
A Predictive Model for Dynamic Microarchitectural Adaptivity Control

Christophe Dubach, Timothy M. Jones

Members of HiPEAC

University of Edinburgh

Edwin V. Bonilla

NICTA &

Australian National University

Michael F. P. O’Boyle

Member of HiPEAC

University of Edinburgh

Abstract—Adaptive microarchitectures are a promising solu-
tion for designing high-performance, power-efficient micropro-
cessors. They offer the ability to tailor computational resources
to the specific requirements of different programs or program
phases. They have the potential to adapt the hardware cost-
effectively at runtime to any application’s needs. However, one
of the key challenges is how to dynamically determine the
best architecture configuration at any given time, for any new
workload.

This paper proposes a novel control mechanism based on a
predictive model for microarchitectural adaptivity control. This
model is able to efficiently control adaptivity by monitoring
the behaviour of an application’s different phases at runtime.
We show that using this model on SPEC 2000, we double the
energy/performance efficiency of the processor when compared
to the best static configuration tuned for the whole benchmark
suite. This represents 74% of the improvement available if we
knew the best microarchitecture for each program phase ahead
of time. In addition, we show that the overheads associated with
the implementation of our scheme have a negligible impact on
performance and power.

I. INTRODUCTION

Adaptive superscalar microarchitectures are a promising

solution to the challenge of designing high-performance,

power-efficient microprocessors. They offer the ability to

tailor computational resources to the specific requirements

of an application, providing performance when the appli-

cation needs it. At other times, hardware structures can

be reorganised or scaled down for a significantly reduced

energy cost. These architectures have the potential to cost-

effectively adapt the hardware at runtime to any application’s

needs.

The amount of adaptation available directly determines

the level of performance and power-savings achievable. With

high adaptivity the processor is able to vary many different

microarchitectural parameters. This maximises the degree of

flexibility available to the hardware, allowing adaptation of

the computational resources to best fit the varying structure

of the running program. Although previous work has quanti-

fied the theoretical benefits of high adaptivity [1], predicting

and delivering this adaptation is still an open and challenging

problem. The key question is how to dynamically determine

the right hardware configuration at any time, for any unseen

program.

In order to achieve the potential efficiencies of high adap-

tivity we require an effective control mechanism that predicts

the right hardware configuration in time. Simple feedback

mechanisms that predict the future occupancy requirements

of a resource based on the recent past [2], [3] will not scale

to a large number of configurations. Other prior works have

used statistical machine learning to construct models which

estimate the performance and/or power as a function of the

microarchitectural configuration [4], [5], [6], [7]. However,

these approaches are not practical in a dynamic setting. We

wish to predict the best microarchitectural parameter values

rather than the performance of any given configuration.

Prior work would require online searching and evaluation

of the microarchitectural configuration space which is not

realistic for anything other than trivial design spaces. What

we require are light-weight, runtime control mechanisms.

This paper develops a runtime resource management

scheme that predicts the best hardware configuration for

any phase of a program to maximise energy efficiency. We

use a soft-max machine learning model based on runtime

hardware counters to predict the best level of resource

adaptation. Our model is constructed empirically by iden-

tifying optimal designs on training data. Optima from off-

line training quickly guide the model to runtime optima for

each adaptive interval. We show that determining the right

hardware counters is critical in accurately predicting the

right hardware configuration. We also show that predicting

the right configuration is an unusually difficult learning

problem which explains the lack of progress in this area.

Whenever the program enters a new phase of execution,

our technique profiles the application to gather a new type

of temporal histogram hardware counter. These are fed into

our model which dynamically predicts the best hardware

configuration to use for that phase and enables us to double

the average energy/performance efficiency over the best pos-

sible static design. This represents 74% of the improvement

available from knowing the best microarchitecture for each

program phase from our sample space ahead of time.

The rest of this paper is structured as follows. Section II

motivates the use of machine learning for adaptivity. Sec-

tion III then describes our approach to dynamic adapta-

tion using a model explained in section IV. Section V

presents the experimental setup and section VI evaluates

our approach. Section VII investigates model accuracy and

section VIII describes implementation details. Section IX

describes related work and finally section X concludes.



 0

 10

 20

 30

 40

 50

 60

 70

 80

R
e
q
u
ir
e
d
 I
Q

 S
iz

e

Time

8-Wide 4-Wide

(a) Gap IQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

R
e
q
u
ir
e
d
 I
Q

 S
iz

e

Time

8-Wide 4-Wide

(b) Applu IQ

 0

 10

 20

 30

 40

 50

 60

 70

 80

R
e
q
u
ir
e
d
 I
Q

 S
iz

e

Time

8-Wide 4-Wide

(c) Mcf IQ

 0

 20

 40

 60

 80

 100

 120

 140

 160

R
e
q
u
ir
e
d
 I
n
te

g
e
r 

R
e
g
is

te
rs

Time

8-Wide 4-Wide

(d) Gap RF

 0

 20

 40

 60

 80

 100

 120

 140

 160

R
e
q
u
ir
e
d
 I
n
te

g
e
r 

R
e
g
is

te
rs

Time

8-Wide 4-Wide

(e) Applu RF

 0

 20

 40

 60

 80

 100

 120

 140

 160

R
e
q
u
ir
e
d
 I
n
te

g
e
r 

R
e
g
is

te
rs

Time

8-Wide 4-Wide

(f) Mcf RF

Figure 1. How the optimal size of two processor structures varies with time for pipeline widths 8 and 4 for three applications.

II. THE NEED FOR ML-BASED CONTROL

This paper proposes a novel technique for dynamic mi-

croprocessor adaptation that differs substantially from prior

work. Existing schemes, described in section IX, have either

focused on adapting only a few microarchitectural parame-

ters at a time, or proposed techniques for efficient searching

of the design space at runtime. However, these schemes are

not suited for adapting an entire processor’s resources due to

the complex interactions that exist between hardware struc-

tures. Furthermore, runtime searching is undesirable since

it would inevitably visit poorly-performing configurations,

reducing overall efficiency. We require a control mechanism

that can quickly identify the optimal global hardware config-

uration to minimise power consumption whilst maintaining

high performance.

To illustrate this point, consider figure 1 where we show

the changing requirements of two hardware structures for

three applications over time, in order to maximise efficiency.

The first line in each graph shows the size required for best

efficiency when the pipeline width is 8 instructions. The

second line shows the desired size when this is reduced to

4 instructions.

It is clear from this figure that the sizes of the issue queue

and register file leading to the best efficiency vary over time.

Furthermore, they are different when the width is fixed to 4

compared to a width of 8. For example, in gap the optimal

register file size is initially 113 in both cases, but quickly

needs to be adjusted to 67 when the width is 4. Conversely,

for applu the desired size does not depend on the width.

