Compendia: Reducing Virtual-Memory Costs via
Selective Densification

Sam Ainsworth
University of Edinburgh
Edinburgh, UK
sam.ainsworth@ed.ac.uk

Abstract

Virtual-to-physical memory translation is becoming an in-
creasingly dominant cost in workload execution; as data sizes
scale, up to four memory accesses are required per transla-
tion, and 24 in virtualised systems. However, the radix trees
in use today to hold these translations have many favourable
properties, including cacheability, ability to fit in conven-
tional 4 KiB page frames, and a sparse representation. They
are therefore unlikely to be replaced in the near future.

In this paper we argue that these structures are actually too
sparse for modern workloads, so many of the overheads are
unnecessary. Instead, where appropriate, we expand groups
of 4 KiB layers, each able to translate 9 bits of address space,
into a single 2 MiB layer, able to translate 18 bits in a single
memory access. These fit in the standard huge-page alloca-
tions used by most conventional operating systems and ar-
chitectures. With minor extensions to the page-table-walker
structures to support these, and aid in their cacheability, we
can reduce memory accesses per walk by 27%, or 56% for
virtualised systems, without significant memory overhead.

CCS Concepts: » Software and its engineering — Vir-
tual memory; - Computer systems organization — Ar-
chitectures.

Keywords: Virtual Memory, Virtualisation

ACM Reference Format:

Sam Ainsworth and Timothy M. Jones. 2021. Compendia: Reducing
Virtual-Memory Costs via Selective Densification. In Proceedings
of the 2021 ACM SIGPLAN International Symposium on Memory
Management (ISMM °21), June 22, 2021, Virtual, Canada. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3459898.3463902

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ISMM °21, June 22, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8448-3/21/06...$15.00
https://doi.org/10.1145/3459898.3463902

Timothy M. Jones
University of Cambridge
Cambridge, UK
timothy.jones@cl.cam.ac.uk

1 Introduction

As working sets increase in size, page-table translation is
becoming more expensive [7, 8, 12, 24], accounting for up to
50% of the execution time of emerging workloads [38].

Performing virtual-to-physical translation by using four-
level radix tables, the standard solution in use today, has
many compelling benefits. Each layer fits within a standard
4 KiB page frame, which can be allocated like any other user-
space data, avoiding external fragmentation. This allows the
structure to be stored sparsely: rather than mapping all 48
bits of the address space, requiring 512 GiB of space just for
the table, any tree paths without data can be left unallocated.
While other structures have been proposed, such as hash-
table-based storage [21, 38, 40, 45], the predictability and
cacheability [45] of radix trees for small working sets, and
their ease of allocation into conventional page frames, has
kept them as the structure of choice for modern systems.

Still, this sparsity results in costly worst cases, of four
memory accesses per translation in standard setups, and 24
in virtualised systems [23]. Though many accesses can be
hidden with caching, as workload sizes increase, the cost of
long chains of high-latency memory accesses becomes un-
tenable. With 5-layer translations becoming necessary [15],
the worst case becomes 35 accesses.

We argue that the radix-tree structure is often stored
too sparsely, causing unnecessary memory accesses. Conve-
niently, most modern architectures and operating systems
also support huge pages [32] of 2 MiB in size for user data.
We propose utilizing these to merge adjacent layers, trans-
lating 18 bits in a single memory access, rather than 9 bits
each in two, in regions where the structure is densely occu-
pied. We handle the implications of complexities in terms
of common caching systems, allowing the overlapping of
densified structures where favorable, and in combination
with transparent huge-page support. Compendia naturally
extends to virtualised environments, where the need for
high-performance and easily compatible solutions is even
more pressing [4, 29].

Compendia gives 5.5% speedup (41% maximum) across a
large set of translation-intensive workloads in conventional
setups and 18% (70% maximum) on virtualised systems. This
is achieved by bringing down the average number of memory
accesses per TLB miss from 1.39 to 1.01; very close to optimal.


https://doi.org/10.1145/3459898.3463902
https://doi.org/10.1145/3459898.3463902

ISMM °21, June 22, 2021, Virtual, Canada

Page Global Directory PGD

Page Upper Directory | PUD | | PUD |

/\L\;

PMD | | PMD | | PMD |

/N

Page Table Entry | PTE | | PTE | | PTE |

Page |
Middle Directory

+ offset

Figure 1. Virtual pages are translated to physical frames via
a four-layer radix tree, each layer indexed by 9 bits.

|63 NX |szlgn0re P Phys. Frame |nSW |8 Control °|

Figure 2. An x86-64 Linux page-table entry [1].

It combines well with transparent huge pages, where it can
give a further 60% speedup on large datasets.

2 Background
2.1 Page-Table Walks

Systems with 64-bit word sizes typically use 48-bit virtual
addresses, which are translated to physical frames using a
four-layer radix-tree translation [14]. Each page is 4 KiB in
size, which requires 12 bits from the address to access each
byte within the page or frame; the other 36 bits are translated
9 bits at a time in the radix tree (figure 1). We use the first
9 bits to look up one of 512 64-bit word-sized entries in
the Page Global Directory (in Linux terminology [14]). This
gives us an element of the form shown in figure 2, including
control bits and the physical frame the relevant 4 KiB PUD
entry is stored in. We then use the next 9 bits to perform a
similar lookup in the relevant PUD frame to find the frame
of the relevant PMD, and then the PTE, giving the frame of
the translated page, to which we add the 12-bit offset.

This four-layer hierarchy covers 256 TiB of addressable
space. Although this is considerably larger than the physical
memory of most machines, five-layer translations, to cover
128 PiB of space [15], are becoming increasingly necessary
for high-end systems, especially when coupled with the use
of memory-mapped I/O.

This radix-tree structure provides two useful properties.
Splitting the translation between many different frames means
we can leave parts of the hierarchy sparsely allocated, by
storing zero entries to unpopulated parts of the page table.
This avoids the page table itself taking up 512 GiB of memory
for applications that typically do not use all of the space. It
also allows the radix tree to be implemented via the same
4KiB frames that virtual memory itself is allocated in.

Still, this gives a worst case of five memory accesses in
total for a single load from a virtual address. This is tolera-
ble for many workloads since these accesses are often very

Sam Ainsworth and Timothy M. Jones

+ Huge Page
‘ e F‘ PUD H P Frame Offset

Figure 3. For a 2 MiB Huge Page, the radix tree loses a level,
as the frame covers 9 bits more address space.

cacheable. Each TLB entry allows access to 4 KiB of memory
by storing the relevant virtual-to-physical mapping. Page-
table structures themselves are also very cacheable, and use
dedicated caches for this purpose [7, 42], as each higher level
covers exponentially more data: a single PMD entry gives
access to 512 PTE entries, so if the PMD entry is cached
then a single translation memory access reaches 2 MiB of
data, and a single cached PUD entry reaches 1 GiB in two
accesses. However, performance is tied to workload size, and
large workloads with complex memory patterns spend the
majority of their run-time handling misses [24].

2.2 Huge Pages

A widely deployed existing solution is Huge Pages. Typically,
this is where 4 KiB, 2 MiB, and possibly 1 GiB frames are all
supported as units of contiguous allocation. Each increase in
size both removes a layer of the radix table (figure 3), from
the least cacheable end, and allows each TLB entry to cover a
wider portion of the address space, thus reducing the number
of page-table walks as well as their cost. The Linux kernel
provides transparent huge-page support, where allocation
into a 2 MiB frame is implemented automatically when appli-
cable, and can be treated identically to 4 KiB pages from the
programmer’s perspective.! Still, huge-page support is no
panacea; translation overheads remain high for many work-
loads [24]. Heterogeneity in page size often degrades perfor-
mance via physical-memory fragmentation [24, 26, 32, 33],
and has limited support in many operating systems [22].

2.3 Virtualisation

The standard setup for virtualised systems, where multiple
guest operating systems can run above a host OS, is a two-
dimensional nested page table [23]: guest virtual addresses
(gVAs) are translated to virtualised guest physical addresses
(gPAs), which are translated to the system’s true host phys-
ical addresses (hPAs). This gives the virtualised operating
system the ability to map and unmap its guest physical pages,
which are then in turn translated to the host’s view of mem-
ory. As each translation in each dimension involves a four-
level page-table walk, this multiplies to 24 memory accesses
per virtual-to-physical translation (figure 4). With five-layer
57-bit translations [15], this increases to 35 accesses. The
alternative of shadow paging [43], where a one-dimensional
mapping translates straight from gVAs to hPAs, is not im-
plemented in today’s systems; it requires heavy software

IThis size is chosen because 2 MiB of space can be indexed in 21 bits: 12
bits of standard 4 KiB frames, and 9 bits from the now-eliminated PTE.



