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ABSTRACT
We describe and evaluate HELIX, a new technique for automatic

loop parallelization that assigns successive iterations of a loop to

separate threads. We show that the inter-thread communication

costs forced by loop-carried data dependences can be mitigated

by code optimization, by using an effective heuristic for selecting

loops to parallelize, and by using helper threads to prefetch syn-

chronization signals. We have implemented HELIX as part of an

optimizing compiler framework that automatically selects and par-

allelizes loops from general sequential programs. The framework

uses an analytical model of loop speedups, combined with profile

data, to choose loops to parallelize. On a six-core Intel R✌ Core❚▼

i7-980X, HELIX achieves speedups averaging 2.25✂, with a maxi-

mum of 4.12✂, for thirteen C benchmarks from SPEC CPU2000.

1. INTRODUCTION
Now that multicore processors are commonplace, there is a need

for compilers that produce multi-threaded code from ordinary, ir-

regular, single-threaded sources. There have been exciting demon-

strations that ordinary irregular programs can be speeded up by

compiling loops to multiple threads that run in parallel on a chip

multiprocessor [19, 23, 30, 32, 34]. Much of this work is based

on decoupled software pipelining (DSWP), which uses the struc-

ture of a loop’s dependence graph to divide it into threads without

cyclic dependences [30]. With the aid of architectural extensions

for inter-thread buffering, such thread pipelines have been shown

to speed loops up substantially. However, DSWP is inherently con-

strained by the static structure of each loop’s body, which limits

the number of hardware threads that can usefully be applied to the

loop [34]. Recent work has used DSWP to expose other loop par-

allelization opportunities [19, 23, 32], and these hybrid approaches

produce significant speedups on real systems when applied to se-

lected benchmarks by hand, but they have yet to be automated.

For loops with no data dependences between iterations, a straight-

forward parallelization approach that scales well is to implement

each iteration as a separate thread. (This has been called DOALL

parallelism.) But for general loops, the costs of inter-thread com-

munication have discouraged compiler writers from simply allocat-

ing a thread per iteration. The loop-carried dependences between

iterations not only mean that computed results must be forwarded

between threads, but also that some sections of a loop’s body must

be executed in sequential order, which requires synchronization.

However, as we will show, when the right loops are selected for par-

allelization, the cost of transferring computed results is a small frac-

tion of total overhead. And the inter-thread signaling needed for

synchronization can be minimized both by code optimization and

by using simultaneous multi-threading (SMT). Based on these ob-

servations, we developed a new technique for loop parallelization

called HELIX,1 which distributes the iterations of selected loops

across a pool of threads bound to a ring of cores. The simplicity of

the HELIX concept enables the use of a simple but accurate analyti-

cal model to estimate the speedup obtained by parallelizing a single

loop. A heuristic, based on that model and on feedback from profil-

ing runs, provides an efficient and effective algorithm for selecting

loops to parallelize. We have developed new code analyses and

transformations that minimize the number of signals required. We

further reduce signal latency through SMT by giving each iteration

thread a helper thread [26] to ensure that inter-core transmission of

each signal begins as soon as it is sent. Where dependences force

loop segments to execute in iteration order, we transform the paral-

lelized code to reduce the size of such sequential segments and to

run distinct sequential segments in parallel whenever possible.

HELIX is a fully automatic technique; it does not depend on source

code annotations or modifications, or other forms of human inter-

vention. It can achieve significant speedups of regular and irregular

workloads on a real multicore processor. HELIX is the first tech-

nique using thread-level parallelism (TLP) among loop iterations

that is able to achieve significant speedups without constraints such

as a loop nesting limit, regular memory accesses, or regular con-

trol flow [4]. For thirteen C language benchmarks from the SPEC

CPU2000 suite, the geometric mean of the resulting speedups on

our six-core CPU is 2.25✂, with a maximum of 4.12✂.

The main contributions of the paper are: (1) a new general purpose

parallelization technique, including a new set of code analyses and

transformations, that is able to significantly reduce both the number

of signals sent between threads and the TLP loss due to sequen-

tial segments; (2) a new approach that exploits SMT technology

in a real system to further reduce signaling overhead; (3) an ef-

fective feedback-directed heuristic for selecting loops to parallelize

(also useful for parallelization frameworks other than HELIX); (4)

1Helical Execution of Loop Iterations across cores.



Figure 1: Execution of code produced by HELIX for a dual-

core processor. Note that code blocks 1 and 3 must each be

executed sequentially, but since they are independent, HELIX

overlaps them in time.

Figure 2: Insertion of ❲❛✐t✭❞✮ and ❙✐❣♥❛❧✭❞✮ due to a RAW

data dependence ❞ ❂ ✭�✁ ❜✮. Empty sequential segments handle

dependences that span multiple iterations.

a demonstration that the amount of data to forward between loop

iterations is small when loops are carefully chosen; and (5) an ex-

perimental evaluation on a broad range of applications.

The rest of the paper is arranged as follows. We describe the HE-

LIX transformations and how to choose the right set of loops to

parallelize in Section 2. Section 3 presents our experimental setup

and HELIX’s speedups on the SPEC CPU2000 suite. Section 4

compares HELIX with related work. Finally, Section 5 presents

our conclusions.

2. HELIX
Loops parallelized by HELIX run one at a time. The iterations of

each parallelized loop run in round-robin order on cores of a single

processor. HELIX applies code transformations to minimize the

inefficiencies of sequential segments, data transfer, signaling, and

thread management.

HELIX executes different sequential segments in parallel whenever

possible, as shown in Figure 1, where sequential segments 1 and

3 overlap. To further reduce the effect of sequential segments on

TLP, HELIX automatically chooses the most profitable loops to

parallelize, which are usually those with the least code in sequential

segments, and then it transforms the chosen loops to minimize their

sequential code (see Step 5 of Section 2.1).