Furthermore, looking at the required issue queue size for

each application is not enough to find the desired register

file size. In other words, the structures’ optimal sizes change

over time and these changes are not necessarily correlated

with one another.

This motivates the need for machine learning based con-

trol mechanisms to learn how to adapt each structure and

determine the optimal configuration for the entire processor.

The next section discusses our approach, then section IV

gives a formal description of our model.

III. MACHINE LEARNING FOR ADAPTIVITY CONTROL

Our approach to microarchitectural adaptivity control uses

a machine learning model to automatically determine the

best hardware configuration for each phase of a program.

Our model predicts the best parameters for the entire pro-

cessor design space with only one attempt. To do this we

gather hardware counters that can be used to characterise

the phase and then provide them as an input to our model

to guide its predictions. We first give an overview of how

our scheme works, then describe the counters that we gather

through dynamic profiling of each program phase.

A. Overview

Figure 2 shows an overview of how our technique works.

In stage 1 the application is monitored so that we can

detect when the program enters a new phase of execution.

We then profile the application on a pre-defined profiling

configuration in stage 2 to gather characteristics of the new

phase. These are fed as an input into our machine learning

model which gives us a prediction of the best configuration

to use (stage 3). After the processor has been reconfigured

we continue running the application until the next phase

change is detected.



Figure 2. Overview of our technique. The hardware detects phase changes,
then profiles the application on a pre-defined configuration to extract
hardware counters. These are used as an input to our model that predicts
the optimal microarchitectural parameters for the phase. The hardware is
then reconfigured and execution continues.

Table I shows the configurable microarchitectural param-

eters that we have considered. It represents the design space

of a high-performance out-of-order superscalar processor

and is similar to spaces that other researchers have con-

sidered [1]. We vary fourteen different microarchitectural

parameters across a range of values, giving a total design

space of 627 billion points. The prior analysis column

cites papers that have developed techniques to resize each

of the structures we consider. We discuss this further in

section VIII.

The main contribution of this work is a machine learning

model that can accurately predict the best microarchitectural

configuration to use for each program phase. We therefore

focus solely on stages 2 and 3 from figure 2 in this

paper. Section V describes the experimental methodology

and execution environment in more detail.

B. Dynamic Profiling

To characterise each application phase we extract hard-

ware counters from the running program. These are used as

an input to our machine learning model to allow it to predict

the best hardware configuration for the phase.

1) Profiling Configuration: One of the main problems

with extracting hardware counters at runtime is the risk

of the internal processor resources saturating: the resources

can become full, causing bottlenecks in the processor. This,

in turn, can hide the real resource requirements making it

difficult to extract accurate information about the program’s

runtime behaviour. To overcome this problem we need to

extract counters on a configuration that makes saturation

unlikely. We therefore briefly use the microarchitectural

configuration with the largest structures and the highest level

of branch speculation (named the profiling configuration).

Table I
MICROARCHITECTURAL DESIGN PARAMETERS THAT WERE VARIED

WITH THEIR RANGE, STEPS AND THE NUMBER OF DIFFERENT VALUES

THEY CAN TAKE.

Parameter Value Range Num Prior Analysis

Width 2, 4, 6, 8 4 [8], [9], [10]
ROB size 32 → 160 : 8+ 17 [11], [12]
IQ size 8 → 80 : 8+ 10 [11], [12], [13]
LSQ size 8 → 80 : 8+ 10 [3], [12]
RF sizes 40 → 160 : 8+ 16 [11], [12]
RF rd ports 2 → 16 : 2+ 8

RF wr ports 1 → 8 : 1+ 8

Gshare size 1K → 32K : 2∗ 6

BTB size 1K, 2K, 4K 3

Branches allowed 8, 16, 24, 32 4

L1 Icache size 8K → 128K : 2∗ 5 [14], [15]
L1 Dcache size 8K → 128K : 2∗ 5 [14], [15]
L2 Ucache size 256K → 4M : 2∗ 5 [14], [15]
Depth (FO4 delay) 9 → 36 : 3+ 10 [16], [17], [18]

Total 627bn

For each program phase we gather hardware counters

on the profiling configuration. We then reconfigure to the

configuration predicted by our model and run the application

for that phase. Section VIII demonstrates that the cost of

gathering these counters is negligible. The next section now

describes the counters gathered during this profiling phase.

2) Hardware Counters: Table II gives a summary of the

counters that we gather for each processor structure. They

monitor the usage of each structure and the events that occur

during the profile gathering phase and would therefore be

simple to extract in a real implementation. We discuss their

implementation in section VIII, showing that they can be

gathered with low overhead.

One key aspect of our counters is the notion of a temporal

histogram. This shows the distribution of events over time

and is vital to capture the exact requirements of each

structure. Each bin of the histogram stores the number of

cycles that the structure has a particular usage (e.g., 100

cycles with 16 entries used, 200 cycles with 32 entries used,

etc.).

Width: For the pipeline width we build a temporal

histogram that keeps track of the usage frequency of each

functional unit type. The histogram bins correspond directly

to the number of units in use.

Queues: We use temporal histograms to collect the

number of entries used in the queue on each cycle. In addi-

tion to this we add information about the average number of

speculative instructions present in the queue and the number

that were mis-speculated. Since our profiling configuration

performs a high level of speculation, it is important to know

how many of the instructions are really useful.

Register File: We use temporal histograms to sum-

marise the number of the integer and floating point registers

used. In addition, temporal histograms are used to store the

usage of the read and write ports.



Table II
HARDWARE COUNTERS USED AS AN INPUT TO OUR MACHINE

LEARNING MODEL.

Width

ALU usage (histogram)
Memory port usage (histogram)

Queues

Queue usage (histogram)
Speculative instructions (%)
Mis-speculated instructions (%)

Register File

Register usage (histogram)
Read port usage (histogram)
Write port usage (histogram)

Caches

Stack distance (histogram)
Block reuse distance (histogram)
Set reuse distance (histogram)
Reduced set reuse distance (histogram)

Branch predictor

BTB reuse distance (histogram)
Branch mis-prediction rate (%)

Pipeline depth

Cycles per instruction

Caches: We use temporal histograms representing

stack distance [19], [20] and reuse distance. Each bin corre-

sponds to a specific distance. Intuitively the stack distance

is important since it characterises the capacity usage of the

cache. We also estimate the potential conflicts that could

arise if the cache size were smaller in the Reduced set reuse

distance histogram. To do this we map the sets to those of

the smallest cache size (as though “emulating” the smallest

cache size available).

Branch Predictor: We use the access reuse distance

within the BTB, which is similar to the block reuse distance

in the caches. The second counter corresponds to the branch

mis-prediction rate which is useful to control the degree of

speculation within the processor.

Pipeline Depth: We only need the average number of

instructions executed per cycle over the entire phase.

