
Parallel Error Detection Using Heterogeneous Cores
Sam Ainsworth, Timothy M. Jones

University of Cambridge, UK
{sam.ainsworth,timothy.jones}@cl.cam.ac.uk

Abstract—Microprocessor error detection is increasingly impor-
tant, as the number of transistors in modern systems heightens
their vulnerability. In addition, many modern workloads in
domains such as the automotive and health industries are
increasingly error intolerant, due to strict safety standards.
However, current detection techniques require duplication of all
hardware structures, causing a considerable increase in power
consumption and chip area. Solutions in the literature involve
running the code multiple times on the same hardware, which
reduces performance significantly and cannot capture all errors.

We have designed a novel hardware-only solution for error
detection, that exploits parallelism in checking code which may
not exist in the original execution. We pair a high-performance
out-of-order core with a set of small low-power cores, each of
which checks a portion of the out-of-order core’s execution. Our
system enables the detection of both hard and soft errors, with
low area, power and performance overheads.

Keywords—fault tolerance; microarchitecture; error detection
I. INTRODUCTION

Hardware faults, both soft (transient) and hard (permanent),
are increasingly common in microprocessors. As technology
nodes reduce and the number of transistors in a system
increases, the likelihood of a failure is heightened. Small
transistors are more vulnerable to transient errors caused by
cosmic rays, and increased variability at smaller feature sizes
significantly increases the occurrence of transient faults [1].

At the same time, the tolerance of many workloads to the
occurrence of errors has reduced. For example, strict safety
standards, along with suboptimal environmental conditions,
require error detection hardware within CPUs used for auto-
motive, health, nuclear power and machinery applications [2],
[3], [4]. Space applications require reliability for economic
reasons [3], and large scale HPC systems require reliability
due to having a large number of potential failures [5], [6], [7].

Certain industries mandate stringent safety standards to
achieve certification, such as automotive, where redundancy
is required for ASIL-C and ASIL-D ratings [8]. The current
industry approach to address this is hardware lock-step error
detection [3], [9], [10]. This involves running multiple copies
of a program on separate, synchronised CPUs, and comparing
the results in hardware. However, this is both energy- and
silicon-area-intensive. As the computational requirements of
these systems grows [2], out-of-order cores are rapidly becom-
ing necessary to achieve the required performance. Duplicating
out-of-order cores comes at too high cost in energy, heat
dissipation and area to be practical.

Redundant multi-threading [1], [11], [12] has been pro-
posed, where simultaneous threads on the same core are used
to run two copies of a program, and the results compared.
However, as the same hardware is used for both copies,

permanent faults within the core can only be detected though
the addition of extra logic [13], and performance is also sig-
nificantly reduced over the same code without error detection.

Prior work [14] has noted that parallelism is available in
the second, error-detecting run of a computation, and thus it is
possible to use homogeneous multi-core processors to reduce
energy cost by using dynamic frequency-voltage scaling at
the expense of tripling silicon area. In our approach, we focus
on a heterogeneous architecture specialised for exploiting far
larger amounts of error detection parallelism. We use the
principle of strong induction [15] to dramatically reduce the
overheads of using hardware to detect errors. We perform
delayed error detection on multiple small cores [16], which
check the computation carried out on a high-performance
out-of-order core. By taking periodic register checkpoints
and tracking the loads and stores carried out on the main
core, tiny checker cores can independently verify a portion
of the original computation each. The heterogeneity between
the computation core and its coupled checker cores allows
us to reduce area and power overheads significantly, while
maintaining high performance.

II. BACKGROUND

We discuss the increasing prevalence of faults in microproces-
sors and standard error-detection schemes, before motivating
our approach in section III.

A. Faults

Hardware faults fall into one of two distinct categories.
Permanent faults are the result of errors during manufacture
or wearout during the service life of the system. Transient
faults, on the other hand, are caused by strikes from cosmic
rays and alpha particles, and do not persist. However, there
is no effective way to shield a microprocessor from cosmic
rays [1], and while smaller transistors are individually less
likely to be hit by a ray, increasing numbers of transistors in
modern systems, coupled with the nominal energy required
to switch a transistor at low source voltages [17], makes
chips increasingly vulnerable to transient faults [18]. Rapidly
increasing core counts for workloads such as HPC mean there
are more points of failure in systems, and therefore a higher
chance of hard faults [5], [6], [7]. Increased variance in chips at
lower source voltages [17], [19] make timing violations more
common, and the unfavorable conditions many safety critical
systems operate in, such as those in space or the automotive
industry [2], [3], [9], also serve to increase the number of
faults observed in modern systems.

1

(a) Lockstep (b) RMT (c) Desired

Overhead Lockstep RMT Desired

Area Large Small Small
Energy Large Large Small
Performance Negligible Large Negligible

(d) Comparison

Fig. 1: Running cores in lockstep, or running the same code twice on the same core via multi-threading, come with significant
space and time overheads, respectively. However, we can optimise all of these significantly if we can exploit parallelism in
the detection to run it on separate, simpler processors.

B. Detection

Current detection schemes use a combination of space and
information redundancy to cover faults [1]. Information re-
dundancy refers to using error-detecting codes, such as ECC,
to detect and correct errors in stored and transmitted data. As
errors in main memory are common, systems requiring relia-
bility, such as servers, have long been covered by ECC [20].

However, information redundancy techniques do not extend
to error checking within the computation itself, and thus the
processor logic must be covered by other schemes. Current
reliable systems favor lock-step error detection [3], [9], [10], a
space-based redundancy scheme where cores are duplicated in
their entirety. The program is executed on both simultaneously,
perhaps with some delay on the second core to avoid correlated
transient errors, and the results compared. This comes at both
a high chip area and power cost. Some techniques, such as
DIVA [21], [22], attempt to get around this by using simplified
duplicate hardware at the end of the pipeline, removing some
of the repeated work at the expense of requiring ECC on
all architectural state, including the register file. While some
architectures have featured parity bits on such state [23], full
ECC is too invasive to the microarchitecture and hence such
techniques have not seen implementation. Many time-based
schemes [1], [11], [12], [24], [25], which run duplicates of
a program on the same core twice at different times and
compare the results, have been proposed, exploiting techniques
such as simultaneous multi-threading to improve performance.
However, their high performance penalty and inability to cover
hard faults with additional logic [13] have meant that these
schemes have seen little use in practice.

III. MOTIVATION

The performance demands of common workloads are ever
increasing. As processors tend to be energy or heat limited,
due to current trends in silicon scaling [19], this translates
into a demand for high performance at low power. Hardware
duplication comes at the expense of performance, by reduc-
ing the power budget. Indeed, the cost of duplicating high-
performance out-of-order superscalar systems is typically too
high for practical error detection, as out-of-order superscalar
systems are already inefficient [26].

We require fault detection with high performance, low
power consumption and low chip area. Figure 1 shows
how existing techniques accomplish these. Lockstepping [9]

Fig. 2: We use register checkpoints to split dynamic execution
from a main core into small instruction streams. These are
run again on one of several small checker cores, to verify
execution. Each stream is independent of all others, allowing
parallelization of error detection.