Transferring data between cores can be a significant source of over-

head. However, as we show in Section 3, careful selection of the

loops to parallelize keeps the amount of data needing to be for-

warded between cores small, compared with the amount consumed

within each iteration. To understand why, consider the code in Fig-

ure 2, which shows the structure of most sequential segments in our

chosen loops. We show a read-after-write (RAW) dependence, the

(a) (b)

Figure 3: (a) Normalization of a loop so that it can be paral-

lelized by HELIX. (b) Overview of the execution of two loop

iterations. The main thread executes outside loop code and

configures parallel and helper threads. These run the loop iter-

ations in parallel and notify the main thread once finished. The

main thread then executes the sequential code after the loop.

Helper threads are not shown for simplicity.

only kind that can lead to a data transfer. Here we have three blocks

of code that are executed sequentially because of a data dependence

between instructions � and ❜. For successive loop iterations ✂ and

✂ ✰ ✶, running on cores ❝✄ and ❝✄☎✆ respectively, data needs to be

transferred from ❝✄ to ❝✄☎✆ only if iteration ✂ executes � and itera-

tion ✂ ✰ ✶ executes ❜. Assuming that each branch in the loop body

has equal probability of being taken or not, this would happen only

✻✿✷✺% of the time.

The next source of inefficiency is signaling threads to notify them

of events that have occurred (e.g., the end of a sequential segment).

This is the main source of overhead for HELIX, and it is addressed

by the code analyses and transformations described below. The

number of signals sent in the system is minimized by exploiting re-

dundancy among them and by transforming the code. Also, HELIX

reduces the perceived signal latency by exploiting the SMT tech-

nology of the underlying platform. It couples each thread with a

helper thread running on the same core. Helper threads mask a sig-

nificant fraction of signal latency by “prefetching” signals. More-

over, HELIX schedules code to support this dynamic prefetching

mechanism by separating signals in time.

Finally, HELIX efficiently organizes threads so that one main thread

executes the code outside of parallelized loops. Within parallelized

loops the main thread is joined by parallel and helper threads which

are used as a pool to execute the separate loop iterations and prefetch

signals respectively. The main and parallel threads are called iter-

ation threads. To avoid overhead, the mapping of all threads to

available cores is performed when the application starts and does

not change. Figure 3(b) shows the resulting execution of a two-

iteration loop on a processor with four cores. After configuring

all parallel and helper threads, the main thread acts like a parallel

thread. In this example, however, there are fewer iterations than

threads, so the main thread does not need to execute any loop iter-

ations. Once the loop is complete, parallel and helper threads wait

for the next parallel loop to execute, and the main thread contin-

ues sequential execution of the program. When targeting ◆ cores,

HELIX produces ✷◆ threads composed of one main thread,◆ ✝✶

parallel threads and ◆ helper threads.



2.1 Algorithm for Parallelizing One Loop
HELIX works on an intermediate representation of a program. It

takes as input a loop ▲ to be optimized and modifies it as a side

effect. After putting ▲ into a normal form, it inserts code to satisfy

control and data dependences, creating the sequential segments.

Sequential segments are optimized first by shortening them through

code scheduling, and then by elimination of redundant signals be-

tween cores. HELIX inserts instructions to forward data values be-

tween cores and to implement signals for synchronization. It then

couples each iteration thread with a helper thread to prefetch sig-

nals dynamically. To support this prefetching of signals, the code

of the iteration thread is rescheduled to space its outgoing signals

more uniformly in time. Finally, HELIX links the parallelized loop

back into the original program.

Step 1: Normalizing the loop. HELIX transforms loops by

putting them into the form shown in Figure 3(a). A normalized

loop has two regions, the prologue and the body. The prologue is

the minimum set of instructions that must be executed to determine

whether the next iteration’s prologue will be executed. Formally,

the prologue includes loop instructions that are not post-dominated

by the loop’s back edge in the control flow graph (CFG). Exits from

the loop can only originate in the prologue. In general, this is a

non-trivial subgraph of the CFG. The body is the rest of the loop.

Notice that the body is composed of both sequential segments and

code that can run in parallel. The transformed code resembles a

while loop in which there are no instructions in the body that jump

outside the loop.

Step 2: Identifying data dependences to satisfy. To de-

tect data dependences, HELIX applies interprocedural pointer anal-

ysis to the whole program [17]. In order to avoid unnecessary

synchronization, HELIX satisfies only the necessary loop-carried

data dependences. These are a subset of loop-carried data depen-

dences, where false (i.e., write-after-write and write-after-read) de-

pendences either through registers or the call stack are excluded,

because each iteration is executed on a separate core with its own

internal registers and call stack that are not exposed to other threads.

Data shared between threads includes live-in and live-out values

(those produced outside the loop but consumed inside it and vice

versa), and loop iteration live-in values (those produced by one

loop iteration and consumed by another) [30]. Variables that hold

these values are called loop boundary live variables. Memory loca-

tions of loop boundary live variables are kept within the allocation

frame of the main thread. Accesses from parallel threads are per-

formed through loads and stores and managed by synchronizing

the loop-carried data dependences that involve them. Data depen-

dences that result from reading and writing invariant or induction

variables do not need to be synchronized. Invariant variables do not

change between iterations and induction variables are locally com-

putable from the iteration number and their values at the beginning

of the loop [6]. ❉�❛t❛ is the set of dependences to synchronize.

Step 3: Starting next iterations. Iterations execute in a non-

speculative manner, each starting in a parallel thread once the pro-

logue of the preceding iteration has been executed. To satisfy the

loop’s control dependences, iteration ✐ ✰ ✶ starts only when it is

certain that its prologue (at least) will be executed. That is known

at the beginning of the body of iteration ✐ (because the body can-

not contain exits). Therefore, instructions to start the next iteration

are added to the beginning of the body, which results in overlapped

execution of bodies from different loop iterations. Note that HE-

LIX does not require advance knowledge about the number of loop

iterations to execute. However, when the number of iterations is

known, HELIX produces a prologue that requires neither signals

Figure 4: Signal forwarding across processors due to a loop-

carried data dependence.

nor data to be transferred from previous iterations.

