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Abstract—Heterogeneous parallel error detection is an approach to
achieving fault-tolerant processors, leveraging multiple power-efficient
cores to re-execute software originally run on a high-performance core.
Yet, its complex components, gathering data cross-chip from many parts
of the core, raise questions of how to build it into commodity cores
without heavy design invasion and extensive re-engineering.

We build the first full-RTL design, MEEK, into an open-source SoC,
from microarchitecture and ISA to the OS and programming model. We
identify and solve bottlenecks and bugs overlooked in previous work, and
demonstrate that MEEK offers microsecond-level detection capacity with
affordable overheads. By trading off architectural functionalities across
codesigned hardware-software layers, MEEK features only light changes
to a mature out-of-order superscalar core, simple coordinating software
layers, and a few lines of operating-system code. The Repo. of MEEK’s
source code: https://github.com/SEU-ACAL/reproduce-MEEK-DAC-25

I. INTRODUCTION

Hardware faults, both permanent and transient, can induce system
anomalies and execution errors, which become more common with
the increasing number of transistors and lower operating voltages
in modern processors [1], [2], [3], [4], [5]. To mitigate the errors
caused by hardware faults, protection mechanisms exist, ranging from
error codes to fault-tolerant architectures. Detection is always key:
once an error is detected, the system can transition to a safe state,
enabling corrective actions (e.g., system recovery or fault isolation).
As mandated by global safety standards from industry, e.g., ISO26262
for automotive [6] and DO-178C [7] for avionics, hardware faults
must be addressed before escalating into hazards, i.e., within the Fault
Tolerance Time Interval (FTTI), often measured in milliseconds [8].

Software mechanisms (e.g., multithreading [4], [9] and software
scanner [10], [11]) typically incur significant performance degrada-
tion or offer limited fault coverage [12], making them insufficient for
processors that require stringent reliability standards (e.g., ASIL-D
in ISO26262 [6]). Hardware mechanisms often employ a dedicated
core to execute a program copy, enabling the comparison of the
core’s pins at each clock cycle (e.g., locksteps [13], [14], [15]). By
replaying everything on a separate, synchronized core and performing
run-time verification at the signal level, full coverage and real-time
guarantees are achieved. Although dual- and triple-core locksteps
have been successfully applied to microcontroller-sized processor
cores in many life-critical application scenarios [16], [17], they have
been shown impractical for Out-of-Order (O0oO) superscalar cores
due to prohibitive energy, area, and thermal costs [18], [19], [20].
Heterogeneous parallel error detection. As a promising alterna-
tive, heterogeneous parallel error detection [21], [22], [2] leverages
strong induction to divide a software program running on an OoO
superscalar high-performance core (big core) into multiple discrete
segments using Register Check Points (RCPs) and re-execute them
on sets of smaller, power-efficient cores (little cores) for verification.

To replay memory and other non-repeatable operations, the ad-
dresses and data of relevant instructions (e.g., Load and store) are
extracted from the program stream at the commit stage within the
big core, generating a partitioned, distributed log of load and store
operations. When the log of a segment is filled, or an instruction
timeout is reached, a new RCP is triggered, and the corresponding
little core begins verifying the segment between Start RCPs (SRCPs)
and End RCPs (ERCPs). By overlapping verification jobs, little cores
collectively offer sufficient computational capacity to keep pace with
the big core, ensuring full coverage with low overheads [21].
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Fig. 1: Re-constructed heterogeneous parallel error detection archi-
tecture (RCP: Register Checkpoint; S/ERCP: Start/End RCP LSL:
Load-Store Log): an application thread on big core 0 is divided into
three Segs. using RCPs, replayed and verified on little core 1 and 2.