Compendia: Reducing Virtual-Memory Costs via Selective Densification

+Page
gPGD r»4 gPUD [» gPMD r» gPTE r# Frame

* * * * Offset

hPGD hPGD hPGD hPGD hPGD

v v v v v

hPUD hPUD hPUD hPUD hPUD

v v v v v

hPMD hPMD hPMD hPMD hPMD

v v v v v

hPTE/ hPTE hPTE hPTE/ hPTE
v v v v |4

Figure 4. Two-dimensional page walks [23] on virtualised
systems require up to 24 memory accesses for virtual-to-
physical translation, as each guest physical address (gPA),
both in the operating system’s page tables and its actual
memory access, is translated to a host physical address (hPA).

7
1
3x10 Cycles - 4KiB —e—
25107 2MiB —v— Le-2% 09 o
5x10" - Walk Time - 4KiB - -o- - P 3
9;" OMiB - -+ - K V? 0.8 %
] 2x107 o407 €
§ ot 108 E
5 1.5x107 . S ! 05 2
a ! e ’
! ce -% /// / 1 04 T
8 ixt0’ f ’ ¢ g
_g , / 1 03 3
i [a1]
© 5x10° ; A e o S 102 2
i )/ 101 O
0 ,

[N I ,25‘6 \Q'ZA‘ AQQ’%\QS&A%B%%%
Dataset Size (MiB)

Figure 5. CPU cycles of execution time per megabyte of
data input (left), and fraction of cycles with active page-table
walks (right), on RandomAccess, with increasing dataset
sizes for 4 KiB and 2 MiB pages. If execution time increased
proportionately with input size, Cycles per Megabyte would
be flat. When spikes in DTLB Load Walk Time Ratio correlate
with Cycles per Megabyte, an extra layer of page-table-walker
cache misses (PGD—PUD—PMD) occurs.

cleanup to invalidate incorrect mappings on updates to the
table, for every process in the guest OS [18].

For small workloads, many accesses are hidden through
caching [7], via TLBs and page-table caches for both guest
and the host tables. However, the linear performance loss
with increasing data size in single-dimension translations
becomes quadratic, rapidly slowing large workloads [29].

3 Motivation

As datasets grow, page-table walks become a significant
cause of performance loss. In figure 5, with 4 KiB pages, a
significant proportion of clock cycles are spent performing

ISMM °21, June 22, 2021, Virtual, Canada

page-table walks, even with small data sets, on a modern In-
tel Skylake Xeon W-2195 server running the RandomAccess
benchmark [27]. Up to 256 MiB, this is only the effect of a
single memory-access miss (the PTE): accesses in the first
three stages of the page table are in similar regions and so are
cacheable [7, 42], the misses can be overlapped through hav-
ing multiple page-table walkers, and so performance is only
mildly impacted. The spike at 16MiB, reproducible both on
multiple systems and with the number of iterations increased
to extend run-time, therefore does not impact performance
significantly. However, from 256 MiB onwards we see the
effects of the third level (PMD) becoming uncacheable, and
thus slowdown. Finally, the second level (PUD) starts to miss
from around 8 GiB onwards, causing further detriment.
Transparent huge-page support, with 2 MiB pages, elimi-
nates this wasted time for small data sizes, as there are no
PTE memory accesses, but by 4,096 MiB of input we start to
see significant time spent on page-table walks. Even though
the resulting code is still faster than with 4 KiB pages, we
still see observable performance drops as a result. The gap
narrows towards the right of the graph, as even transparent
huge-page translation starts to require multiple memory ac-
cesses. A significant amount of performance is left on the
table, with or without transparent huge pages, and the cost
increases dramatically with increased working sets.
Four-stage radix-tree page tables were designed for an
era when memory was in short supply; they allow for page-
table mappings to be stored very sparsely. We argue that this
sparsity is now unneccessary in many circumstances, and
results in needless memory accesses. At the same time, the
cacheability of such structures make radix trees difficult to
beat. To avoid these unneccessary memory accesses, caused
purely by the data structure being overly sparse, we can
merge multiple levels together into a single level, or node, of
the radix tree (figure 6), whenever a significant proportion
of entries in a given region are mapped (i.e., when lack of
sparsity causes few memory savings). This means we only
need to perform a single memory access, instead of two,
for those merged levels, reducing the number of memory
accesses and thus the cost of each page-table walk.

4 Compendia

Compendia reduces sparsity in regions of the page table
where this sparsity is unwarranted, reducing the number of
memory accesses needed for a virtual-to-physical address
translation, in particular, those that need to access DRAM.
Adjacent layers of the table are merged once their occupancy
reaches a threshold. This merging can occur either at the
top level between the PGD and PUD (figure 6), between the
middle PUD and PMD layers, and/or between the PMD and
PTE layers closest to the translated frame.

Compendia frames fit within existing physical frames sup-
ported by common operating systems; that is, 4KiB and



ISMM °21, June 22, 2021, Virtual, Canada

[T I - [ 1] T ]
[ T ] T 1
L 1 I 1

| — T ] | »
X 512 X512
PGD (4KiB) PUD (4KiB) 512 X 512

PGD/PUD (2MiB)

T 1T

(a) In a standard setup, each page-table
level is stored across 4 KiB frames, holds
512 elements, and thus translates 9 bits
of the virtual address. One memory ac-
cess is required to look up each level.

(b) Merging to a
2MiB Compendia
frame translates 18
bits in one access.

Figure 6. If we are willing to sacrifice some sparsity of our
data structure, then levels of the radix tree can be flattened,
reducing the total number of memory accesses.

2 MiB regions. This simplifies implementation and limits
fragmentation [34], by allowing the operating system to use
its existing layout systems to allocate frames for the page
table. Conveniently, 2 MiB is the correct amount of space
needed to merge two layers, transforming a set of 513 512-
entry 4 KiB frames into one 262,144-entry 2 MiB frame.?

As Compendia does not change the format of user pages,
the only change that needs to be made to the operating sys-
tem kernel is within the page-table walker logic, and the
page-table structure itself, to support, make allocation and
merging decisions, and interpret the new format. Though
hardware page-table walkers need modification to support
indexing into the new flattened structure, this is a trivial ex-
tension of the state machine logic, and the TLB is unaltered.

4.1 Selective Densification

Merging levels of the page table will not always be desir-
able; for many applications, the page table is sparsely pop-
ulated, as much of the address space is not allocated. At
one extreme, when all virtual addresses within a 1 GiB re-
gion (512 X 512x4 KiB) of the page table, coverable by two
4KiB-based layers, are mapped, then all possible 513 4KiB
frames within those two layers will be backed by physical
frames. In this case, merging these into a single 2 MiB layer
will cause no further space utilisation. By contrast, if only a
single 4 KiB page of virtual address space is mapped within
a 1 GiB region, then the two mapped 4 KiB frames in the two
layers will expand 256-fold.

Our implementation densifies a layer with its child layer
when an eighth of its 512 children are non-zero.? This strat-
egy avoids measuring the occupancy of any other frames in
the system, and strikes a balance between occupancy and
density. It also avoids measurable overhead to check this con-
dition, as no merging occurs under alterations to only the

2The 513th entry is used to index the other 512, and so disappears once
merged into a single flat 2 MiB index.

3We chose é before experimentation to avoid cherrypicking, and to control
the theoretical worst-case overhead. Varying this threshold yields similar
performance numbers across a wide range of values since the page table is
locally very dense where merges occur.

Sam Ainsworth and Timothy M. Jones

PTE layer of the page table. The theoretical worst overhead
from this is when we have 52 non-zero entries in our frame,
each containing only a single 4 KiB mapping within them.
This would cause a 5% overhead once the mapped data is
taken into account. Still, this pattern of sparsity is unlikely,
and so overheads are typically low.

We use the same threshold throughout the hierarchy: that
is, for merging PGD and PUDs, PUDs and PMDs, or PMDs
and PTEs. This is despite the tradeoffs of such merges be-
ing different. A single merged PGD/PUD layer will be used
for the entire hierarchy, universally reducing the maximum
number of memory accesses for a translation by one. How-
ever, most PGD entries are likely to be cached, as only a small
fraction of the 48-bit virtual address space will be in active
use for most workloads, and so PMD/PTE merges are more
likely to reduce memory accesses to DRAM. Other thresh-
olding options are available, and can be built into a given
software operating system without impacting any hardware;
for example, many workloads could be densified when a
large contiguous block is requested all at once.