Step 4: Computing sequential segments. For every data

dependence, ❞ ❂ ✭✁✂ ❜✮ ✷ ❉�❛t❛ , HELIX inserts❲✄☎✆ and ❙☎❣♥✄❧

operations to ensure that occurrences of ✁ and ❜ in separate loop

iterations will execute in the correct order. The instruction❲✄☎✆✭❞✮

blocks execution of a thread until its previous thread sends a signal

(i.e., a data signal), by executing ❙☎❣♥✄❧✭❞✮. The implementation

of❲✄☎✆ and ❙☎❣♥✄❧ in our testbed is described below. The effect of

these operations is that the code between ❲✄☎✆✭❞✮ and ❙☎❣♥✄❧✭❞✮

executes in loop iteration order, satisfying the data dependence ❞.

For example, in Figure 4 the block Code B runs in loop iteration

order while Code A and Code C execute in parallel.

For a data dependence ❞ ❂ ✭✁✂ ❜✮, HELIX inserts ❙☎❣♥✄❧✭❞✮ at the

earliest point along every path through the loop body at which it is

provable that neither ✁ nor ❜ can be reached during the rest of the

current iteration. These points are found using data flow analysis.

Before either ✁ or ❜ is executed, HELIX ensures that all past it-

erations have already executed them, by inserting ❲✄☎✆✭❞✮ before

each of them. It also makes sure that ❲✄☎✆✭❞✮ is executed before

every ❙☎❣♥✄❧✭❞✮ in the iteration, even if neither ✁ nor ❜ happens to

be executed. That means that the next iteration is unblocked only

if no previous iterations (adjacent or distant) have yet to execute

either ✁ or ❜. Therefore, data dependences between non-adjacent

iterations are handled by sending signals via the threads for inter-

vening iterations. Figure 2 shows typical sequential segments for

a dependence between instruction ✁, which writes x, and instruc-

tion ❜, which reads x. Note that an actual data transfer occurs only

when instruction ❜ is reached, and then only if ✁was executed more

recently than ❜. Compared with synchronization, data transfer hap-

pens infrequently.

Step 5: Minimizing sequential segments. HELIX applies

a method inlining and code scheduling pass in order to keep se-

quential segments small. If there is a data dependence between

a function call within a loop and another instruction in that loop,

this pass inlines the function call, provided it is not contained in a

subloop (since that would inhibit shrinking the sequential segment).

This heuristic strikes a good balance: it is conservative enough to

avoid code blow-up that could thwart speedups in applications like

the SPEC benchmarks, but it is liberal enough to optimize all the

loops we parallelized with HELIX as tightly as they could be with

unconstrained inlining.

After method inlining, the code is scheduled. For every sequential

segment containing data dependence ❞ ❂ ✭✁✂ ❜✮ ✷ ❉�❛t❛ , instruc-

tions that are not directly or indirectly dependent on either ✁ or ❜

are moved after the segment. This reduces the problem shown in

Figure 5. In this example, the parallel code is not well balanced

across loop iterations, which causes unnecessary stalls if the se-

quential segment is kept at the end of the loop. For the same reason,

the remaining instructions belonging to the sequential segment are



Figure 5: Reducing execution stalls by percolating sequential

segments upwards.

moved up the control flow graph as much as possible.

Step 6: Minimizing signals. HELIX applies code optimiza-

tions that remove the redundancies introduced by naïve insertion

of ❲❛✐t and ❙✐❣♥❛❧ operations. It eliminates redundant ❲❛✐ts

through data flow analysis. If every control path that leads to❲❛✐t�

contains another, ❲❛✐t❥ , from the same dependence, then ❲❛✐t�

is redundant. Moreover, since sequential segments are percolated

upwards by Step 5, it may be possible to merge some of them to

reduce the overall number of signals. HELIX merges sequential

segments if they can be scheduled without parallel code between

them.

Finally, HELIX uses the synchronization of one dependence, say

❞❥ , to synchronize another, say ❞�, provided ❞� is redundant due to

❞❥ . A data dependence ❞� is redundant due to ❞❥ if ❲❛✐t✭❞❥✮ is

available (in the data flow sense) at every occurrence of❲❛✐t✭❞�✮.

This redundance relation can be viewed as a graph, called the data

dependence redundance graph, whose nodes are the data depen-

dences of a loop. This graph contains an edge ❞❥ ✦ ❞� if and only

if ❞� is redundant due to ❞❥ . The following theorem specifies which

subset of dependences need to be synchronized.

THEOREM 1. Let ● ❂ ✭◆❀❊✮ be a data dependence redun-

dance graph and let ◆to-synch ✒ ◆ be the set of dependences that

includes every node without incoming edges and one node per cy-

cle of ●. Synchronizing the set ◆to-synch synchronizes the entire set

of dependences◆ .

Thanks to the above theorem, HELIX can keep only the❲❛✐ts that

are related to◆to-synch.

Step 7: Inserting inter-thread communication. The syn-

chronization required for loop-carried dependences is implemented

using a per-thread memory area called the thread memory buffer,

which resides in the system’s shared memory. Threads are bound

to specific cores and they execute parallel loop iterations in round-

robin order. A thread uses its thread memory buffer to receive sig-

nals from the thread that is executing the preceding iteration. For

signalling purposes, a thread can only read from its own memory

buffer and can only write to the memory buffer of the successor

thread (the one that will execute the next loop iteration). The suc-

cessor/predecessor relation of parallel threads is statically fixed and

the last thread writes to the first thread’s buffer, thereby creating

a cycle of reads and writes through the buffers. The buffer of a

given thread is initialized by its predecessor before that thread is

unblocked by a control signal (i.e., a store to a per-thread memory

location called IterationFlag).

Loads and stores are inserted into the code to forward data pro-

duced and stored in loop boundary live variables. The ❲❛✐t and

❙✐❣♥❛❧ operations are implemented using simple loads and stores.

Depending on the memory consistency model of the underlying

platform, memory barriers may need to be added before the loads

and after the stores. However, this is not required on our Intel-based

evaluation system (see Section 2.3).