Challenges. Unlike conventional lockstep cores, which are typically
implemented using identical processor cores with multiplexers and
comparators [23], heterogeneous error detection relies on intricate
asynchronous interactions between the big core and a sea of little
cores. This involves continuously collecting and distributing loads,
stores, and periodical register checkpoints from a big core and
flexibly managing little cores. This data needs to be preserved
from execution time until commit, before transmission in order, and
handling superscalar commit. This also means that the collected data
must be prioritized and routed to the corresponding little cores at
high bandwidth, to prevent backpressure from stalling the big core.
Existing work [21], [22] on the architecture has been studied
through abstract simulation, modeled upon idealistic assumptions in
microarchitecture and without an OS, imposing barriers for practical
deployment. For instance, it is unclear how to collect such massive
data from different locations of a real core without heavy microarchi-
tectural changes, route it cross-chip while handling contention, and
provide a configurable framework for little cores’ management.
Contributions. We show it is possible to build heterogeneous error
detection into real cores with minimal changes, by re-constructing the
concept via hardware/software codesign, trading off functionalities
across system layers. This allows an application thread on a big core
to be segmented using RCPs, replayed, and verified using any number
of checker threads deployed on any little cores while still allowing
other threads to be executed (Fig. 1). We build a full-stack framework,
Make Each Error Count (MEEK), upon an open-source SoC [24],
demonstrating the architecture can be realized with minimal design
invasion within mature cores, and a few line changes in a full Linux.

II. MEEK: A CPU/OS CODESIGNED APPROACH

To implement MEEK at minimal complexity while achieving
high performance, we had to make careful design-choice partitions
between hardware and software (figure 2). On one hand, we had little
choice but to implement load- and store-logging, for replay of exe-
cution on little cores, in hardware: using software-based instrumenta-
tion [25] would have meant infeasibly high overheads. On the other
hand, since little cores perform page-table walks asynchronously with
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Hardware: Low-Frequency Domain

for @, the scheduler in the OS, enabling flexible management of verification and workload execution on the little cores.

the big core, the OS had to be aware of them in some form, and so
we let the OS fully control their scheduling, avoiding implementing
complex decisions that were not on the performance critical path in
hardware, and allowing little cores to execute standard processes as
well. Rather than a fully transparent interface, and to avoid expensive
full error correction in hardware [22], programs interact with the
MEEK-ISA by being wrapped with coordinator functions inserted
before main, which request checker resources from the OS, verify
checking outputs, and call fault-handling code if needed.

To do so, we slightly modified the big core’s microarchitecture to
insert a read-only observation channel at the commit stage (Fig. 2 @),
collecting the big core’s status data (i.e., architectural, control and
status register files) at each RCP and the run-time data (addresses
and data of memory and other non-repeatable operations) between
RCPs. We built a dedicated data fabric (Fig. 2 @)), selectively broad-
casting/routing the extracted data to the little core(s), minimizing
the backpressure from the data communications. In little cores, the
received data is buffered in a Load-Store Log (LSL), replacing the
L1 cache during program replay, allowing the little core to reset
its architectural state to a given SRCP, replay the exact instructions
between the RCPs, and verify execution correctness at the ERCP,
using the different types of data (Fig. 2 @). Our ISA interface (Fig. 2
@ and Tab. I) (re-)configures the little cores’ checking characteristics,
i.e., the operational mode (application or check mode).

Detection approach. Error checking is parallelized using checker
threads (Fig. 2 (b)): an application thread is segmented using RCPs,
taken when the targeted LSL is full, an instruction timeout is reached,
or the kernel mode is trapped. These segments are run in a second
time by checker threads, assuming all previous segments are correct.
After re-execution, the checker thread compares its architectural
registers against the ones provided by the application thread at the
same RCP. If the registers match, the segment is considered correct.
If all segments pass check, the entire execution is deemed correct’.
III. THE MICROARCHITECTURE

Even with the reduced hardware feature-set discussed in section II,

MEEK required careful microarchitectural engineering to allow effi-

]Memory operations, however, cannot be verified at ERCPs. In the re-
execution, addresses and data of memory operations are compared directly in
the LSL. A similar design method is used for Control and Status Registers
(CSRs) to verify non-repeatable instructions.

TABLE I: MEEK ISA (Priv 1/0: kernel/user modes).

Instruction Priv Description

b.hook rsl, rs2 1 Hook big core rs1 with little core rs2.
b.check 15l 1 Enable/Disable checking capacity.
1.mode rsl, rs2 1 Switch little core rs1’s mode to rs2.
1.record rsl 0 Record arch. registers to address rsl.
1.apply 1sl 0 Apply arch. registers from address rs1.
1.3jal rsl 0 Jump to rs1 (PC of main thread).
1l.rslt rd 0 Return the check results.

cient, low-overhead execution, particularly around data transmission.
We identify and ameliorate many key bottlenecks that were missing
from the analyses and high-level simulations presented by previous
work [21], [22], [26] due to a lack of RTL implementation. We
also identify inefficiencies in terms of redundant data storage, where
much of the information required by the forwarding paths is already
buffered inside the core until commit time, meaning dedicated struc-
tures are not needed; instead we can forward data from the existing
structures. Despite bottlenecks, we demonstrate that it is possible to
build MEEK’s microarchitecture from a mature heterogeneous SoC
with very minor changes, avoiding heavy engineering efforts.