C. Example

This section gives an example of how the hardware coun-

ters are used to determine the size of the load/store queue

that will lead to the best energy efficiency value. Figure 3

shows the efficiency values and counters extracted from

phases within four different programs. For each figure, the

top graph shows the relative efficiency of the processor when

the load/store queue size is varied. By choosing the best

configuration for this phase from our training data (described

in section V-C), we can determine the optimal values for

all other parameters. To obtain maximum efficiency, the

size of the load/store queue for mgrid should be 32, swim

72, parser 16 and vortex 16. Underneath are the counters

gathered. The queue usage histogram on the left has bins

corresponding to queue sizes. On the right is the average

number of speculative instructions in the queue and the

fraction that were mis-speculated.

For mgrid and swim we see the best queue size directly

corresponds to the observed usage during the profiling

phase. For these applications there are few mis-speculated

instructions (mis-spec) present in the queue during the phase.

Now consider parser and vortex which both have a

significant number of mis-speculated instructions. This time

the largest bin in the queue usage histogram counter is 8

which does not directly correspond to the size of the queue

that maximises efficiency. Instead, the best size of the queue

is 16 entries in both cases. Since these programs have similar

counters and the same desired queue size, our model can

“learn” this information. So, after training on parser, it can

make the correct prediction when it sees the same counters

again in vortex.

The next section shows how these counters can be used

to build a model that makes a single prediction of the best

hardware configuration to use for this phase.

IV. MODELLING GOOD MICROARCHITECTURAL

CONFIGURATIONS ACROSS PROGRAM PHASES

In order to build a model that predicts good microar-

chitectural configurations across program phases we require

examples of various microarchitectural configurations on dif-

ferent program phases and their corresponding performance

metrics (e.g., their energy-efficiency values). Additionally,

we require a program phase to be characterised by a set of

hardware counters described in the previous section.

Let {X(j)}Mj=1 be the set of training program phases and

{x(j)}Mj=1 be their corresponding D-dimensional vector of

counters. For each of these program phases we record the

performance on a set of N distinct microarchitectural config-

urations {y(i)}Ni=1. Each component of a microarchitectural

configuration y is a single microarchitectural parameter ya
with a = 1, . . . , A, with A representing the number of

architectural parameters (14 in this paper). Given a new

program phase X∗ described by a set of counters x∗, we

aim to predict a set of (good) microarchitectural parameters

y∗ that are expected to lead to the highest energy-efficiency.

A. The Model

Our goal is to build a model that correctly captures the

relationship between program phases’ hardware counters and

good microarchitectural configurations. In other words, we

aim to learn a mapping f : X → Ỹ from the space of

program phase counters X to the space of good microarchi-

tectural configurations Ỹ .

In order to achieve this we model the conditional distri-

bution P (ỹ|x) of good microarchitectural configurations ỹ



8 16 24 32 40 48 56 64 72 80

0
.2

0
.8

1
.4

Queue size

R
e

la
ti
ve

 e
ff

ic
ie

n
c
y

8 16 24 32 40 48 56 64 72 80

Queue usage

%

0

20

40

60

80

100

s
p

e
c
u

la
ti
ve

m
is

−
s
p

e
c

%

0

20

40

60

80

100

(a) Mgrid

8 16 24 32 40 48 56 64 72 80

0
2

4

Queue size

R
e

la
ti
ve

 e
ff

ic
ie

n
c
y

8 16 24 32 40 48 56 64 72 80

Queue usage

%

0

20

40

60

80

100

s
p

e
c
u

la
ti
ve

m
is

−
s
p

e
c

%

0

20

40

60

80

100

(b) Swim

8 16 24 32 40 48 56 64 72 80

1
.5

2
.5

3
.5

Queue size

R
e

la
ti
ve

 e
ff

ic
ie

n
c
y

8 16 24 32 40 48 56 64 72 80

Queue usage

%

0

20

40

60

80

100

s
p

e
c
u

la
ti
ve

m
is

−
s
p

e
c

%

0

20

40

60

80

100

(c) Parser

8 16 24 32 40 48 56 64 72 80

1
2

3
4

5

Queue size

R
e

la
ti
ve

 e
ff

ic
ie

n
c
y

8 16 24 32 40 48 56 64 72 80

Queue usage

%

0

20

40

60

80

100

s
p

e
c
u

la
ti
ve

m
is

−
s
p

e
c

%

0

20

40

60

80

100

(d) Vortex

Figure 3. Load/store queue counters for four phases from different programs. We also show the relative efficiency achieved when varying the load/store
queue parameters on the best configuration found (higher is better).

given a set program phase’s counters x. In our approach we

consider each microarchitectural parameter to be condition-

ally independent given the counters:

P (ỹ|x) =

A∏

a=1

P (ỹa|x). (1)

It is important to note that there are dependencies between

microarchitectural parameters. However, our model assumes

that good parameters are conditionally independent given

the program phase’s counters, rather than assuming marginal

independence between parameters.

B. Predictions

Given the learnt model, we can predict a set of expected

good microarchitectural configurations y on a new program

phase x∗ by determining the most likely configuration under

the learnt distribution:

y∗ = argmax
ỹ

P (ỹ|x∗), (2)

where we note that, due to conditional independence, this

reduces to computing the value of each ỹa that maximises

each single distribution P (ỹa|x).

C. Model Parametrisation

In our model the conditional distribution of each microar-

chitecture parameter ỹ (where we omit the subindex a for

clarity) given a set of counters x is described by a soft-max

function:

P (ỹ = sk|x) = σk(x,W) =
exp(wT

k x)∑K

j=1 exp (w
T
j x)

, (3)

where P (ỹ = sk|x) denotes the probability of microarchi-

tectural parameter ỹ having the value sk (out of K possible

values) given the program phase’s counters x; and the D×K
matrix of weights W are the model parameters where each

column {wk}
K
k=1 corresponds to a set of weights one for

each value ỹ can take on1.

D. Model Learning

In order to learn the parameters of the model our approach

is based upon likelihood maximisation. For clarity, we focus

on a single microarchitectural parameter y which can take

one out of K possible values as we can learn the model

parameters for each architectural parameter independently.

1Other approaches were tried and we found that a soft-max model led
to the best results.



The data likelihood is given by:

L(W) =

Ñ∏

n=1

K∏

k=1

P (ỹ(n) = sk|x
(n))δ(y

(n)=sk), (4)

where x(n) is the vector of counters corresponding to archi-

tecture configuration ỹ(n) and δ(y(n) = sk) is an indicator

function that is 1 only when the particular architecture

parameter on data-point n (y(n)) takes on the value sk
and zero otherwise. Additionally, we have introduced a

new symbol Ñ denoting the number of good architecture

configurations. In our experiments we have selected the set

of good configurations to be those that are within 5% of the

best empirical performance.