Step 8: Coupling with helper threads. When a core, say

❝�, sends a signal to another, say ❝❥ , it writes a value to a designated

memory location in the thread memory buffer, which places it into

❝�’s first private cache. The value is not forwarded to ❝❥ ’s private

cache until ❝❥ issues the corresponding ❲❛✐t instruction (i.e., a

load operation). It then takes several cycles for ❝❥ to receive the

value (110 clock cycles in our testbed). The caches act as a pull

system. When cores have SMT capabilities, HELIX transforms the

caches into a push system for signaling, where ❝� pushes the signal

to ❝❥ as soon as it is produced. This leads to a significant reduction

in ❝❥ ’s waiting time. HELIX mimics a push memory system on

top of a pull one by coupling an additional helper thread to each

iteration thread running on the same core. Helper threads are in

charge of prefetching signals for their coupled iteration threads.

In Step 4, HELIX inserts ❲❛✐ts into the code such that every

path through the CFG contains all ❲❛✐t instructions. An exam-

ple is shown in Figure 2. The code executed by the helper threads

is a straight line of ❲❛✐ts, one per sequential segment, where a

✁✂✄☎✭❞�✮ is executed after✁✂✄☎✭❞❥✮ if✁✂✄☎✭❞❥✮ is available just

before✁✂✄☎✭❞�✮.

Since a given helper thread can prefetch one signal at a time, HE-

LIX schedules the code executed by iteration threads to space se-

quential segments evenly throughout the loop, until enough code

is inserted to achieve even signal prefetching. The algorithm for

this scheduling is described in Figure 6. To understand its impact,

consider Figure 7 which shows the run-time execution of a par-

allelized loop that includes three sequential segments, SS1, SS2

and SS3. The first case, “No prefetching”, represents the execu-

tion of the code produced by Step 7. In this case, every signal

takes ✆ clock cycles to be transferred between cores, because the

signal forwarding starts only when the receiver tries to enter the

corresponding sequential segment. The second case, “Prefetching

without balancing”, shows execution when helper threads are used

without the scheduling algorithm of Figure 6. In this case, only

the interval between SS3 and SS1 is long enough to prefetch the

signal, so only signals coming from SS1 are fully prefetched; the

others are just slightly prefetched. The last case, “Prefetching with

balancing”, shows how prefetching signals evenly leads to a bet-

ter use of idle core clock cycles. Note that when helper threads

are used (the second and third cases), prefetching a signal starts as

soon as the previous one has been prefetched or the previous itera-

tion leaves the corresponding sequential segment. Finally, note that

the overall time spent executing parallel code is constant over these

three cases (❆✰❇ ✰❈).

As input, the code scheduling algorithm of Figure 6 takes the loop

to schedule and the platform-dependent latencies for both an un-

prefetched and a fully prefetched signal. Initially, the code belong-

ing to loop L that can run in parallel is untagged (line 2). The

algorithm runs until there is no more untagged parallel code (check



Figure 6: Code scheduling applied to iteration threads to bal-

ance signal prefetching by helper threads.

Figure 7: Importance of balanced prefetching.

performed in line 5) or all pairs of sequential segments have enough

space between them (check performed in line 8). The distance be-

tween sequential segments is computed by estimating the number

of clock cycles needed to execute the longest path between them

(line 6). Ideally, the algorithm separates every pair of sequential

segments enough to allow full prefetching of signals. A signal can

be fully prefetched if the code between sequential segments exe-

cutes for more cycles than the difference between the two input

latencies (i.e., delta). Since we want to prefetch signals evenly,

the algorithm considers the two closest sequential segments (i.e.,

j,j+1) (line 7). In order to prevent greedy placement of parallel

code, the algorithm considers the next two closest sequential seg-

ments as well (i.e., k,k+1) (lines 9-10). Untagged parallel code

is moved between the closest sequential segments to increase their

run-time spacing by a minimum of 1, and a maximum of the dif-

ference between the two pairs of sequential segments (lines 11-15).

The parallel code moved is then tagged to avoid moving it again

later (line 16).

Step 9: Merging parallel loops inside the program. The

function that contains a parallel loop might or might not be called

within a loop that is running in parallel. Since only one loop can

run in parallel at a time, HELIX keeps the sequential version of

each parallel loop to use in case another one is already running in

parallel. A conditional branch is inserted in a pre-header placed just

before the two versions. Execution is directed to the parallel loop

if no other parallel loop is executing (determined by a global vari-

able). Otherwise execution proceeds with the sequential version of

the loop.

When a loop has multiple successors, HELIX associates a unique

value with each exit path of its prologue. The thread that executes

the final iteration sets an exit variable to the value for the exit path

taken. When all parallel threads have finished, the main thread

checks this variable and jumps to the correct successor.

2.2 Choosing Loops to Parallelize
Transforming a loop into parallel threads can speed up loop exe-

cution, provided the benefits of concurrency outweigh the costs of

inter-thread communication. The selection of loops to parallelize

must be guided by the nature of the loops, the profile of the program

given realistic inputs, and the properties of the transformation. Our

approach devotes all cores of a processor to one parallelized loop

at a time, so multiple independent loops cannot run concurrently,

and loops nested within a parallel loop cannot be selected for par-

allelization. Therefore, selecting the most profitable loops to trans-

form (i.e., loops that, if parallelized, best speed up the program) is

critical for achieving significant speedups.

Different sets of loops correspond to separate solutions to the prob-

lem. To choose the best set of loops, we need to compare these

solutions, by estimating and comparing their speedups. Since the

number of possible solutions grows exponentially with the number

of loops in the program, our approach constrains the number of sets

considered in order to find a solution within reasonable time.

Our heuristic identifies the most promising loops to parallelize by

using a graph we call the dynamic loop nesting graph. A simple

model based on Amdahl’s law drives the search. Since loops are

analyzed and executed one at a time, without merging or splitting,

we use a model that computes the speedups of single loops.

Speedup model. Amdahl’s law [5, 18] describes the effect of

applying◆ cores in parallel to a program that executes sequentially

in unit time. However, parallelization of a loop can add signifi-

cant overhead. Therefore, in choosing loops, we incorporate over-

head in Amdahl’s law to produce the following speedup model for

parallelization of a program: Speedup✭P❀◆❀❖✮ ❂
✶

�✶✁✂✄✰ ☎
✆ ✰✝

,

where ❖ is the added overhead (e.g., due to thread synchroniza-

tion). Since by hypothesis different parallelized loops cannot run

simultaneously, we have P ❂
✞▲♦♦♣s

✐✟✶ P✐ and ❖ ❂
✞▲♦♦♣s

✐✟✶ ❖✐,

where ✠✡✡☛☞ is the number of parallelized loops, P✐ is the rela-

tive time spent running the code of loop ✌ outside its sequential

segments (code regions executed sequentially to preserve program

semantics) and ❖✐ is the added overhead for that loop. Terms P✐
and ❖✐ depend on the specific code transformation technique used

to parallelize the loops. We later describe how we obtain those

factors for the HELIX parallelizer.