(fig. 1(a)), where we run the same program on two identi-
cal processors, only provides the former. Redundant multi-
threading [1], [11], [12] (fig. 1(b)) only provides the latter.

If we can exploit heterogeneity between computation and
detection (fig. 1(c)), we can achieve the low overheads and
minimal design invasiveness we require. In general, the smaller
the CPU, the more useful work can be done per unit area
and power [27]. For example, as of November 2017, the
Green500 list [28] is topped by machines using arrays of tiny
cores. Modern GPUs and the Xeon Phi [29] follow a similar
design philosophy. Therefore, one way of achieving our goals,
provided we can parallelise the checking code, is to run the
fault detection on a set of very low power cores. However,
common CPU workloads tend to exhibit very little thread
level parallelism, so large out-of-order cores are necessary
to attain high performance [29], [30]. Despite this limitation,
in the next section we develop a scheme which realises the
parallelization of error detection for any program, enabling
us to take advantage of heterogeneity between the main and
checker cores, achieving full error detection with only minor
area, power and performance overheads.

IV. PARALLEL ERROR DETECTION

Our approach to error detection parallelizes the execution
of fault checking code, even when the original program is
sequential. We use the principle of strong induction [15] to

2

check multiple parts of the executed program at once. In other
words, we check each part of the application independently
assuming all previous parts were correct. Provided we prove
this for each part of the program, it is possible to ensure the
entire workload is free of hardware faults.

To realise parallel fault detection, we repeat computation
from a main high performance out-of-order core by executing
duplicate copies of all instructions. We take periodic register
checkpoints and use these to spawn checker threads which
repeat all computation between two checkpoints, executing
asynchronously and in parallel, since they are independent of
each other. During the original execution, we log load and
store values and addresses, redirecting duplicated memory ac-
cesses from checker threads to the log, which allows the main
application to overwrite memory locations without restriction.
The checker threads, executing on multiple low-power cores,
read the same memory values as the main core did, and check
the addresses and values of stores, and addresses of loads.
Figure 2 gives an example of how execution proceeds.

Each checker thread assumes that its starting checkpoint
is correct. It repeats all instructions up to its end register
checkpoint, which it validates, and which is also the starting
checkpoint for another checker thread. Additional hardware
checks stored data and their addresses against those from the
original computation as the checker threads execute.

We allow values potentially affected by a fault to propagate
into main memory. This is necessary to both avoid slowing
down the main core (as would occur with a large forwarding
table to forward unchecked stores), and to allow a large num-
ber of loads and stores be checked simultaneously, yielding
the parallelism that we exploit. This is common in software
schemes [31], [32]. If a check fails (either a check on a store or
a register checkpoint validation), all future computation must
be assumed to be faulty. This is because the assumption of
correctness of previous computation, required for the strong
induction hypothesis, does not hold. Correctness is only known
once all checks up to a given point successfully complete.
Similarly, if an error is detected within a check, we do not
know if it was the first error until all previous checks complete.
Once that happens, our system provides sufficient information
to identify that a fault has occurred, and the position of that
first error, giving a practical error detection mechanism.

A. Overview

Figure 3 gives an overview of our system. We attach a col-
lection of small checker cores to a conventional out-of-order
core, in order to efficiently execute the duplicated instructions.
The loads and stores performed by the main core are stored in
a hardware load-store log [1], [11], [12], which is then split
into multiple segments, each checked by a different checker
core in parallel. There is a one-to-one mapping between log
segments and checker cores. The checker cores are also given
a copy of the register file at the start and end of each segment,
from which to start execution.

Loads are duplicated early by the load forwarding unit, to
ensure any errors within loaded values in the main CPU don’t

Fig. 3: Error detection is performed in parallel on a set of small
checker cores that execute duplicate instructions between two
register checkpoints, reading memory values from a load-store
log and validating store addresses and data.

propagate to the checker cores. We assume memory blocks
such as caches and DRAM are protected by ECC, since our
detection scheme is only designed to cover errors within the
core. Loaded values are copied within the cache at a point still
protected by ECC, ensuring that errors from the main core’s
load cannot propagate to the checker cores. We further assume
the instruction stream is read-only, such that the instructions
read by checker units will be identical to those read by the
main thread. This is a common design choice [1], [12], where
modifications to the instruction stream (e.g., in the case of
self-modifying code) require all checking to complete first.

Our scheme provides only detection, rather than correction,
of soft and hard errors. This is equivalent to the dual-core lock-
step techniques used typically in the automotive industry [33],
where detection is mandatory and correction unnecessary, and
thus only detection is typically provided [9]. The detection
of an error triggers an exception within a program, which
can either be caught and handled, or cause termination of the
application, as with dual core lockstep implementations [34].
Errors detected within kernel code are reported to the kernel
itself. Incorrect values are deliberately allowed to propagate
into main memory and devices on a detected error: the
exception trigger’s semantics take this into account.

Ours is a pure hardware scheme where detection is per-
formed without original program modification. The main core
and checker cores execute identical code: differing load and
store behavior on checking, and stopping on reaching a register
checkpoint, are achieved using hardware logic. This is similar
to many redundant multi-threading schemes [1], [11], [12].

B. Checker Cores

Each of our small checker cores must implement the same
ISA as the main core, so that all cores can execute the same

3

������������

	

�
�
�
��
�

�
�
�
�
��
��
�
�
�
�

�
�
��
�

�
�
�
�
�
�
�

�
��
�
�
�

����
�������
�����

������
� ���
�������
�����

��!
��!����

"�����������

#�����$��	����
$�����%�����������

"��������
��������

Fig. 4: The in-order checker cores have a short pipeline, private
L0 instruction cache and L1 instruction cache shared between
all checker cores. They read data from their load-store log
segment and validate store addresses and data.

instruction stream. However, as only architectural state needs
to be checked for correctness, micro-architectural implemen-
tation specifics may differ. We take advantage of this to keep
power and chip area overheads to a minimum, by using smaller
checker cores than the main core. These are in-order, very
small, and run at a low clock speed, meaning that we need
several checker cores to keep up with the performance of the
main core (in our experiments, we use 12). An example is
shown in fig. 4.

The checker cores perform the same work as the main core,
so many of the instructions executed are likely to be in the
L2 cache. They are also likely to share code with each other.
These factors, along with a limited area budget for instruction
caches, lead to an L1 instruction cache shared between the
checker cores, connected to the main core’s L2, along with a
set of very small L0 instruction caches for each checker core.
The checker cores only access data from the log, rather than
main memory, and all accesses to this structure are sequential,
so a data cache is unnecessary.

A checker core starts once architectural register checkpoints
are available for the start and end of its computation; the
stream of loads and stores executed between will have been
captured in the corresponding load-store log segment (as
discussed in section IV-D). The checker core begins with
the PC from the starting checkpoint. It executes the original
instruction stream, but reads load values by looking up the
next value in the log segment, and checking in hardware that
the addresses match, instead of accessing a cache or memory.
On a store, hardware logic checks both the address and stored
value to ensure they are the same as in the log. If a check
fails, an error exception is raised for the main core.

A checker core stops execution when the stream ends, as a
result of reaching the last of the loads and stores for a segment
(see section IV-D), or reaching a timeout instruction count
(section IV-J). Following this, the register file is checked for
consistency with the checkpoint taken at the end of the original
stream, and then the checker core sleeps until another stream
is ready to be checked.