By taking the logarithm of equation (4) and using equation

(3) the expression for the data log-likelihood that we aim to

maximise is:

L =

Ñ∑

n=1

K∑

k=1

δ(ỹ(n) = sk) log σk(x
(n),W). (5)

We note that a naı̈ve maximum likelihood approach can

lead to severe over-fitting. Hence we have considered a

regularised version of the data log-likelihood by adding a

term to penalise large weights, preventing over-fitting:

LPOST = L+ λ tr (WTW), (6)

where tr (.) denotes the trace operator and λ is the regu-

larisation parameter.

Thus, the optimal solution to the weight parameters is

obtained with:

WReg = argmax
W

(LPOST) (7)

Training our model means finding the solution for WReg.

This can be done by using conjugate gradient optimisation

with a deterministic initialisation of all the weights to 1 and

with λ = 0.5. See [21] for more information.

E. Prediction

To make predictions, only equations (2) and (3) need to

be considered because the training is performed off-line. Let

us assume that we are concerned with making predictions

on single architecture parameter and that this parameter may

take on one out of K possible values. Additionally, lets say

that the corresponding model parameters are denoted by the

D ×K matrix W. Hence, the computations involved for a

new program phase characterised by the D × 1 vector of

counters x∗ are:

b = WTx∗ (8)

y∗ = argmax
k

(b1, . . . , bK), (9)

where we have avoided the exponentiation in equation (3)

by realising that, at prediction time, we can make a hard

decision without computing the probabilities explicitly.

V. EXPERIMENTAL METHODOLOGY

This section presents the simulator and benchmarks used.

We also describe how we gathered our training data and the

methodology used to evaluate our technique.

A. Simulator and Benchmarks

Our cycle-accurate simulator is based on Wattch [22], an

extension to SimpleScalar [23]. We altered Wattch’s underly-

ing Cacti [24] models to updated circuit parameters. We also

removed the SimpleScalar RUU and added a reorder buffer,

issue queue and register files. To make our simulations as

realistic as possible we used Cacti to accurately model the

latencies of the microarchitectural components as they varied

in size. To avoid errors resulting from cold structures, we

warmed the caches and branch predictor for 10 million

instructions before performing each detailed simulation.

To evaluate our technique, we used all 26 SPEC CPU

2000 benchmarks [25] compiled with the highest optimisa-

tion level. We ran each benchmark using the reference input

set. We extracted 10 phases per program using SimPoint

with an interval size of 10 million instructions.

B. Performance Metric

We have evaluated the results of our predictor using en-

ergy efficiency as a metric, measured as [ips3/Watt ] where

[ips] is the number of instructions executed per second and

[Watt ] is the power consumption in Watts. This metric

represents the trade-offs between power and performance, or

the efficiency of each design point. It is widely used within

the architecture community [26] to indicate how efficient a

configuration is at converting energy into processing speed.

C. Gathering the Training Data

As seen in section IV, we need to gather data to train our

model and find good solutions within our design space. To

achieve this we first searched the design space by uniformly

sampling 1000 random configurations. We found the best

configuration for each phase, then randomly chose 200

local neighbour configurations. Finally, we repeated this

by choosing the best out of the 1,200 for each phase and

altered each parameter one at a time to each of its possible

values. This totals 1,298 simulations per phase, or more

than 300,000 in total. In addition, the results of the search

were also used to approximate the best possible performance

achievable per phase.

D. Evaluation Methodology

With this data we built our model and evaluated it using

leave-one-out cross-validation. This is standard machine

learning methodology that ensures that when we present

results for a specific program, our model has never been

trained with it.

To evaluate our technique, we proceed in three stages. We

first characterise the current program phase by running part



b
z
ip

2
_
s
o
u
rc

e

c
ra

ft
y

e
o
n
_
ru

s
h
m

e
ie

r

g
a
p

g
c
c
_
in

te
g
ra

te

g
z
ip

_
g
ra

p
h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
7
0
4

tw
o
lf

vo
rt

e
x
_
le

n
d
ia

n
1

v
p
r_

ro
u
te

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

_
1

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri

d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

M
E

A
N

R
e
la

ti
ve

 e
ff
ic

ie
n
c
y

0

1

2

3

4

5

6

7

b
z
ip

2
_
s
o
u
rc

e

c
ra

ft
y

e
o
n
_
ru

s
h
m

e
ie

r

g
a
p

g
c
c
_
in

te
g
ra

te

g
z
ip

_
g
ra

p
h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
7
0
4

tw
o
lf

vo
rt

e
x
_
le

n
d
ia

n
1

v
p
r_

ro
u
te

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

_
1

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri

d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

M
E

A
N

R
e
la

ti
ve

 e
ff
ic

ie
n
c
y

0

1

2

3

4

5

6

7
Prediction (basic features)

Prediction (advanced features)

Figure 4. Energy-efficiency [ips3/Watt] achieved by our model com-
pared to the best overall static configuration for SPEC CPU 2000 (higher is
better). Two different sets of hardware counters were used with our model:
the basic counters are made of the standard performance counters available
on current processors while the advanced ones use the new temporal
histogram counters.

of it on the profiling configuration in order to gather the

hardware counters. We use our model to make a prediction

and then continue execution of the current phase with the

configuration supplied by our model. We repeat this process

for all the program’s phases extracted.

VI. RESULTS

This section presents the results of our technique, com-

pared against a baseline static processor configuration.

A. Baseline Configuration

In order to determine a suitable baseline, we examined

all the architecture configurations in our sample space and

selected the static configuration that led to the best energy-

efficiency on average across the benchmarks. This represents

the best achievable with a single fixed static hardware

configuration and is an aggressive baseline. Table III shows

its configuration.

B. Results with two Hardware Counter Sets

In this section we evaluate the gains achievable with

our technique across the benchmark suite for two sets

of hardware counters. The first is composed of standard

performance counters available in current processors. This

includes average queue occupancy, number of ALU oper-

ations, average register file usage, cache access and miss

rates, branch predictor access and miss rates, and average

number of instructions per cycle. The second set of counters

corresponds to the more advanced features presented in

section III-B2 that includes temporal histograms.

Figure 4 shows the energy-efficiency improvement

achieved by our approach relative to the baseline config-

uration for the two counter sets. When compared to the

best static hardware we achieve on average a factor 2x

improvement in energy-efficiency with the advanced counter

set. In some cases we achieve over 4x the performance of the

best static hardware for vortex, art, equake and up to 6.5x

b
z
ip

2
_
s
o
u
rc

e

c
ra

ft
y

e
o
n
_
ru

s
h
m

e
ie

r

g
a
p

g
c
c
_
in

te
g
ra

te

g
z
ip

_
g
ra

p
h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
7
0
4

tw
o
lf

vo
rt

e
x
_
le

n
d
ia

n
1

v
p
r_

ro
u
te

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

_
1

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri

d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

M
E

A
N

M
e
tr

ic
 i
m

p
a
c
t 
(%

)

0

20

40

60

80

100

120

140

160

180

200

b
z
ip

2
_
s
o
u
rc

e

c
ra

ft
y

e
o
n
_
ru

s
h
m

e
ie

r

g
a
p

g
c
c
_
in

te
g
ra

te

g
z
ip

_
g
ra

p
h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
7
0
4

tw
o
lf

vo
rt

e
x
_
le

n
d
ia

n
1

v
p
r_

ro
u
te

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

_
1

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri

d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

M
E

A
N

M
e
tr

ic
 i
m

p
a
c
t 
(%

)

0

20

40

60

80

100

120

140

160

180

200

Performance

Energy

Figure 5. Performance and energy breakdown for our model when using
the advanced features compared to the best overall static configuration. On
average performance is improved by 15% and energy reduced by 21%.

for mcf . Only in two cases is the best static configuration

slightly better than our approach: eon and lucas.