In our implementation, we only merge two 4KiB layers
into one 2 MiB layer, though we do this at multiple points
in the hierarchy. We could go further, densifying three lay-
ers into 1 GiB. With current RAM sizes, this would often
come at significant overhead and fragmentation, though fu-
ture systems may benefit. Though this happens in none of
our workloads, theoretically, parts of the page table may
become significantly less occupied over time. In this case,
the 2 MiB Compendia frame can be unmerged into 513 4 KiB
entries, with each 4 KiB page-table frame that is entirely zero
left unmapped. For hysteresis, this should occur at a lower
threshold than the merging (5= in our case), and many other
heuristics can be added to kernel software to best make use
of densification and undensification.

4.2 Huge and Overlap Bits

To identify that we are about to access a Compendia frame,
and thus we should use the following 18 bits of the virtual
address to index into the next frame rather than the following
9.* we add the H, or huge bit into our base register, PGD, and
PUD entries, to indicate a merging of PGD/PUD, PUD/PMD,
and PMD/PTE, respectively (figure 7). We also add a new O,
or overlap bit, to indicate that we should use the previous 9
bits along with the next 9 bits to index into the next level,
so that our Compendia frames can overlap (section 4.4) with
each other while responding well to caching (section 4.3).
These bits are stored in the currently ignored region of
table entries, as shown in figure 7. Alternatively, they could
be stored in the least significant bits of the page-table frame
index: when bit 7, or _PAGE_BIT_PSE [1] is set, we know

4For a 48-bit address, 9 bits are used to index into each of the PGD, PUD,
PMD and PTE, with the final 12 bits indexing into the 4KiB user frame.



Compendia: Reducing Virtual-Memory Costs via Selective Densification

63 62 61 60 51

Nx [H[o] 1 |7

Figure 7. We add two bits within the ignored region [1]
of our radix-tree layers: the first, H, indicates that we are
pointing to a merged 2 MiB frame. The second, O, is used to
denote overlap, to improve caching (section 4.3).

[

Phys. Frame

|HSW |B Control

Merge candidates
‘/l v \
PMD PTE
2

I PMD PTE

Figure 8. When multiple levels feature the requisite level of
density, then we are faced with a choice in how to densify the
merged radix-tree levels. Typically, it is best to merge closer
to the PTE, as the number of entries increases exponentially
down the hierarchy, and thus entries become less cacheable.

that the following frame is large, as currently used for huge-
page support of user addresses. Since Compendia frames,
like huge pages, are aligned to 2 MiB boundaries, the least
significant bits of the frame index within the page-table entry
(or PGD, PUD or PMD) can be used to distinguish the states.

4.3 Interaction with Caching

Theoretically, in a densely occupied region of memory, Com-
pendia can bring the total number of memory accesses re-
quired for address translation down from four to two, by
merging the PGD with the PUD and the PMD with the PTE.
However, this ignores the impact of caching. Typically, the
page-table-walker caches [42] will attempt to cache the first
three layers (the PTE stores the final mapping, which is im-
plicitly cached by the TLB), and for small working-set sizes,
all used elements from the first two levels will be cached
entirely. Often the benefit of Compendia will be to avoid a
separate memory access of both the PMD and PTE, by merg-
ing into a combined PMD/PTE, and only for larger workloads,
especially when using transparent huge pages to eliminate
the PTE layer, will the PGD or PUD start to be impacted.
Compendia frames are designed to minimize the total num-
ber of memory accesses, with the expectation that caching
will hide much of the latency to earlier levels of the radix
tree, and so that merging of levels never results in worse
behaviour than a baseline system even with caching. This
includes when levels can overlap, as discussed next.

4.4 Overlapping of Compendia Frames

We can densify at multiple different levels at once. In the ex-
ample in figure 8, we are presented with two options: either
densify the PGD/PUD and PMD/PTE, resulting in a maxi-
mum of two memory accesses, or densify the middle layer,

ISMM °21, June 22, 2021, Virtual, Canada

resulting in three. Any other combinations would cause over-
lap in the bits translated at each level, adding redundancy
into the data structure, without reducing memory access
count down a linear path. Still, with complex patterns of den-
sity down different branches, overlapping may be favourable,
and thus we must support it in a way that caches effectively.

4.4.1 Linear Overlap. The choice of merging PGD/PUDs
and PMD/PTEs, over separate PGDs and PTEs with a merged
PUD/PMD pair (figure 8), has two benefits in its favour. First
is the reduction in the total number of layers. The second is
in terms of cacheability. As the total number of entries, and
thus frames, increases exponentially (by a factor of 512 each
round) along the four-layer hierarchy, PMD layers are less
cacheable than PUD layers, as we are likely to access more
PMDs than PUDs in a given working set. A merging of the
PUD and PMD layers effectively eliminates the PUD memory
access, and a merging of the PMD and PTEs eliminates the
PMD access. But if the PUD element is already likely to be
cached, this is of less benefit. We should prioritise merging
layers closer to the final translation when there is conflict.

4.4.2 Branching Overlap. In reality our data structure is
a complex, branching tree, with 512 children at every layer,
rather than the linear section shown in figure 8. This makes
our decision more complex, as shown in figure 9. In these
examples the PUD is occupied enough to be a candidate for
PUD/PMD merging, as is the PMD at the top of the diagrams.
However, the bottom PMD/PTE pair does not reach this
threshold. If we avoid overlap, then we are presented with
two options. The first, figure 9(a), keeps the densification in
the leaf nodes of the tree where it is most likely to be useful,
but gives no benefit to the bottom PMD/PTE pair. The second,
figure 9(b), benefits all, but is likely to underperform in the
presence of a cache, relative to figure 9(a).

To get the best of both worlds, we can overlap (figure 9(c))
by storing redundant copies of data in each level. This means
that, in our PUD/PMD in figure 9(c), there will be 512 en-
tries all pointing to the base of the same PMD/PTE table—
the “PMD” region displayed in figure 10. We index into the
PMD/PTE by using both the previous 9 bits we used for the
PMD part of the PUD/PMD, as well as the next 9 bits for
the PTE part that would otherwise be standard, and so we
denote this using the O or overlap bit in the header metadata
(section 4.2). The next time we access a different element
within this PMD/PTE, the relevant base will be stored in the
cache. This means that, though we gain no benefit from the
merged PMD/PTE table in our first access, duplicating the
merging at the PUD/PMD layer, future cached accesses can
directly load from the PMD/PTE layer with a single access,
unlike with split PMD and PTE layers, which require two.

4.4.3 Multi-Layer Branching Overlap. We may have a
scenario as shown in figure 11(a), where we have three lay-
ers of intersecting densification. The setup described so far



ISMM °21, June 22, 2021, Virtual, Canada

PMD/PTE

Sam Ainsworth and Timothy M. Jones

PMD/PTE

PGD

PUD/PMD

(a) Density is pushed to the end of the tree
where it is most likely to be useful, but the
longest path is through four frames.

(b) The longest path is three frames, but
with sparsity at the end, increasing mem-
ory accesses under caching.

< PTE /
PTE PGD PUD/PMD > PTE

(c) To get the best of both worlds, we over-
lap Compendia frames, where information
is redundant between levels.

Figure 9. With different density patterns down each path, there is a conflict over the best pattern for each branch. In this
example, we assume that the top PMD/PTE level in each diagram is sufficiently occupied to be dense, but the bottom one is not.

PMD/PTE
/!

PGD PUD/PMD —» PTE

—
“PMD”

Figure 10. Instead of storing 512 different offsets into a
Compendia frame within the previous level under overlap,
we store 512 copies of the base, each carrying the ‘O’ bit to
indicate the need to index with the previous 9 bits as well as
the next. This adds the base of the entire PMD/PTE frame to
the cache for next time, avoiding PUD/PMD lookup.

causes a redundant memory access: we could reach a PTE
value in the top merged PMD/PTE in two memory accesses
(one in the PGD/PUD and one in the PMD/PTE), but as
the “PUD” layer contains 512 copies of the pointer to the
PUD/PMD frame, we indirect through three.

To solve this, when the next-but-one layer is densified,
we replace individual elements in the 512-element range
that correspond to a dense later level with a direct pointer,
as shown in figure 11(b), while leaving the ‘overlap’ value
to the PUD/PMD in place for any layers without merged
PMD/PTEs. If the PUD layer either contains few non-zero en-
tries, or mostly points to merged PMD/PTE entries (the two
are equivalent here, as neither benefit from PUD/PMD den-
sification), then it will be eliminated entirely. The PGD/PUD
will then point to the relevant 4 KiB PMD entries instead, for
layers that have not merged into PMD/PTE layers.