Fig. 5: Speculative load values are placed in the load for-
warding unit. On commit, these values are forwarded to the
load-store log, which holds non-speculative loads and stores.

C. Load Forwarding Unit

The main core and checker cores read the same memory
addresses. However, the checker cores’ executions lag behind
the main core. This means that by the time the checker cores
read the values in memory, they may differ from those that the
main core read, resulting in incorrect execution. We therefore
forward the results of loads from the main core into an SRAM
log, for the checker cores to read.

If an error occurs after forwarding, it will be detected by
the checking cores, provided it causes any stores, addresses,
or the register file at the end of each checkpoint to differ
(all other errors do not change state, and thus do not need
to be detected). However, naı̈vely forwarding loaded values
direct from the main core to the log introduces a window of
vulnerability. If an error occurs to a loaded value in a physical
register in the main core before the value is forwarded, the
error will be duplicated in the checker core.

Our solution is to add a load forwarding unit. Loads from
the cache are duplicated immediately and stored in this table,
then forwarded to the load-store log at commit. This prevents
any errors from the main core’s loads propagating into the
checker cores. Since there are always two copies of loaded
values, errors within the loaded data in the main core don’t
get duplicated. As speculative loads can go into this table, each
load is tagged with the associated reorder buffer ID assigned
to the instruction. This is then used to select the actual loads
that need to be forwarded at commit.

Similarly, loads forwarded from the core’s load-store queue
instead of from the cache are also sent to the load forwarding
unit. This is sufficient to ensure full error detection, as any
errors in the forwarded value will also propagate to the data
stored to memory, and thus the value for the associated store
in the log, and the check of the stored value on the second
core will catch these errors.

We show this behavior in fig. 5. Speculative loads are added
into the load forwarding unit from the cache. On a commit of
a load instruction, the loaded value within the load forwarding
unit, and the address, are output into the load-store log, shown
in green. Mis-speculated loads, in yellow, and reorder buffer

4

Fig. 6: A flow diagram detailing the interaction between the
main core’s commit stage and the load-store log.

entries containing non-loads, in white, do not get forwarded.
Having a load forwarding unit as large as the reorder buffer

is over-provisioning because not all of the instructions going
through a pipeline will be loads. Therefore, the table will never
be full. However, by associating entries with reorder buffer
IDs, we avoid having to flush incorrectly speculated loads
from the load forwarding unit since they will be overwritten
when the reorder buffer entries are reallocated. More advanced
schemes could optimise the size of this table, but these are
orthogonal to our work.

D. Partitioned Load-Store Log

We use an SRAM log structure to forward both the load data,
for computation repetition, and the addresses and values of
stores, to be checked against those computed by the checker
cores for error detection. This information is collected in
hardware, when the loads and stores on the out-of-order core
commit. In this way, data is stored in the order it will be used
on the in-order checker cores. Therefore, to forward a load or
check a store, the next entry in the log simply needs to be
read. The results of other non-deterministic instructions are
forwarded in a similar way. The interaction between the main
core and load-store log is shown in fig. 6.

Where our scheme differs from previous implementations
of such a log [1], [12] is that ours is partitioned. This means
that different parts of the log can be checked simultaneously by
multiple checker cores. We achieve this by storing architectural
register checkpoints from the main core whenever a segment
of the load-store log is filled. We then start a checker core with
the register checkpoint collected when the previous segment
was filled. When a check completes, the relevant segment of
the log is freed to be used again. If all log segments are full,

we stall the main core until a checker core finishes and clears
its queue. In practice, this is rare.

To detect all errors, while still only forwarding architectural
state, we must start each checker core at the beginning of
an architectural instruction, which may be a macro-op (an
instruction that is split by the decoder into smaller, less
complex operations, called micro-ops). If a micro-op from a
partially executed macro-op fills the load-store log, we must
copy all loads and stores caused by the currently executing
macro-op into the next load-store log entry. An alternative
solution would be to start filling a new log segment whenever
there are fewer free entries in the current segment than required
for the largest possible macro-op.

As shown in fig. 3, there is a one-to-one correspondence
between checker cores and load-store log partitions. This
simplifies data paths, so that no arbitration is required between
logs and cores. However, it also means that either one of the
checker cores or the main core must always be stalled (checker
cores stall when their log segment is being filled, the main core
stalls when there are no free log segments to write to). As each
checker core is very small, it is preferable to include the extra
core over having a complicated indirection layer to provide
additional log segments, which would increase wiring.

E. Detection Trade-Offs

Although we divide the load-store log into multiple segments
to attain checking parallelism, there is an inherent trade-off
between the overheads in creating a segment and the latency
of error detection. Each time we fill a segment, an architectural
register checkpoint must be taken within the main core, which
involves copying a large set of registers. To make this cost
negligible, we need to reduce the frequency at which it occurs,
which is achieved by increasing the size of each segment.
However, as segments grow larger, the time taken to fill each
one increases, as does the time taken for a checker core to
check it, therefore increasing the average latency between an
error and its detection.

Our scheme provides two methods to adjust this trade-
off. One the one hand, we can vary the number of segments
while maintaining the same total size of the log. This affects
the amount of parallelism available, since it results in a
corresponding change in the number of checker cores. Lower
degrees of parallelism mean the checker cores must be more
aggressive, or clocked at a higher frequency, to enable error
detection to keep up with the performance of the main core.
On the other hand, we can vary the size of the load-store
log, such that each segment is larger, which has obvious
implications for the on-chip storage requirements. We initially
choose values that favor low overheads for the main core
with manageable detection latencies, then further explore these
costs in section VI-A.

F. Memory System

Parallel error detection inevitably results in increased latency
between the original execution and checking of a given instruc-
tion, compared with a lock-step scheme, which is necessary to

5

achieve parallelism. This means that holding back stores until
they have been checked is unappealing: adding indirection for
load-store forwarding for this number of stores would slow
down the common case of error-free execution.

In our approach, we therefore allow potentially-faulty stores
to escape into memory, as is common with software error de-
tection schemes [31], [32], and let error handling software deal
with correction if necessary. Suitable correction techniques for
these circumstances, if required, include checkpointing [35],
write-ahead logging [36] and transactions [37], both in hard-
ware and software. However, in many applications, such as in
the automotive sector, rather than correcting the software, the
system is likely to be restarted [34], [38], and thus rollback
correction is unnecessary.

G. Interrupts

For the stream of (committed) loads and stores seen by the
main core and checker cores to be identical, the checker cores
must see interrupts at the same point in the code as the main
core. To address this, we finish segments based on interrupts
by issuing an early register checkpoint on the interrupt bound-
ary. This also occurs when the processor context switches, to
provide easier fault reporting. In this case a new checkpoint
is created, the check for which continues running after the
context switch, and data from the new context is placed in a
new log entry.

Although this may slightly reduce the occupancy of the
load-store log segments, this is negligible due to the infrequent
nature of interrupts. Another solution is to insert interrupt
events into the load-store log when they reach the commit
stage of the main core’s pipeline. Although a good choice in
certain designs [1], this involves greater modifications to the
main core for our scheme.