With the basic counter set, our model only achieves 1.3x

average improvement over the best overall static configu-

ration. For several benchmarks, the performance is signifi-

cantly below that of the advanced counters. This shows that

the more advanced set of counters is necessary in order to

achieve good performance.

C. Breakdown in Performance and Energy

Having seen the results for the combined efficiency met-

ric, we now look at the breakdown in terms of performance

[ips] and energy [Joules ]. Figure 5 shows these two metrics

individually compared to the best overall static configura-

tion. On average we observe a 15% increase in performance

and a 21% decrease in energy. For some benchmarks such as

crafty, the model achieves a remarkable 48% cut in energy

while maintainaing the same performance as the baseline

configuration. The model detects that the L2 cache and

the register file are not being fully utilised and reduces

their correspoding size to 256K and 64 respectively. In

other cases, such as art, the model decreases the energy

consumption by 15% while at the same time increasing

performance by a factor 2. In this case, the model increases

the issue width and the number of read/write ports to the

register files and at the same time decreases the size of

the instrution cache to achieve lower energy consumption.

This clearly shows that our approach of driving adaptivity

with a predictive model can offer large benefits to these

applications. They would otherwise exhibit poor energy-

efficiency had we use a fixed static configuration tuned for

the average case.

VII. ANALYSIS OF THE ACCURACY OF THE MODEL

In this section we evaluate the accuracy of our approach

in predicting the best configuration for each phase of the

applications. We also present an analysis of the model

performance at a phase level and show how architectural

configurations vary with program phases.



Table III
THE CONFIGURATION OF OUR BASELINE ARCHITECTURE.

Width ROB IQ LSQ RF RF rd RF wr Gshare BTB Branches Icache Dcache Ucache Depth

4 144 48 32 160 4 1 16K 1K 24 64K 32K 1M 12

b
z
ip

2
_
s
o
u
rc

e

c
ra

ft
y

e
o
n
_
ru

s
h
m

e
ie

r

g
a
p

g
c
c
_
in

te
g
ra

te

g
z
ip

_
g
ra

p
h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
7
0
4

tw
o
lf

vo
rt

e
x
_
le

n
d
ia

n
1

v
p
r_

ro
u
te

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

_
1

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri

d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

M
E

A
N

R
e
la

ti
ve

 e
ff
ic

ie
n
c
y

0

1

2

3

4

5

6

7

b
z
ip

2
_
s
o
u
rc

e

c
ra

ft
y

e
o
n
_
ru

s
h
m

e
ie

r

g
a
p

g
c
c
_
in

te
g
ra

te

g
z
ip

_
g
ra

p
h
ic

m
c
f

p
a
rs

e
r

p
e
rl

b
m

k
_
7
0
4

tw
o
lf

vo
rt

e
x
_
le

n
d
ia

n
1

v
p
r_

ro
u
te

a
m

m
p

a
p
p
lu

a
p
s
i

a
rt

_
1

e
q
u
a
k
e

fa
c
e
re

c

fm
a
3
d

g
a
lg

e
l

lu
c
a
s

m
e
s
a

m
g
ri

d

s
ix

tr
a
c
k

s
w

im

w
u
p
w

is
e

M
E

A
N

R
e
la

ti
ve

 e
ff
ic

ie
n
c
y

0

1

2

3

4

5

6

7
Best static per program

Best dynamic

Prediction

Figure 6. Energy-efficiency achieved by our model for all of SPEC CPU
2000 compared to the best static configuration tailored for each program and
compared with the best dynamic configuration tailored for each program’s
phase. All the values are normalised by the best overall static configuration
(higher is better).

A. Comparison Against Specialised Static Configurations

Although our approach clearly outperforms any fixed

static configuration, having different specialised static con-

figurations for each program may be considered an attractive

alternative. This approach is used for domain specific pro-

cessors such as DSPs and GPUs. Figure 6 shows the perfor-

mance of our technique relative to the best specialised static

configuration found in our sample space for that program.

Clearly such an approach cannot be applied to “unseen”

programs and is not viable for general-purpose computing.

Nonetheless, it gives an important limit evaluation of our

approach.

On average, a specialised static configuration gives a

factor 1.5x improvement compared to the factor 2x of our

approach. It is guaranteed never to perform worse than

the best average static configuration so does not suffer

performance loss in lucas and eon. Conversely, it is unable

to exploit those cases where there is significant improvement

available, e.g., mcf and equake, due to the large intra-

program dynamic phase variation.

B. Comparison Against Ideal Dynamic Configurations

We now wish to determine how far our model is from

the upper bound on efficiency. For this purpose we consider

a scheme that has the ability to adapt the microarchitecture

on a per-phase basis with full knowledge about how the

application and architecture will perform. Therefore we se-

lected, offline, the best configuration from the sample space

for each phase of each program and then ran each phase with

its corresponding ideal configuration (best dynamic) leading

to maximum energy-efficiency.

As can be seen in figure 6, on average this ideal setup

gives an improvement of 2.7x over the best fixed static

configuration. In some cases, like mcf , this improvement

is more than 7x. Even in the worst case, eon, there is

an improvement of 1.5x over the static baseline. As seen

our technique gives an average improvement of 2x, thus

achieving 74% of the available improvement. Generally the

performance of our approach tracks the maximum available.

In the case of galgel, however, there is a 4x improvement

available, yet we achieve only a factor 2x, showing there is

still room for improvement.

C. Accuracy of Our Approach on a Phase Basis

This section evaluates the accuracy of the predictive

model on a per phase basis. Figure 7(a) shows two graphs

overlaid. The first is a histogram representing the distribution

of the efficiency values for the 260 phases. The x-axis shows

the improvement achieved for a particular phase relative

to the baseline. The y-axis represents the percentage of

phases with a specific efficiency value. So, for example.

the largest bin has an efficiency between 1x and 1.5x of

the baseline and corresponds to approximately 30% of the

phases. As in the previous section, the efficiency values are

normalised according to the baseline (i.e., the best overall

static configuration).