Loop selection algorithm. Our algorithm for choosing the

best loops to parallelize uses the speedup model described above,

together with a dynamic loop nesting graph. The scope of our anal-

ysis is the whole program (hence multiple functions), and we con-

sider a loop within a function called within a loop to be a subloop of

the latter [6]. We extend the well-known loop nesting tree to have

program-wide scope, and we call it the static loop nesting graph.

It is not a tree because a function can have multiple callers. The

dynamic loop nesting graph is a subgraph of the static graph that

omits edges not traversed during profiling execution. For example,

Figure 8 shows a fragment of the dynamic loop nesting graph from

the SPEC CPU2000 benchmark 179.art. The graph is not a tree

because function reset_nodes, which includes two loops, is called



Figure 8: Loop selection algorithm applied to benchmark

179.art. The graph is the result of applying the HELIX speedup

model, assuming one clock cycle per signal.

both by a loop from main and by a loop from scan_recognize.

The loop selection algorithm adds two attributes to each node (loop)

in the dynamic loop nesting graph, which are set just before run-

ning the algorithm: the saved time (T) and themaximum saved time

(maxT). T is computed by exploiting the speedup model; it is set to

the difference between the time spent in the sequential version of

the loop and that in the parallel version. If no speedup is achieved,

then T is 0. This attribute does not change during the execution of

the algorithm. The maxT attribute provides information about the

time that could be saved by parallelizing either the current loop or

the best combination of its subloops. Initially, maxT is set equal

to T. The loop selection algorithm has two phases. The first prop-

agates maxT through the dynamic loop nesting graph. The second

uses maxT to identify loops to parallelize.

The first phase of the algorithm propagates maxT through the graph

from inner to outer loops. If the sum of the maxT attributes of

a loop’s subloops exceeds its current maxT value, then that sum

becomes its new maxT attribute. This step repeats throughout the

dynamic loop nesting graph until a fixed point is reached.

The second phase of the algorithm starts from the outermost loop

nodes and searches downward until it reaches a node with maxT is

equal to T. The algorithm works top-down because by going deeper

in the nesting graph, we lose code to parallelize. Ideally we would

choose outermost loops. However, time saved by parallelization

can increase by going deeper because the fraction of time spent

running in parallel might increase as sequential segments become

smaller. Every time there is a split in the path (when a loop has

multiple subloops), the search continues in all directions. Nodes

that terminate the search with maxT greater than zero represent the

loops selected for parallelization. The rationale behind this phase

is that there is no point in going below a node for which the time

saved by parallelization equals or exceeds that for any combination

of subloops.

Figure 8 shows the dynamic loop nesting graph after both phases

of the algorithm have been applied. Note that parallelized loops

belong to different nesting levels; in general, choosing loops at a

fixed level (e.g., outermost loops) is not the best solution. Consider

loops L8 and L9, which belong to the fourth loop nesting level. L8

is a better choice than its child L10 because the latter has a smaller

body (i.e., less code to parallelize). On the other hand, even though

L9 embraces more code than its child L11, the size of its sequential

segments are larger than those of L11, so L11 has a larger T than

L9. Since L11 has more code to run in parallel than L9, it is the

more profitable loop to choose.

HELIX speedup model. By using generic parameters P✐ and

❖✐, the speedup model described above abstracts away details of

the specific parallelization technique applied. After profiling the

original program, we can compute those parameters specifically for

HELIX. P✐ is the time spent in the body of the �-th parallelized loop

outside its sequential segments. ❖✐, the overhead of that loop, is

❖✐ ❂ ❈♦♥❢ ✐ ✰ ❙✁❣✐ ✂ ✄ ✰

✘
❇②t❡s✐

❈☎❯✇✆r❞

✙

✂▼ (1)

where ❈♦♥❢ ✐ is the time spent to configure loop � (e.g., initialize

thread memory buffers), ❙✁❣✐ is the overall number of signals sent

inside loop �, which is equal to ❈ -❙✁❣✐ ✰ ❉-❙✁❣✐ ✰ ✭✭◆ ✝ ✶✮ ✂

✷ ✂ ■♥✈♦❝✐✮ where ❈ -❙✁❣✐ and ❉-❙✁❣✐ are the overall number of

signals sent to satisfy control and data dependences within loop �

respectively, and ■♥✈♦❝✐ is the number of times loop � is executed.

For every invocation of loop �, HELIX sends◆ ✝✶ signals to start

or stop parallel threads. These occur just after the loop is configured

and just after its last iteration is executed. Hence, ✭✭◆ ✝ ✶✮ ✂

✷ ✂ ■♥✈♦❝✐✮ is the overall number of signals sent to start and stop

parallel threads for loop �. Factor ✄ is the time spent per signal,

which is assumed to be constant. Finally, ❇②t❡s✐ is the number of

bytes transferred between loop iterations, ❈☎❯✇✆r❞ is the number

of bytes of a CPU word and ▼ is the time spent to transfer a CPU

word between cores.

■♥✈♦❝✐ is profiled from the original program and ❈♦♥❢ ✐ is profiled

by adding the extra instructions needed to configure loop � to the

original program just before loop �. Finally, ❈ -❙✁❣✐ and ❉-❙✁❣✐
are computed by profiling the overall number of iterations of loop

�: ❈ -❙✁❣✐ is equal to this number and ❉-❙✁❣✐ is equal to the same

number times the number of sequential segments per iteration in

that loop, which is statically known.