We build MEEK into an open-source heterogeneous SoC (Rocket
Chip [24]), with both high-performance and energy-efficient cores
(BOOM and Rocket). We leverage Rocket Chip to demonstrate the
applicability of our methodology to the other heterogeneous SoCs,
e.g., ARM’s big.LITTLE [27] and Intel’s P- and E-class cores [28].

A. 000 Superscalar Core (The Big Core)

Program replay requires the collection of both status data and run-
time data from the big core. The data is temporarily stored within
the core during the program executions but distributed across various
locations. The status data is buffered in the Physical Register Files
(PRFs) and Control and Status Registers (CSRs), while the run-time
data is stored in the Load-Store Queue (LSQ)> and CSRs. All can
be directly extracted but must occur in a narrow window, at commit

2By building MEEK, we noticed that Ainsworth et al. [21]’s policy, of
storing a dedicated buffer of load data, indexed by Re-Order Buffer (ROB)
entry, was unnecessary. All the need was already buffered in LSQ. Yet, light
changes were needed to preserve redundancy and thus fault tolerance, as
while we assume data is protected via parity in the cache [29], and via full
duplication by the point of reaching the LSL, there is a small window in the
LSQ where it is otherwise protected by neither. We copy the cache’s parity
bits into the LSQ, double-checking them once the data is forwarded.
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Fig. 3: Big core microarchitecture, extracting status data (red: ROB to
DEU; blue: DEU to PRFs): @ at commit time, opcode and function
code are routed; @ DEU determines whether to extract status data; @
if so, a signal is routed and preempts the PRF controller for reading.

time rather than execution time to reflect ordering, and before being
overwritten by next instructions. In light of this, we develop a non-
intrusive DEU to establish an observation channel (Fig. 3), containing
a Commit Detector (CD), control circuits and bypass circuits, injected
at the PRFs, CSRs, and LDQ. The CD monitors instruction commits
from the ROB and selects the bypass circuits to extract data at RCPs
or run-time data between RCPs. This enables timely data extraction
without bringing extra buffers or altering existing register paths.
PRF example. Fig. 3 reveals the microarchitecture using the PRFs
(used to collect RCPs) as an example, where the DEU interfaces
the ROB, PRFs, and F2. At each instruction’s commit, the opcode
and function code are routed from the ROB (Fig. 3 @) to the CD,
allowing the CD to determine whether to extract data (Fig. 3 ().
If an RCP is reached, a signal is generated by the control circuits,
preempting the PRF controller to read register files and forward them
to the F? (Fig. 3 @). The PRF controllers are multiplexed between the
ROB and the DEU, where the DEU has priority access when required,
enabling immediate data reading and preventing data overwriting®.

B. Forwarding Fabric (F?)

Previous simulations adopted a naive model for data forwarding,
ignoring contention and critical paths [21], [22], [30], [31]. Our
attempt to implement such a mechanism revealed a stumbling block
impeding system performance, even with the deployment of a full-
featured AXI interconnect [32], [33] (Sec. V-D). This is caused by
the huge amount of run-time data generated by the big core’s parallel
commits, in congestion with the frequent reaches of RCPs, which
tends to occur in bursts, particularly when the core retires multiple
load or store instructions at RCP boundaries, requiring many data
transfers within a single cycle and high throughput.

We design F? with Dual-Channel Buffers (DC-Buffers) and a Half-
duplex Multicast NoC (HM-NoC), storing and routing the extracted
data (Fig. 2 @). A DC-Buffer is connected to each commit path,
adding independent FIFOs for status and run-time data. This ensures
that all run-time data can be stored at the same cycle of commit,
even when status data is generated simultaneously, avoiding data
needing to be stored inside the core’s own structures for longer than

3A similar microarchitecture is implemented for the CSRs, allowing the
data extraction from arbitrary CSR addresses. In contrast, because the top of
the LSQ consistently holds data from the most recently retired instructions,
when the CD decides to forward the run-time data, the bypass circuits directly
transmit from the queue top, minimizing the design complexity.

