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ABSTRACT

Embedded processor performance is dependent on both the
underlying architecture and the compiler optimisations ap-
plied. However, designing both simultaneously is extremely
difficult to achieve due to the time constraints designers
must work under. Therefore, current methodology involves
designing compiler and architecture in isolation, leading to
sub-optimal performance of the final product.

This paper develops a novel approach to this co-design
space problem. For any microarchitectural configuration we
automatically predict the performance that an optimising
compiler would achieve without actually building it. Once
trained, a single run of -O1 on the new architecture is enough
to make a prediction with just a 1.6% error rate. This allows
the designer to accurately choose an architectural configu-
ration with knowledge of how an optimising compiler will
perform on it. We use this to find the best optimising com-
piler/architectural configuration in our co-design space and
demonstrate that it achieves an average 13% performance
improvement and energy savings of 23% compared to the
baseline, leading to an energy-delay (ED) value of 0.67.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Retarget-
able compilers; C.4 [Computer Systems Organization]:
Performance of systems—Design studies, modeling techni-
ques; C.0 [Computer Systems Organization]: General—
Hardware/software interfaces

General Terms

Design, Experimentation, Performance

Keywords

Architecture/compiler co-design, design-space exploration,
performance prediction
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1. INTRODUCTION
Embedded system performance is usually achieved via ef-

ficient processor design and optimising compiler technology.
Fast time-to-market is critical for the success of any new
product and therefore it is crucial to design new micropro-
cessors quickly, without sacrificing performance. However,
during early design stages, architectural decisions must be
taken with only limited knowledge of other system com-
ponents, especially the compiler. Ideally we would like to
consider both architecture and optimising compiler design
simultaneously, selecting the best combination.

Unfortunately exploring this combined design or co-design
space is extremely time consuming. For each architecture
to consider we would have to build an optimising compiler,
which is clearly impractical. Instead, typical design method-
ology consists of first selecting an architecture under the as-
sumption that the optimising compiler can deliver a certain
level of performance. Then, a compiler is built and tuned
for that architecture which will hopefully deliver the perfor-
mance levels assumed.

Clearly this is a sub-optimal way of designing systems.
The compiler team may not be able to deliver a compiler
that achieves the architect’s expectations. More fundamen-
tally, if we could predict the performance of the eventual
optimising compiler on any architecture, then an entirely
different architecture may have been chosen. This inability
to directly investigate the combined architecture/optimising
compiler interactions means we end up designing tomorrow’s
architectures based on yesterday’s compiler technology.

In this paper we propose a novel approach to this co-design
space problem. We build a machine-learning model that
can automatically predict the performance of an optimis-
ing compiler across an arbitrary architecture space without
tuning the compiler first. This allows the designer to accu-
rately determine the performance of any architecture as if
an optimising compiler were available. Given a small sample
(less than 0.01%) of the architecture and optimisation space,
our model can predict the performance of a yet-to-be-tuned
optimising compiler using information gained from a non-
optimising baseline compiler. This achieves an error rate of
1.6% across all microarchitectures in the co-design space.

The use of predictors, particularly to reduce simulation
time, is not new. Several authors have shown that it is pos-
sible to predict the performance of a fixed program on an ar-
chitecture space when compiling with fixed optimisations [1,
2, 3]. Other researchers have shown that it is possible to pre-
dict the impact of compiler optimisations on a fixed archi-
tecture [4, 5, 6]. In [7] this is taken one step further where a



Figure 1: Execution time, energy and ED of each benchmark from MiBench when compiled with -O2 and
-O3, normalised by -O1 (so lower is better).

Parameter Low → High Baseline

ICache size 4K → 128K 32K
ICache associativity 4 → 64 32
ICache block size 8 → 64 32
DCache size 4K → 128K 32K
DCache associativity 4 → 64 32
DCache block size 8 → 64 32
BTB size 128 entries → 2048 entries 512 entries
BTB associativity 1 → 8 1

Table 1: Microarchitectural parameters and the
range of values they can take. Each parameter varies
as a power of 2, with 288,000 total configurations.
Also shown are the baseline values.

model predicts the performance of compiler settings on dif-
ferent architectures for a fixed program. However, as we will
show in section 5, this approach fails to accurately predict
the performance of an optimising compiler. To the best of
our knowledge, we propose the first model to predict the per-
formance of an optimising compiler across the architecture
space before the compiler is tuned.