2.3 HELIX and Memory Consistency
HELIX depends on memory consistency [2] and communication

order. Some multicore processors guarantee that stores to memory

performed by a single core are seen in the same executing order by

others. If this memory consistency is not enforced by hardware,

then HELIX adds memory barriers to enforce it. Since memory

loads and stores are used for synchronization, the communication

order discipline requires that stores to shared data locations come

before the store of the synchronizing flag in the thread producing

the shared values, and on the consuming side, the synchronizing

flag is loaded and tested before any of the shared data. For con-

trol dependences, shared data is the contents of the thread memory

buffer, and the synchronizing flag is IterationFlag (Step 7

from the HELIX algorithm). Note that this synchronization scheme

works because the communication model of HELIX ensures that

there can be only one reader and one writer per memory location at

the same time. In this paper, we assume a single-chip Intel machine

that provides total store ordering (see Section 8 of the Intel Devel-

oper’s Manual [1]), which is enough for our purposes. Therefore,

in our testbed, HELIX satisfies both control and data dependences

by using loads and stores. On the other hand, if this memory con-

sistency did not exist, HELIX would need to insert memory barriers

after synchronizing stores and before synchronizing loads.

3. EVALUATION
This section evaluates HELIX using the C language benchmarks

from the SPEC CPU2000 suite, showing the speedups achieved

on a commodity multicore single-die system. After describing the

characteristics of the loops automatically chosen for parallelization

by HELIX, we show that only a small fraction of the overall data

consumed by loop iterations needs to be forwarded between cores,

and we perform a limit study of signal prefetching to demonstrate

the effectiveness of helper threads and to highlight the opportunity

for further improvements. Moreover, we analyze the loop selection

algorithm to explain why choosing the right loops to parallelize is
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Figure 9: Speedups achieved by HELIX on a real system

critical for achieving consistent speedups, and we assess the im-

pact on this algorithm of over- or underestimating signal latency.

We also demonstrate that blindly choosing loops at a single specific

nesting level (e.g., outermost loops) can hide otherwise exploitable

parallel code.

3.1 Experimental Setting
HELIX extends the ILDJIT compilation framework [8], version

0.7. ILDJIT generates native machine code from CIL bytecode,

so we used GCC4CLI [14] to translate benchmarks written in C to

CIL. ILDJIT has several advantages for this work. It has a rich in-

termediate representation (IR), including metadata descriptions of

source data types. It supports code instrumentation at the IR level,

and its built-in optimization suite is easy to extend with new code

analysis and transformation passes.

Benchmarks. To evaluate our scheme we use 13 out of the 15

C language benchmarks from the SPEC CPU2000 suite, because

GCC4CLI only supports C. We use the training inputs to select

loops for parallelization, and the reference inputs for validation.

The DDG analysis that we rely on [17] requires too much memory

to handle either 176.gcc or 253.perlbmk.

Measuring Performance. We compute speedups resulting from

parallelization by running entire benchmarks to completion on a

real system using the reference inputs. For each benchmark, in or-

der to choose loops for parallelization, we first build a static loop

nesting graph and a data dependence graph. Then we profile the

graphs (using training inputs) to generate the dynamic loop nesting

graph. Subsequent profiling runs for the HELIX-optimized form of

each loop generate data on execution times by providing a break-

down of time spent configuring its parallel threads, executing its

prologue, and executing its sequential segments. From this data,

the algorithm described in Section 2.2 chooses a set of loops to

parallelize.

Given the multi-threaded and, hence, non-deterministic, nature of

the parallelized programs on a real system, we repeat each experi-

ment a minimum of 10 times until the width of the 95% confidence

interval is less than 5% of the sample mean.

Hardware Platform. Our experiments use an Intel R✌ Core❚▼

i7-980X with six cores, each operating at 3.33 GHz, with Turbo

Boost disabled. The processor has three cache levels. The first

two are private to each core and are 32KB and 256KB each. All

cores share the last level 12MB cache, which is used to forward

data values across cores of the same processor through the MESIF

cache coherence protocol.

3.2 HELIX Evaluation
Figure 9 shows the measured speedups of whole application runs on

real hardware after compilation by HELIX. Loops have been cho-

sen using Equation (1) with four clock cycles for the signal latency

(❙), which corresponds to a fully prefetched signal (a hit in the

first level cache), and 110 cycles for memory transfers (� ), which

Benchmarks gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf

Parallelized 29 32 13 22 13 15 21 17 21 14 12 24 31

loops

Loop 178 409 257 150 141 171 536 193 572 822 273 210 731

candidates

Loop-carried 38 31 26 20 54 27 12 18 20 31 30 12 22

dependences(%)

Signals 96.1 91 88 80 95 90 95 90 91 98 92 87 91

removed(%)

Data transfers(%) 10 6 3 0.1 9 1 2 4 3 3 4 12 5

Maximum 40 30 50 30 50 60 100 60 35 30 30 30 50

code (KB)

Table 1: Characteristics of parallelized loops.

is experimentally measured using microbenchmarks, together with

profiling data. The geometric mean of the resulting speedups on a

six core CPU is 2.25✂, with a maximum of 4.12✂.

Table 1 shows the number of loops chosen by HELIX to paral-

lelize and the total number of candidate loops. The fraction of

loop-carried dependences inside the parallelized loops is low, high-

lighting the additional degree of freedom that HELIX is able to ex-

ploit, in contrast to techniques such as DSWP that must also handle

intra-iteration data dependences, Moreover, Table 1 shows the dras-

tic reduction in signals used for synchronization that Step 6 of the

HELIX algorithm is able to achieve. Further, this table shows that

only a small fraction of data has to be forwarded between cores.

Finally, the maximum code size for each iteration thread that has to

be loaded into the instruction cache is negligible, so the instruction

cache miss rate is very low.

Importance of Reducing Signaling Overhead. Signaling

overhead is the main source of inefficiency in code produced by the

HELIX algorithm. Both steps 6 and 8 (Section 2.1) constrain this

overhead. Step 6 minimizes the number of overall signals sent per

loop iteration. Step 8 minimizes the overhead per signal.

Figure 10 shows the speedups achieved for six cores when some

steps of the HELIX transformation are disabled to illustrate their

contribution. In each case, loops are chosen for parallelization us-

ing profile data obtained by instrumenting code produced for the

specific case. As a result, HELIX avoids slowdown even when

both steps 6 and 8 are disabled (first bar for each benchmark), so

that signaling overhead is high. In this case, loops where most

of the time is spent are not chosen by the HELIX transformation

algorithm described in Section 2.2, because that would lead to a

significant signaling overhead.

