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Abstract—High-performance security guarantees rely on hardware
support. Generic programmable support for fine-grained instruction
analysis has gained broad interest in the literature as a fundamental build-
ing block for the security of future processors. Yet, implementation in real
out-of-order (OoO) superscalar processors presents tough challenges that
cannot be explored in highly abstract simulators. We detail the challenges
of implementing complex programmable pathways without critical paths
or contention. We then introduce FireGuard, the first implementation
of fine-grained instruction analysis on a real OoO superscalar processor.
We establish an end-to-end system, including microarchitecture, SoC, ISA
and programming model. Experiments show that our solution simultane-
ously ensures both security and performance of the system, with parallel
scalability. We examine the feasibility of building FireGuard into modern
SoCs: Apple’s M1-Pro, Huawei’s Kirin-960, and Intel’s i7-12700F, where
less than 1% silicon area is introduced. The Repo. of FireGuard’s source
code: https://github.com/SEU-ACAL/reproduce-FireGuard-DAC-25.

I. INTRODUCTION

With ever-growing computation capacity, modern systems increas-
ingly execute applications on shared platforms [1], [2]. The latest in-
vehicle information systems from BYD, the world’s largest EV man-
ufacturer [3], allow installation and execution of less-verified third-
party workloads with life-critical workloads, threatening system-wide
safety and trustworthiness [4], [5]. Similarly, Android phones allow
untrustworthy applications to coexist with security-critical banking
software [6]. Modern systems thus need the ability to analyze, detect
and mitigate vulnerabilities in an always-on and comprehensive way.
Existing work. Always-on, comprehensive security analysis relies
on hardware support [7]–[16]. Current implementations, e.g., Arm’s
MTE [7] and BTI [17], and Intel’s LAM [18] and CET [19], have
very limited flexibility, allowing an attacker to bypass them by simply
shifting their targets. Also, deployment against the latest threats
requires lengthy development, leading to long vulnerability windows.

Hardware-assisted fine-grained instruction analysis [20]–[24]
presents a new paradigm, adding observation channels into cores to
filter and analyze execution (e.g., committed instructions, memory
accesses and function calls), in programmable analysis engines, (e.g.,
microcontrollers, accelerators or FPGAs). Through reconfigurability
and parallelism, they can adapt to cover a wide range of attacks.
Challenges. Existing efforts have been conducted through software
simulation [21], [22], [24] or on simple in-order processors [23], [25].
They do not show how to build analysis into real OoO superscalar
cores, or consider whether this is possible without a full overhaul of
core design or at palatable overhead. When we tried to build such a
mechanism into a real core, we hit bottlenecks and contention at every
stage of the processing pipeline, from data collection and filtering to
distribution and analysis. Typical programming models [21] require
full generality: any and all instructions can be monitored simultane-
ously, with any and all data selected from them, and sent to multiple
analyses at once. Inside the core, such data must be collected in
a narrow time window, at commit-time rather than execute-time to
reflect ordering, but before the data is overwritten. While data can
be filtered down if it is irrelevant for currently running analyses, if
every instruction could be monitored, the mechanism that decides
which instructions are processed must be highly parallel and high
throughput to avoid back-pressure slowing down the core. Even when
data volume has been reduced using filtering, the generality required
of distribution made it a challenge for us to send data to multiple
analysis engines at once without unscaleable broadcast.

Contributions. We introduce the first microarchitecture for hardware-
assisted fine-grained instruction analysis, FireGuard, implemented in
RISC-V BOOM [26]. To this end, we present:
• a buffer-free data-forwarding channel by inserting bypass circuits

at key locations within the main core, giving fine-grained visibility
of execution without significant microarchitectural invasion;

• a superscalar event filter, utilizing a fleet of SRAM-based mini-
filters to handle commit of arbitrary instruction types at the same
width as the core, shrinking the content volume for later analysis
and preventing extra performance degradation.

• broadcast-free communication channels, partitioning a task mapper
into a distributed fabric network and a scalable allocator. The
former enables independent data paths per transaction, while the
latter uses multiple Scheduling Engines to simultaneously route
data to all interested engines;

• a microarchitecture-assisted programming model for analysis en-
gines, with optimizations across the hardware-software stack via
new queue-communication instructions, a novel tightly coupled
ISA extension (ISAX) interface to minimize data hazards, and
unrolling-aware custom instructions.
We implement FireGuard in Chisel, deploying on Virtex Ultra-

Scale+ FPGAs using FireSim [27]. We boot full Linux and de-
ploy different workloads with various security schemes: a Custom
Performance Counter (PMC) [21], a shadow stack [28], Address-
Sanitizer [29], and Use-after-Free (UaF) detection [30]. The results
show that employing four analysis engines is sufficient for running
a PMC with 2.5% performance overhead, a shadow stack with
2.1% overhead, AddressSanitizer with 39% overhead (reducing to
6% with 12 engines), and UaF detection with 42% overhead (16%
with 12 engines). Overhead can be completely removed by further
integrating hardware accelerators. We evaluate the feasibility of
building FireGuard into modern SoCs: M1-Pro, Kirin-960 and i7-
12700F, where less than 1% silicon area is required.