In this work we separately explore the microarchitectural
and compiler optimisation spaces. We then show that there
is the potential for significant improvement over the baseline
processor and compiler by exploring the combined co-design
space. We also demonstrate that the optimal compiler for
one architecture is not the best for all. We build our model
that predicts the performance of an optimising compiler on
any microarchitectural configuration. We then use it to find
the best architectural/optimising compiler configuration and
demonstrate that for this architecture, an optimising com-
piler can deliver the predicted performance. The best design
achieves significant performance increases resulting in a 13%
improvement in execution time, 23% savings in energy and
an energy-delay product (ED) of 0.67.

The rest of this paper is structured as follows. Section 2
describes our experimental methodology. Section 3 char-
acterises the microarchitectural and compiler optimisation
spaces in isolation whilst section 4 explores the combined
design space. We build a machine-learning model in sec-
tion 5 and evaluate it against a state-of-the-art alternative
approach in section 6. Here we also show how our model
is used to select the best architecture/optimising compiler

combination and that this configuration does achieve the
predicted level of performance. Finally, section 7 describes
related work and section 8 concludes.

2. METHODOLOGY
In this section we describe the baseline architecture and

compiler infrastructure used as a reference point for the later
sections on design space exploration. We also briefly de-
scribe the benchmarks used.

Optimising Compiler

This work considers the performance of an optimising com-
piler across a large microarchitectural design space. Without
actually building an optimising compiler for each microar-
chitectural configuration, it is difficult to verify the perfor-
mance that it will achieve. However, previous research [5,
8, 9, 10, 11, 12] has shown that using iterative compilation
over randomly-selected flag combinations can out-perform
an optimising compiler tuned for a specific configuration.
This can be considered an upper bound on the performance
an optimising compiler can achieve.

Hence, in this paper, we define an optimising compiler as a
compiler that uses iterative compilation over 1000 randomly-
selected flag combinations on the specific architecture to be
tuned. This means that the optimising compiler uses the
flags that lead to the best performance after running 1000
flag combinations on the architecture it is compiling for.

2.1 Architecture / Compiler Co-Design Space
To evaluate the effectiveness of co-design space explo-

ration, we chose to use the Intel XScale processor [13] as
our baseline architecture. This processor is typically found
in embedded systems and its configuration is shown in ta-
ble 1, column 3. In section 3.2 we show that in fact this is
a well balanced design for energy and execution time.

Our benchmarks are compiled with gcc version 4.1.0. This
is a well designed compiler that is widely used within in-
dustry. In our experiments, all compiler optimisations are
enabled from the command line by using the flags avail-
able. The co-design space is the combined space of all ar-
chitectural configurations and compiler optimisations. We
describe these in more detail in sections 3.1 and 3.3.
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Figure 2: The average execution time, energy and ED of each microarchitectural configuration across the
whole benchmark suite compiled with -O1. Each graph is independently ordered from lowest to highest and
is normalised by the baseline configuration.

Figure 3: Execution time, energy and ED for each benchmark compiled with -O1 on the microarchitectural
configuration performing best for each metric.

2.2 Experimental Framework
We used the Xtrem simulator [14] which has been vali-

dated for cycles and energy consumption against the Intel
XScale processor. Using Cacti [15] we accurately modelled
the access latencies of each cache configuration to ensure our
experiments were as realistic as possible.

We used the full MiBench [16] suite to evaluate the per-
formance of our system. All 35 programs were run to com-
pletion. For each benchmark we chose the inputs leading
to at least 100 million executed instructions where possible.
Programs susan c, susan e, djpeg , tiff2rgba and search have
been run with the large input set whilst all others have been
run with the small inputs.

To perform our experiments we chose 200 microarchitec-
tural configurations and 1000 compiler optimisations from
our total design space using uniform random sampling. As
training data for our predictor, described in section 5, we
used 15,185 design points per benchmark, out of a total of
200,000. In total, for 35 benchmarks, we ran 7 million sim-
ulations to create this sample space.

