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Abstract

The issue logic of a superscalar processor dissipates a
large amount of static and dynamic power. Furthermore, its
power density makes it a hot-spot requiring expensive cool-
ing systems and additional packaging.

In this paper we present a novel software assisted ap-
proach to power reduction where the processor dynami-
cally resizes the issue queue based on compiler analysis.
The compiler passes information to the processor about the
number of entries needed which limits the number of in-
structions dispatched and resident in the queue. This saves
power without adversely affecting performance.

Compared with recently proposed hardware techniques,
our approach is faster, simpler and saves more power. Us-
ing a simplistic scheme we achieve 47% dynamic and 31%
static power savings in the issue queue with only a 2.2%
performance loss. We then show that the performance loss
can be reduced to less than 1.3% with 45% dynamic and
30% static power savings, outperforming all current ap-
proaches.

1.. Introduction

Superscalar processors contain complex control logic in
order to extract sufficient instruction level parallelism (ILP).
Unfortunately, those structures used to perform out-of-order
execution consume a large amount of power. This has im-
portant implications for future processor technology.

The issue logic is one of the main sources of power dis-
sipation in current superscalar processors [11, 10]. It has
been estimated that up to 25% of the energy consumed by
a processor is in the issue logic [13]. Furthermore, the is-
sue logic is one of the components with the highest power
density and is a hot-spot. Reducing its power dissipation is
therefore more important than for other structures.

There has been much work in developing hardware tech-
niques to reduce the power cost of the issue logic by turning
off unused entries and adapting the issue queue size to the

available ILP [13, 8, 2]. Unfortunately, there is inevitably a
delay in sensing rapid phase changes and adjusting accord-
ingly. This leads to either a loss of IPC due to too small an
issue queue or excessive power dissipation due to too large
an issue queue.

This paper proposes an entirely different approach - soft-
ware directed issue queue control. In essence, the compiler
knows which parts of the program are to be executed in
the near future and can resize the queue accordingly. It re-
duces the number of instructions in the queue without de-
laying the critical path of the program. Reducing the num-
ber of instructions in the issue queue reduces the number of
non-ready operands woken up each cycle and hence saves
power.

Correctly sizing the issue queue reduces the number of
non-critical in-flight instructions and so reduces the num-
ber of entries needed in the register file. This enables fur-
ther power savings by simply turning off empty banks. We
evaluate the power savings for both the issue queue and the
register file in section 5.

1.1.. Related work

Saving power by turning off unused parts of the proces-
sor has been the focus of much previous work. Bahar and
Manne [4] introducepipeline balancingwhich changes the
issue width of the processor depending on the issue IPC
over a fixed window size. Other papers [21, 20] propose
shutting down parts of the processor in a similar manner
with similar results.

Considering the issue queue (IQ) alone, Folegnani and
González [13] reduce useless activity by gating off the
precharge signal for tag comparisons to empty or ready
operands. They then suggest ways to take advantage of the
empty entries by dynamically resizing the queue. Buyuk-
tosunogluet al. [8] propose a similar resizing scheme, us-
ing banks which can be turned off for static power savings.
Abella and González [2], like Folegnani and González, use
heuristics to limit the number of instructions in the IQ. They
decrease the size of the queue when the heuristic determines



potential power savings. However, this at the price of a non-
negligible performance loss.

There have been proposals for an IQ without wakeups
which works by tracking the dependences between instruc-
tions [9]. Huanget al. [16] use direct-mapped structures to
track dependences and allow more than one consumer per
result by adding extra bits.̈Onder and Gupta [22] implement
many consumers to one producer by linking consumers to-
gether. Canal and González [9] allow set-associativity in
their dependence structure for the same goal. Palacharla
et al. [23] use FIFO queues to which instructions are dis-
patched in dependence chains. This means only the oldest
instruction in each queue needs to be monitored for poten-
tial issue. Abella and González [3] extend this technique
so that floating-point queues do not cause a high perfor-
mance loss. Other schemes have also been recently pro-
posed [12, 15].

The majority of compiler directed approaches to power
reduction have focused on embedded processors. Leeet al.
[17] and Lorenzet al. [18] and Zhanget al. [25] all con-
sider VLIW instruction scheduling. Other research has con-
sidered dynamic voltage scaling techniques [14, 19] and the
use of compiler controlled caches for frequently executed
code [5].

There are relatively fewer papers on the subject of com-
piler optimisations for superscalar power reduction. One
notable contribution is by Toburenet al. [24] in which
the authors present a new instruction scheduling algorithm.
They associate an energy dissipation with each functional
unit and only allow a certain amount to be dissipated ev-
ery cycle.