II. FINE-GRAINED INSTRUCTION ANALYSIS

Although studies on fine-grained instruction analysis converge on
the same top-level idea, the architecture and APIs across them slightly
differ. We adopt the Guardian Council [21] as a generalized example,
build FireGuard upon it and discuss the feasibility of the others.
The Guardian Council. The architecture features a generic frontend
that can analyze any instruction type. It inserts a data-forwarding
channel into the compute core’s commit stage, collecting data
(e.g., opcode, operands) from program execution. An event filter per-
forms a pre-check on all observed data, selecting relevant information
(dependent on the analyses being run) and sending it to the analysis
engines through a mapper. The mapper chooses the target according
to which analyses (guardian kernels) are running on each analysis
engine. Using the passed information, the engines run guardian
kernels in parallel, validating security and finding vulnerabilities.
The other architectures. The key difference between the Guardian
Council and similar mechanisms [22]–[24] is the analysis engines in
the backend. It deploys a sea of microcontroller-sized cores (µcores)
to run user-programmable validations (running on conventional main
cores) in parallel. This allows for highly efficient, updateable and
upgradeable analysis, by exploiting parallelism within validation tasks
and between multiple independent tasks at once, and makes use of
the fact that µcores consume significantly less hardware, by multiple
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Fig. 1: Overview of FireGuard (Mini-F: Mini-Filter; GID: Group Index1; HA: Hardware Accelerator; SE: Scheduling Engine): a buffer-free
data-forwarding channel extracts the main core’s execution events; b a superscalar filter pre-checks extracted events, identifying relevant
instructions and selecting channels for analysis; c an allocator associates an SE to each kernel to distribute contents, and d a distributed
fabric network transmits contents to the µcores or HAs; e kernels running on µcores or HAs fetch contents and validate their security.

orders of magnitude, compared to OoO superscalar main cores, which
must achieve high single-threaded performance unnecessary for a
µcore. Deploying to an FPGA [23] or to multiple large analysis
engines [22], [24] involves similar challenges of distribution.

III. FIREGUARD
We show the concept of fine-grained instruction analysis is feasible

by building a real system (FireGuard) upon the the Guardian Council
architecture. Figure 1 fleshes out the data-forwarding channel, filter,
mapper and analysis engines, with a careful redesign allowing prac-
tical implementation that can handle generality at each stage2.

To do so, we integrate simple read-only bypass circuits at various
locations within the main core (figure 1 a ) to extract data while
avoiding new buffers between execute and commit. These forward
on debug data associated with committed instructions for detailed
analysis. Since the design only involves minor microarchitectural
changes to the main core via adding read-only interfaces, it keeps in-
vasion into the main core low and avoids adding significant hardware
overhead. With that, we deploy a superscalar set of SRAM-based
mini-filters to handle high commit widths in parallel (figure 1 b ).
It can be programmed to be sensitive to any arbitrary group of
instructions, and guarantees that filtering can be completed while
the data is still available in the core. To timely deliver the data to
the analysis engines, we divide the mapper into a scalable allocator
(figure 1 c ) and a distributed fabric network (figure 1 d ). The
allocator associates a Scheduling Engine (SE) to each guardian kernel
to independently transmit contents while avoiding broadcast, while
the fabric network establishes dedicated paths for filtered contents and
inter-checker communication to mitigate contention. In each analysis
engine, we develop a data-hazard-aware ISAX interface (figure 1 e )
and integrate it into the Memory Access (MA) stage of the µcore’s
pipeline, connecting its message queues. This allows us to develop
drivers and programming models for guardian kernels, including
instructions designed for efficient, hazard-minimizing design patterns.
A. Data-forwarding channel

The data-forwarding channel is deployed at the main core’s commit
stage, extracting, selecting, and transporting debug data associated

2We partition the microarchitecture into two clock domains. The main
core, along with its associated modules (e.g., L1-cache), the data-forwarding
channel, the filter, and the allocator, are within a high-frequency domain driven
by a fast clock source. This avoids any resulting slowdown caused by data-
forwarding, filtering, and allocating activities. The more parallel µcores and
fabric network are within a low-frequency domain driven by a slower clock
source, with handshake-based clock-domain crossing. This ensures energy
efficiency and prevents the simple µcores from becoming the critical path.
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Fig. 2: Data-forwarding channel, using PRFs as an example (blue
lines: data-forwarding paths; red lines: filtering paths; gray lines:
control paths; DP Sel: Data Path Selection): a commit paths from
the ROB are hooked, forwarding retired instructions to mini-filters
and storing the PRF access addresses in temporary registers; b mini-
filters pre-check the forwarded instructions, sending control signals
to PRF controllers when PRF data is selected; c the data-forwarding
channel preempts the controllers and feeds the addresses temporarily
stored; d the read data is routed back for in-depth analysis.

with every retired instruction. Since the relevant data is already stored
in different locations within the main core, we design a buffer-free im-
plementation (i.e., adding no new intermediate storage between out-
of-order execute and in-order commit), by inserting bypass circuits
at the Reorder Buffer (ROB), Physical Register Files (PRFs), Load
Store Queue (LSQ), and Fetch Target Queue (FTQ). This transports
PC address, instruction data, operand data, and memory and jump
addresses during commit for any instruction selected by the filter,
avoiding reads of information not selected. These points cover all
locations that store outputs of arithmetic-logic units, enabling fine-
grained visibility with minimal contention.
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PRF Example. Figure 2 shows the microarchitecture using PRFs
as an example, connecting the ROB, filter, and PRFs. On the ROB
side, we add logic to hook onto each commit, transmitting the retired
instructions to the mini-filters, as well as address registers storing the
PRF indices accessed by each instruction (figure 2 a ). In the cycle
following retirement, the mini-filters identify Group Indexes (GIDs)
of the transmitted instructions and select data based on programmed
settings (section III-B). If the PRF data is selected, a control signal
is routed back, preempting the PRF controller (figure 2 b ).