An access into the top PMD/PTE may still go through
the PUD/PMD layer, even though we can access it directly
from the PGD/PUD. The PUD/PMD layer may be cached,
avoiding the lookup in the PGD/PUD. Still, this does not
involve redundant work: we simply look up the relevant
element for the PMD/PTE using the offset value in the “PMD”
layer of the PUD/PMD instead of the PGD/PUD.

4.5 Huge-Page Support

Transparent huge pages (THPs), where user pages can map to
2 MiB frames, are conceptually similar to Compendia: both
involve combining 4KiB and 2 MiB pages to limit virtual-
translation overheads. Each has value separately or together.

“pUD”
~

PMD/PTE

PGD/PUD
/4

\ PUD/PMD > PTE

—
“PMD”

(a) Naive overlap of Compendia frames could cause superfluous
loads: in this example, we travel through three dense frames.
“PUD"
~

PMD/PTE

\ 4

\ PUD/PMD —» PTE

—
“PMD”

(b) We can fix this by replacing individal entries within an expanded
4KiB PUD/PMD range in the PGD/PUD table directly with the
PMD/PTE frame, if it exists, leaving only sparse entries, with 4 KiB
PTE and PMD frames, to be directed through the PUD/PMD frame.

Figure 11. We can overlap dense frames to support complex
branching sparsity and density throughout our page table,
without sacrificing number of memory accesses.

For an access along a fully densified path, a Compendia
translation takes two memory accesses; in existing page
tables, three memory accesses are required to translate a
2MiB huge page. Still, this ignores the effect of caching,
both in page-table-walker caches and the TLB.

For smaller working sets, the only cache misses in a walk
will be at the PMD and PTE levels. Both Compendia and
THPs typically turn these into a single miss instead of two:
Compendia through layer merging, and THPs through elim-
inating the PTE entry, by 2 MiB-aligning the user frames. A
single TLB entry in a THP setup will cover an entire 2 MiB
frame; with a Compendia-only setup, each 4 KiB user frame
will be translated and stored in the TLB separately.

Compendia offers a simpler upgrade path than THP for
operating systems with heavy reliance on 4 KiB pages [22],
as it means that applications do not need to be exposed to
2 MiB page frames. Since 2 MiB frames are limited to the page
table itself in Compendia, less fragmentation [34] in frame



Compendia: Reducing Virtual-Memory Costs via Selective Densification

PGD # P4D | PUD r» PMD (» PTE

(a) Five-level page tables introduce a new layer, P4D, to increase
virtual-address size from 48 to 57 bits.

-—% PMD/PTE

(b) If most entries are for 4 KiB pages, then density is best pushed
closer to the PTE, and so the PGD is left sparse.

PGD P4D/PUD

+ Huge Page

HERIED Frame Offset

PUD/PMD

(c) If most PMD entries down a path are to huge pages, then all
levels can be made dense even with an odd number of layers.

Figure 12. Compendia also extends to future five-layer page
tables, despite their odd number of levels.

allocation occurs: each 4 KiB user page can be (de)allocated
separately, and a single 2 MiB Compendia frame can cover
1 GiB of data, rather than requiring 512 separate 2 MiB THPs.

Still, the two techniques coexist well. As with conven-
tional page tables, we can store huge-page frame mappings
in Compendia’s PMD layer, eliminating the PTE layer for that
frame, making a PMD/PTE merge useless, and thus making
a PUD/PMD merge desirable. With Compendia and trans-
parent huge pages combined, we can translate an address
with a single memory access provided the PGD entry alone
is cached, removing the need to have a cache large enough
to cache all PUD entries. By contrast, THP and Compen-
dia alone only allow this ideal case when all PGD and PUD
entries are cached (but neither needs to cache PMD entries).

We face the same problem under coexistence of 4KiB
and 2 MiB huge pages in a Compendia system as we do
with overlapping PUD/PMD and PMD/PTE pairs in figures 8
to 11: what is best for the 4 KiB user pages (often a PMD/PTE
merge) is not best for a 2 MiB page, which has no PTE. We
use the same solutions, to allow efficient memory accesses
for both in a shared-memory hierarchy: overlap bits are
used when a huge page is placed within a PMD/PTE-merged
region of the page table, and the huge page is pointed to
directly within a PUD/PMD merge. Huge pages are treated
as ‘zero’ entries for the purpose of PMD/PTE merges, to
avoid triggering unneccessary merging.

4.6 Five-Layer Page Tables

When extended to five levels [15] (figure 12(a)), it is impossi-
ble for translations of 4 KiB pages to travel entirely via 2 MiB
Compendia frames.’ This means that even down a single
linear path we must make a choice over which of the levels to
densify. The top-level PGD is highly cacheable, as each entry
covers a large portion of the address space, so density is best

SWithout overlapping, in which at least one of the layers will not reduce
the number of memory accesses relative to a 4 KiB level.

ISMM °21, June 22, 2021, Virtual, Canada

pushed to the lower levels (figure 12(b)), where it is more
likely to reduce the number of accesses to main memory.

However, this ignores that this five-level setup, designed
for systems with very large addressing requirements and
thus a large amount of memory, will likely also be using huge
pages for data. In this case, the PTE level is unnecessary, and
so most memory accesses will likely go through a four-level
PGD-P4D-PUD-PMD translation. At this point, a merging
of PGD/P4D and PUD/PMD is the most sensible setup; Com-
pendia can adapt to these dynamically, with coexistence of
4 KiB and 2 MiB pages, via overlapping (section 4.4).

4.7 Virtualisation Support

In a virtualised setup, the four-memory-access worst case
for a single layer of translation is replaced with a 24-access
worst case for a dual-layer setup (figure 4). Compendia can
reduce this at both layers. Regardless of the density distri-
bution within the virtualised system’s mapping from guest
virtual addresses (gVA) to guest physical addresses (gPA),
and even if the guest does not support huge pages in any
form, including within the page table, we can still densify the
translation layer from guest physical addresses to host phys-
ical address (hPA). Indeed, there is little need for sparsity at
all in this intermediate translation layer [4]. Since the utilised
guest physical addresses can be allocated like true physical
addresses, starting from 0 and moving upwards, past a small
threshold for low-memory virtualised systems, we can store
our hierarchy entirely as two-level Compendia frames. A lin-
ear mapping would suffice [4], since no sparsity is necessary.
However, Compendia in a radix-tree format allows intercom-
patibility using the same setup as a non-virtualised system,
and avoids fragmentation [34] by allowing all system-level
allocations to fit into standard 4 KiB and 2 MiB frames.

Densifying at the host level alone, in its gPA to hPA map-
pings, allows us to reduce the worst case from 24 to 14 ac-
cesses (figure 13(a)). However, as with a conventional single-
layer mapping, depending on density within the guest’s gVA
to gPA mapping, we can also densify further within that layer.
This can bring the worst case down further, to 8 total ac-
cesses (figure 13(b)). Again, as with the single-layer version,
many of these accesses may be cached, and the gPMD/PTE
and hPMD/PTE may be the most useful merges in practice;
typically higher levels will be cached both with and without
Compendia. Still, we will see that with Compendia the aver-
age number of memory accesses reduces significantly, even
where the non-virtualised system faces little improvement,
due to increased cache pressure without Compendia.

4.8 Summary

This section has introduced the complexities and implemen-
tation details of Compendia, where we selectively densify
groups of two layers of 4 KiB page table entries into 2 MiB
huge pages, able to cover 18 bits of address space in a single
access instead of 9. Ignoring caches, for densely populated



ISMM °21, June 22, 2021, Virtual, Canada

+Page
gPGD % ‘ gPUD } gPMD % gPTE %f Frame
Offset
v L] v v
‘hPGD/PUD‘ ‘hPGD/PUD‘ ‘hPGD/PUD‘ ‘hPGD/PUD‘ ‘hPGD/PUDy
L2 v/ v ] v ]

‘hPMD/PT% ‘hPMD/PT
g g

hPMD/PT%‘ ‘ hPMD/PT#‘ ‘ hPMD/PT/d‘

(a) Even if a workload’s page table is sparsely populated, or does
not support 2 MiB pages at all (within the page table or data), Com-
pendia still gives benefit, reducing 24 accesses (figure 4) to 14.