1.2.. Contribution and structure

This paper presents a novel approach to dynamically re-
sizing the issue queue with compiler support. To the best
of our knowledge, this is the first paper to develop com-
piler directed analysis of issue queue size based on critical
path analysis. It can be applied to any superscalar organisa-
tion and is not tuned to any hardware configuration.

The rest of this paper is structured as follows. Section
2 presents an example showing how power savings can be
achieved in the IQ. Section 3 describes the microarchitec-
ture we use and the small changes we have made. This is
followed by section 4 where we outline the compiler analy-
sis performed on different structures in a program. Section
5 describes the results and is followed by section 6 which
concludes this work.

2.. Example

We wish to minimise the IQ size without affecting the
critical path. The critical path of a program depends on the

a: add r1,  1, r1
b: add r2,  2, r2
c: mul r1,  5, r3
d: mul r2,  5, r4
e: add r3, r4, r5
f: add r2, r4, r6

(a) A basic block

e f

c d

a b

(b) The DDG
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Cycle 1

Cycle 0

Cycle 2

c d

Cycle 3 c wakeups = 3
d wakeups = 3

e f

wakeups = 0

wakeups = 0

a b

f

c d

e f

fe

a wakeups = 6
b wakeups = 6

(c) The normal IQ
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Cycle 1

Cycle 0

Cycle 2

c d

Cycle 3 c wakeups = 3
d wakeups = 3

e f

wakeups = 0

wakeups = 0

a b

f
a wakeups = 2
b wakeups = 2

(d) The IQ limited

Figure 1. Issue queue power savings. 1(a)
shows a basic block and 1(b) shows its DDG.
In 1(c) it takes 4 cycles and causes 18 wake-
ups. Limiting the queue to 2 entries in 1(d)
means the block still takes 4 cycles but only
causes 10 wakeups.

data dependence structure of a program but is also affected
by the limited number of functional units and variable mem-
ory latency due to cache misses, amongst other things. For
the sake of this example, we just consider data dependences
that affect the critical path. Consider figure 1 which shows a
basic block where all instructions belong to at least one crit-
ical path. Figure 1(a) shows the code and figure 1(b) shows
the data dependence graph (DDG). There is no need for in-
structionsc, d, e andf to be in the IQ at the same time as
a andb as they are dependent on them and so cannot is-
sue at the same time as them. Likewise, instructionse and
f do not need to be in the IQ at the same time asc andd. If
we limit the IQ to only 2 instructions then the code will ex-
ecute in the same number of cycles, but fewer wakeups will
occur and so power will be saved.

Figures 1(c) and 1(d) show the IQ in the baseline and
limited cases respectively. We assume a dispatch width of
8 instructions and each instruction takes one cycle to exe-
cute. We also assume that registersr1 andr2 are already
defined so instructionsa andb can issue on the cycle after
they dispatch. Finally, we also assume, as in Folegnani and
González [13], that empty and ready operands do not get
woken. Arrows denote whether an instruction is dispatched



into the IQ or issued from it. A white rectangle next to an
instruction indicates an empty operand with an empty entry
while a crossed diagonal rectangle shows that an operand
is not needed. A rectangle with diagonal lines shows an
operand yet to arrive and a grey one shows a wakeup on that
operand. Finally, a black rectangle indicates an operand al-
ready obtained.

In the baseline case, figure 1(c),a andb issue on cycle
1. On cycle 2 they complete execution and cause 6 wakeups
each whilst instructionsc andd issue. On cycle 3,c and
d cause 6 wakeups and allowe andf to issue. They write
back in cycle 4 and there are 18 wakeups in total.

Now consider figure 1(d) with the same initial assump-
tions, but with the constraint that only two instructions can
be in the IQ at any one time. On cycle 0, onlya andb are
dispatched. They issue on cycle 1 and this makes way forc
andd to dispatch. On cycle 2 instructionsa andb cause 4
wakeups,c andd issue making way for instructionse andf
to dispatch. On cycle 3,c andd cause 6 wakeups and the fi-
nal two instructions issue, writing back in cycle 4. There
is no slowdown and only 10 wakeups, a saving of 44%. In
practice the dependence graphs are more complex and re-
source issues must be considered, yet this example illus-
trates the basic principle of our technique.

3.. Microarchitecture

Our processor is an out-of-order superscalar. The com-
piler has to pass information to it regarding the number of
IQ entries to enable. One mechanism we evaluate is based
on NOOPs inserted into the code containing the IQ size.
These special NOOPs consists of an opcode and some un-
used bits, in which the IQ size is encoded. The special
NOOPs do nothing to the semantics of the program and are
not executed, but are stripped out of the instruction stream
in the final decode stage before dispatch.