To determine how often we are better (or worse) than the

baseline and by how much, we can look at the continuous

line on the graph which is the ECDF (Estimated Cumulative

Distribution Function). It shows how often our approach

achieves at least a certain efficiency improvement. For

example we see that our model predicts a configuration

better than the baseline for 80% of the phases. We also notice

that for approximately 33% of the phases the predicted

configuration has an efficiency of at least two times that

of the baseline. There are even a small number of phases

that achieve improvement of 32 times the baseline.

Although it is important to evaluate our approach relative

to the best static configuration, it is equally important to

compare its accuracy against the best dynamic configurations

found in the sample space for each phase as shown in

figure 7(b). The best configuration has a value of 1. If the

performance of the predicted configuration is lower than 1,

it means that it is less efficient. A value greater than 1,

although surprising at first, indicates that the prediction is

actually better than the best found in the sample space. This

can occur because the best was not established by using an

exhaustive search of the entire space.



0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

Efficiency (relative to baseline)

%
 o

f 
p

h
a

s
e

s

33%

baseline

80%

... 32

(a) Baseline vs. Predicted

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
2

0
4

0
6

0
8

0
1

0
0

Efficiency (Relative to best found)

%
 o

f 
p

h
a

s
e

s

best

9%

0.74

50%

(b) Best vs. Predicted

Figure 7. Histograms showing the distribution of energy-efficiency values
for the 260 different phases extracted from SPEC 2000 when compared
to the baseline (a) and the best (b). In addition the ECDF (estimated
cumulative distribution function) is represented by the solid line. The values
are accumulated from the right.

We notice that 50% of the phases achieved at least 74%

of the efficiency of the best configuration. In other words, on

average, we expect our model to achieve 74% of the max-

imum available (confirming earlier results). Interestingly,

for about 9% of the phases, the predicted configuration

actually performs better than the best found using a thousand

samples. This provides evidence that our model can actually

predict very efficient parameters.

D. Architecture Configuration Variation

We now want to show how architectural configurations

affect the efficiency of the overall processor design. Due to

space considerations we only present results for three out of

the fourteen microarchitectural parameters.

Figure 8 shows the distribution of efficiency values for

our 260 phases as violin diagrams for the width, instruction

queue, and instruction cache. These graphs show what

happens when the considered parameter is fixed to a specific

value and all others are allowed to vary in order to find

the highest-efficiency configuration for each phase. This best

efficiency value is recorded on the graph for each phase and

the distribution of these values represented by the violin (the

thicker the violin, the more phases are concentrated around

Table IV
NUMBER OF SETS SAMPLED FOR EACH CACHE PER FEATURE TYPE.

Feature Type Insn. cache Data cache L2 cache

Set reuse distance 256 4 16
Blk reuse distance 16 128 32

that value). The % value on top, shows the percentage of

phases for which that fixed hardware parameter is best. For

instance, in the case of processor width (figure 8(a)), a width

of 2 is best in 22% of cases, while a width of 4 is best in

32% of cases.

By observing these graphs it is clear that there is no single

parameter value that is good for all phases. Considering the

issue queue for instance (figure 8(b)), we see that a size of

72 is only optimal for 34% of the phases. However, for 25%

of the phases, those below the quantile black line, this value

would mean that the best achievable would be 0.6 that of

the optimal (i.e., 40% less efficient). In addition we see that

the efficiency of some phases can drop to 0.3, the extreme

lower point of the violin’s distribution.

Looking at the instruction cache in figure 8(c) we see

that a small size (64 sets) is optimal for 28% of the phases.

It is also the value that gives the highest median (white

dot) at about 0.9 from the optimal. So if a designer was to

choose a static architecture, this could be a good candidate.

However, the smallest size is also the one that corresponds

to the lowest efficiency for some phases. We conclude that

there isn’t a one-fits-all approach and shows the challenges

in building predictors for microarchitectural adaptivity.

VIII. IMPLEMENTATION ANALYSIS

This section describes how our technique could be im-

plemented in an actual processor design. We have evaluated

the costs of gathering our hardware counters and performing

reconfiguration to demonstrate that our approach can be

implemented at low cost and with few overheads.

Gathering Hardware Counters: The construction of our

temporal histograms is the main overhead when gathering

our hardware counters. However, an efficient implementation

is feasible. Since the caches contain the most complex his-

tograms and consume the largest fraction of total processor

power, they represent an upper bound on the overheads

necessary to characterise program behaviour. The block and

set reuse histograms are the most costly to gather. For each

block the former requires two timestamps (to record the time

the block was brought into the cache and the last hit), and

a hit counter. The latter requires a hit counter per set.

We have used dynamic set sampling [27] to reduce the

number of sets and blocks that need monitoring in order to

build these histograms. We ran the profiling configuration

on all program phases and determined the optimum number

of sets that need to be sampled to maintain high prediction

accuracy. The results are shown in table IV. For example,



0
.2

0
.4

0
.6

0
.8

1
.0

2 4 6 8

Parameter value (fixed)

E
ff

ic
ie

n
c
y
 (

re
la

ti
ve

 t
o
 b

e
s
t 

fo
u
n
d
)

22% 32% 28% 18%

(a) Width

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

8 16 24 32 40 48 56 64 72 80

Parameter value (fixed)

E
ff

ic
ie

n
c
y
 (

re
la

ti
ve

 t
o
 b

e
s
t 

fo
u
n
d
)

1% 5% 2% 12% 5% 18% 10% 10% 34% 3%

(b) Issue Queue

0
.4

0
.6

0
.8

1
.0

64 128 256 512 1024

Parameter value (fixed)

E
ff

ic
ie

n
c
y
 (

re
la

ti
ve

 t
o
 b

e
s
t 

fo
u
n
d
)

28% 7% 27% 26% 12%

(c) Instruction Cache

Figure 8. Distribution of the highest energy-efficiency achievable for the 260 phases when the value of one parameter is fixed and the rest of the parameters
are allowed to vary. For each parameter’s value the white central dot represent the median efficiency value achievable in the phases and the black rectangle
shows the two quartiles, where 50% of the data lies. The % value on top, shows the percentage of phases for which that fixed hardware parameter is best.

Dynamic Static

o
ve

rh
e

a
d

 (
%

)

0
.0

0
.5

1
.0

1
.5

2
.0

Dynamic Static

o
ve

rh
e

a
d

 (
%

)

0
.0

0
.5

1
.0

1
.5

2
.0

Set reuse distance

Block reuse distance

ICache DDache UCache ICache DCache UCache

Figure 9. Energy overheads of extracting the set and block reuse distance
for each cache. The maximum overhead for the dynamic energy is 1.55%
in the case of the data cache when extracting the block reuse distance. For
the static energy, a maximum overhead of 1.4% is reached.

to gather the data cache’s set reuse distance histogram we

only need to sample four sets.