We explored the microarchitectural, compiler and co-design
spaces using execution time (cycles), energy and the energy-
delay (ED) product. This is an important metric which
presents the trade-offs between performance and energy con-
sumption in a single value, the lower the better.

2.3 Baseline Optimisation Level
We wanted to ensure that our baseline compiler optimi-

sation level was realistic and effective. We considered three
default optimisation levels available in gcc: -O1, -O2 and
-O3. Figure 1 shows the performance, energy consumption
and ED per benchmark for each of these optimisation levels,
normalised to -O1. As can be seen, the optimisation levels
-O2 and -O3 affect each benchmark in varying degrees. How-
ever, surprisingly, on average they both produce the same
execution time as -O1. There is similar variation for energy,
although on average there is higher consumption when using
-O2 or -O3. When we look at the tradeoff between perfor-
mance and energy, ED, it is clear that -O1 represents the
best choice. Hence, we chose -O1 as our baseline optimisa-
tion. Note that the accuracy of our predictor is not affected
in any way by this choice.

3. MICROARCHITECTURE AND

COMPILER DESIGN IN ISOLATION
Current microprocessor design methodology involves choos-

ing and optimising an architecture whilst developing the
compiler independently. In this section we show how these
two stages are usually performed.



Flag

-fthread-jumps / ⊘

-fcrossjumping / ⊘

-foptimize-sibling-calls / ⊘

-fcse-follow-jumps / ⊘

-fcse-skip-blocks / ⊘

-fexpensive-optimisations / ⊘

-fstrength-reduce / ⊘

-frerun-cse-after-loop / ⊘

-frerun-loop-opt / ⊘

-fcaller-saves / ⊘

-fpeephole2 / ⊘

-fregmove / ⊘

-freorder-blocks / ⊘

-falign-functions / ⊘

Flag

-falign-jumps / ⊘

-falign-loops / ⊘

-falign-labels / ⊘

-ftree-vrp / ⊘

-ftree-pre / ⊘

-funswitch-loops / ⊘

-fschedule-insns /
/ -fschedule-insns2 / ⊘

-fno-sched-interblock / ⊘

-fno-sched-spec / ⊘

-fgcse / ⊘

-fno-gcse-lm / ⊘

-fgcse-sm / ⊘

Flag Values

-fgcse-las / ⊘

-fgcse-after-reload / ⊘

–param max-gcse-passe = 1, 2, 3, 4
-finline-functions / ⊘

–param max-inline-insns-auto = 10,30,50,...,190
–param large-function-insns = 1300,1500,1700,...,3300
–param large-function-growth = 20,50,100,200,300,400,500
–param large-unit-insns = 4000,6000,8000,...,20000
–param inline-unit-growth = 10,20,30,...,100,200,300
–param inline-call-cost = 10,12,14,...,30

-funroll-loops / -funroll-all-loops / ⊘

–param max-unroll-times = 2,4,6,...,20
–param max-unrolled-insns = 50,75,100,...,400

Table 2: Compiler optimisations and the values they can take. There are 642 million combinations. The
baseline is -O1 with no further optimisations enabled.

Figure 4: The compiler optimisation design space on a per-benchmark basis for execution time, energy and
ED. We show the minimum, maximum, median, 25% and 75% quantiles.

3.1 Microarchitecture Design Space
We have picked a typical microarchitectural design space,

whose parameters are shown in table 1. Also shown is the
range of values each parameter can take and our baseline
microarchitecture which is based on the configuration of the
XScale processor [13]. We have chosen to vary the cache and
branch predictor configurations in this work because they
are critical components in an embedded processor. The to-
tal design space consists of 288,000 different configurations.
In our experiments we have used a sample space of 200 ran-
domly selected configurations. To evaluate the architecture
space independently from the compiler space, we have com-
piled each benchmark using the baseline optimisation (-O1).