3.1.. Issue queue

The issue queue is the focus of our work and has some
minor additions. We introduce a secondhead pointer,
named new head, which allows compiler control over
the youngest entries in the queue. Thenew head pointer
points to a filled entry between thehead and tail point-
ers. It functions exactly the same as theheadpointer such
that when the instruction it points to is issued it moves to-
wards thetail until it reaches a non-empty slot, or be-
comes thetail. New instructions being dispatched are still
added to the tail of the queue.

Our technique is based on the fact that it is relatively
easy to determine the future additional requirements of a
small program region. We definemax new rangewhich is
the maximum number of entries between thenew headand

Fetch Queue

a d
Cycle c

tail

Issue Queue

new_head

e f g h
max_new_range = 4

(a) IQ on cycle c

d e f g

tail

h i j k
Issue Queue Fetch QueueCycle c+1

new_head

max_new_range = 4

(b) IQ on cycle c+1

Figure 2. Operation of new head pointer and
max new range

tail pointers. In other words,max new range is the num-
ber of IQ elements needed for the next program region. The
remaining instructions (betweenhead and new head) are
from older program regions.

The compiler sets the value ofmax new range and
its operation, along with that of thenew head pointer,
is demonstrated in figure 2. If instructiona issues, the
new headpointer moves up to point to the next non-empty
instruction, so three slots tod. This means that up to three
more instructions can be dispatched to keep the num-
ber of entries at four or fewer. So,e, f andg can now
dispatch as shown in figure 2(b).

We assume a multiple-banked issue queue where instruc-
tions are placed in sequential order. We assume that the
queue is non-collapsible as in [13, 8, 2]. Having a com-
paction scheme would cause a significant amount of extra
energy to be used each cycle. The IQ is similar to [8] where
a simple scheme is used to turn off the CAM and RAM ar-
rays at a bank granularity at the same time. The selection
logic is always on but it consumes much lower energy than
wakeup logic [23].

3.2.. Fetch queue

Once instructions are fetched they are placed in the fetch
queue where they spend several cycles being decoded be-
fore being dispatched to the IQ. Each cycle the dispatch
logic selects a number of instructions to move from the head
of this queue to the issue queue. This is usually the mini-
mum of the dispatch width (8 in our processor) and the num-
ber required to keep the distance between thenew headand
tail pointers to no more thanmax new rangeentries.

In our initial implementation, we insert special NOOPs,
which contain themax new rangevalue, into the instruc-



tion stream, When this special NOOP is encountered in the
instructions to be dispatched, it is removed and its value
used as the newmax new range.

4.. Analysis

This section describes our complier analysis which is
based on simple methods to find the critical path of a pro-
gram taking into consideration data dependences and re-
sources. There are three main structures within a program
that we analyse: directed acyclic graphs (DAGs), loops and
procedure calls. The aim of the compilation pass is to in-
sert special NOOPs into the code which tell the processor
the maximum number of IQ entries needed until the next
special NOOP. We implemented our pass in MachineSUIF
from Harvard [26], an extension to Stanford’s SUIF com-
piler [28].

4.1.. Breakdown into groups

MachineSUIF contains analysis libraries to identify the
natural loops in a procedure. Where a loop has an inner
loop, this is considered separately, so the inner loop’s ba-
sic blocks form one loop and those that are only in the outer
loop form another. This is to avoid analysis of the inner
loop’s blocks more than once.

DAGs are formed from the basic blocks in the procedure
using control flow analysis. The first block in a DAG is the
first block in the procedure, or a block immediately follow-
ing a function call.

Within each loop and DAG the DDG is constructed and
its edges labelled with the latencies of the instructions for
use in a more detailed analysis stage.

4.2.. DAGs

We have found that fine-grained analysis of DAGs gives
the most power savings and hence analyse each basic block
individually. This has the added advantage that we can con-
servatively summarise the control flow paths leading to
each block, and avoid costly analysis of each path in iso-
lation, which could mean analysis of each basic block sev-
eral times.