The PRF’s read controllers are statically multiplexed (figure 2 c )
between the issue queue (for executing instructions) and the mini-
filters. Mini-Filter[x] has priority access to Read Ctrl[x] should it
require it, to allow the data to be read and transported immediately
(figure 2 d ), avoiding any buffering or delays in freeing the physical
register. This means that an instruction attempting to use the same
port will be delayed until the next cycle, resulting in contention3.

B. Event Filter
The event filter pre-checks all retired instructions. If instructions

are selected for analysis, it returns their Group Indexes (GIDs) for the
mapper and programs the data-forwarding channel to select data. We
give a superscalar implementation that enables simultaneous filtering
of all instructions, ensuring the filter keeps up with the main core.

Figure 1 b shows its design, including a set of mini-filters, FIFO
queues, and an arbiter. A mini-filter is connected to each superscalar
commit path of the ROB. Each is indexed by the instruction opcode
from the data-forwarding channel, and returns programmed GIDs and
selects debug data from the chosen channel for instructions analyzed.
Filtered contents are buffered into paired FIFO queues, allowing a
shared arbiter to arrange the output into sequence.

P[0].1

P[0].2

P[2].1

P[3].2P[1].2

(a) Paired FIFO queues. 

01233347374137

G_IDInstPC AddrDebug_Data

(b) Encapsulation format

P[0].1P[2].1P[0].2P[1].2P[3].2

(c) Transmission ordering Cycles

Committed at the same cycle

FIFO[0] FIFO[1] FIFO[2] FIFO[3]

Fig. 4: Reordering with 4-width FIFOs. P[x].y: yth packet in FIFO[x].

Mini-filters. Mini-filters use a SRAM-based look-up table (figure 3).
The address (10-bit) is an index formed of the concatenated RISC-
V opcode (lower 7 bits) and function code (higher 3 bits) for all

3In LDQ, STQ, and FTQ, similar microarchitectures are deployed to obtain
memory access or jump addresses. Unlike PRFs, where forwarded data can
be stored at arbitrary addresses, the tops of these queues consistently hold the
data associated with the most recently retired instructions. When a mini-filter
decides to forward a load, store, or jump address, the bypass circuits directly
transmit from the relevant queue’s top, avoiding contention.
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Fig. 5: Allocator microarchitecture. 3 GIDs and 4 SEs allocate
contents to 16 engines (gray lines: control paths).

possible instructions, and stores the mapper’s GID and the desired
data paths (PRF, LSQ and/or FTQ) for each instruction. For instance,
0x03 and 0x23 index RISC-V lb and sb, respectively. We route the
instructions’ opcodes and function codes to the address port of the
SRAM’s read interface, and direct the read data to the data-forwarding
channels and the mapper, assisting in data selection and allocation4.
C. Mapper

The mapper routes filtered packets to engines based on configured
parallelization policies, and also enables data exchange between the
analysis engines, fostering complex parallelism schemes for guardian
kernels. It is fully programmable, allowing any instruction to flow to
all interested guardian kernels and be scheduled to an analysis engine
core for each. Figure 1 c and d illustrate the microarchitecture of
the mapper, which we partition into a scalable allocator followed
by a distributed fabric network. The mapper transitions FireGuard’s
processing from superscalar to scalar: unlike the filter, it only han-
dles one packet per cycle. This rarely impedes a 4-wide BOOM’s
performance (we saw less than 0.5% slowdown)5.
Allocator. The allocator uses a 2-level indirection bitmap to allocate
packets across the analysis engines. Figure 5 shows the allocator,
including a distributor and a set of Scheduling Engines (SEs). The
distributor manages a bitmap between GIDs and SEs, deciding which
SE(s) should be activated during packet transmission. SEs are one-
to-one associated to a guardian kernel, and each maintains another
bitmap between itself and analysis engines, allocating filtered packets
to groups of analysis engines executing one guardian kernel.

In the distributor, an SE Bitmap register is assigned to each
GID, and individual register bits are used to index the SEs that are
interested in that specific GID. For instance, if packets with GID 3
should be sent to SE 0, bit 0 in SE Bitmap[3] is set (figure 5 a ).
SEs use a scheduling circuit, two scheduling registers (PT reg and
CT reg), and an AE Bitmap (Analysis Engine Bitmap) register. The
scheduling circuit implements several policies, e.g., fixed, round-
robin, and block mode [21], where the latter is used to send all
messages to one µcore until it is full before moving to the next,
for when message locality is important, e.g., shadow stack. When
the scheduling circuit is activated, the PT reg (previous target) is

4We place a pair of FIFO queues to connect the mini-filters, buffering the
filtered contents (figure 4(a)). Although these filtered contents are produced by
the mini-filters in parallel, they must be sent sequentially, aligning with their
commit order, since analyses can be sensitive to program order (e.g., shadow
stack [28]). We encapsulate filtered contents to achieve this (figure 4(b)). If an
instruction is discarded, an invalid packet is generated and also pushed into
the FIFO queue in order to preserve ordering at the end of the FIFO. The
arbiter uses a finite state machine to transmit packets (figure 4(c)) in-order,
consuming one clock cycle for a valid packet while skipping invalid packets.