Figure 9 shows how this translates into energy overheads.

The maximum dynamic energy overhead is 1.6% when

extracting the block reuse histogram from the data cache,

which also incurs a leakage energy overhead of 1.4%.

However, these overheads are only required when running

the profiling configuration. We have verified experimen-

tally that reconfiguration occurs once every 10 intervals,

on average. Therefore, the overall overheads of gathering

these counters become almost insignificant. These results

show that gathering our hardware counters is cost-effective

considering the efficiency savings that our model achieves.

Resource Reconfiguration: Adaptation can be achieved

through the use of simple bitline segmentation of processor

structures [12], [13]. This allows partitions to be turned off in

isolation. We have modelled this within our simulator, allow-

ing a 200ns delay to power up 1.2 million transistors [28].

In addition, we have accurately modelled the delays required

to flush caches and stall the pipeline when resources need

reconfiguration. Table V shows the results.

We see that the branch predictor is the quickest to recon-

figure at 154 cycles whereas the L2 cache takes the longest

at almost 20,000 cycles. However, the majority of this time is

hidden as transistors can be powered up and down whilst the

resource is still being used. Our results shows that the overall

Table V
OVERHEADS OF RECONFIGURING EACH STRUCTURE IN CYCLES.

Processor structure Cycle overhead

Width 443

RF 487

Bpred 154

ROB 255

IQ / LSQ 234 / 275
ICache / DCache 478 / 620
UCache 18322

performance penalty when reconfiguration occurs is just 3%

for one interval and the energy overheads are also 3%.

However, since reconfiguration only occurs once every 10

intervals, the overheads for the whole phase are significantly

reduced. This shows that reconfiguring processor resources

can be achieved with very few overheads that are amortized

over the execution of the whole phase.

Model: Work by Jiménez and Lin [29] has shown

how to build a perceptron-based neural branch predictor.

At prediction time, our technique can be seen as a multi-

class generalisation of the perceptron. We can therefore

use a low-overhead version of their proposed circuit-level

implementation, since our approach does not need to be

trained online. This can be achieved, for example, by using

8bit signed integers for the weights (W). Since we have

approximately 2000 of these, this would require 2KB of

storage. Given that the model is only employed once every

10 intervals, on average, we estimate the runtime overheads

to be insignificant.

IX. PRIOR WORK ON MICROARCHITECTURAL

ADAPTIVITY

Recently, Lee and Brooks [1] showed that it is possible to

significantly increase processor energy efficiency by adapt-

ing it as a program is running. Our work takes this a step

further and shows that it is possible to build a model that

can automatically drive the adaptation process.

Adaptive Processor Structures: Many researchers have

examined how processor structures can be made adaptive.



The last column of table I summarises this information. In

particular the issue queue [2], [3], [11], [12], [13], [30], re-

order buffer [11], [12], register files [11], [12], pipeline [16],

[8] and caches [14], [30] have been studied.

Dhodapkar and Smith [31] focused on control mecha-

nisms by assessing the use of working set signatures to

detect changes in behaviour of the program. Liang, et. al.

and Tiwari, et. al. separately proposed variable latency

architectures where additional stages can be added to the

pipeline to combat process variations [17], [18].

However, these studies considered only a limited adap-

tivity scope and looked at each of the components of

the processor in isolation using control mechanisms based

on simple heuristics. More recently a table-driven tech-

nique [32] was proposed to reduce peak power in an adaptive

processor. In comparison, our work considers varying all

these parameters together and uses a machine learning model

to control the adaptation process.

Multicore Adaptivity: For multicore processors,

Mai et. al. illustrated an adaptive memory substrate and its

flexibility when implementing very different architectures

named “Smart Memories” [15]. Later Sankaralingam et. al.

proposed the TRIPS architecture [33], Ipek et. al. “Core

Fusion” [9] and Tarjan et al. “Core Federation” [10]. These

last two approaches merge simple cores together in order

to create a wide superscalar processor.

Software-Controlled Adaptivity: Several researchers

have looked at adaptivity control from the software side.

Hughes et. al. [8] looked at multimedia applications charac-

terised by repeated frame processing. Hsu and Kremer [34]

implemented a compiler algorithm that adapts the voltage

and frequency based on the characteristics of the code.

Later Wu et. al. [35] looked at adapting the voltage within

the context of a dynamic compilation framework which

can monitor and transform the program as it is running.

Huang et. al. [36] proposed using subroutines as a natural

way to decide when to reconfigure the processor. Finally

Isci et. al. [37] developed a real system framework that

predicts program phases on the fly to guide dynamic voltage

and frequency scaling.

Heuristic-Driven Schemes: Prior work [3] has also

considered controlling adaptivity by looking at hardware

counters extracted at runtime. However, they make use of

a heuristic for search at runtime whereas we directly predict

the best configuration using a machine learning model.

Furthermore, they only focus on three processor queues

whereas we consider 14 parameters at once.

Runtime Exploration: Other researchers looked at

learning the space at runtime [38], [39]. In our context it is

undesirable to perform any sort of runtime exploration since

this would inevitably result in visiting poorly-performing

configurations and reduce the overall efficiency.

Predictive Models: Recently, Ipek et. al. [5], Lee

and Brooks [7] and Joseph et al. [6] proposed predictive

modelling (i.e., machine learning) for architectural design

space exploration. These models predict the design space

of a whole program for various architecture configurations,

thus enabling the efficient exploration of large design spaces.

However, these are limited to whole program modelling and

must first be trained for each application needing prediction.

Furthermore, they are not directly usable within the context

of dynamic adaptation since they would require a search of

the design space at runtime.
Phase Detection: Phase detection techniques are at

the core of any dynamic adaptive system and have been

extensively studied previously. The work from Dhodapkar

and Smith [40] offers a good comparison between many

proposed techniques. There are a number of examples of

online phase detection techniques in the literature that rely

on basic block vectors [41], instruction working sets [31]

or conditional branch counts [14], for example. Wavelet

analysis has also gained some attention [42], [43].

X. CONCLUSION AND FUTURE DIRECTIONS

This paper has proposed a novel technique for dynamic

microprocessor adaptation that differs substantially from

prior work. We built a machine-learning model to predict

the best configuration that uses hardware counters collected

at runtime. We have introduced the notion of a temporal

histogram and shown that our model is able to perform

much better using these than conventional performance

counters. By using our model to drive adaptivity we were

able to double the energy-efficiency over the best overall

static configuration. This represents 74% of the best that

achievable within our sampled space.

In this work we have assumed a fixed profiling period

and that all resources are adapted at the same time. Given a

hardware substrate capable of reconfiguring itself at different

frequencies for each resource, the challenge will be to find

the degree of adaptation suitable for each hardware structure.

Finally, this paper has targeted a uniprocessor design.