H. System Faults

Our error detection scheme assumes that errors are reported
to the program itself. However, some errors cause early
termination of an application before they are checked, such
as segmentation faults. To avoid this, we hold back the
termination of processes until the checker cores have finished
execution. If the check succeeds, we terminate the program.
Otherwise, the operating system issues a fault-detection error,
to be dealt with by the application, with a default handler
terminating the process.

I. Over-Detection

The addition of redundant logic causes more errors to occur
within a system by necessity, because more components exist,
each of which can introduce new faults. Errors within the
checker circuitry do not affect the main program. However,
on detecting a fault, we cannot verify which of the main core
and checker core produced the incorrect result, so we report
all errors to the operating system. Since the additional area
requirements of our technique are small (see section VI-B)
errors in detection components are less common than those in
the main core and so false-positives are rare.

For our system to catch all errors, we need to check
all stores, the addresses of all loads, and also the register
checkpoints at the end of each log segment. Previous work [1]
has established that only stores and load addresses need to
be checked for correctness, as register state is never visible
outside of the processor. However, the ability to check from
multiple locations in parallel relies on an induction hypothesis:
each individual check verifies that loads and stores are correct,
assuming the register file and previous loads and stores were
correct up to that point. By checking the register file at the end
of each checkpoint, we can combine each individual check to
cover the whole program.

However, this adds an additional over-detection source.
Registers which are checked for errors may not impact any
future loads or stores because they may be overwritten without
being used. Since register liveness is only made evident in
future partition checks, it is not possible to calculate whether
this is the case. We must therefore report an error even if it
may not cause problems in future segments. Increasing the size
of each load-store log segment reduces the already negligible
false-positive rate from this, but increases detection latency
and storage requirements.

J. Timeouts

The primary means of starting a check on an instruction
stream is the filling of a load-store log segment. Likewise,
an instruction stream is considered error-free once its corre-
sponding log segment and final register checkpoint have been
validated. While this maximises the utilization of the fixed-
sized load-store log, there are cases when we may wish to
trigger detection early.

For example, the main core could erroneously enter an
infinite control-flow loop with no loads or stores, meaning the
log segment would never be filled and no new checks would
be issued. Similarly, the checker core may do the same upon
an error affecting it, meaning the check would never complete
and the error never be detected (even though this scenario
corresponds to over-detection, see section IV-I).

To solve this, we introduce a timeout value, which corre-
sponds to a maximum number of instructions in the stream
for each log segment. A check is therefore started on a
checker core when either the main core fills a load-store log
segment or it reaches this maximum instruction count. Figure 6
shows this interaction. We then validate the register checkpoint
either when all loads and stores have been checked in the
load-store log segment, or when the number of committed
instructions is equal to the number committed on the original
core. This maximum instruction count simultaneously solves
the issue of either type of core getting stuck in an infinite
loop. For the main core it means we must always eventually
attempt to validate the most recent stream of instructions.
For the checker cores, if we reach our maximum number of
instructions without having checked all loads and stores in the
log segment, we know that execution has diverged.

Termination before the load-store log segment is filled is
also useful even under correct execution. By allowing early

6

Main Core

Core 3-Wide, out-of-order, 3.2GHz
Pipeline 40-Entry ROB, 32-entry IQ, 16-entry LQ, 16-

entry SQ, 128 Int / 128 FP registers, 3 Int
ALUs, 2 FP ALUs, 1 Mult/Div ALU

Tournament 2048-Entry local, 8192-entry global, 2048-
entry

Branch Pred. chooser, 2048-entry BTB, 16-entry RAS
Reg. Checkpoint 16 cycles latency

Memory

L1 ICache 32KiB, 2-way, 2-cycle hit lat, 6 MSHRs
L1 DCache 32KiB, 2-way, 2-cycle hit lat, 6 MSHRs
L2 Cache 1MiB, 16-way, 12-cycle hit lat, 16 MSHRs,

stride prefetcher
Memory DDR3-1600 11-11-11-28 800MHz

Checker Cores

Cores 12× In-order, 4 stage pipeline, 1GHz
Log Size 36KiB: 3KiB per core, 5,000 instruction time-

out
Cache 2KiB L0 ICache per core, 16KiB shared L1

TABLE I: Core and memory experimental setup.
Benchmark Source Input

randacc HPCC [39] 100000000
stream HPCC [39]
bitcount MiBench [40] 75000
blackscholes Parsec [41] simsmall
fluidanimate Parsec [41] simsmall
swaptions Parsec [41] simsmall
freqmine Parsec [41] simsmall
bodytrack Parsec [41] simsmall
facesim Parsec [41] simsmall

TABLE II: Summary of the benchmarks evaluated.

detection triggering, we can split streams based on hardware
events such as interrupts, for example (see section IV-G),
simplifying event ordering for the checker cores.

K. Summary

We have discussed the hardware required to parallelise error
detection to a set of small cores. These cores observe the loads
and stores committed by the main core and use them to replay
the instructions executed by the main core. Loads and stores
are split up within a partitioned load-store log, and separated
by register checkpoints, allowing each checker core to work
on a different part of the main core’s execution simultaneously.

A checker core starts execution after either its segment of
the load-store log is filled, or a timeout value is reached. On
error detection, the fault is reported to the program, which
must then either terminate execution or return the memory
system to a consistent state from which execution can restart.

Our scheme allows error detection with minimal power,
performance and area overheads, by trading off detection
latency for parallelism. The next sections quantify how each
of these are affected by our scheme.

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 1.035

blackscholes

randacc

fluidanimate

swaptions

fre
qmine

bodytra
ck

bitcount

facesim
stre

amN
o

rm
a

lis
e

d
 P

e
rf

o
rm

a
n

c
e

Fig. 7: Normalised slowdown for each benchmark, at standard
settings (table I).

 0

 0.0005

 0.001

 0.0015

 0.002

 0 1000 2000 3000 4000 5000

D
e

n
s
it
y

Time (ns)

bitcount
freqmine

stream
fluidanimate

swaptions
bodytrack

facesim
blackscholes

randacc

Fig. 8: Density plot, to show the distribution of error detection
delays, at standard settings (table I).

V. EXPERIMENTAL SETUP

To evaluate the checker core performance required for our
error detection technique, along with the latency between
an error and its detection, we modeled a high performance
system using the gem5 simulator [42] with the ARMv8 64-
bit instruction set and configuration given in table I, similar
to systems validated in previous work [43]. A summary of
the benchmarks we evaluated is given in table II. We used
benchmarks taken mostly from Parsec [41], as a modern
benchmark suite representative of a wide range of workloads.
In addition, we chose RandomAccess and STREAM from the
HPCC benchmark suite [39] and Bitcount from MiBench [40]
to evaluate applications at the extremes of being almost purely
memory bound (both irregular and regular) and almost purely
compute bound, respectively. We choose these benchmarks
to give both a wide-ranging suite of applications, along with
extreme and worst-case behaviour, to analyze the entire range
of performance overheads.

VI. EVALUATION

Figure 7 shows the performance impact of our parallel error
detection with the checker cores running at default settings,
as given in table I. The average slowdown is 1.75%, and
no benchmark slows down by more than 3.4%. Performance
overheads are primarily caused by the time taken to checkpoint
registers at the end of a load-store log segment.