The second and third bars show what happens when step 8 or step

6 is disabled, respectively. Only a small speedup is achievable in

either case. When step 8 is disabled, fewer signals are sent, but each

one stalls execution for too many cycles (110 on our platform).

When step 6 is disabled, even if step 8 reduces the overhead per

signal, too many signals are sent overall.

The last bar of Figure 10 shows the effect of using both steps 6 and

8, but without benefit of the code scheduling algorithm described

in Figure 6. The differences between this last bar and the second

and third bars show that only when steps 6 and 8 are used together
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Figure 10: Speedups achieved when steps 6 and 8 of the HELIX

code transformation algorithm are disabled, either separately

or together. The code scheduling algorithm described in Fig-

ure 6 is disabled for these measurements.

can significant speedups be obtained. Finally, the difference be-

tween the last bar and the speedups shown in Figure 9 shows that

spacing sequential segments to help the signal prefetching mech-

anism improves speedups significantly, especially for benchmarks

like equake, mesa, and vpr that require negligible amounts of data

to be transferred between iterations.

3.3 Signal Prefetching
In order to evaluate the effectiveness of helper threads in improv-

ing TLP, we compare the speedups achieved by HELIX with two

additional schemes. The first has each helper thread execute❲❛✐t

instructions in the same order as its corresponding iteration thread.

We call this matched prefetching. The second scheme represents

an ideal scenario in which all signals are completely prefetched

and available in the first level cache, even if this is unrealistic given

the current code schedule. We call this ideal prefetching.

To compute speedups for matched and ideal prefetching we rely on

the model introduced in Section 2.2. One parameter of this model

is the signal latency ❙. Note that when there is no prefetching, this

latency does not depend on the executed code. On the other hand,

with the prefetching mechanism used by HELIX, this latency varies

with the workload. We first compute the average number of clock

cycles between the current sequential segment and the next one,

then take the difference between that and the unprefetched signal

latency (which represents the possible benefit of signal prefetch-

ing). We then compute the minimum of this benefit and the latency

for a fully prefetched signal (which is four clock cycles in our sys-

tem, the latency of a hit in the first level data cache). The signal

latency to use in the model is computed on a per-loop basis by av-

eraging this minimum value across sequential segments.

To measure the unprefetched signal latency on our system, we de-

veloped a microbenchmark that experimentally computes the num-

ber of clock cycles needed to send a signal between cores. We used

it to test several implementations of ❲❛✐t and �✐❣♥❛❧ (including

spin locking, snoop locking, collision avoidance locking, and tour-

nament locking [35]), and found that our load-store implementation

performs best on our platform. Its measured signal latency is 110

cycles, double the latency of single accesses to the last level cache

(L3). This is because the receiving core must continuously check

the memory location used to convey the signal and, therefore, needs

to access the shared cache (L3), which takes 55 cycles. The sending

core only writes to its L1 cache, but the value needs to be forwarded

to the receiving core. This is similar to an access to the last level

cache [1], which accounts for the other 55 cycles.

The difference between the geometric mean of speedups for HE-

LIX and matched prefetching is 0.1, which shows the accuracy of

Step 8 of the HELIX algorithm (see Section 2.1) in computing the

sequence of❲❛✐t instructions executed by helper threads.

The geometric means of speedups for matched prefetching and

ideal prefetching differ by 0.4, which shows the room that a code

scheduling algorithm might have to reorganize code executed by it-

eration threads to help the prefetching mechanism. However, since

ideal prefetching does not check the feasibility of fully prefetching

signals, it would be difficult for static code scheduling to always

close this gap.

3.4 Model validation
Despite abstracting away details, the HELIX speedupmodel is quite

accurate. To measure its accuracy and demonstrate its robustness,

we compare the model’s speedup estimates, which are based on

profile data, against HELIX’s actual speedups on the real system.

Space limitations prevent our showing the data. However, the ob-

served error between model-based and experiment-based speedups

is below 4% for every benchmark considered. VTune [21] shows

that this error can be attributed to false cache sharing within the

first two private cache levels.

3.5 Loop Selection
To highlight the importance of choosing the most profitable loops

for parallelization, Figure 11 plots the breakdown of time that each

benchmark spends on different types of code when the code pro-

duced by HELIX is constrained to run on a single core. For each

benchmark, the first collection of bars corresponds to seven differ-

ent fixed loop nesting levels, from the outermost to the innermost.

The last bar of each group, set apart from the others, corresponds

to the time breakdown obtained when using variable nesting lev-

els for loop selection, as described in Section 2.2. We assume an

optimistic 0-cycle communication latency for this analysis.

HELIX enables a significant fraction of the code to run in parallel

(“Parallel” in the figure, which is the P factor from Equation (1)).

This is code from a loop’s body that does not belong to any se-

quential segment. For example, consider art, where almost 100%

of the time is in parallel code. Note that no single fixed nesting

level can maximize the fraction of parallel code across all of the

benchmarks. In contrast, our loop selection algorithm consistently

maximizes parallel code for all benchmarks. Furthermore, since

the algorithm aims to maximize the fraction of parallel code (i.e.,

P ) and loop prologues are not part of it, the chosen loops have

small prologues. This is highly desirable, as prologues run sequen-

tially. Note that even though these benchmarks were not designed

for parallelization, they possess significant amounts of parallelism.

Low signal latency and smart selection of loops to parallelize are

both essential for HELIX. The two are linked, because loop se-

lection is very sensitive to signal latency. Loops chosen by our

algorithm belong to different nesting levels, which motivates the

previous finding that loop nesting levels cannot be set a priori. To

further study the importance of loop selection, we explore the ef-

fects of different signal latencies.