5Even so, a superscalar mapper could be considered for a more powerful
core. To achieve this, modifications are necessary for both the fabric and
allocator, including duplicating communication channels and SEs. Extra
arbiters must be deployed to manage contention, e.g., when multiple packets
are sent to the same security engine.
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Instruction Target
Queue Descriptions

count rd, rs1
Input/
Output

Count number of packets buffered in
message queue rs1, returning it to rd.

top rd, rs1 Input Return bitfields [rs1+63:rs1] of the
first element to rd.

pop rd, rs1 Input Remove the first element and return
its bitfields [rs1+63:rs1] to rd.

recent rd, rs1 Input Return bitfields [rs1+63:rs1] of the
most recently removed element to rd.

push rs1 Output Push packet rs1 for transmission.

TABLE I: Main control instructions for the message queues.

used to generate the current target, buffered in CT reg until it is
moved to the PT reg after packet transmission. The CT reg value
sets the relevant target bit in the SE’s AE Bitmap (figure 5 b ). The
AE Bitmaps returned by all SEs are combined using OR gates to
form the decision, selectively broadcasting to the analysis engines.
Fabric network. The fabric network features a half-duplex multicast
(1-to-N) channel and a full-duplex routing (N-to-N) channel. The
multicast channel selectively broadcasts packets, while the routing
channel allows the checkers to transmit packets among themselves.

The multicast channel uses multiplexers to direct packets from
the event filter to the message queues in the analysis engines. All
multiplexers are controlled by the allocator, regulating transmission
and masking of each packet. The routing channel uses a Manhattan
grid [31]–[34] Network-on-Chip (NoC) mesh. Each router has five
bi-directional ports, connected to other routers located to its north,
south, east, and west, as well as to an analysis engine.

D. ISA and Programming Model
The analysis engines run guardian kernels concurrently on µcores,

finding vulnerabilities. To handle the frequent hardware-software
interactions, we use a FIFO-based programming model implemented
into RISC-V Rocket cores via custom instructions. As these instruc-
tions take up a large fraction of total µcore cycles, we integrate FIFO-
management instructions using a new tight-coupling arrangement;
Rocket’s existing ISAX interface, which executes custom instructions
post-commit, caused too many data hazards. We also redesign our
instruction set to better support high-throughput programming design
patterns that minimize hazards further.
ISA. We connect the message queues to the fabric network in the
mapper, allowing the µcore to receive packets via an input queue and
send packets through an output queue, in order to support pipelined
parallelism strategies such as used in the shadow stack [21]. Our

Main core
Core 4-Width, out-of-order SonicBOOM [26], @3.2GHz

Pipeline
128-Entry ROB, 96-Entry IQ, 32-entry LDQ/STQ,
128 Int/FP Phy Registers, 2 Int ALUs, 1 FP/Multi/Div
ALU, 2 MEM, 1 Jump Unit, 1 CSR Unit

Branch
Predictor

TAGE algorithm, 256-entry BTB, 32-entry RAS,
6 TAGE table with 2 - 64 bits history

Memory
L1 ICache 32KB, 8-way, 8 MSHRs
L1 DCache 32KB, 8-way, 8 MSHRs
L2 Cache 512KB, 8-way, 12 MSHRs
LLC 4MB, 8-way, 8 MSHRs
Memory 16 GB DDR3 @1066MHz, max 32 requests

FireGuard and Interconnects
Event Filter 4-width, 16-entry FIFO
Mapper 4 SEs, 8-entry CDC, fabric @1.6GHz

Analysis Engine In-order Rocket µcore [35], 5-stage pipeline, @1.6GHz,
32-entry message queues, no FPU

L1 Cache 4KB, 2-way for both I- and D-Cache
Interconnect Memory bus @ 1GHz, others @ 3.2GHz

TABLE II: Hardware configurations evaluated.

queue controller, with status registers and software drivers, allows
guardian kernels to manage the message queues using ISAX [35]
custom instructions (see table I). Top, push and pop were inherited
from the original design [21]; count was added to aid in loop
unrolling, and recent to allow accessing extra information about
an element already processed: for example, the PC is only needed on
a detected error in AddressSanitizer, and is discarded otherwise.
Microarchitecture Support. RISC-V Rocket runs custom instruc-
tions post-commit [35]. The routing to the ISAX peripheral blocks
the core for at least 3 cycles for each instruction and can extend up
to 13 cycles in the presence of data hazards and contention [36]. This
causes data hazards and large slowdowns when such instructions are
as commonly used as our queue operations. We redesigned Rocket’s
interface to move it into the MA stage6 of the pipeline (figure 6),
multiplexing between the ISAX unit and the load-store unit.

IV. EVALUATION

Experimental Setup To comprehensively evaluate the feasibility of
FireGuard, we built FireGuard into RISC-V cores. BOOM main cores
were augmented with data-forwarding channels, filters, and mappers;
Rocket µcores were configured as security engines, running different
safeguards, i.e., kernels. We implemented the microarchitecture with

6The MA stage was chosen as it is the first stage in the pipeline that is
non-speculative, simplifying the implementation of the state-destructive pop
but otherwise minimizing hazards, such that only one bubble is required for an
instruction immediately following the custom instruction that uses its output.
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Fig. 7: Performance results for FireGuard (4 µcores or 1 HA for each kernel) running Parsec with different/combined safeguards (AS:
AddressSanitizer; SS: Shadow Stack; in (b), SS is implemented as a HA when three guardian kernels are deployed).
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Chisel (v3.4) and synthesized the RTL using Vivado toolchains
(v2021.2). The generated netlist was deployed on Virtex UltraScale+
FPGAs using FireSim [27], [37], emulating the setup in table II.