We plot the distribution of delays between loads and stores
being executed and checked, for each benchmark, in fig. 8.
Each resembles a normal distribution, with the benchmarks
featuring more homogeneous workloads (randacc, stream,

7

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

blackscholes
randacc

fluidanimate
swaptions

freqmine
bodytrack

bitcount
facesim

stream

N
o

rm
a

lis
e

d
 P

e
rf

o
rm

a
n

c
e

Checker Core Clock
125MHz
250MHz
500MHz

1GHz
2GHz

Fig. 9: Normalised slowdown when varying the frequency of
the checker cores.

facesim) most closely matching this. The highest average
delay, of 1550ns, comes from randacc. This application is
highly memory bound, with little temporal or spatial locality,
resulting in a low IPC. This means that each load-store log
segment takes a long time to fill, and the 5,000 instruction
window timeout is lengthy compared to other benchmarks.

Each distribution features a long, but very thin, tail at the
far right of the distribution: the maximum detection delay is
significantly higher for every benchmark, at an average of
21.5µs. These points are not shown on the distribution plot,
as they are too uncommon: for all benchmarks, 5000ns is
sufficient to cover over 99.9% of all loads and stores.

For automotive applications, the faults we wish to avoid
are based on physical motions. These occur on the timescale
of milliseconds to seconds, so both the maximum and mean
delays introduced by our scheme are acceptable. Similarly, for
HPC workloads, checkpoints are performed at a frequency of
no more than several minutes [5], [44], so delays introduced
by our scheme are insignificant. As sections VI-B and VI-C
show, overheads compared with dual-core lockstep, which we
intend to replace, are greatly reduced.

A. Parameter Sensitivity

Our default configuration of the checker cores and load-store
log prevents the majority of slowdowns, reflects a sensible
trade-off in terms of performance and delay, and enables
performance scaling across a number of checker cores. We
evaluate these claims in the following sections.

Clock Frequency Figure 9 shows the performance impact
of our scheme when varying the clock speed of the checker
cores, compared to the default 1GHz. Since there are no data
cache misses for the checker cores, because all loads and stores
are accessed and checked from the load-store log, benchmarks
which are memory bound, such as randacc and stream, do not
experience significant performance losses, even at very low
frequencies. However, others that are more compute bound,
for example swaptions and bitcount, slow down significantly,
particularly at clock speeds lower than 500MHz, because the
checker cores combined do not have enough compute power
to keep up with the main core. In this situation, the main core
spends a significant amount of time stalled and waiting for
load-store log space.

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1.16

blackscholes
randacc

fluidanimate

swaptions
freqmine

bodytrack
bitcount

facesim
stream

N
o

rm
a

lis
e

d
 P

e
rf

o
rm

a
n

c
e

Log Size / Instruction Timeout
3.6KiB, 500

(default) 36KiB, 5000
360KiB, 50000

360KiB, ∞

Fig. 10: Slowdown to the system from just checkpointing,
without any checker core execution, across queue sizes and
instruction timeouts.

Register Checkpoint Overhead Even without the main
core stalling from waiting for a free load-store log segment,
our scheme still incurs some performance overhead from
register checkpoint latency at the end of a segment. We assume
a 16 cycle pause in commit when this occurs, allowing two-
ported register files to copy 32 registers from each file.

The frequency of checkpointing is determined by the size
of each load-store log segment, the instruction timeout, and
delay properties of the system. Figure 10 shows the slowdown
caused just by the checkpointing system, with increasing queue
sizes and timeout lengths. The default 36KiB log is large
enough to restrict slowdowns to no more than 2% across
each of our benchmarks, with randacc being least affected due
to its low IPC and thus infrequent checkpointing. A larger
log, ten times the size, either with an associated ten times
larger timeout or with an infinite timeout, is enough to reduce
overheads to negligible amounts. By comparison, a ten times
smaller log size and timeout length causes significantly higher
overheads in most cases, with slowdowns of up to 15%.

We next discuss how these settings affect the observed
delay. However, fig. 10 shows that a 36KiB log represents a
good trade-off between silicon area and performance overhead.

Frequency Impact on Error Detection Delay As the goal
of this technique is to scale error checking onto multiple cores,
through parallelisation, inevitably the error detection time is
higher than with would be with lockstep schemes, where errors
are typically detected within a few cycles [3]. One method of
controlling this delay is through the frequency of the checker
cores, which is explored in fig. 11 for default load-store log
sizes and timeout lengths. It shows mean and maximum delay
between stores committing and being checked when varying
the frequency of the checker cores.

The mean detection delay is affected linearly by clock
speed, in that doubling the clock speed approximately halves
the delay. The exception to this is with high clock frequencies,
where eventually the limiting factor becomes the time to fill
the load store queue using the main CPU, rather than checking
time. Maximum times are affected with less of a deterministic
pattern. Maximum times are typically dictated by, for example,

8

 256

 512

 1024

 2048

 4096

 8192

blackscholes
randacc

fluidanimate
swaptions

freqmine
bodytrack

bitcount
facesim

stream

M
e

a
n

 D
e

te
c
ti
o

n
 D

e
la

y
 (

n
s
)

Checker Core Clock
125MHz
250MHz

500MHz
1GHz

2GHz

(a) Mean, in ns

 0

 10

 20

 30

 40

 50

 60

 70

 80

blackscholes
randacc

fluidanimate
swaptions

freqmine
bodytrack

bitcount
facesim

stream

M
a

x
 D

e
te

c
ti
o

n
 D

e
la

y
 (

µ
s
) Checker Core Clock

125MHz
250MHz
500MHz

1GHz
2GHz

(b) Maximum, in µs

Fig. 11: Delay between a store committing and being checked,
when varying the frequency of the checker cores.

large numbers of cache misses on the main core, so altering
the checker core frequency often does not affect these to such
a significant extent.

Log Size Impact on Error Detection Delay Figure 12
shows mean and maximum detection delays when varying the
load-store log size and timeout length, at the default checker
core frequency. Mean detection times scale linearly with the
load-store log size: a tenfold increase in log size and timeout
results in a tenfold delay increase. While maximum detection
times follow a similar trend, the pattern is more sporadic, due
to individual instructions dominating the measurements.

For smaller log sizes and timeouts, many segments contain
only a few memory accesses and thus the timeout affects the
detection delay. For larger queue sizes enough instructions fit
in a single segment that the log is usually filled before the
timeout is reached. The exception to this is when programs
feature large runs of instructions with very few loads and
stores, for example bitcount. Without the timeout, very large
segments of code appear, causing the maximum detection
delay to increase significantly. However, a 50,000 instruction
timeout is enough in this case to reduce maximum delay by
250× with no performance impact.