3.2 Microarchitecture Exploration
Figure 2 shows the microarchitectural design space. Each

graph shows the performance achieved by each microarchi-
tectural configuration in terms of execution time, energy and
ED across the MiBench suite, normalised to the baseline ar-
chitecture. The baseline performance is shown with a hori-
zontal line. Each graph is independently ordered from lowest
to highest. These graphs show that the baseline is actually
a very good choice. For both execution time and energy

consumption it is within the top 15% of all configurations,
for ED it is within the top 5%. However, there is room for
improvement. Selecting a better architecture leads to an ED
value of 0.93 compared with the baseline.

Figure 3 shows the best execution time, energy and ED
value for each benchmark, normalised to the baseline ar-
chitecture. We picked the microarchitectural configurations
leading to the best performance for each metric over the
whole MiBench suite and ran each benchmark compiled with
the baseline optimisation -O1 on them. In terms of exe-
cution time, three benchmarks achieve a 10% performance
gain on this configuration, but the majority perform simi-
larly to the baseline. Considering energy, the majority of
benchmarks achieve 20% savings over the baseline configu-
ration. However, the ED value for some benchmarks is over
1 because this configuration actually loses performance for
these benchmarks. We cannot specialise the architecture for
each program, so this configuration that is the best for ED
overall, is not necessarily the best for each program.

On average, we see that we can only achieve a modest ED
value of 0.93 over the baseline architecture. This is actually
not a surprise, since the baseline architecture corresponds to
the XScale processor and has already been highly tuned.
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Figure 5: The co-design space of execution time, energy and ED for each microarchitectural configuration
across the whole benchmark suite considering the best and worst optimisations for each program. The region
in white is the co-design space, with the line showing the performance of -O1 on this architecture. Each graph
is independently ordered from lowest to highest and is normalised by -O1 on the baseline configuration.

Figure 6: Execution time, energy and ED for each benchmark on the microarchitectural/optimisation con-
figuration performing the best for each metric overall.

3.3 Compiler Optimisation Space
Having considered the microarchitecture design space in

isolation, we now wish to explore the compiler space alone
to show its characteristics when optimising for the baseline
architecture. The optimisation space we have considered is
shown in table 2. It is similar to the optimisations considered
by other researchers [7], allowing meaningful comparisons
with existing work. There are 642 million different combi-
nations of optimisations when considering turning the flags
either on or off. We also considered changing the behaviour
of the heuristics that control some of the optimisations, lead-
ing to a total of 1.69 ∗ 1017 unique optimisations.

Since exhaustive enumeration of this optimisation space
is not feasible, we explored it by choosing 1000 different
optimisations using uniform random sampling. We then ran
the benchmarks compiled with these flags on the baseline
architecture. As stated previously, we define an optimising
compiler as an iterative compiler that uses the best of these
1000 randomly-selected flag settings

3.4 Compiler Optimisation Exploration
Figure 4 shows the execution time, energy and ED design

spaces on a per-benchmark basis. We show each benchmark

individually because the best combination of optimisation
flags varies between programs. In these graphs we show the
minimum, maximum, median, 25% and 75% quantiles. Also
shown in the final column is the geometric mean from using
these different optimisations across all benchmarks.

What is immediately clear is that for some benchmarks
there is significant improvement to be obtained in execution
time over the baseline optimisation (e.g. search at 0.44 and
crc at 0.47). This also shows that picking the wrong opti-
misations can significantly degrade performance or increase
energy consumption. On this baseline architecture, the com-
piler can do little to improve the performance or save energy
on some programs (e.g. basicmath and patricia). In terms
of ED, there is significant scope for improvement for some
benchmarks, but on others the compiler optimisations have
little impact. For example, sha achieves an ED value of 0.48
in the best case but qsort does not gain from optimisation.
The best case flags chosen on a per-benchmark basis give
the performance of the optimising compiler. On average,
this can reduce execution time by 19%, save 13% of the en-
ergy consumption or achieve an ED value of 0.72. This is
compared to the best ED value of 0.93 when varying the mi-
croarchitectural space alone. Not surprisingly, there is more
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Figure 7: Optimising toast on the baseline architec-
ture and running it on all other microarchitectures.

room for improvement in the compiler space because the ar-
chitecture has already been significantly tuned. However, up
to this point we have considered each space independently.
The next section combines the microarchitectural and opti-
misation spaces to consider co-design.