Fig. 4: Little core microarchitecture, upgraded with the MSU and
LSL: the @ MSU servers as the control engineer, and the ®LsL
buffers packets from F?. While running the checker thread, the MSU
manages its status, and memory data is fetched from the LSL.

in the original core design. HM-NoC uses a half-duplex (1-to-N)
Manhattan grid. To achieve high enough throughput, this NoC allows
the transmission of two packets per cycle, while preserving ordering®.

C. In-order Scalar Core (The Little Core)

To enable thread-level error detection and allow the co-existence of
the checker and application threads, the little core’s microarchitecture
must support different operational modes and abstract an interface for
software control. Hence, we upgrade the little core’s microarchitec-
ture (Fig. 4) with a Mode Switch Unit (MSU, Fig. 4 @) and a Load-
Store Log (LSL, Fig. 4 @). The MSU serves as the control engine,
and the LSL buffers received packets. While replicating the big core’s
states, the MSU records the little core’s architectural register files
and replaces them with the status data from the LSL. The MSU also
manages the little core’s operational mode by inspecting the Thread
ID (TID) of the running thread with that of the checker thread. When
the checker thread is scheduled, the MSU switches the operational
mode, where the results of 1oad and non-repeatable instructions are
fetched from the LSL. Given that the little core accesses the LSL in an
in-order manner, we implement the LSL bank using dual-way FIFOs,
reducing complexity than conventional way-associative architectures.
Pipeline integrations. Fig. 4 shows the integration of LSL and MSU
into a 5-stage pipelined little core. The LSL is added into the Memory
Access (MA) stage (Fig. 4 () by deploying a multiplexer and
connecting it to the address port of the Load-Store Unit (LSU). The
multiplexer selectively routes memory accesses to the LSL based on
the operational mode (returned by the MSU) and combines the virtual
index and physical tag (returned by the TLB) into the address port
of the LSL. Also, a demultiplexer is integrated into the MA stage to
direct the read data back to the next stages. A pair of multiplexer and
demultiplexer are deployed into the Instruction Decode (ID) stage to
allow the recording and updating of the architectural registers. Lastly,
we deploy a Mini-Decoder (Mini-D, Fig. 4 @) at the MA stage to
differentiate conventional RISC-V and MEEK-ISA.
Performance-gap mitigation. In previous work [21], [22], [26], a
lack of microarchitectural detail meant bridging the performance gap

4Unlike previous work, where all data of a segment is buffered and
forwarded collectively at an RCP, F2 enables immediate data transmission and
use upon collection time, allowing earlier re-execution by the little core. Also,
as the same status data might be required by two little cores (respectively used
as the SRCP and ERCP), the data is selectively broadcast to the little cores
when they are capable of data receiving, eliminating redundant transactions.



Algorithm 1: Big core’s context switch (Blue: added code).

Algorithm 2: Little core’s context switch and checker thread.

1 > Scheduler
2 Function Context_Switch(task *current, core core_index) :

3 MEEK.b.check(DISABLE);

4 Kernel.Intr(DISABLE);

5 task *next = NULL;

6 /* switching current task to the next task */

7 Kernel.Context.save(current);

8 next = Kernel . Find_next();

9 if (next—new_release) then

10 for i = 0 to (size_of(next—checker_index) —1) do
1 /* hook little cores to the big core */

12 MEEK .b.hook(core_index, next—checker_index[i]);
13 end

14 Kernel.Context.init(next);

15 else

16 \ Kernel.Context.restore(next);

17 end

18 current = next,

19 Kernel.Intr(ENABLE);

20 MEEK.b.check(ENABLE);

21 Kernel.Context.jalr(current—pc);

22 End Function

1 > Scheduler

Function Context_Switch(task *current, core core_index) :
MEEK.l.mode(MODE_APPLICATION);
/* switching current task to the next task */

\ MEEK.l.mode(MODE_CHECK);
end
Kernel.Context.jalr(current—pc);
10 End Function
11 > Checker Thread, Newly Developed
12 Function Checker_Thread() :
13 /* initializing checker thread using P-Thread */
14
15 MEEK l.record(sp); // after checking, returns here
16 if ({MEEK .lLrslt()) then
17 | MEEK ReportErr();
18 end
19 while (MEEK.NewSRCP()—invalid);
20 MEEK .1.apply(LSL);
21 MEEK.1.jalMEEK.NewSRCP()—pc);
22 End Function

2
3

4

5

6 if (next—checker_thread) then
.

