterministic machine that
accepts a language L in time

14



Nondeterminism vs Verification

In the other direction, suppose M is a nondeterministic machine that

accepts a language L in time

We define the which on input simulates
on input
At the nondeterministic choice point, /' looks at the character in

to decide which branch to follow.

If M accepts then /' accepts, otherwise it rejects.

14



Nondeterminism vs Verification

In the other direction, suppose M is a nondeterministic machine that

accepts a language L in time

We define the which on input simulates
on input
At the nondeterministic choice point, /' looks at the character in

to decide which branch to follow.

If M accepts then /' accepts, otherwise it rejects.

is a polynomial verifier for

14



Why NP and not EXP?