4. CO-DESIGN SPACE EXPLORATION
This section demonstrates that by exploring the co-design

space we can find an architectural/optimising compiler con-
figuration that achieves even higher performance than can
be achieved by considering the architecture and compiler in
isolation. Furthermore we show that tuning the compiler
separately to the microarchitecture can lead to sub-optimal
performance of the final system.

4.1 Exploration
Figure 5 shows the co-design space across microarchitec-

tural configurations for execution time, energy and ED. The
performance of the baseline compiler on each configuration
is shown by the solid line. The performance of the opti-
mising compiler on each configuration is also shown. Here
we have selected the best compiler optimisations on a per-
program basis for each microarchitectural configuration in
our sample space. This represents the lower bound on the
execution time, energy consumption or ED achievable for
each architecture. Hence we have shaded the region below
it. Also shown is the performance when selecting the worst
compiler optimisations which represents the upper bound
and we have shaded the area above this.

It is immediately obvious that there is large room for im-
provement over the baseline compiler optimisation across the
whole microarchitectural space in terms of execution time
and ED. All three graphs show that picking the wrong opti-
misations can lead to significant degradation of each metric.
Hence, it is important to know the performance of the opti-
mising compiler on each architecture individually.

In figure 6 we show the execution time, energy and ED
values on a per-benchmark basis for the microarchitectural
/ optimisation configurations that perform the best for each
metric. In terms of execution time, 13 benchmarks achieve
a 20% improvement whilst the largest energy savings of 63%
are achieved by search. For ED, the majority of benchmarks
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Figure 8: Optimising on the baseline architecture
and running on all other microarchitectural config-
urations. Optimisations that are good on the base-
line microarchitecture can perform worse than -O1
on other configurations.

achieve a reasonable value of 0.8 or under. It is interesting to
compare these results with those achieved when performing
microarchitecture space exploration alone (figure 3). We
can see that performing co-design space exploration leads
to more balanced results across benchmarks in terms of ED
(the maximum value is now 1.3, before it was 1.7). This is
because the optimising compiler is able to take advantage of
the microarchitecture, whereas before all benchmarks were
compiled with -O1.

On average, considering the co-design space of compiler
optimisations and microarchitectural configurations brings
significant benefits. We can reduce execution time by 21%,
save 29% of energy or achieve an ED value of 0.67. This
is compared with an ED value of 0.93 when varying the
microarchitecture alone, or 0.72 when only considering com-
piler optimisations. This shows the benefits of performing
co-design space exploration compared with independent de-
sign of compiler and architecture.

4.2 Optimisation Sensitivity to
Microarchitecture

Having shown that co-design space exploration can lead to
benefits over both microarchitecture and optimisation space
exploration alone, we now show that it is important to ex-
plore both spaces simultaneously. Figures 7 and 8 show the
results from tuning the compiler on the baseline microarchi-
tecture and then optimising on a new configuration. Figure 7
shows the results for the toast benchmark for ED. As can be
seen, the optimisations that are best on the baseline archi-
tecture are actually worse than compiling with -O1 on other
configurations. Critically, the best compiler optimisations
vary across the architecture space.

Figure 8 shows this across all benchmarks. Here we have
run 1000 optimisations on the baseline architecture and se-
lected those that are within 5% of the best found for each
benchmark. We call these the baseline good optimisations.
Then, for each other microarchitectural configuration, we
have run the benchmarks compiled with these baseline good
optimisations again to determine the average ED value that
they achieve. We have evaluated how far this average is from
the best ED value achievable on that configuration within
our sample space.

From this graph we can see that on half the architectures
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Figure 9: Example use of our technique for the program fft when considering ED. First we collect performance
counters, then use PCA to select two components (a). We choose training configurations and search their
optimisation spaces for the best performance (b). Finally, we use SVM to determine the contour map around
configurations (c). This map provides a prediction of the real performance of the optimising compiler (d).

the good optimisations for the baseline are at least 15% away
from the best. For a quarter of the architectures, these good
optimisations are at least 40% away from the best. Cru-
cially, the good optimizations on the baseline architecture
are actually worse than -O1 for 1/10 of the other architec-
tural configurations. This shows that good optimisations for
one architecture are not suitable for others. In essence, the
optimal compiler for one architecture is not the best for all.
Therefore it must be tuned on each configuration and cannot
be developed independently of the microarchitecture.