8

9

between the big and little cores involved merely scaling the core count
of the little cores. Unfortunately, when we build MEEK using real
RTL, the Rocket little cores are each a significant fraction of the size
of the big core, and thus using twelve of them as in the original
deisgn [21] would be infeasible (section V-E). In particular, we
discovered that there was a wide variety in the little cores’ ability to
keep up with the big core depending on instruction distribution [34].
With this, we realized that the best way to minimize core overhead
while achieving good performance was not to use the smallest Rocket
cores available, but rather to balance their bottlenecks with respect
to BOOM. To reduce the performance gap, we optimize little cores
by increasing the size of bottlenecked components, e.g., increasing
divider unrolling and extending FPU pipeline.

IV. THE ISA, OPERATING SYSTEM, AND PROGRAMMING MODEL

We detail ISA support needed to add to augment programs with
fault-tolerance support. With just a few lines-of-code changes to the
kernel, it can schedule and reserve resources for checker threads while
allowing standard scheduling and context switching of other threads.

A. ISA Support

The new ISA is classified into two categories (Tab. I) for the big
core (b.x()) and the little core (1.x ()). We use b.hook () to
set the association between the big and little cores, followed by
b.check () to enable/disable the checking capacity via switching
on/off the DEU. For little core, 1 .mode () sets its operational mode,
and a pair 1.record() and 1l.apply () record and apply the
architectural registers from a given source. To re-direct the PC to
an application thread, we develop a 1. jal (), modified from the
vanilla jump instruction with an alteration on the target. By treating
a checkpoint-end as branch-like, the pipeline handles control hazards
from the PC-change, without further changes. Lastly, 1.rslt ()
indicates whether an RCP mismatch is detected. As b.hook () and
b.check () can lead to contention in use of the little cores, and the
1.mode () can cause erroneous execution from unintended memory
accesses, they are privileged instructions, executed via OS syscall.

B. Checker Thread and Its Programming Model

The checker thread is initialized with the application thread by
augmenting the application thread’s main function using constructor
and destructor functions [35] (Al 1: line 14). Since the checker
thread relies on the data in LSL to replay memory operations and
the LSL is designed using FIFOs, context switches of the log are
undesirable. Hence, during the scheduling time, LSL is reserved for
a single checker thread (Al. 1: line 12), even if multiple threads can
be scheduled on the core. Once LSL is reserved, only data relevant

to the associated checker thread is forwarded until re-execution is
complete. Likewise, a checker thread pinned to a specific application
thread cannot be migrated before the re-execution completes Since
each checkpoint is finite in size (5000-instruction maximum), and
since ownership returns to the OS after the end of each checkpoint
for reallocation, this does not cause resource starvation.

Programming model. We develop the checker thread based on the
new ISA, ensuring minimal coding efforts: initially, an 1. record ()
is employed to record the current architectural register state (Al 2:
line 15), allowing the core to return after verification. Then, a busy
loop is created to await the arrival of status data in the LSL (Al. 2:
line 19). Upon receiving it, 1.apply () is invoked to modify the
core’s architectural state in accordance with the application segments
(AL 2: line 20), with a 1. jalr () being invoked to redirect PC to
the replicated target (Al 2: line 21). Lastly, a 1.rs1t () is used to
return the verification status. If an error is detected, an interrupt is
triggered to notify the OS for corrective actions (Al. 2: line 16 - 18).

C. OS Kernel and Its Verification
With the new ISA, kernel modifications can be constrained to
the context switch function within the scheduler, allowing the con-
figuration of checking capabilities and the management of checker
threads [36], [37]. In accordance with the distinct roles of the big and
little cores, the context switches for application and checker threads
are modified differently. While entering the context switch from an
application thread, b.check (DISABLE) is invoked to deactivate
the checking functionality (Al 1: line 3), and upon leaving the context
switch, b.check (ENABLE) is called to reactivate it (Al. 1: line 20).
Furthermore, if a newly released thread is scheduled for execution, the
b.hook (core_index, next—checker_index[x]) isused
to associate it with the little cores (Al. 1: lines 10 - 13). For the
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context switch of application threads, the only required modification
is using the 1.mode () to switch the little core’s operational mode
(Al 1: lines 3 and 7), leaving the remainder unchanged.