We booted Linux (with kernel v5.7.0) and executed Parsec [38],
running the simmedium dataset with kernels: Custom Performance
Counter with bounds check (PMC) [21], AddressSanitizer [29], Use-
after-Free detector (UaF)7 and shadow stack [28], [39].

A. Performance Overhead

Figure 7(a) shows the slowdown experienced by the main core
while executing kernels in FireGuard, in comparison to software-
based counterparts (implemented via LLVM). In all instances, Fire-
Guard is configured with four µcores. Hardware Accelerators (HAs)
within FireGuard are also presented for PMC and shadow stack.

Using 4 µcores is sufficient to run a PMC with overheads of 2.5%
geomean, shadow stack at 2.1%, AddressSanitizer at 39%, or UaF
at 42%. By replacing the µcores with a single HA, the overhead of
PMC and shadow stack can be reduced to 0%. Software techniques
give 7.9% overhead for shadow stack, and 163.5% for AArch64
and 91.5% for x86-64 architectures on AddressSanitizer8. FireGuard
consistently outperforms software techniques, with the exception of
x264 with AddressSanitizer, and Dedup on UaF. The former is due to
the exceptionally high volume of load and store instructions executed
in x264, where four µcores fail to keep up to such a degree that
sharing compute resources with the compute core, as in software
schemes, is favorable (though FireGuard can do better with more
µcores, see section IV-D). The latter is caused by DangSan [40] being
more suited to dedup’s allocation patterns than our UaF detector’s
underlying Minesweeper [30], where DangSan itself on FireGuard
would give false negatives, as it relies on zeroing pointers, which
may occur only after the UaF access if offloaded to a µcore.
Combining kernels. Figure 7(b) reports the slowdown experienced
by the main core while executing multiple kernels simultaneously.
The kernel that incurs the most slowdown dominates the performance,
but slowdowns are not multiplied. This is benefited from the parallel
execution of the kernels. When one kernel halts the execution of the

7Our design takes MineSweeper [30] and uses analysis engines to find loads
and stores to quarantined regions, to find as well as prevent bugs.

8AddressSanitizer is not supported for RISC-V in either GCC or LLVM, so
the comparison focuses on AArch64 and x86-64. For shadow stack, support
is absent for both RISC-V and x86-64, so we compare against AArch64.
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Fig. 9: Cumulative bottlenecks v.s. filter widths (on 4-µcore Sani-
tizer), measured by the proportion of time queues are full.

main core, decreasing the number of instructions, other kernels can
persist in their function with reduced computational overhead.
B. Detection Latency

To examine the detection latency, we inject erroneous input at
various locations in the core, e.g., the jump unit, the LDQ and the
STQ, etc, simulating e.g., jump to a hijacked PC and access a freed
memory address. For each workload, 50–100 attacks are generated,
and the detection latencies are shown in figure 8. PMC experiences
the lowest detection latency, consistently detecting attacks under 50
ns. Due to its complex block parallelism model [21], the shadow
stack sees marginally higher latencies than PMC. In the worst-case
scenario (x264), a latency of 220ns is observed. For AddressSanitizer,
though the median is always <200ns, the tail exceeds 2,000nsThis
occurs when TLB and cache misses co-occur on many accesses in the
same queue: our accurate modeling of TLB misses in FireSim causes
worst-case delays to be higher than in the original work [21]. As with
the Guardian Council [21], we mitigate security concerns by ensuring
that the guardian kernels cannot be terminated or reconfigured, and
system calls not be executed, until no in-flight checks remain.
C. Analysis of Microarchitecture Bottlenecks

Figure 9 decomposes overheads in a 4-µcore FireGuard when
running AddressSanitizer using varying event-filter widths (1, 2, or
4), highlighting the accumulated bottlenecks stemming from different
elements. A 4-width event filter is as wide as the core’s commit,
so can always keep up. As the width decreases, overhead increases
significantly, from 16% at 2-width to 34% at 1-width. The geomean
overhead from the filter jumps from 16% (2-width) to 34% (1-width).
D. Analysis of Scalability

Figure 10 shows the slowdown with varying µcore count.
PMC. Figure 10(a) shows that using two µcores to perform PMC
leads to a 20% geomean slowdown. Four µcores reduce this to 2%;
yet, x264 still has a 17% slowdown. When scaling the µcores number
to six, all workloads can be run with an overhead of less than 5%.
Shadow stack. Figure 10(b) shows that using two µcores for exe-
cuting shadow stack leads to 7.3% slowdown (geomean), which is
comparable to the performance of LLVM’s software mechanism. With
four µcores, the geomean overhead is reduced to 2.1%, decreasing
to 0.4% when using six µcores. With six µcores, all workloads can
be executed with <1% slowdown, except fluidanimate (1.8%).
AddressSanitizer. Figure 10(c) is heavier than (a) or (b). Using
two µcores results in 86% overhead, still outperforming software

Fig. 8: Detection latency while using 4 µcores (unit: ns).

Chisel (v3.4) and synthesized the RTL using Vivado toolchains
(v2021.2). The generated netlist was deployed on Virtex UltraScale+
FPGAs using FireSim [27], [37], emulating the setup in table II.

We booted Linux (with kernel v5.7.0) and executed Parsec [38],
running the simmedium dataset with kernels: Custom Performance
Counter with bounds check (PMC) [21], AddressSanitizer [29], Use-
after-Free detector (UaF)7 and shadow stack [28], [39].