+Page
Frame
Offset

gPGD/PUD}- gPMD/PTE |-

‘hPGD/PUD‘ ‘hPGD/PUD‘ ‘hPGD/PUD‘

L] L] L]
‘ hPMD/PTE ‘ hPMD/PT% ‘ hPMD/PTE
(g (g (g

(b) If the guest page table also features some regions of density in
its mapping, this can be reduced further to eight.

Figure 13. There is no need for guest physical addresses
(gPAs) to have a sparse mapping to hypervisor physical ad-
dresses: we can allocate gPAs starting at 0 and moving up-
wards. This means we can significantly reduce the number
of memory accesses in virtualised setups.

regions we can exchange four memory accesses on page-
table walks for two, or 24 for eight in virtualised cases. With
caches, we can allocate densified Compendia frames in such
a way as to optimise cache coverage, by redesigning meta-
data in areas where the new dense levels overlap to store the
most useful value in the cache. In the next section, we will
look at how this affects the performance of real workloads,
in the presence of a typical caching environment.

5 Experimental Setup

To simulate our system, we use BadgerTrap [19], a Linux-
kernel modification to instrument TLB misses. We added
support for our dense Compendia format, along with rele-
vant structures in the page tables. Our simulator then counts
the number of memory accesses required to service each TLB
miss (64-element L1, 1024-element L2 TLBs), both with and
without Compendia, for both standard and virtualised se-
tups. These memory accesses go through a cache simulation,
where we assume a 64-entry 8-way-associative unified cache
for PGD, PUD and PMD layers, sized to be realistic compared
with real-world systems [42]. Cache-hit costs are assumed
to be negligible relative to main-memory accesses. For virtu-
alisation, the cache and TLB store direct gVA-hPA mappings,
whereas the page table uses separate two-dimensional gVA-
gPA and gPA-hPA mappings, as is typical [23], and a separate
64-entry 8-way-associative cache for gPA-hPA mappings.
We ported BadgerTrap [19] to Linux Kernel 4.4.0, running
on Ubuntu 16.04 on an x86-64 machine, and ran workloads on

Sam Ainsworth and Timothy M. Jones

top of this. We use this to generate the number of memory
accesses per TLB miss, both before and after Compendia
support, and both with and without virtualised nested page
tables. To estimate speedup, we first collect cycles spent on
page misses, by using Perf to access hardware performance
counters, averaged over three successive runs. On an out-of-
order superscalar this is not a direct measure of the cost of
memory translation, since multiple translations can occur
simultaneously with computation, so we combine this with a
per-workload “savable page-walker cycle” factor, calculated
using the method from Guvenilir and Patt [20]. We then take
the time spent on page walks, the “savable page-walker cycle”
factor, and the reduction in page-table memory accesses from
our BadgerTrap simulator, and interpolate to derive speedup.

We also measured the overhead of a Compendia merge
in isolation. This takes approximately 20 microseconds. In
figure 16(a), all page-table sizes are below 30 MiB and so
merging to 2 MiB frames means at most 15 merges. The
total cost of this is therefore less than 3 milliseconds for
workloads that take hundreds to thousands of seconds to
complete. Since this is smaller than the noise of successive
runs, we do not consider it further in the evaluation.

We look at the translation-bound workloads evaluated in
two recent papers [20, 38]: RandomAccess taken from HPC
Challenge [27] with 8 GiB of input unless otherwise speci-
fied, Graph500 [30] (-s 24 -e 20), SPEC CPU2017 [13] using
ref inputs, GraphBIG [31] using the standard 8 GiB synthetic
graph, XSBench [41] (large), and Dbx1000 [46] (TPCC -n32
and YCSB -520000000). We first look at 4KiB pages within
applications, to allow simulation on workloads with moder-
ate dataset sizes while still requiring multiple accesses per
miss. We then combine with transparent huge pages at large
dataset sizes, to show Compendia more generally.

6 Evaluation

In a standard setup, Compendia support brings down the
average number of memory accesses per TLB miss from 1.39
to 1.01. In virtualised systems, an average of 3.77 is reduced to
just 2.04, very close to the ideal of 2. This results in speedups
of 5.5% and 18%, respectively.

6.1 Analysis

Figure 14 shows average number of memory accesses per
TLB miss before and after Compendia support for a non-
virtualised system, along with speedup. An average of 1.39
memory accesses per walk is reduced to just 1.01, and is
rarely above the ideal of a single memory access per walk.
This results in a geomean speedup of 5.5% (maximum 41%).

RandAcc gains the biggest speedup, and largest reduction
in average number of memory accesses per walk. This is be-
cause it follows a very random memory-access pattern, and
thus its TLB misses are both frequent, and not temporally
local in either of the PMD or PTE levels of the four-stage



Compendia: Reducing Virtual-Memory Costs via Selective Densification

hierarchy. While the PGD and PUD levels are usually cached,
since the dataset fits within few entries at this stage, Com-
pendia support effectively eliminates PMD misses. Graph500
closely follows; it too spends a large proportion (70%) of its
execution time on page-table walking, and so the significant
reduction in memory accesses gives significant benefit. By
contrast, though the GraphBIG workloads (BFS-PR) are also
graph workloads and also see a large reduction in memory
accesses per miss, their speedup is smaller but still signifi-
cant; the dynamic graph structure they use is slower than the
static CSR structures used in Graph500, but more local, and
so TLB hits are more frequent. This is also true for Dbx1000,
where a similar memory-access improvement to Graph500
results in only a moderate performance improvement.

Xalancbmk sees no significant speedup. This is because its
memory accesses are local within the page-table cache, and
the dataset is small, and so even though the workload spends
7% of its execution time on page-table walks, the PMD entries
are cacheable, and so it reaches an ideal number of memory
accesses per walk regardless of Compendia support. Many of
the other SPEC CPU2017 workloads show the same to alesser
degree; their working-set sizes are often small (figure 16(b))
and/or local, and so we should expect comparatively less
benefit than for workloads with larger data sizes that use
multiple PMD and PUD entries.

All but one workload has its number of memory accesses
per TLB miss reduced to ideal levels; the exception is Cac-
tuBSSN, which requires either a larger 128-sized page-table
cache, or combining Compendia with transparent huge pages,
to reduce to one access per miss. Still, for this particular work-
load, the performance impact is negligible, as though it often
requires multiple loads per TLB miss, TLB hits are common.

The results shown in the figures assume the default %
threshold (section 4.1), though performance, and memory
consumption, is stable with varying thresholds. Extreme
values (%) avoid any densification for workloads with small

working sets consisting of many small objects, like Xalancbmk,

and thus any speedup or memory overhead. Workloads that
allocate dense blocks of memory, like RandAcc, still achieve
the majority of their total performance improvement, re-
duced slightly by levels closer to the root being left unden-
sified even with dense occupancy lower down. Low values
f 1—16 give similar performance and memory overhead to
the default; however, densification of all levels regardless of
occupancy, with no 4 KiB levels, causes table size to exceed
user-allocated memory in some cases in our test set.

6.2 Performance Versus Input Size

In figure 15, we look in more detail at how dataset sizes
affect memory access per miss and thus performance im-
provement, and combination with transparent huge pages.
On RandAcc, until 128 MiB, Compendia support does not
affect the workload at all; the PGD, PUD and PMD layers
are cached, and thus no memory accesses are eliminated.

ISMM °21, June 22, 2021, Virtual, Canada

3 oL Original |
= Compendia
s 1.8
a
(2]
& s
@
g 14t
<
2 12t
5
= ik
< ey RN OO0 ¢DeR (0«0 o> o0
?;\ ((\ @ S8 63 *{ 9 Q\ 00? 6“9\0(‘)\0'\@Q o
*‘5 $\® d\\)Q@ Q, O 0\ %Q %\(\ ?) iQ\(\
Q%% cﬁ@ e QC?‘ "”Q ‘° S
(a) Memory accesses per TLB miss
11 142 1.25
1.08 |-
S 1.06 N
O
(4]
(9]
& 1.04 H
1.02 H i
1 !AL
Qobvo\)«%s \\ e»@%s 2SR5 ° 0% << SR (<02t
g%e' OO RS N
< *\'b O [e) @(’b Q QQ Q'
oo
(b) Speedup

Figure 14. Average memory accesses per TLB miss, and
speedup, before and after Compendia support.