Number of Cores Figure 13 shows how performance
scales across different numbers of cores devoted to error
checking for the benchmarks. We see that N cores at a
frequency of M (in MHz) is comparable in performance to 2N
cores at a frequency of M

2 . For example, 6 checker cores at
1GHz is comparable to 12 cores at 500MHz. This is expected

 10

 100

 1000

 10000

 100000

blackscholes
randacc

fluidanimate
swaptions

freqmine
bodytrack

bitcount
streamM

e
a

n
 D

e
te

c
ti
o

n
 D

e
la

y
 (

n
s
)

Log Size / Instruction Timeout
3.6KiB, 500
36KiB, 5000

360KiB, 50000

360KiB, ∞
36KiB, ∞

(a) Mean, in ns

 1

 10

 100

 1000

 10000

blackscholes
randacc

fluidanimate
swaptions

freqmine
bodytrack

bitcount
stream

M
a
x
 D

e
te

c
ti
o
n
 D

e
la

y
 (

µ
s
)

Log Size / Instruction Timeout
3.6KiB, 500
36KiB, 5000

360KiB, 50000
360KiB, ∞

36KiB, ∞

(b) Maximum, in µs

Fig. 12: Delay between a store committing and being checked,
when varying the load-store log size and instruction timeout.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

blackscholes
randacc

fluidanimate
swaptions

freqmine
bodytrack

bitcount
facesim

stream

N
o

rm
a

lis
e

d
 P

e
rf

o
rm

a
n

c
e

3 cores, 1GHz
12 cores, 250MHz

6 cores, 1GHz
12 cores, 500MHz

12 cores, 1GHz

Fig. 13: Slowdown with varying core counts at 1GHz, com-
pared with values for 12 cores at varying frequencies.

given the identified parallelism in error detection.
In fact, a large number of cores at a low clock frequency

outperform fewer at higher frequencies. This is because of the
load-store log structure where only n − 1 checker cores are
in use at any given time, since at least one is always waiting
for its segment to be filled unless the main core is stalled.
This means that better utilisation, as a percentage of the total
compute power of the cores, is achievable when more cores,
and thus more load store log segments, are available.

B. Area Overhead

Publicly available data places the RISC-V Rocket, the closest
available core in terms of size to the ones we propose for
our checker units, at 0.14mm2 area per core on a 40nm
process [45]. In comparison, at 20nm, the Cortex A57 is

9

2.05mm2 per core [46] excluding shared caches. Twelve E51-
sized cores would therefore fit in approximately 0.42mm2

combined at the same technology node.
The SRAM added for instruction caches, register check-

points, load forwarding unit and the load-store log is 80KiB
in total, which is approximately 0.08mm2 area overhead [47].
Combined, this places the error detection hardware at ap-
proximately 24% area overhead compared to the original
core without shared caches. When a 1MiB single-ported L2
cache at approximately 1mm2 [47] is also included, the area
overhead is approximately 16% of the original core.

This is a very approximate estimate: Rocket has a different
ISA from the A57, and the out-of-order core we model is faster
than an A57, increasing the number of checker cores required
in our experiments (a real implementation would need fewer).

Still, it is clear that the overhead is massively reduced
compared to dual-core lockstep, the current state-of-the-art,
which doubles silicon area.

C. Power Overhead

Power information is more challenging to estimate. Models
such as McPAT [48] are unable to account for the low
power consumption of small cores of approximately 34µW
per MHz [45] at 40nm, compared with 800µW per MHz for
a Cortex A57 [46] at 20nm. Using twelve small cores and
without scaling for feature size, we obtain a power overhead
of approximately 16% for our system, showing that the impact
is minimal. Since at 20nm the power consumption for the
Rocket core will be less, this represents an upper bound, and
we should expect the true value to be significantly lower still.

D. Bigger Cores

The out-of-order cores we simulate are relatively small, de-
signed to mimic the behavior of conventional Arm systems.
However, our technique extends favorably to larger main cores
that are more aggressive, since these realise only a sublinear
increase in single-threaded performance. Although we would
need more checker cores, performance scales linearly with the
power and area budget devoted to them due to the exploitation
of thread-level parallelism. This means that relative overheads
diminish significantly. Such cores may also feature simultane-
ous multithreading and for these each concurrent thread would
be separated to a different checker core, but otherwise the
scheme works similarly.

E. Summary

We have shown that twelve checker cores running at 1GHz
are enough to have a performance impact of 3.4% maximum
across a wide set of benchmarks, with mean error-detection
times of 770ns. We have estimated the area and power
overheads of the technique compared to an unchecked core at
around 24% and 16% respectively, which are both significantly
lower than existing techniques [3], [10], [12], [13], [49].

VII. RELATED WORK

A. Lock-Stepping

There are many examples of hardware duplication for error
detection, where copies of a program are run through identical
logic and the results compared. This is currently used in
the ARM Cortex R series of processors [9], as they are
intended for high error and high reliability environments,
such as cars and space. More recently, triple-lockstep designs,
which perform majority voting to correct errors, have been
developed [3]. Historically, similar techniques were used by
the IBM G5 [10] and the Compaq Himalaya [49].

Mukherjee et al. [12] present a chip-level redundantly multi-
threaded scheme, where the second core trails the first in order
to reduce cache misses. Gupta et al. [50] instead argue for
duplication at a finer granularity, through multiple copies of
individual pipeline stages in a fabric, rather than the more
coarse-grained core duplication of industry schemes. This
allows better tolerance of hard faults when errors are common.
Hernandez and Abella [2] give a scheme to improve the
detection delay for light-lockstep systems, where only some
applications need error detection, and thus hardware can be
repurposed if the second core is needed for detection.

B. Redundant Multi-Threading Hardware

Rather than a static duplication of hardware, many schemes
have suggested using dynamic scheduling on processors fea-
turing simultaneous multi-threading. AR-SMT [11] presents a
redundant multi-threading scheme for fault detection, where
two threads are run on the same processor. However, this
does not cover hard errors, because the same hardware is
used for both computation. In addition, it uses up a processor
context that could be used for more computation, and comes
at a significant performance overhead. Indeed, Mukherjee
et al. [12] suggest that redundant multi-threading techniques
come at a performance overhead of 32%. Schuchman and Vi-
jaykumar [13] improve the ability of redundant multi-threading
to detect hard faults by rearranging instructions within the
trailing thread, altering the hardware resources used, at the
expense of a further 15% performance degradation.

Reinhardt and Mukherjee [1] present the concept of a
sphere of replication as it applies to redundant multi-threading:
the parts of the system which are replicated. They further
present the use of a load-value queue to forward results from
the computation thread to the replication thread, instead of
duplicating the page file as in AR-SMT [11]. This is similar
to that used in our scheme. Smolens et al. [51] suggest the
removal of this queue by noting that, in the common case, two
threads will observe the same values from cache loads without
explicit duplication, and instead use detection and recovery
to correct any differences by treating them as errors, at the
expense of performance.

Rashid et al. [14] utilise a similar form of parallelism to that
which we exploit, to run error detection on a homogeneous
multicore. The scheme pays a large area cost, but reduces
energy usage by dynamic frequency-voltage scaling. We build

10

on their insights by using a heterogeneous system to reduce
area and energy further, and design an alternative forwarding
system to increase parallelism and negate the need for a large
L1 cache per core.