A. Performance Overhead

Figure 7(a) shows the slowdown experienced by the main core
while executing kernels in FireGuard, in comparison to software-
based counterparts (implemented via LLVM). In all instances, Fire-
Guard is configured with four µcores. Hardware Accelerators (HAs)
within FireGuard are also presented for PMC and shadow stack.

Using 4 µcores is sufficient to run a PMC with overheads of 2.5%
geomean, shadow stack at 2.1%, AddressSanitizer at 39%, or UaF
at 42%. By replacing the µcores with a single HA, the overhead of
PMC and shadow stack can be reduced to 0%. Software techniques
give 7.9% overhead for shadow stack, and 163.5% for AArch64
and 91.5% for x86-64 architectures on AddressSanitizer8. FireGuard
consistently outperforms software techniques, with the exception of
x264 with AddressSanitizer, and Dedup on UaF. The former is due to
the exceptionally high volume of load and store instructions executed
in x264, where four µcores fail to keep up to such a degree that
sharing compute resources with the compute core, as in software
schemes, is favorable (though FireGuard can do better with more
µcores, see section IV-D). The latter is caused by DangSan [40] being
more suited to dedup’s allocation patterns than our UaF detector’s
underlying Minesweeper [30], where DangSan itself on FireGuard
would give false negatives, as it relies on zeroing pointers, which
may occur only after the UaF access if offloaded to a µcore.
Combining kernels. Figure 7(b) reports the slowdown experienced
by the main core while executing multiple kernels simultaneously.
The kernel that incurs the most slowdown dominates the performance,
but slowdowns are not multiplied. This is benefited from the parallel
execution of the kernels. When one kernel halts the execution of the

7Our design takes MineSweeper [30] and uses analysis engines to find loads
and stores to quarantined regions, to find as well as prevent bugs.

8AddressSanitizer is not supported for RISC-V in either GCC or LLVM, so
the comparison focuses on AArch64 and x86-64. For shadow stack, support
is absent for both RISC-V and x86-64, so we compare against AArch64.
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Fig. 7: Performance results for FireGuard (4 µcores or 1 HA for each kernel) running Parsec with different/combined safeguards (AS:
AddressSanitizer; SS: Shadow Stack; in (b), SS is implemented as a HA when three guardian kernels are deployed).
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Chisel (v3.4) and synthesized the RTL using Vivado toolchains
(v2021.2). The generated netlist was deployed on Virtex UltraScale+
FPGAs using FireSim [27], [37], emulating the setup in table II.

We booted Linux (with kernel v5.7.0) and executed Parsec [38],
running the simmedium dataset with kernels: Custom Performance
Counter with bounds check (PMC) [21], AddressSanitizer [29], Use-
after-Free detector (UaF)7 and shadow stack [28], [39].

A. Performance Overhead

Figure 7(a) shows the slowdown experienced by the main core
while executing kernels in FireGuard, in comparison to software-
based counterparts (implemented via LLVM). In all instances, Fire-
Guard is configured with four µcores. Hardware Accelerators (HAs)
within FireGuard are also presented for PMC and shadow stack.

Using 4 µcores is sufficient to run a PMC with overheads of 2.5%
geomean, shadow stack at 2.1%, AddressSanitizer at 39%, or UaF
at 42%. By replacing the µcores with a single HA, the overhead of
PMC and shadow stack can be reduced to 0%. Software techniques
give 7.9% overhead for shadow stack, and 163.5% for AArch64
and 91.5% for x86-64 architectures on AddressSanitizer8. FireGuard
consistently outperforms software techniques, with the exception of
x264 with AddressSanitizer, and Dedup on UaF. The former is due to
the exceptionally high volume of load and store instructions executed
in x264, where four µcores fail to keep up to such a degree that
sharing compute resources with the compute core, as in software
schemes, is favorable (though FireGuard can do better with more
µcores, see section IV-D). The latter is caused by DangSan [40] being
more suited to dedup’s allocation patterns than our UaF detector’s
underlying Minesweeper [30], where DangSan itself on FireGuard
would give false negatives, as it relies on zeroing pointers, which
may occur only after the UaF access if offloaded to a µcore.
Combining kernels. Figure 7(b) reports the slowdown experienced
by the main core while executing multiple kernels simultaneously.
The kernel that incurs the most slowdown dominates the performance,
but slowdowns are not multiplied. This is benefited from the parallel
execution of the kernels. When one kernel halts the execution of the

7Our design takes MineSweeper [30] and uses analysis engines to find loads
and stores to quarantined regions, to find as well as prevent bugs.