Kernel verification and deadlock resolving. Since MEEK enables
error checking at the thread level, the OS kernel can be treated as a
specialized application thread and verified like the other application
threads. Yet, during the development, we observed a deadlock missed
in previous literature [21], [22], [26] due to a lack of evaluation with
OS. Because a checker thread can block a main thread until the little
core has finished, due to SRAM logs being finite, this behavior acts
as a lock that the little core holds and the big core needs’.

This deadlock can be fixed by making it impossible for a checker
thread to fault on instructions. Ensuring the checker thread is at least
one instruction behind the main thread means the latter will reach
faults first. Synchronizing on I/O makes it impossible to write out a
page potentially used by an unfinished checker thread (Fig. 5 (b))S.

V. EVALUATION

We built MEEK upon an open-source heterogeneous SoC (Rocket
Chip [24]), featuring both high-performance (BOOM [39]) and
energy-efficient (Rocket [24]) cores. The BOOM was augmented
with DEU and F? as the big core, and the Rocket was upgraded
with LSL and MSU to support re-execution as the little core. We
implemented the microarchitecture with Chisel (v3.4) and synthesized
the RTL using Vivado toolchains (v2021.2). The generated netlist was
deployed on AMD UltraScale+ FPGAs using FireSim [40], emulating
the setup in Tab. II. We booted Linux kernel v5.7, executing full
SPECint 06 [41] and Parsec V3 [42] with simmedium dataset.

A. Performance Overhead

Fig. 6 shows the slowdown experienced by the big core when run-
ning SPECint and Parsec in MEEK, compared to the software-based
counterparts implemented in LLVM (Nzdc [43])” and LockStep with
Equivalent Area (EA-LockStep). Nzdc was chosen for comparison
as it is the only open-source software mechanism available, while
lockstep is the most widely used hardware mechanism. However,
simply duplicating the core in lockstep would consume double the
area of the big core while achieving the same performance as a
vanilla core, leading to uninteresting comparisons. Therefore, we
scaled down the big core’s configurations, through linear interpolation
on each configurable BOOM component, to create a comparator with
both cores combined matching the area overhead of MEEK. In all
cases, MEEK is configured with four little cores.

Using four little cores is sufficient to execute SPEC with overheads
of 1.4% and Parsec at 4.4% (geomean). For all workloads, except
swaptions, the observed slowdown is below 5%. Swaptions, however,
suffers the highest slowdown of 22%, due to the frequent divisions,
where the Rocket core’s divider is significantly less performant than
the BOOM core’s. For the comparators, Nzdc introduces geomean
overheads of 60.2% on Parsec and 94.2% on SPEC, reflecting
limitations associated with its software implementation. The hardware
counterpart, EA-LockStep, incurred geomean overheads of 31.2% for
Parsec and 48.7% for SPEC, approximately 6.1x and 33.7x higher
than MEEK, evidencing the performance-area benefits of MEEK.

SIf there are scenarios where the opposite occurs (the big core holds locks,
e.g., software mutexes, required by the little core), then deadlock results. This
is impossible during standard re-execution, as the checker thread itself does
not access memory and thus cannot take locks; only replaying the memory
previously read when the main thread took out locks. However, there are
scenarios where the checker thread inadvertently requires real memory reads
in order to continue: specifically, if an instruction fault on the little core (e.g.,
because it has overtaken the big core, or the instruction was paged out before
the little core reaches it) [38], the page-fault handling may require a lock held
by the main thread, causing deadlock (Fig. 5 (a)).

6More generally, care needs to be taken if kernel operations are inside the
sphere of replication: similar effects could happen were the scheduler blocked
via a lock held by a waiting main thread, in turn blocking checkers.

7For Nzdc, compilation fails in gcc, omnetpp, xalancbmk, and freqmine.