C. Software Schemes

It is also possible to provide error detection entirely in soft-
ware, without hardware additions. Khudia and Mahlke [52]
detect errors in software for soft applications, where only parts
of the application are error-intolerant, such as video decod-
ing. The significant overheads involved are reduced by only
repeating computation for error-intolerant portions. Thomas
and Pattabiraman [53] identify heuristics to select which parts
of applications to check for high error coverage. Wang and
Patel [54] provide a scheme for partial fault detection, by
only responding to errors which trigger exceptions when they
are not caught. Reis et al. [25] present SWIFT, a solution
which duplicates instructions in the same thread to provide
limited coverage of soft faults. Jeffery and Figueiredo [55]
give a virtual lockstepping scheme, where a hypervisor is
used to duplicate inputs and perform comparisons of multiple
virtualised copies of an operating system. Veeraraghavan et
al. [56] utilise a form of program slicing, as we use in our
system, to solve a different but related problem: deterministic
recording of execution for multicore workloads in software.

D. Hybrid Schemes

Hardware schemes suffer from a large cost in terms of silicon
area, and software schemes suffer from a lack of coverage
for hard errors, and high performance costs. To mitigate
these, hybrid schemes have been proposed. For example, Reis
et al. [24] present CRAFT, a combination of SWIFT [25], a
software only scheme, and redundant multi-threading [1], [11],
[12]. This uses compiler assistance to duplicate instructions,
changing redundant stores to perform checks using a special
hardware detection structure.

E. Heterogeneity

The use of heterogeneous cores for error resilience already has
precedence. Ansari et al. [57] couple a lightweight core with
a newer fast core. When the fast core begins to fail, it is used
to provide hints, such as branches and loads, to the slower,
functionally correct core, to reduce the performance gap.
LaFrieda et al. [58] dynamically couple cores that can differ
due to manufacturing defects, so that those which are faster are
matched together to provide error detection, as are those which
are slower or broken. DIVA [21], [22] adds in-order execution
units towards the end of an unverified out-of-order pipeline to
repeat computation and check data forwarding. These units
run at the same clock speed as the rest of the core, and
achieve parallelism by checking each instruction individually.
This means ECC is required on all architectural state within
the original processor to avoid communication errors, which
is impractical in a high performance design.

F. Other Hardware Schemes

Other hardware fault tolerance schemes have been proposed,
for example Clover [59], which uses hardware wave detection
to detect cosmic rays hitting a system. Many schemes have
been proposed to deal with retiring components efficiently
once hard errors have been detected. Aggarwal et al. [60]
partition multicore hardware into fault zones once errors have
been detected, redistributing power dynamically based on how
much of the core is still alive. Romanescu and Sorin [61] allow
a fraction of the cores in a system to be used for spare parts at
the pipeline granularity, to fix hard faults in a system. Gupta
et al. [62] use a tiled web architecture which allows slow or
broken pipeline stages to be weaved out. Powell et al. [63]
allow the use of partially broken hardware by detection and
migration of just the operations known to be faulty.

VIII. CONCLUSION

Current fault detection techniques are limited by high over-
heads, in terms of energy, silicon area, and performance.
We have developed a technique to perform error detection
for high-performance, out-of-order processors at low area,
performance and energy cost by exploiting new parallelism in
the redundant repetition of the program. Our scheme checks
multiple parts of the execution simultaneously on a set of small
cores embedded beside the main out-of-order CPU.

Evaluating over a wide variety of benchmarks, twelve small
checker cores running at 1GHz give enough performance to
limit average slowdown to 1.75% (maximum 3.4%). The mean
error detection delay for each evaluated benchmark averages
at 770ns, with 99.9% of all loads and stores checked within
5000ns, and all checked within 45µs: this is larger than with
a lock-step system, but is more than offset by the reduction in
chip area and power usage attainable, and is justifiable in the
relevant domain spaces.

Future work will look at extending the scheme to perform
correction of errors within a microprocessor, rather than just
detection, to enable low-overhead complete fault tolerance.

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant references
EP/K026399/1 and EP/M506485/1, and Arm Ltd. Additional
data related to this publication is available in the data reposi-
tory at https://doi.org/10.17863/CAM.21857.

REFERENCES

[1] S. K. Reinhardt and S. S. Mukherjee, “Transient fault detection via
simultaneous multithreading,” in ISCA, 2000.

[2] C. Hernandez and J. Abella, “Timely error detection for effective
recovery in light-lockstep automotive systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 34,
no. 11, 2015.

[3] X. Iturbe, B. Venu, E. Ozer, and S. Das, “A triple core lock-step
(TCLS) ARM R©Cortex R©-R5 processor for safety-critical and ultra-
reliable applications,” in DSN-W, 2016.

[4] M. Rausand, Reliability of Safety-Critical Systems: Theory and Appli-
cations. Wiley, 2014.

11

https://doi.org/10.17863/CAM.21857

[5] M. Snir, R. W. Wisniewski, J. A. Abraham et al., “Addressing failures
in exascale computing,” Int. J. High Perform. Comput. Appl., vol. 28,
no. 2, May 2014.

[6] A. Geist and S. Dosanjh, “IESP exascale challenge: Co-design of
architectures and algorithms,” Int. J. High Perform. Comput. Appl.,
vol. 23, no. 4, Nov. 2009.

[7] D. Zhao, D. Zhang, K. Wang, and I. Raicu, “Exploring reliability of
exascale systems through simulations,” in HPC, 2013.

[8] C. Turner, “Safety and security for automotive SoC design -
arm,” http://www.arm.com/files/pdf/20160628 B02 ATF Korea Chris
Turner.pdf, 2016.

[9] N. Werdmuller, “Addressing functional safety applications with Arm
Cortex-R5,” http://community.arm.com/groups/embedded/blog/2015/01/
22/addressing-functional-safety-applications-with-arm-cortex-r5, 2015.

[10] T. J. Slegel, R. M. Averill III, M. A. Check et al., “IBM’s S/390 G5
microprocessor design,” IEEE Micro, vol. 19, no. 2, 1999.

[11] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault toler-
ance in microprocessors,” in FTCS, 1999.

[12] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, “Detailed design and
evaluation of redundant multithreading alternatives,” in ISCA, 2002.

[13] E. Schuchman and T. N. Vijaykumar, “Blackjack: Hard error detection
with redundant threads on smt,” in DSN, 2007.

[14] M. W. Rashid, E. J. Tan, M. C. Huang, and D. H. Albonesi, “Exploiting
coarse-grain verification parallelism for power-efficient fault tolerance,”
in PACT, 2005.

[15] A. R. Pargeter, “An example of strong induction,” The Mathematical
Gazette, vol. 80, no. 488, 1996.

[16] https://www.sifive.com/products/coreplex-risc-v-ip/e51/.
[17] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of

technology scaling on lifetime reliability,” in DSN, 2004.
[18] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala, and

S. A. Wender, “Predicting the number of fatal soft errors in Los Alamos
national laboratory’s ASC Q supercomputer,” IEEE Transactions on
Device and Materials Reliability, 2005.

[19] S. Borkar and A. A. Chien, “The future of microprocessors,” Commu-
nications of the ACM, vol. 54, no. 5, 2011.

[20] B. Schroeder, E. Pinheiro, and W.-D. Weber, “DRAM errors in the wild:
A large-scale field study,” in SIGMETRICS, 2009.

[21] T. M. Austin, “Diva: A reliable substrate for deep submicron microar-
chitecture design,” in MICRO, 1999.