8AddressSanitizer is not supported for RISC-V in either GCC or LLVM, so
the comparison focuses on AArch64 and x86-64. For shadow stack, support
is absent for both RISC-V and x86-64, so we compare against AArch64.
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Fig. 9: Cumulative bottlenecks v.s. filter widths (on 4-µcore Sani-
tizer), measured by the proportion of time queues are full.

main core, decreasing the number of instructions, other kernels can
persist in their function with reduced computational overhead.
B. Detection Latency

To examine the detection latency, we inject erroneous input at
various locations in the core, e.g., the jump unit, the LDQ and the
STQ, etc, simulating e.g., jump to a hijacked PC and access a freed
memory address. For each workload, 50–100 attacks are generated,
and the detection latencies are shown in figure 8. PMC experiences
the lowest detection latency, consistently detecting attacks under 50
ns. Due to its complex block parallelism model [21], the shadow
stack sees marginally higher latencies than PMC. In the worst-case
scenario (x264), a latency of 220ns is observed. For AddressSanitizer,
though the median is always <200ns, the tail exceeds 2,000nsThis
occurs when TLB and cache misses co-occur on many accesses in the
same queue: our accurate modeling of TLB misses in FireSim causes
worst-case delays to be higher than in the original work [21]. As with
the Guardian Council [21], we mitigate security concerns by ensuring
that the guardian kernels cannot be terminated or reconfigured, and
system calls not be executed, until no in-flight checks remain.
C. Analysis of Microarchitecture Bottlenecks

Figure 9 decomposes overheads in a 4-µcore FireGuard when
running AddressSanitizer using varying event-filter widths (1, 2, or
4), highlighting the accumulated bottlenecks stemming from different
elements. A 4-width event filter is as wide as the core’s commit,
so can always keep up. As the width decreases, overhead increases
significantly, from 16% at 2-width to 34% at 1-width. The geomean
overhead from the filter jumps from 16% (2-width) to 34% (1-width).
D. Analysis of Scalability

Figure 10 shows the slowdown with varying µcore count.
PMC. Figure 10(a) shows that using two µcores to perform PMC
leads to a 20% geomean slowdown. Four µcores reduce this to 2%;
yet, x264 still has a 17% slowdown. When scaling the µcores number
to six, all workloads can be run with an overhead of less than 5%.
Shadow stack. Figure 10(b) shows that using two µcores for exe-
cuting shadow stack leads to 7.3% slowdown (geomean), which is
comparable to the performance of LLVM’s software mechanism. With
four µcores, the geomean overhead is reduced to 2.1%, decreasing
to 0.4% when using six µcores. With six µcores, all workloads can
be executed with <1% slowdown, except fluidanimate (1.8%).
AddressSanitizer. Figure 10(c) is heavier than (a) or (b). Using
two µcores results in 86% overhead, still outperforming software

Fig. 9: Cumulative bottlenecks v.s. filter widths (on 4-µcore Sani-
tizer), measured by the proportion of time queues are full.

main core, decreasing the number of instructions, other kernels can
persist in their function with reduced computational overhead.
B. Detection Latency

To examine the detection latency, we inject erroneous input at
various locations in the core, e.g., the jump unit, the LDQ and the
STQ, etc, simulating e.g., jump to a hijacked PC and access a freed
memory address. For each workload, 50–100 attacks are generated,
and the detection latencies are shown in figure 8. PMC experiences
the lowest detection latency, consistently detecting attacks under 50
ns. Due to its complex block parallelism model [21], the shadow
stack sees marginally higher latencies than PMC. In the worst-case
scenario (x264), a latency of 220ns is observed. For AddressSanitizer,
though the median is always <200ns, the tail exceeds 2,000ns. This
occurs when TLB and cache misses co-occur on many accesses in
the same queue: our accurate modeling of TLB misses in FireSim
causes worst-case delays to be higher than in the original work [21].

C. Analysis of Microarchitecture Bottlenecks
Figure 9 decomposes overheads in a 4-µcore FireGuard when

running AddressSanitizer using varying event-filter widths (1, 2, or
4), highlighting the accumulated bottlenecks stemming from different
elements. A 4-width event filter is as wide as the core’s commit,
so can always keep up. As the width decreases, overhead increases
significantly, from 16% at 2-width to 34% at 1-width. The geomean
overhead from the filter jumps from 16% (2-width) to 34% (1-width).

D. Analysis of Scalability
Figure 10 shows the slowdown with varying µcore count.

PMC. Figure 10(a) shows that using two µcores to perform PMC
leads to a 20% geomean slowdown. Four µcores reduce this to 2%;
yet, x264 still has a 17% slowdown. When scaling the µcores number
to six, all workloads can be run with an overhead of less than 5%.
Shadow stack. Figure 10(b) shows that using two µcores for exe-
cuting shadow stack leads to 7.3% slowdown (geomean), which is
comparable to the performance of LLVM’s software mechanism. With
four µcores, the geomean overhead is reduced to 2.1%, decreasing
to 0.4% when using six µcores. With six µcores, all workloads can
be executed with <1% slowdown, except fluidanimate (1.8%).
AddressSanitizer. Figure 10(c) is heavier than (a) or (b). Using
two µcores results in 86% overhead, still outperforming software
(section IV-A). However, three workloads (bodytrack, dedup, x264)
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(section IV-A). However, three workloads (bodytrack, dedup, x264)
exhibit over 100% overhead. This is due to the extremely high volume
of load and store instructions that necessitate analysis. Even with 12
µcores, x264 continues to endure a 58.9% slowdown, while all other
workloads see negligible overhead (less than 1%).
UaF. Figure 10(d) is the heaviest workload. As well as monitoring
all loads and stores, the extra work to quarantine and release memory
allocations only when safe [30] causes some overheads that do not
parallelize away; for example, dedup sees flat overheads due to extra
memory-allocation work. The geomean reaches 1.16× by 12 µcores,
lower than the 1.6× that is achieved by software mechanisms [40].
E. Analysis of Programming Models

Figure 11 shows the performance overhead when executing PMC
using different programming models (section III-D) with 4 µcores.
By being aware of the remaining hazards in the µcores, we can
improve performance significantly. A conventional single-iteration
loop suffers from frequent data hazards due to both queue count
checks and pop instructions. Duff’s device [41] reduces hazards on
size checks, made possible by the queue count instruction, and pure
unrolling helps further, by removing hazards for pop instructions if
the queue is relatively full. A hybrid strategy, using unrolling when
possible and Duff’s device otherwise, is uniformly best.