Big Core

4-Width, OoO superscalar SonicBoom, @3.2GHz
128-Entry ROB,96-entry 1Q, 32-entry LDQ/STQ,
128 Int/FP Phy Registers, 2 Int ALUs, 1 FP/Mult/Div
ALU, 2 MEM, 1 Jump Unit, 1 CSR Unit
TAGE algorithm, 256-entry BTB, 32-entry RAS,
6 TAGE table with 2 - 64 bits history

Memory Hierarchy

Core
Pipeline

Branch Pred.

L1 ICache 32 KB, 4-way, 8 MSHRs

L1 DCache 32 KB, 4-way, 8 MSHRs

L2 Cache 512 KB, 8-way, 12 MSHRs

LLC 4 MB, 8-way, 8 MSHRs

Memory 16 GB DDR3 @1066Mhz, max 32 requests

Little Cores

Cores 4 x In-order Rocket, 5-stage pipeline, @1.6GHz,
8-Unroll DIV, 3-stage FPU

LSL 4 KB, 5000 instruction time-out

L1 Cache 4 KB, 2-way for both I- and D-Cache

TABLE II: Hardware configurations evaluated.

B. Detection Latency

To examine the detection latency, we inject errors in the forwarded
data from the F? connected to the big core, e.g., data and address
of memory operations and architectural register data, simulating the
hardware faults without disrupting the big core’s normal execution.
For each workload, 5,000 - 10,000 faults are randomly generated,
and the density of detection latencies is shown in Fig. 7.

Each distribution features a long, but very thin, tail extending to
the far right: the average detection latency is below 1 us, while
the worst-case latencies are 5 to 10 times higher, reaching up to
2.7 ps (in the ferret). Despite the randomness of the fault injection,
the extremely high number of sample points (> 100, 000, in total)
suggests empirically that 3 us is sufficient to cover over 99.9% of
hardware faults, which is multiple orders of magnitude lower than
the millisecond-level FTTI requirement for ASIL-D compliance.

C. Scalability

Fig. 8 presents the slowdown observed with varying numbers of
little cores. Using two little cores to verify the Parsec execution results
in a 54.9% slowdown (geomean), which remains significantly lower
than that of Nzdc. With four little cores, the geomean overhead is
reduced to 4.4%, with only the swaptions workload experiencing
more than 5% overhead (as explained above). Scaling the system
to six cores further decreases the geomean overhead to 0.3%, with
all workloads having less than 1% overhead. The trend of slowdown
exhibits a superlinear decline as the number of little cores increases,
which suggests that adding little cores can effectively mitigate per-
formance overhead even for more complex workloads in the future.

D. Microarchitectural Bottleneck Analysis

By detailed implementation, we identified the performance bottle-
necks related to data collection, forwarding, and thread re-execution
in the heterogeneous error detection process (Sec. III). Here, we
provide an in-depth analysis of these bottlenecks and examine the
effectiveness of our proposed microarchitecture.
Backpressure decomposition. Fig.9 illustrates the overhead break-
down in MEEK using 4 little cores while running Parsec, employing
a full-featured AXI-Interconnect [44] and our F2. As shown in
Fig. 9, the AXI-Interconnect introduces a significant 16.7% overhead
(geomean), evidencing that the 128-bit narrow bus, only handling one
packet per cycle, is the primary bottleneck of the entire system, partic-
ularly when the little cores operating at a lower clock frequency. This
also motivates the development of a dedicated data forwarding fabric
with a wider data path and improved packets’ scheduling to mitigate
these limitations (Sec. III-B). By replacing the AXI-Interconnect with
a 256-bit fabric that supports multiple-packet transmissions per cycle
while preserving ordering using FSMs, we effectively reduce the total
overhead of data collection and forwarding to less than 5%. Our F?
design alleviates this bottleneck by enabling parallel data transmission
and improved clock-domain crossing efficiency, thereby minimizing
contention. With F?, MEEK shifts from being a system limited by
data forwarding to one that is computation-bound, with performance
depending on the combined compute power of its checker threads.
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Little core’s performance-area efficiency. As discussed in Sec.III-C,
we analyzed to understand performance gaps between the little and
big cores and increased the size of bottlenecked components in the
little cores. The evaluation shows that four optimized little cores can
match the performance of six default little cores for the verification
job. Given that our configurations increase the area of the little cores,
we assess them using a normalized performance/area metric for fair
comparison (Fig.10), revealing a 15.2% improvement (geomean) and
demonstrating the performance-area efficiency of our design choice.