From 128 MiB onwards, however, as previously observed in
figure 5, we start to see slowdown from misses in the PMD
layer that we can eliminate by merging the PMD/PTE layers,
returning to a single memory access per page-table miss. In
effect, Compendia allows a 512-fold increase in dataset size
before memory accesses start increasing past this ideal, by
improving the utility of cached elements by the same amount.
From 32 GiB onwards, while Compendia still improves the
situation, both it and transparent huge pages cannot achieve
the ideal of 1 access per translation without being combined.

In terms of accesses per miss, Compendia performs sim-
ilarly to transparent huge pages (THP), even though theo-
retically for very large data sizes the latter requires three
accesses instead of two, as with the data sizes observed. Both,
in effect, eliminate the PTE access, either by merging it with
the PMD or removing it entirely respectively. Compendia
achieves this while reducing the number of huge pages com-
pared with THP, limited by fragmentation in practice [34],
by a factor of 512, by allocating all application data in 4 KiB
frames. Still, for small data sizes up to 8 GiB, transparent
huge pages perform better despite the similar number of
accesses per walk, as though they perform similarly in the



ISMM °21, June 22, 2021, Virtual, Canada

3
—— Baseline
< —e— Compendia /
g —— THP
—~ 25 | —=— Compendia on THP
B /
1%
(0]
Q
3
<
2
e 15
= 7
=
IS 3 5 5 m B
© 2% AQ¥ A \6'3% 665‘3

Dataset Size (MiB)

(a) Memory accesses per TLB Miss
24

—e— Compendia

22 - N

’ —— Compend|a on THP
—— Combined

2
g 18 e
c% 16 AN \’4/\
14 /-/ // {
12] /// /
1 // ,/
ok ,Lg% \erb« b«Qg% \63%5( o 66'3,6
Dataset Size (MiB)
(b) Speedup

Figure 15. Average memory accesses per TLB miss, on Ran-
domAccess at various sizes, before and after Compendia
support, along with associated speedup, and the speedup
with transparent huge pages. The “Compendia on THP” bar
has THP as its baseline, and so there is no additional speedup
to be gained until 32 GiB onwards.

page-table cache, the larger, more cacheable 2 MiB TLB en-
tries for the 2 MiB user pages in transparent huge pages
cause fewer walks to occur when some locality is observed.
However, once this locality disappears with larger data, these
benefits vanish, and their performance is comparable. Past
32 GiB, the best performance can only be obtained by com-
bining the two approaches, so that only a single PUD/PMD
merged access is required per walk. Larger caches increase
the point where both are needed by a linear factor, whereas
the switch to Compendia and THPs each provide an effective
factor of 512X improvement in capacity respectively.

6.3 Memory Consumption

Figure 16(a) shows memory consumption of the page ta-
bles before and after Compendia support; figure 16(b) shows
the total memory consumption of the application. On av-
erage, memory consumption of the entire application is
only increased by 0.06% as a result. Still, some workloads

Sam Ainsworth and Timothy M. Jones

30
Original m—
25 Compendia
2 20
8
N5t
o
3 10}
&
5 -
MR NNRJND |
8}0 o @@%\o“ »&%0 L <<% R P <O R
&
+% +\'b ‘\\> o\(\@ +0
(a) Page-table size, before and after Compendia support
10000
)
2
[0}
N
o 1000 | —
[
S
x
S
=
100 l

®<\°5?~°<§“ 0% \QQQ:,%QO F® S PR

*6 *\%“0\0 o @ S 0@
(b) Size of total allocated user data

Figure 16. Memory consumption of page tables, contrasted
with total memory consumption per application.

(Xalancbmk and Omnetpp) do see a significant increase in
the size of the tables themselves. This is because, at small
table sizes, the densification of even a single group of 4 KiB
pages into a 2 MiB page is enough to make a significant im-
pact on the table size if few of those 4 KiB pages in a region
are occupied. This means that the heap in these examples
only uses a small fraction of the 1 GiB region covered by a
single PMD/PTE merge, but over 12.5% of the PMD’s entries
are allocated and thus we densify. Still, even in this case
this is a valuable tradeoff, since we still see speedups for
Omnetpp, and so setting the threshold higher is likely to be
undesirable. As a single 2 MiB Compendia frame is sufficient
to cover up to 1 GiB of user data, the doubling in page-table
size for Omnetpp and Xalancbmk has a negligible impact on
overall resident set size. Omnetpp is close to the minimum
merge threshold, and so for smaller workloads that do not
reach the threshold will see no change and thus no overhead.

6.4 Versus Elastic Cuckoo Hash Page Tables

The most relevant recent work on the topic is Elastic Cuckoo
Hash Page Tables [38], which trades off four sequential radix
page-table walks for three parallel hash-table accesses. This
means that the worst-case latency for a translation is a single



Compendia: Reducing Virtual-Memory Costs via Selective Densification

memory access, but, unlike a radix tree, there are no highly
cacheable upper layers, and so three accesses are always
performed on a page walk to translate a 4 KiB page.

In figure 14, once the same cache used for a standard radix
table is applied, Compendia almost always also has only
a single DRAM-access latency. Since neither technique al-
ters the TLB, and thus suffers page-table walks at the same
point, Compendia achieves the same level of performance. In
systems that are bandwidth-bound, particularly those with
multiple cores or multiple page-table walkers, then Com-
pendia will improve performance by reducing bandwidth
demands by a factor of three.

Still, in the worst case, even with full density in the page-
table structure, Compendia has a worst case latency of two,
whereas elastic cuckoo techniques can always access their
translation in one round. This only applies for large working
sets with random accesses, however, and can be mitigated
by combining Compendia with transparent huge pages (fig-
ure 15). Compendia also uses the same infrastructure as
existing radix trees, and fits in the same frames currently
used by modern operating systems, avoiding problems of
compatibility and memory fragmentation.

6.5 Virtualisation

In virtualised systems, the overheads of multiple walks in the
nested layers become quadratic rather than linear. Figure 17
shows the effect on both memory accesses, and associated
speedup, for our set of benchmarks. Even the workloads that
were negligibly affected in the non-virtualised case show
speedup. Most workloads, save for CactuBSSN and Dbx1000,
are negligibly above the ideal two accesses per translation,
and the remainder could be improved further by using trans-
parent huge-page support and instead merging the PUD and
PMD layers in the two-dimensional hierarchy. The geomean
speedup is 18%. Conversely, virtualisation overhead without
Compendia is 29%. With Compendia this drops to just 9% (or
15% compared to a Compendia baseline). The extra memory
overhead on top of figure 16 is negligible, as the gPA-hPA
translation is naturally highly dense [4].

6.6 Summary

Compendia support brings about a speedup of 5.5%, and 18%
for virtualised systems, while using only 0.06% more memory
and while fitting in the same frame allocations and cache
infrastructure [42] as existing radix-tree implementations.
Even for workloads with large datasets, this typically brings
memory accesses per translation down to ideal levels, once
caching is taken into account, and Compendia is effective
with or without transparent huge-page support.

ISMM °21, June 22, 2021, Virtual, Canada

5 589
» Original m—
§ 45 | Compendia |
& 4|
(%]
Q
@ 35¢f
[0}
Q
< 37
=
S 25f
[}
= clakh
Q)@oc("\g\>°§><§99$0°%\°f\e@$\69\°<’Q%O"’Q’%(‘% KGR L OK®
N N
PRGN O o
Sawte
PP
(a) Memory accesses per TLB miss
13 —170 1.68
1.25
12 8
Qo
3
8 15| b
&
14 !
1.05 l l |
1 = unll

O Q
S ool St <O
FPRES o o
¢ oo
(b) Speedup

Figure 17. Compendia evaluated on a virtualised two-
dimensional nested page-table setup.

7 Related Work

Bhattacharjee, Lustig and Martonosi [10] present a com-
prehensive introduction to the topic of address translation.
Below, we categorize the most relevant topics.

7.1 Alternative Virtual-Memory Translation

Compendia extends conventionally used radix-table trans-
lation mechanisms. Other mechanisms that deal with the
sparsity of virtual-to-physical tables in other ways have been
proposed. Huck and Hays introduce the concept of hashed
tables [21]. Clustered Page Tables [40] extend this to merge
close entries, to provide locality. Both techniques store one
table per system, rather than per address space, to avoid stor-
ing and resizing many variably sized structures in contigu-
ous physical memory. Elastic Cuckoo Page Tables [38] are a
more recent technique, storing one table per address space,
by using cuckoo hash tables accessed in parallel, thus trading
off bandwidth for latency. Hashed tables can perform fewer
memory accesses than radix-tree implementations [45], but
suffer from challenges when handling huge pages.