F. Hardware Overhead
We study hardware overhead of the microarchitecture by per-

forming a physical implementation of a 4-µcore FireGuard at the
post-layout stage using Synopsys 14nm Generic PDKs. The RTL
is synthesized with Design Compiler (v2022.12), and the netlist is
placed and routed via IC Compiler 2 (v2022.12).

The area of the SoC is 2.91mm2, where the BOOM is 1.107mm2

and each Rocket is 0.061mm2. The total area of FireGuard’s transport
mechanisms is 0.043mm2 (3.88% and 1.48% of the BOOM and
the SoC): the filter occupies 0.032mm2 and the mapper 0.011mm2.
Building a 4-µcore FireGuard upon a BOOM thus needs 0.287mm2,
i.e., 25.9% and 9.86% of the BOOM and the SoC.

Intuitively, this observation diverges from the goal of low-overhead
design. But, this is only because the prototype BOOM cores are small
compared with commercial designs, yet the Rocket cores are very
large, with closed-source in-order 64-bit cores available using half the
resources [17]. To provide more comprehensive insights, we present
a detailed analysis below on real-world SoCs.

G. Feasibility Analysis
We compare performance-area trade-offs between BOOM and the

OoO processors in commercial SoCs [42], [43], [45]–[47], [47],

Processors (Performance Core only)
Core
(SoC) BOOM [26] FireStorm [42]

(M1-Pro)
Cortex-A76 [43]
(Kirin-960)

AlderLake-S [44]
(i7-12700F)

Peak Freq. 3.2GHz 3.2GHz 2.8GHz 4.9GHz
Tech. 14nm 5nm 7nm 10nm
Area 1.11mm2 2.53mm2 1.23mm2 7.30mm2

@14nm 1.11mm2 22.55mm2 3.61mm2 22.63mm2

IPC 1.3 3.79 2.07 2.83
Normalized
Throughput 1 2.92 1.27 3.35

FireGuard Elements
Filter Width 4-way 8-way 4-way 6-way
#µcores 4 12 5 13
Overhead
(% / Core)

0.29mm2

(25.9%)
0.81mm2

(3.6%)
0.35mm2

(9.6%)
0.85mm2

(3.8%)
An Independent Kernel for All Cores

Overhead
(% / SoC)

0.29mm2

(9.86%)
6.10mm2

(0.47%)
1.23mm2

(0.57%)
6.67mm2

(0.99%)

TABLE III: Feasibility of FireGuard in commercial SoCs.

[47], [48], and examine the overhead associated while constructing
FireGuard upon these processors and SoCs. To do so, we first estimate
the core sizes from die shots of each system [44]–[46], then normalize
the area using 14 nm technology based on the density difference [49].
We then scale up the number of µcores to match the increased IPC
and clock relative to BOOM (calculated using IPC × peak frequency),
where the IPC is measured through single-thread Parsec execution.
CPU-level overhead. Table III’s upper portion examines throughput
and area between BOOM and performance cores in the SoCs; the
middle portion estimates the overhead to support a kernel, while
attaining the performance in section IV-A.

Modern OoO cores are significantly larger than BOOM. To achieve
a linear increase in processor throughput, a superlinear increase
in hardware overhead is required. FireStorm is 2.92× faster than
BOOM, but each core consumes 20.3× the area. While building
FireGuard with a bigger core would require extra µcores to keep up
with the execution, the increase is only linear. Building FireGuard
upon FireStorm, Cortex-A76, and AlderLake-S requires 12, 5, and
13 µcores respectively, giving 3.6%, 9.6%, and 3.8% overhead/core.
SoC-level overhead. To ensure global security, FireGuard elements
must be equipped for all processors in the SoC. Hence, we apply the
same analysis on all core types in the SoCs and report the overhead.

Table III’s bottom portion indicates that integrating a kernel in M1-
Pro, Kirin-980, and i7-12700F leads to an overhead of less than 1%.
This negligible impact makes implementing several kernels per-core
practical. Moreover, the energy overhead would be even lower, since
the majority of FireGuard operates within a low-frequency domain.

V. CONCLUSION

We have presented FireGuard, a microarchitecture for fine-grained
instruction analysis. To make the design practical for deployment,
we presented a buffer-free data forwarding channel, a superscalar
event filter and a broadcast-free mapper. Feasibility analysis shows
FireGuard can be integrated into modern SoCs with less than 1%
increase in area. In summary, comprehensive in-core analysis is
practical and efficient to build into real cores and SoCs.
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must be equipped for all processors in the SoC. Hence, we apply the
same analysis on all core types in the SoCs and report the overhead.

Table III’s bottom portion indicates that integrating a kernel in M1-
Pro, Kirin-980, and i7-12700F leads to an overhead of less than 1%.
This negligible impact makes implementing several kernels per-core
practical. Moreover, the energy overhead would be even lower, since
the majority of FireGuard operates within a low-frequency domain.

V. CONCLUSION

We have presented FireGuard, a microarchitecture for fine-grained
instruction analysis. To make the design practical for deployment,
we presented a buffer-free data forwarding channel, a superscalar
event filter and a broadcast-free mapper. Feasibility analysis shows
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