[22] C. Weaver and T. M. Austin, “A fault tolerant approach to microproces-
sor design,” in DSN, 2001.

[23] B. Stolt, Y. Mittlefehldt, S. Dubey, G. Mittal, M. Lee, J. Friedrich, and
E. Fluhr, “Design and implementation of the POWER6 microprocessor,”
IEEE Journal of Solid-State Circuits, vol. 43, no. 1, 2008.

[24] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee, “Design and evaluation of hybrid fault-detection systems,”
in ISCA, 2005.

[25] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in CGO, 2005.

[26] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
sources of inefficiency in general-purpose chips,” in ISCA, 2010.

[27] M. Shafique and J. Henkel, “Agent-based distributed power management
for kilo-core processors,” in ICCAD, 2013.

[28] “Green 500,” http://www.top500.org/green500/lists/2017/11/, Nov. 2017.
[29] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L. Varbanescu, “Test-

driving intel xeon phi,” in ICPE, 2014.
[30] G. Blake, R. G. Dreslinski, T. Mudge, and K. Flautner, “Evolution of

thread-level parallelism in desktop applications,” in ISCA, 2010.
[31] K. Mitropoulou, V. Porpodas, and T. M. Jones, “COMET:

Communication-optimised multi-threaded error-detection technique,” in
CASES, 2016.

[32] C. Wang, H. s. Kim, Y. Wu, and V. Ying, “Compiler-managed software-
based redundant multi-threading for transient fault detection,” in CGO,
2007.

[33] International Organization for Standardization, “ISO 26262: Road vehi-
cles – functional safety,” 2011.

[34] N. Werdmuller, “Addressing functional safety applications with ARM
Cortex-R5,” https://community.arm.com/iot/embedded/b/embedded-
blog/posts/addressing-functional-safety-applications-with-arm-cortex-
r5, Jan. 2015.

[35] D. J. Sorin, M. M. K. Martin, M. D. Hill, and D. A. Wood, “Safetynet:
Improving the availability of shared memory multiprocessors with global
checkpoint/recovery,” in ISCA, 2002.

[36] A. Jhingran and P. Khedkar, “Analysis of recovery in a database system
using a write-ahead log protocol,” in SIGMOD, 1992.

[37] M. Herlihy and J. E. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in ISCA, 1993.

[38] https://community.arm.com/processors/f/discussions/4503/lock-step-
mode-execution-on-cortex-r5/11365#11365.

[39] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc) bench-
mark suite,” in SC, 2006.

[40] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in WWC, 2001.

[41] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton University, January 2011.

[42] N. Binkert, B. Beckmann, G. Black et al., “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, 2011.

[43] A. Gutierrez, J. Pusdesris, R. G. Dreslinski et al., “Sources of error in
full-system simulation,” in ISPASS, 2014.

[44] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance fault
tolerance interface for hybrid systems,” in SC, 2011.

[45] https://riscv.org/wp-content/uploads/2015/02/riscv-rocket-chip-
generator-tutorial-hpca2015.pdf.

[46] http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-
exynos-review/6.

[47] M. Yabuuchi, Y. Tsukamoto, M. Morimoto, M. Tanaka, and K. Nii,
“20nm high-density single-port and dual-port srams with wordline-
voltage-adjustment system for read/write assists,” in ISSCC, 2014.

[48] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO, 2009.

[49] A. Wood, “Data integrity concepts, features, and technology,” Tandem
Division, Compaq Computer Corporation, White Paper, 1999.

[50] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The stagenet
fabric for constructing resilient multicore systems,” in MICRO, 2008.

[51] J. C. Smolens, B. T. Gold, B. Falsafi, and J. C. Hoe, “Reunion:
Complexity-effective multicore redundancy,” in MICRO, 2006.

[52] D. S. Khudia and S. Mahlke, “Harnessing soft computations for low-
budget fault tolerance,” in MICRO, 2014.

[53] A. Thomas and K. Pattabiraman, “Error detector placement for soft
computation,” in DSN, June 2013.

[54] N. J. Wang and S. J. Patel, “Restore: Symptom based soft error detection
in microprocessors,” in DSN, 2005.

[55] C. M. Jeffery and R. J. O. Figueiredo, “A flexible approach to improving
system reliability with virtual lockstep,” IEEE Transactions on Depend-
able and Secure Computing, vol. 9, no. 1, 2012.

[56] K. Veeraraghavan, D. Lee, B. Wester et al., “Doubleplay: Parallelizing
sequential logging and replay,” in ASPLOS, 2011.

[57] A. Ansari, S. Feng, S. Gupta, and S. Mahlke, “Necromancer: Enhancing
system throughput by animating dead cores,” in ISCA, 2010.

[58] C. LaFrieda, E. Ipek, J. F. Martinez, and R. Manohar, “Utilizing
dynamically coupled cores to form a resilient chip multiprocessor,” in
DSN, 2007.

[59] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in LCTES, 2015.

[60] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith, “Con-
figurable isolation: Building high availability systems with commodity
multi-core processors,” in ISCA, 2007.

[61] B. F. Romanescu and D. J. Sorin, “Core cannibalization architecture:
Improving lifetime chip performance for multicore processors in the
presence of hard faults,” in PACT, 2008.

[62] S. Gupta, A. Ansari, S. Feng, and S. Mahlke, “Stageweb: Interweaving
pipeline stages into a wearout and variation tolerant cmp fabric,” in DSN,
2010.

[63] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee, “Architectural
core salvaging in a multi-core processor for hard-error tolerance,” in
ISCA, 2009.

12

http://www.arm.com/files/pdf/20160628_B02_ATF_Korea_Chris_Turner.pdf
http://www.arm.com/files/pdf/20160628_B02_ATF_Korea_Chris_Turner.pdf
http://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
http://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
https://www.sifive.com/products/coreplex-risc-v-ip/e51/
http://www.top500.org/green500/lists/2017/11/
https://community.arm.com/iot/embedded/b/embedded-blog/posts/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/iot/embedded/b/embedded-blog/posts/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/iot/embedded/b/embedded-blog/posts/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/processors/f/discussions/4503/lock-step-mode-execution-on-cortex-r5/11365#11365
https://community.arm.com/processors/f/discussions/4503/lock-step-mode-execution-on-cortex-r5/11365#11365
https://riscv.org/wp-content/uploads/2015/02/riscv-rocket-chip-generator-tutorial-hpca2015.pdf
https://riscv.org/wp-content/uploads/2015/02/riscv-rocket-chip-generator-tutorial-hpca2015.pdf
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6
http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-exynos-review/6

	Introduction
	Background
	Faults
	Detection

	Motivation
	Parallel Error Detection
	Overview
	Checker Cores
	Load Forwarding Unit
	Partitioned Load-Store Log
	Detection Trade-Offs
	Memory System
	Interrupts
	System Faults
	Over-Detection
	Timeouts
	Summary

	Experimental Setup
	Evaluation
	Parameter Sensitivity
	Area Overhead
	Power Overhead
	Bigger Cores
	Summary

	Related Work
	Lock-Stepping
	Redundant Multi-Threading Hardware
	Software Schemes
	Hybrid Schemes
	Heterogeneity
	Other Hardware Schemes

	Conclusion
	References