Impact of signal latency. Poor estimates of signal latency

during loop selection can severely degrade speedups. Figure 12

plots speedups for two corner cases on a real system. In one case,

signal latency is underestimated (as 0 clock cycles). For most of

the benchmarks, an aggressive assumption of 0-cycle latency dur-

ing loop selection actually leads to slowdown (speedup❁ 1). Loops

at deeper nesting levels have smaller sequential segments, but re-

quire more inter-core communication. Therefore, assuming low-

cost communication leads the algorithm to reduce sequential seg-

ments, but the large penalty inhibits speedup. In contrast, an over-

estimate of the signal latency (110 cycles) deters the algorithm from

choosing loops at deeper levels, and the system fails to exploit the

low latency during execution.

Impact on loop nesting level. Figure 13 reinforces this point,

using a six-core processor. For each of the benchmarks, each bar
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Figure 13: Nesting level distribution of parallel loops for vari-

ous signal latencies on a six-core processor.

presents a percentage breakdown of the loops’ nesting levels cho-

sen by our loop selection algorithm for different signal latencies.

As signal latency grows from 4 to 110 cycles, the algorithm prefers

outermost loops as soon as it does not produce slowdown. For ex-

ample, in twolf, for latencies greater than or equal to 110 clock

cycles, there is no benefit in parallelizing loops. Other analyses,

not shown for brevity, show that loop selection is insensitive to the

number of cores.

4. RELATEDWORK
The closest approach to HELIX is the DOACROSS technique [15,

20], which has been studied in depth for regular workloads [4, 24,

36]. DOACROSS executes sequential segments without exploiting

TLP between them [15]. Moreover, it does not permit either irregu-

lar control flow or irregular memory accesses within the loop [15].

Since HELIX has no such constraints and it considers a broader set

of options during loop transformation, it can be seen as a general-

ization of the DOACROSS scheme that can be applied both to reg-

ular and irregular code. Aiken and Nicolau [3] presented perfect

pipelining, a scheme for unrolling and compacting loops for par-

allelization, and showed that DOACROSS is a restriction of their

scheme. Xu and Chaudhary [40] developed a time stamp algorithm

for run-time parallelization of DOACROSS loops with indirect ac-

cess patterns. Chen and Yew [10] found that most cross-iteration

dependences in these types of loops are quite simple. Tournavi-

tis et al. [38] proposed an approach to loop parallelization that uses

profile data to help the compiler eliminate conservative data depen-

dences across loop iterations. This technique is not fully automatic,

however, relying on users to indicate whether loops can be paral-

lelized, since the compiler cannot ensure correctness.

Recent work on DOALL parallelism has used code transforma-

tions and thread-level speculation techniques to expose hidden par-

allelism in general purpose programs [41]. In contrast, our work is

non-speculative.

Decoupled software pipelining (DSWP) [30] addresses the lim-

itations of the DOACROSS approach by extracting fine-grained

pipeline parallelism. DSWP automatically breaks the CFG of each

loop into strongly connected components (SCC) chosen to mini-

mize the transfer of variables between threads and balance the com-

putation load among threads. The technique can produce signifi-

cant speedups when this kind of parallelism is available in the pro-

gram. However, it is limited by the number of SCCs in each loop,

which is usually much smaller than the loop iteration count [34].

Bridges et al. [7] extended DSWP with thread-level speculation

and manual insertion of source code extensions. This builds on the

manual parallelization work of Prabhu and Olukotun [31]. Bridges’

approach parallelizes loop iterations speculatively and allows the

compiler to choose among several valid program outcomes. Thies

et al. [37] also use annotations that indicate pipeline boundaries for

DSWP. However, these approaches rely on programmer assistance

to explicitly add the language extensions.

Raman et al. [32] studied speculative parallelization using soft-

ware transactional memory. They introduced a multi-threaded soft-

ware transaction using memory versioning to separate speculative

and non-speculative state. Speculative decoupled software pipelin-

ing [39] is used to parallelize loops with the speculative portion

of the code wrapped in a transaction. In order to remove the con-

straint on the number of threads extracted, DSWP has been mixed

with the DOALL technique [19, 33]. In [33], simulation is used

to investigate a fast inter-thread communication hardware mecha-

nism. In [19], the proposed approach is manually applied to the

benchmarks considered. Finally, in all these works [7, 19, 30, 32,

33, 34, 37, 39] loops are selected manually.

Elimination of redundant synchronizations has been studied for

regular workloads [12, 13, 25]. Our work has the same goal, but

for irregular workloads.

Code scheduling algorithms to improve TLP across loop iterations

in already parallelized programs have been proposed [28, 29]. They

target coarser-grained code sections than the ones HELIX operates

on, and they do not consider the signaling problem, which we ad-

dress by merging sequential segments with no loss of TLP. Finally,

a code scheduling algorithm that targets the DOACROSS technique

has been proposed [11]. Since it is specific to DOACROSS, it can-

not provide broader options available with HELIX, such as execu-

tion of independent sequential segments in parallel.

Dynamic schemes to execute loop iterations in parallel when they

are detected at run time to be independent have been proposed [16,

42]. In [16] loop iterations are speculatively executed in parallel



with the possibility of fixing the execution if they are misspecu-

lated. In [42], loop iterations are executed in parallel after they are

recognized to be independent at run time; in this work the focus is

on minimizing the overhead due to the computation of the dynamic

data dependences by performing an approximated and conservative

analysis while the original code is in execution.

Exploiting SMT to help critical threads was introduced in [9] and

adapted in different domains later on [22, 27]. We have shown

how to adapt this idea to mitigate our specific problem of sending

signals by automatically generating helper threads.

5. CONCLUSION
HELIX is a new, fully automatic parallelization technique that can

speed up execution of irregular single-threaded programs on chip

multiprocessors. Our experimental results show that by reducing

communication costs and increasing thread level parallelism, HE-

LIX achieves a mean speedup of 2.25✂ (with a maximum of 4.12✂)

over a broad range of applications on a real six-core system. Choos-

ing the right loops to parallelize is one key to the success of our im-

plementation, which combines an analytical model of loop speedup

with profiling data to choose the most profitable loop sets. Our re-

sults show that synchronization, not data transfer, is the main bot-

tleneck, which can be significantly reduced by proper use of SMT

technology. In future work, we expect our implementation to ex-

ploit fast hardware implementations of signaling to obtain better

speedup.
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