Paging is not the only mechanism by which physical mem-
ory can be allocated. Continuous segments can instead be



ISMM °21, June 22, 2021, Virtual, Canada

allocated to applications; a recent example of this are Di-
rect Segments [8], where a single large mapping in physical
memory is allowed per application. This can be very effi-
cient, by avoiding translation for that region entirely, but it
requires application changes, causes fragmentation in mem-
ory through requiring contiguity and is unsuitable for appli-
cations without a single distinct large region. CARAT [39]
replaces paging with software management of physical mem-
ory, through a trusted compiler interface. This avoids the
need of any paging hardware, at the expense of slowdown.

7.2 Page-Size Changes

The overheads of address translation can also be reduced by
supporting larger pages. This can cause applications to miss
less frequently than Compendia alone, which is orthogonal
to page sizing and can be used concurrently with such tech-
niques. Still, supporting multiple page sizes in user-space
can cause compatibility issues and fragmentation [34, 38].
A degree of 2 MiB huge-page support is now common
in most operating systems; Navarro et al. [32] discuss the
implementation of multiple different page sizes in an operat-
ing system. HawkEye [33] and Ingens [26] extend standard
transparent huge-page support by handling many of the chal-
lenges that supporting multiple page sizes transparently at
the application level can come with. Tailored Page Sizes [20]
extend the concept, so that any power-of-two frame alloca-
tion can be supported and translated. Redundant Memory
Mappings [25] achieve a similar effect using a range table.

7.3 Caching

Address translation is cached at two levels. TLBs store the
direct virtual-to-physical mapping, avoiding any memory ac-
cesses. One way to reduce overheads of the page-table walk
is therefore to increase the size of the TLB. POM-TLB [36]
and CSALT [28] store a cache of translations in main mem-
ory, to access many recently used translations in a single
memory access. Other recent work on TLBs readapts them to
better support multiple page sizes [16], codesigns them with
allocators to encode partial coalescing [35], and actively de-
fragments page allocations [44] to assist range-storing TLBs.
The second level is within dedicated page-table-walker
caches, which store partial translations of the first three lev-
els of the four-level hierarchy. This caching of sublevels [7] is
a large part of why the worst-case performance of radix trees
is rarely seen with small datasets. Van Schaik et al. [42] re-
verse engineer the caches found in today’s systems. Caching
can be improved through alternative designs: Bhattachar-
jee [11] reallocates physical frames for adjacency, to improve
coalescing caches, and shares MMU caches between cores.

7.4 Virtualisation and Translation

Nested page tables [9], where a two-dimensional translation,
first from guest virtual to guest physical address, then from
guest physical to host physical, is performed, are the standard

Sam Ainsworth and Timothy M. Jones

technique used in virtualised setups today. This has a bad
worst case of 25 memory accesses, but is often very cacheable,
and the structures are easy to update. Shadow pages [43]
instead directly transform between guest virtual and host
physical addresses, at the expense of increasing the work
of the hypervisor, and are thus slower in practice [2]. Agile
Paging [18] combines shadow and nested page tables.
Techniques exist to reduce the occurence of the worst case
in nested page-table design: BabelFish [37] shares transla-
tions between multiple containers. Thermostat [3] handles
the complexity of 2 MiB and 4 KiB page support for memory
systems with two-tier properties, for virtualised systems.
Prefetched Address Translation [29] (ASAP) utilises layout
configurations in the operating system to approximate direct
translation, and thus speculatively break linked-list chains
in two-dimensional radix tables. Alverti et al. [6] rearrange
virtual mappings to better provide locality, for prediction.
DVMT [5] allows the application to manage its own trans-
lation. Efficient Memory Virtualization [17] applies Direct
Segments [8] to virtualised systems. Flat tables [4] observes
that the intermediate layer can be flattened, reducing to a
worst case of eight. In many ways, the translation of gPAs
to hPAs in Compendia uses the same property, but instead
structures the data in standard 2 MiB frames rather than
table-specific allocation regions, and allows use of the same
structures as in non-virtualised systems. Compendia also
allows the use of sparsity in mappings where it is desirable.

8 Conclusion

Compendia is an extension to the standard four-level radix-
tree design to utilize regions of density within the virtual-
to-physical mapping to reduce translation costs, by merging
layers into standard 2 MiB huge pages.

The small number of changes relative to a standard radix
tree are trivial to add into existing designs, integrate well
with other extensions, such as transparent huge pages, allow
the use of conventional radix trees when translations are
sparse, and have a negligible impact on memory utilization.
In turn, they allow moderate speedups (5.5% geomean, 42%
maximum) in conventional setups and larger speedups (18%
geomean, 70% maximum) for virtualised systems. With the
same caching techniques used for current radix-tree designs,
translations can typically be performed with just a single
memory access. Compendia is a fast and deployable solution,
without pessimistic cases relative to current techniques, that
will mitigate bottlenecks as application datasets scale.

Acknowledgements

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), through grant reference
EP/P020011/1. Additional data related to this publication is
available at https://doi.org/10.17863/CAM.68700.


https://doi.org/10.17863/CAM.68700

Compendia: Reducing Virtual-Memory Costs via Selective Densification

References

(1]
(2]

[10]

[11]
[12]

[13]

[14]
[15]
[16]

[17]

[18]

Linux source code: pgtable_types.h. https://github.com/torvalds/linux/
blob/master/arch/x86/include/asm/pgtable_types.h, 2020.

Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In ASPLOS, 2006. doi:10.1145/
1168917.1168860.

Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In ASP-
LOS, 2017. doi:10.1145/3037697.3037706.

Jeongseob Ahn, Seongwook Jin, and Jaehyuk Huh. Revisiting
hardware-assisted page walks for virtualized systems. In ISCA, 2012.
doi:10.1145/2366231.2337214.

Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. Do-it-
yourself virtual memory translation. In ISCA, 2017. doi:10.1145/
3140659.3080209.

C. Alverti, S. Psomadakis, V. Karakostas, J. Gandhi, K. Nikas,
G. Goumas, and N. Koziris. Enhancing and exploiting contiguity for
fast memory virtualization. In ISCA, 2020. doi:10.1109/ISCA45697.
2020.00050.

Thomas W. Barr, Alan L. Cox, and Scott Rixner. Translation caching:
Skip, don’t walk (the page table). In ISCA, 2010. doi:10.1145/
1816038.1815970.

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. Efficient virtual memory for big memory servers.
In ISCA, 2013. doi:10.1145/2508148.2485943.

Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. Accelerating two-dimensional page walks for virtualized
systems. In ASPLOS, 2008. doi:10.1145/1346281.1346286.

A. Bhattacharjee, D. Lustig, and M. Martonosi. Architectural and
Operating System Support for Virtual Memory. 2017. doi:10.2200/
SQ0795EDT1VO1Y201708CACQ42.

Abhishek Bhattacharjee. Large-reach memory management unit
caches. In MICRO, 2013. doi:10.1145/2540708.2540741.

Abhishek Bhattacharjee and Margaret Martonosi. Characterizing the
TLB behavior of emerging parallel workloads on chip multiprocessors.
In PACT, 2009. doi:10.1109/PACT.2009. 26.

James Bucek, Klaus-Dieter Lange, and Joakim v. Kistowski. SPEC
CPU2017: Next-generation compute benchmark. In ICPE, 2018. doi:
10.1145/3185768.3185771.

Jonathan Corbet. Four-level page tables. https://lwn.net/Articles/
106177/, 2004.

Jonathan Corbet. Five-level page tables. https://lwn.net/Articles/
717293/, 2017.

Guilherme Cox and Abhishek Bhattacharjee. Efficient address trans-
lation for architectures with multiple page sizes. In ASPLOS, 2017.
doi:10.1145/3037697.3037704.

J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift. Efficient memory
virtualization: Reducing dimensionality of nested page walks. In
MICRO, 2014. doi:10.1109/MICRO.2014.37.

J. Gandhi, M. D. Hill, and M. M. Swift. Agile paging: Exceeding the best
of nested and shadow paging. In ISCA, 2016. doi:10.1145/3007787.
3001212.

[19] Jayneel Gandhi, Arkaprava Basu, Mark D. Hill, and Michael M. Swift.

[20]

BadgerTrap: A tool to instrument x86-64 TLB misses. SIGARCH Com-
put. Archit. News, 42(2):204AS23, September 2014. doi:10.1145/
2669594.2669599.

Faruk Guvenilir and Yale N. Patt. Tailored page sizes. In ISCA, 2020.
doi:10.1109/ISCA45697.2020.00078.