4.3 Summary
This section has shown the importance of performing co-

design space exploration. When the optimisation space is
explored at the same time as the microarchitecture space,
significant improvements can be gained over the baseline.
However, designing the architecture without considering the
optimisation space can result in sub-optimal performance on
the final system. Considering both spaces together, we can
achieve an ED value of 0.67, compared with 0.93 when de-
signing the microarchitecture alone, or 0.72 when exploring
only the compiler optimisation space.

5. PREDICTINGTHEPERFORMANCEOF

AN OPTIMISING COMPILER
In previous sections we have presented the characteristics

of our design spaces and shown that the optimal compiler
for one architecture is not the best for all. To do this we
have explored a sample of the total design space, consider-
ing 200 microarchitectural configurations and 1000 compiler
optimisations over 35 benchmarks. In practise, however, it
is not desirable to conduct such a costly co-design space ex-
ploration. We now address this issue by building a machine-
learning model to predict the performance of the optimising
compiler on any microarchitectural configuration.

5.1 Overview
Our model is built in three steps, with an example on the

benchmark fft shown in figure 9. A new model is created
for each benchmark we wish to predict for. First we run
the program compiled with -O1 on a number of randomly-
selected microarchitectures (200 in our case). We gather
performance counters which allow us to characterise its be-
haviour (figure 9(a)). From this we can select a number of

architectural configurations for training (figure 9(b)). We
then explore the optimisation space of these configurations
by running the program using different compiler settings in
order to estimate the best performance achievable. Finally
the model is trained with the results of this exploration (fig-
ure 9(c)) and predictions can be made for the entire space.
These predictions can be directly compared with the real
space (figure 9(d)). The next sections describe these three
steps in more detail.

5.2 Characterisation of Microarchitectures
with Performance Counters

To characterise each microarchitecture in the co-design
space, we gather features that can be used as an input to
our model. Our model can use these features to determine
the performance improvement an optimising compiler can
achieve over a standard baseline compiler for any microar-
chitecture. The features we use are performance counters
extracted from a single run of the program with the default
optimisation level (-O1) on each architecture.

We have chosen 9 performance counters to extract. They
are the IPC; resource utilisation of the caches, branch predic-
tor, ALUs and register file; cache miss rates and the branch
misprediction rate. Performance counters like these are typ-
ically found in processor analytic models [17, 18]. We then
use Principal Component Analysis (PCA) to summarise the
9 features into two values, or principal components. Fig-
ure 9(a) shows these components (PC1 & PC2) over 200
microarchitectures for the benchmark fft .

5.3 Gathering Training Data
Using the results from PCA, we pick microarchitectural

configurations for training. To maximise the coverage of
the principal components space, we divide it into a 5 × 4
grid, picking one training point per tile. This equates to
15 microarchitectures per program on average. Figure 9(b)
shows the configurations we would pick for our fft exam-
ple. To gather our training data we perform a search of the
compiler optimisation space on each of the 15 architectures
using iterative compilation with 1000 randomly-selected op-
timisations. This search could be made more efficient by
using any specific search technique [8, 9, 10, 19]. However,
this is orthogonal to the focus of this paper.

After performing our search we have an estimation of the
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Figure 10: Prediction error for our model broken
down by program when predicting the ED value
achievable by the optimising compiler. The average
error is only 1.6%.

maximum performance achievable on each of the 15 training
architectures. This is shown in figure 9(b) where darker
points lead to better performance.

5.4 Training our Model
Having collected our training data, we can now train our

model which is based on Support Vector Machines (SVM),
adapted for the regression problem [20]. This model can dis-
tinguish between data points that behave differently. In our
case, the model learns the difference between microarchitec-
tural configurations based on the performance an optimising
compiler can achieve on them. In our example following fft ,
the results from training can be seen visually in figure 9(c).
Here we have circled the training configurations. The model
learns the areas of similar colour based on the best perfor-
mance seen on the 15 microarchitectures we selected in the
previous step. Architectural configurations that lie in the
same colour region are predicted to have similar optimising
compiler behaviour. In other words, the model predicts that
the optimising compiler has little effect in the light areas and
can achieve high performance gains in the dark areas. For
fft , this can be compared to the real space of 200 microar-
chitectures in figure 9(d).