E. Hardware Overhead

We synthesized a physical implementation of MEEK with four
little cores using TSMC 28nm PDKs [45]. The RTL is synthesized
using Design Compiler (v2022.12), and the netlist is placed and
routed via IC Compiler 2 (v2022.12), see Tab. III.

The BOOM’s area is 2.811 mm?, and each Rocket is 0.092 mm?,
excluding L1 D$ (since it is not required for re-execution [21], [22]).
The total area for BOOM’s data collecting and forwarding takes 0.122
mm?, (4.3% of the BOOM): the DEU occupies 0.071 mm? and the F>
consumes 0.051 mm?. In summary, building MEEK with four Rocket
upon a BOOM needs 0.726 mm? in total, i.e., 25.8% overhead.

E Gap Analysis

We observe a discrepancy between the hardware overhead mea-
sured in MEEK and the estimation in previous high-level simula-
tions [21]. While both work claims around 25% extra area is enough
to enable heterogeneous parallel error detection for a Cortex-A57-
level core®, this is concluded based on different configurations: twelve
Rocket cores in [21] versus four Rockets at double the frequency here.

Upon further analysis (Tab. III), several key factors were identified.
First, BOOM is only 72.1% the size of an AS57, likely due to
differences in ISA complexity. This means that it is misleading to use
Rocket to match the performance of an A57 in [21], as a little ARM
core with similar performance would be larger than the RISC-V core.
Second, our implementation required 17.9% more area per core than
the synthesis results used in [21], where their L1 instruction cache
configuration was also insufficient for large benchmarks like SPEC
(also noted in [22]). Lastly, wrapper logic was previously ignored.

8IPCs of BOOM and A57 are similar, 0.95 and 0.97, measured using Parsec.

1.5 - : - ; - - -
1.4 |- Data Collecting mmm MEEK + F? (Ours) T i _
S * | Data Forwarding ——= MEEK + AXI-Interconnect == PR
g 13 Little Core m= 2]
T 12 — [ie. ]
= —
8 11 — ; I H
. o ] T'I T e e T
0.9 - - - - ——— - -
0S| alk QU0 ortel e @ el g eal
" c\é,c.‘(\ q\‘ ae \G d (\\“‘ “eo‘(z“ea“\c\\) o \Nawg\\ geoﬂ\
Fig. 9: Backpressure decomposmon (with 4 little cores).
g 26 - - - —
= gg - MEEK (Ours) =
) 5 — Default Rocket =
e 18H [ ey
g 1.6 K
E 14h : :
s H SEI G R G T G
o 08 - - —— - ——
oe® \(ao\‘ QP et L ai® | e ﬁ\\“ {00° et
o c\gsc‘\ oY 3e ‘,‘\\)\d n\“‘ 20OV e 20 e oo
Fig. 10: Performance-area analysis of the little core.
Big Little Big Little
Core BOOM | Rocket Cortex-A57 | Rocket
Number 1 4 1 12
Freq. (GHz) 3.2 2 =] 3.2 1
Tech. (nm) ° 28 28 2 20 40
Area (mm?) £ 2.811 0.092 ;j 2.050 0.160
@28nm “ 2.811 0.092 = 3.905 0.078
Wrapper (mm?) 0.122 0.059 | = X X
Overhead 25.8% 24%

TABLE III: Hardware overhead in MEEK and DSN’18 [21], exclud-
ing L1 DS in little cores (Grey shading indicates a key discrepancy).

Although the discrepancies in area estimation for individual mod-
ules may seem minor, the cumulative effect led to a significant overall
mismatch between the simulated and real overhead, meaning we had
the budget for only the little cores and so had to carefully optimize
each one’s performance (section V-D) rather than scaling the number
of cores as was the perspective of the original papers.

VI. CONCLUSION

We have presented MEEK, a systematic implementation of hetero-
geneous parallel error detection, from the microarchitecture and ISA
to the OS and programming model. While the typical architectural
research employs abstract modeling (e.g., GEMS5 [46]) for rapid
prototyping, which is significantly faster than real implementations,
this work shows the practical challenges of implementing even a well-
modeled architecture, identifying bugs, performance bottlenecks, and
inaccurate estimations that are invisible in high-level simulations,
as well as opportunities for heavy simplification via codesign. We
believe there is much new insight to be gained at this level of analysis
for the movement of complex research concepts into full production.
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