However, the technique presented can be directly applicable

in the context of a multicore processor. If each of the cores

could implement our scheme and dynamic adapt to their own

workloads, this would lead to true heterogeneity; the key to

high energy-efficiency. In this scenario a possible extension

to this work could be to look at the implications of resource

sharing when driving adaptivity.

ACKNOWLEDGEMENTS

This work was supported by the Royal Academy of

Engineering and EPSRC. It has made use of the resources

provided by the Edinburgh Compute and Data Facility

(ECDF). (http://www.ecdf.ed.ac.uk/). The ECDF is partially

supported by the eDIKT initiative (http://www.edikt.org.uk).

NICTA is funded by the Australian Government as repre-

sented by the Department of Broadband, Communications

and the Digital Economy and the Australian Research Coun-

cil through the ICT Centre of Excellence program.



REFERENCES

[1] B. Lee and D. Brooks, “Efficiency trends and limits from
comprehensive microarchitectural adaptivity,” in ASPLOS,
2008.

[2] D. Folegnani and A. Gonzalez, “Energy-effective issue logic,”
in ISCA, 2001.

[3] D. Ponomarev, G. Kucuk, and K. Ghose, “Reducing power
requirements of instruction scheduling through dynamic allo-
cation of multiple datapath resources,” in MICRO, 2001.

[4] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural
design space exploration using an architecture-centric ap-
proach,” in MICRO, 2007.

[5] E.Ipek, S.A.McKee, B. de Supinski, M. Schulz, and R. Caru-
ana, “Efficiently exploring architectural design spaces via
predictive modeling,” in ASPLOS, 2006.

[6] P. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A pre-
dictive performance model for superscalar processors,” in
MICRO, 2006.

[7] B. Lee and D. Brooks, “Accurate and efficient regression
modeling for microarchitectural performance and power pre-
diction,” in ASPLOS, 2006.

[8] C. Hughes, J. Srinivasan, and S. Adve, “Saving energy
with architectural and frequency adaptations for multimedia
applications,” in MICRO, 2001.

[9] E. Ipek, M. Kirman, N. Kirman, and J. Martinez, “Core
fusion: Accommodating software diversity in chip multipro-
cessors,” in ISCA, 2007.

[10] D. Tarjan, M. Boyer, and K. Skadron, “Federation: Repurpos-
ing scalar cores for out-of-order instruction issue,” in DAC,
2008.

[11] J. Abella and A. González, “On reducing register pressure
and energy in multiple-banked register files,” in ICCD, 2003.

[12] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H.
Albonesi, S. Dwarkadas, G. Semerano, G. Magklis, and M. L.
Scott, “Integrating adaptive on-chip storage structures for
reduced dynamic power,” University of Rochester, Tech. Rep.,
2002.

[13] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks,
P. Bose, and P. Cook, “A circuit level implementation of an
adaptive issue queue for power-aware microprocessors,” in
GLSVLSI, 2001.

[14] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory hierarchy reconfiguration for energy
and performance in general-purpose processor architectures,”
in MICRO, 2000.

[15] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz, “Smart memories: A modular reconfigurable
architecture,” in ISCA, 2000.

[16] A. Efthymiou and J. Garside, “Adaptive pipeline structures
for speculation control,” in ASYNC, May 2003.

[17] X. Liang, G.-Y. Wei, and D. Brooks, “Revival: Variation
tolerant architecture using voltage interpolation and variable
latency,” in ISCA, 2008.

[18] A. Tiwari, S. Sarangi, and J. Torrellas, “Recycle: Pipeline
adaptation to tolerate process variation,” in ISCA, 2007.

[19] K. Beyls and E. H. D’Hollander, “Reuse distance as a metric
for cache behavior,” in PDCS, 2001.

[20] C. Ding and Y. Zhong, “Predicting whole-program locality
through reuse distance analysis,” in PLDI, 2003.

[21] C. M. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New
York, Inc., 2006.

[22] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions,” in ISCA, 2000.

[23] D. Burger and T. Austin, “The simplescalar tool set, version
2.0.” University of Wisconsin, Tech. Rep. TR-1342, 1997.

[24] D. Tarjan, S. Thoziyoor, and N. P. Jouppi, “Cacti 4.0,” HP
Laboratories Palo Alto, Tech. Rep. HPL-2006-86, 2006.

[25] J. Henning, “Spec cpu2000: Measuring cpu performance in
the new millenium,” IEEE Computer, 2000.

[26] A. Hartstein and T. R. Puzak, “Optimum power/performance
pipeline depth,” in MICRO, 2003.

[27] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A
case for mlp-aware cache replacement,” in ISCA, 2006.

[28] P. Royannez, H. Mair, F. Dahan, M. Wagner, M. Streeter,
L. Bouetel, J. Blasquez, H. Clasen, G. Semino, J. Dong,
D. Scott, B. Pitts, C. Raibaut, and U. Ko, “90nm low leakage
soc design techniques for wireless applications,” in ISSCC,
2005.

[29] D. A. Jiménez and C. Lin, “Neural methods for dynamic
branch prediction,” ACM Trans. on Computer Systems,
vol. 20, 2002.

[30] D. Albonesi, “Dynamic ipc/clock rate optimization,” in ISCA,
1998.

[31] A. Dhodapkar and J. Smith, “Managing multi-configuration
hardware via dynamic working set analysis,” in ISCA, 2002.

[32] V. Kontorinis, A. Shayan, D. M. Tullsen, and R. Kumar,
“Reducing peak power with a table-driven adaptive processor
core,” in Micro, 2009.

[33] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore, “Exploiting
ilp, tlp, and dlp with the polymorphous trips architecture,”
in ISCA, 2003.

[34] C.-H. Hsu and U. Kremer, “The design, implementation, and
evaluation of a compiler algorithm for cpu energy reduction,”
in PLDI, 2003.

[35] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors,
Y. Wu, J. Lee, and D. Brooks, “A dynamic compilation
framework for controlling microprocessor energy and perfor-
mance,” in MICRO, 2005.

[36] M. Huang, J. Renau, and J. Torrellas, “Positional adaptation of
processors: Application to energy reduction,” in ISCA, 2003.

[37] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management,” in MICRO, 2006.

[38] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated man-
agement of multiple interacting resources in chip multipro-
cessors: A machine learning approach,” in MICRO, 2008.

[39] S. Choi and D. Yeung, “Learning-based smt processor re-
source distribution via hill-climbing,” in ISCA, 2006.

[40] A. S. Dhodapkar and J. E. Smith, “Comparing program phase
detection techniques,” in MICRO, 2003.

[41] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and
prediction,” in ISCA, 2003.

[42] C.-B. Cho, W. Zhang, and T. Li, “Informed microarchitec-
ture design space exploration using workload dynamics,” in
MICRO, 2007.

[43] X. Shen, Y. Zhong, and C. Ding, “Locality phase prediction,”
in ASPLOS, 2004.