Having trained our model, we can predict the performance
of the optimising compiler on any new microarchitectural
configuration. To do this we run -O1 on the architecture
and gather performance counters. The model uses PCA to
reduce the number of features to 2 and then makes a pre-
diction based on the colour of the region where it lies.

5.5 Summary
This section has described our model used to predict the

performance of the optimising compiler on any microarchi-
tectural configuration. We first run -O1 on 200 architectures
and gather performance counters. We use PCA to reduce
these and then pick 15 configurations to train our model.
On each of these we perform a random search of the opti-
misation space and then use an SVM to model the entire
co-design space. To predict for any new microarchitecture
we need performance counters from one run of -O1 on it.
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Figure 11: Predicting the performance of the opti-
mising compiler across the microarchitectural space
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model is highly accurate and overlaps significantly
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6. MODEL EVALUATION AND

COMPARISON
Having built our machine-learning model to predict the

performance of the optimising compiler, this section evalu-
ates its accuracy. We compare with a previously-proposed
scheme and show a real-world use of our model in being able
to predict the best configuration in the co-design space.

6.1 Prediction Error
We use the mean absolute error to evaluate our predictor,

defined as 1

N

P

N

i

˛

˛

˛

predicted valuei−real valuei
real valuei

˛

˛

˛
. We used 15 mi-

croarchitectural configurations to train our model and then
validated it on 185 microarchitectures.

Figure 10 shows the error of our scheme for each bench-
mark. It also shows the average error across the benchmark
suite. As can be seen, our model achieves an error rate of 2%
or under for the majority of benchmarks. In fact, for some
benchmarks (such as tiff2rgba), the error is just 0.5%. The
average error rate is 1.6% for the whole of MiBench. This
shows that we have an accurate model and can correctly
predict the performance of the optimising compiler.

6.2 Comparison
We wish to compare the accuracy of our model with the

only other technique (to the best of our knowledge) that has
considered the joint microarchitecture and compiler space.
We have built the model proposed by Vaswani et al. [7] using
an Artificial Neural Network. Their model does not directly
predict the performance of an optimising compiler but in-
stead predicts the performance of a set of compiler flags
for each microarchitecture. In addition, their model does
not attempt to predict energy consumption or the ED value
achievable, therefore this comparison could be considered
unfair. However, a comparison serves as an indication of how
our approach performs against an existing machine-learning
technique. To evaluate this model we used it to predict our
sample compiler space of 1000 optimisations for each archi-
tecture. We then picked the best as their predicted value.
We trained their model with exactly the same data as ours.

Figure 11 shows the ED value achieved by the baseline



Parameter Value

ICache size 32K
ICache associativity 64
ICache block size 16
DCache size 16K
DCache associativity 32
DCache block size 16
BTB size 128 entries
BTB associativity 4

Table 3: Microarchitectural parameters resulting in
the best ED value.

compiler on each microarchitectural configuration averaged
over the whole of MiBench (labelled O1). It also shows the
ED value achieved by the optimising compiler on each con-
figuration (Oopt). A third line shows the prediction made
by the model proposed by Vaswani et al. (Vaswani model)
and a final line shows our prediction (Our model).

It is immediately obvious that our predictions follow the
curve of the optimising compiler with great accuracy. More
specifically, our model accurately predicts the peaks and
troughs in ED as well as the stable areas. This shows the
ability of our model to predict the design points that be-
have significantly differently from the baseline. The Vaswani
model, however, fails to accurately predict the performance
of the optimising compiler. In particular, it predicts peaks
in ED where there are none and follows the -O1 line closely.
This predictor, therefore, is inappropriate for finding the
performance of the optimising compiler.