[21] Jerry Huck and Jim Hays. Architectural support for translation table

[22]

management in large address space machines. In ISCA, 1993. doi:
10.1145/173682.165128.

7-Zip Forums Igor Pavlov. Windows 10 works incorrectly with large
memory pages (2 MB). https://sourceforge.net/p/sevenzip/discussion/
45797/thread/e730c709/, 2018.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

ISMM °21, June 22, 2021, Virtual, Canada

Advanced Micro Devices Inc. AMD-V nested paging.
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-
1%201-final-TM.pdf, 2008.

V. Karakostas, O. S. Unsal, M. Nemirovsky, A. Cristal, and M. Swift.
Performance analysis of the memory management unit under scale-out
workloads. In IISWC, 2014. doi:10.1109/IISWC.2014.6983034.
Vasileios Karakostas, Jayneel Gandhi, Furkan Ayar, AdriAan Cristal,
Mark D. Hill, Kathryn S McKinley, Mario Nemirovsky, Michael M.
Swift, and Osman Unsal. Redundant memory mappings for fast access
to large memories. In ISCA, 2015. doi:10.1145/2872887.2749471.
Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. Ingens: Huge page support for the OS and
hypervisor. In OSDI, 2016. doi:10.1145/3139645.3139659.

Piotr R Luszczek, David H Bailey, Jack ] Dongarra, Jeremy Kepner,
Robert F Lucas, Rolf Rabenseifner, and Daisuke Takahashi. The HPC
Challenge (HPCC) benchmark suite. In SC, 2006. doi:10.1145/
1188455.1188677.

Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and
Lizy K. John. CSALT: Context switch aware large TLB. In MICRO,
2017. doi:10.1145/3123939.3124549.

Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris
Grot. Prefetched address translation. In MICRO, 2019. doi:10.1145/
3352460.3358294.

Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A
Ang. Introducing the Graph 500. In Cray User’s Group (CUG), 2010.
Lifeng Nai, Yinglong Xia, Ilie G. Tanase, Hyesoon Kim, and Ching-
Yung Lin. GraphBIG: Understanding graph computing in the context
of industrial solutions. In SC, 2015. doi:10.1145/2807591.2807626.
Juan Navarro, Sitararn Iyer, Peter Druschel, and Alan Cox. Practical,
transparent operating system support for superpages. In OSDI, 2002.
doi:10.1145/844128.844138.

Ashish Panwar, Sorav Bansal, and K. Gopinath. HawkEye: Efficient
fine-grained OS support for huge pages. In ASPLOS, 2019. doi:10.
1145/3297858.3304064.

Ashish Panwar, Aravinda Prasad, and K. Gopinath. Making huge pages
actually useful. In ASPLOS, 2018. doi:10.1145/3173162.3173203.
Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaechyuk Huh.
Hybrid TLB coalescing: Improving TLB translation coverage under
diverse fragmented memory allocations. In ISCA, 2017. doi:10.1145/
3079856.3080217.

Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. Re-
thinking TLB designs in virtualized environments: A very large part-
of-memory TLB. In ISCA, 2017. doi:10.1145/3079856.3080210.
Dimitrios Skarlatos, Umur Darbaz, Bhargava Gopireddy, Nam Sung
Kim, and Josep Torrellas. BabelFish: Fusing address translations for
containers. In ISCA, 2020. doi:10.1109/ISCA45697.2020.00049.
Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrel-
las. Elastic Cuckoo Page Tables: Rethinking virtual memory translation
for parallelism. In ASPLOS, 2020. doi:10.1145/3373376.3378493.
Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda.
CARAT: A case for virtual memory through compiler- and runtime-
based address translation. In PLDI, 2020. doi:10.1145/3385412.
3385987.

M. Talluri, M. D. Hill, and Y. A. Khalidi. A new page table for 64-bit
address spaces. In SOSP, 1995. doi:10.1145/224057.224071.

John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
XSBench - the development and verification of a performance ab-
straction for Monte Carlo reactor analysis. In PHYSOR, 2014. doi:
10.11484/jaea-conf-2014-003.

Stephan van Schaik, Kaveh Razavi, Ben Gras, Herbert Bos, and Cris-
tiano Giuffrida. Revanc: A framework for reverse engineering hard-
ware page table caches. In EuroSec, 2017. doi:10.1145/3065913.
3065918.

Carl A. Waldspurger. Memory resource management in VMware
ESX server. SIGOPS Oper. Syst. Rev., 36(SI), December 2003. doi:


https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgtable_types.h
https://github.com/torvalds/linux/blob/master/arch/x86/include/asm/pgtable_types.h
https://doi.org/10.1145/1168917.1168860
https://doi.org/10.1145/1168917.1168860
https://doi.org/10.1145/3037697.3037706
https://doi.org/10.1145/2366231.2337214
https://doi.org/10.1145/3140659.3080209
https://doi.org/10.1145/3140659.3080209
https://doi.org/10.1109/ISCA45697.2020.00050
https://doi.org/10.1109/ISCA45697.2020.00050
https://doi.org/10.1145/1816038.1815970
https://doi.org/10.1145/1816038.1815970
https://doi.org/10.1145/2508148.2485943
https://doi.org/10.1145/1346281.1346286
https://doi.org/10.2200/S00795ED1V01Y201708CAC042
https://doi.org/10.2200/S00795ED1V01Y201708CAC042
https://doi.org/10.1145/2540708.2540741
https://doi.org/10.1109/PACT.2009.26
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://lwn.net/Articles/106177/
https://lwn.net/Articles/106177/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://doi.org/10.1145/3037697.3037704
https://doi.org/10.1109/MICRO.2014.37
https://doi.org/10.1145/3007787.3001212
https://doi.org/10.1145/3007787.3001212
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1145/2669594.2669599
https://doi.org/10.1109/ISCA45697.2020.00078
https://doi.org/10.1145/173682.165128
https://doi.org/10.1145/173682.165128
https://sourceforge.net/p/sevenzip/discussion/45797/thread/e730c709/
https://sourceforge.net/p/sevenzip/discussion/45797/thread/e730c709/
 http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
 http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
https://doi.org/10.1109/IISWC.2014.6983034
https://doi.org/10.1145/2872887.2749471
https://doi.org/10.1145/3139645.3139659
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/3123939.3124549
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/3352460.3358294
https://doi.org/10.1145/2807591.2807626
https://doi.org/10.1145/844128.844138
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3297858.3304064
https://doi.org/10.1145/3173162.3173203
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1145/3079856.3080217
https://doi.org/10.1145/3079856.3080210
https://doi.org/10.1109/ISCA45697.2020.00049
https://doi.org/10.1145/3373376.3378493
https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/3385412.3385987
https://doi.org/10.1145/224057.224071
https://doi.org/10.11484/jaea-conf-2014-003
https://doi.org/10.11484/jaea-conf-2014-003
https://doi.org/10.1145/3065913.3065918
https://doi.org/10.1145/3065913.3065918
https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/844128.844146

ISMM °21, June 22, 2021, Virtual, Canada Sam Ainsworth and Timothy M. Jones

10.1145/844128.844146. [46] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and

[44] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. Michael Stonebraker. Staring into the abyss: An evaluation of con-
Translation Ranger: Operating system support for contiguity-aware currency control with one thousand cores. In VLDB, 2014. doi:
TLBs. In ISCA, 2019. doi:10.1145/3307650.3322223. 10.14778/2735508.2735511.

[45] Idan Yaniv and Dan Tsafrir. Hash, don’t cache (the page table). In
SIGMETRICS, 2016. doi:10.1145/2964791.2901456.


https://doi.org/10.1145/844128.844146
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/2964791.2901456
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511

	Abstract
	1 Introduction
	2 Background
	2.1 Page-Table Walks
	2.2 Huge Pages
	2.3 Virtualisation

	3 Motivation
	4 Compendia
	4.1 Selective Densification
	4.2 Huge and Overlap Bits
	4.3 Interaction with Caching
	4.4 Overlapping of Compendia Frames
	4.5 Huge-Page Support
	4.6 Five-Layer Page Tables
	4.7 Virtualisation Support
	4.8 Summary

	5 Experimental Setup
	6 Evaluation
	6.1 Analysis
	6.2 Performance Versus Input Size
	6.3 Memory Consumption
	6.4 Versus Elastic Cuckoo Hash Page Tables
	6.5 Virtualisation
	6.6 Summary

	7 Related Work
	7.1 Alternative Virtual-Memory Translation
	7.2 Page-Size Changes
	7.3 Caching
	7.4 Virtualisation and Translation

	8 Conclusion
	References