6.3 Predicting the Best Architectural/
Optimising Compiler Configuration

Having built and evaluated our machine-learning model,
this section considers its real-world use in allowing designers
to determine the optimising compiler/architectural configu-
ration that achieves the best ED value in our space. To do
this we used our model to predict on 200 microarchitectures,
chosen by uniform random sampling. Our model predicted
that the optimising compiler would be able to achieve the
minimum ED value in the co-design space of 0.677 on the
configuration shown in table 3.

To verify the prediction accuracy, we used iterative com-
pilation on this architecture with 1000 randomly-selected
optimisation settings. We found that the best ED value
achievable is 0.673. This is just 0.6% away from our predic-
tion, showing that our model is very accurate. Had we used
the Vaswani model, it would have predicted an ED value of
0.860 for this configuration, which is an error of 27%.

In addition to this, we wanted to verify that this prediction
is actually the best ED value in the sample co-design space.
To do this, we used iterative compilation with 1000 optimi-
sation settings on each of the 200 architectures we predicted
for and found that this configuration does actually achieve
the best ED value in the sample space.

This best microarchitectural configuration found by our
model achieves a performance increase of 13% and energy
savings of 23% compared to the baseline. It produces the
smallest ED value because it is well balanced. The instruc-
tion and data caches have high associativity to avoid con-
flicts. The data cache is half the size of the instruction cache
to save energy without significant loss of performance. For

the benchmarks we have studied, the majority of misses are
cold misses because the programs analyse streamed data.
For other benchmarks which have higher data reuse, a larger
data cache might be required.

6.4 Summary
This section has evaluated our model and shown that it

has an error rate of just 1.6% on average. We have com-
pared with the only other technique to predict the joint com-
piler/architecture space and found that our model is more
accurate at predicting the performance of the optimising
compiler on any microarchitectural configuration. Further-
more, we have shown that our model can predict the best op-
timising compiler/architectural configuration for ED within
our space with just a 0.6% error. This microarchitecture
achieves a 13% performance increase and energy savings of
23%, leading to an ED value of 0.67. Using our model, de-
signers can accurately predict the impact of the optimising
compiler across the co-design space.

7. RELATED WORK
Several different types of machine-learning model have

been proposed to predict the design space of a microproces-
sor. The first type are models predicting the performance of
just a single program. Techniques include the use of linear
regressors [2], artificial neural networks [1, 21], radial basis
functions [22] and spline functions [23, 24]. All have similar
accuracy [3]. The second type of model makes use of prior-
knowledge, learning across programs. Linear regression [25],
artificial neural networks [26] and program-features based
predictors [27] have been proposed. However, since none
of these models consider the compiler optimisation space,
sub-optimal microarchitectural designs could be chosen.

Searching the compiler optimisation space has been ex-
tensively explored in the literature. Feedback-directed opti-
misation [8, 9, 10, 11, 12, 19, 28] uses different algorithms
to search the optimisation space. Agakov et al. [28] built
a model offline that is used to guide search. Haneda et
al. [9] make use of statistical inference to select good op-
timisations. Cooper et al. [8, 19] explore the optimisation
space using hill climbing and genetic algorithms. Other re-
searchers have used analytical [29] or empirical [4, 5, 6, 30]
models to explore the optimisation space. In fact, these
techniques are orthogonal to our approach and can be used
to reduce training costs.

Finally, co-design space predictors [7] use one model to
predict the compiler optimisation and architecture spaces.
This model takes as an input the microarchitectural config-
uration and the desired optimisation flags and produces a
prediction. However, as we have shown in section 6.2, this
model fails to capture interactions between compiler optimi-
sations and microarchitecture and cannot be used to accu-
rately predict the performance of an optimising compiler.

8. CONCLUSION
This paper has addressed the co-design space problem by

automatically predicting the performance of an optimising
compiler on any microarchitectural configuration, without
needing to build the compiler first. We have explored the
microarchitectural, compiler and co-design spaces, showing
that the optimal compiler for one architecture is not the
best for all. We then built a machine-learning model to



predict the performance of an optimising compiler on any
architecture. Our model achieves an error rate of just 1.6%.
We used this predictor to find the best optimizing com-
piler/architectural configuration for ED in our design space
and found it achieves a 13% performance increase and 23%
energy savings, leading to an ED value of 0.67.
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