The algorithm used to determine the critical path is very
similar to that which the scheduler in the processor uses to
issue instructions. In the compiler we maintain a structure
similar to the processor’s issue queue. We place the first few
instructions in this pseudo issue queue and then iterate over
it several times, removing instructions that are able to issue,
recording their writeback times and placing new ones at the
tail. Dependences are tracked using the DDG so a child can-
not issue earlier than the latest writeback time of its parents.
We issue as many instructions as possible, to a maximum of

c

b

fe

d

a

(a) DDG

Iteration 0: a issues
a oldest,a youngest
Needs 1 entry:a

Iteration 1: b, d issue
b oldest,d youngest
Needs 3 entriesb,c,d

Iteration 2: c, e, f issue
c oldest,f youngest
Needs 4 entriesc,d,e,f

Overall needs 4 entries

(b) Analysis

Figure 3. Determining the number of IQ en-
tries needed in a DAG

the processor’s issue width (8 in our case), and record their
writeback times based on their operation latencies.

In addition to the issue width we also consider another
resource constraint, namely functional unit contention. Two
or more instructions conflicting for a resource is modelled
as an additional edge in the DDG. Cache misses also affect
the critical path but as these are difficult to statically deter-
mine we currently assume that all accesses to memory are
cache hits.

Knowing how instructions will issue means that the
number of IQ entries needed can be determined. On each
cycle, the oldest instruction in the queue is known, as is the
youngest. By counting the number of instructions between
the two in the basic block, we can determine the number of
IQ entries needed for them to both be in the queue at the
same time, and hence allow the youngest to issue.

Figure 3 shows the analysis to determine how many IQ
entries are needed in a basic block. We assume there are
6 in-order instructionsa,b,c,d,e,f in this basic block.
The example shows the DDG for the start of the basic block
and the analysis performed on this small section. The in-
structions are already in the IQ at the start of the analysis.
On iteration 0 onlya issues so we need only 1 entry. On it-
eration 1 bothb andd issue so we need 3 entries as the
distance betweenb andd (b,c,d) is 3. Finally, on itera-
tion 2, c, e andf issue so we need 4 entries as the dis-
tance between the oldest instruction,c, and the youngest,
f, is 4. Overall, for this small piece of code, we need 4 en-
tries available in the issue queue for everything to issue nor-
mally assuming no resource conflicts.

4.3.. Loops

Out-of order execution of loops allows instructions from
different loop iterations to be executed in parallel leading



a

b

dc

ef

(a) DDG

i

i−1a = a  +1
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b = a
c = a

f = a
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i+1

i+2

i+3

d = a
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i i+2

i+3

ie = a

(c) Finally

Figure 4. Finding equations for instructions
within a loop

to a pipeline parallel execution of the loop as a whole. We
therefore have to adjust our analysis accordingly.

In most loops there is a set of instructions that form a cy-
cle of dependences: starting at one instruction and follow-
ing its dependencies back to the original instruction. We call
this a cyclic dependence set, or CDS. In many loops there
is more than one CDS with some being subsets or supersets
of others. We are interested in the CDS that has the great-
est latency; it is this set of instructions which dictates how
long the loop will take to execute and is therefore the criti-
cal path.

We calculate the number of issue queue entries needed to
satisfy the critical dependence across loop iterations by cre-
ating an equation for each instruction. This contains both
the name of the dependent instruction and the iteration it
belongs to. These equations are formed from the data de-
pendence graph and are expressed in terms of instructions
within the CDS. Once all instructions have an equation, they
are manipulated using a very simple scheme to determine
the IQ size needed.

For example, in figure 4(a) instructiona is dependent on
itself, forming a cycle of dependences and hence the CDS.
The equation of this instruction, shown in figure 4(b), refers
to a previous instance of itself, the instance of this instruc-
tion on the previous iteration of the loop. The equation for
a means that in iterationi, a can leave the issue queue 1
cycle aftera from the previous iteration (i-1). Continu-
ing on,b can issue 1 cycle aftera from the current itera-
tion, c can issue 1 cycle afterb from the current iteration,
and so on. Rewriting to eliminate constants where possible
gives the equations in figure 4(c) where we find thatb actu-
ally leaves at the same time asa from the next iteration,c
andd leave at the same time asa from two iterations in the
future, ande andf issue at the same time asa from the fu-
ture third iteration.

In order thata on iterationi+3 can be in the issue queue
at the same time ase andf from iterationi, 15 entries need
to be available. That would allowe andf from iterationi,
12 instructions from iterationsi+1 andi+2 (6 each), and

a from iterationi+3. Providing this many entries would al-
low parallel execution of this loop without affecting the crit-
ical path.

4.4.. Procedure calls

Currently we do not apply inter-procedural dependence
analysis. Instead calls to and returns from a procedure are
treated as the leaf nodes in the calling DAG/loop, with the
called procedure responsible for analysing its IQ size re-
quirements. Within a called procedure the first basic block
is assumed to have all its dependencies available. We then
apply the analysis described above to the body of the func-
tion. On returning from a function call, we restart analysing
the IQ requirements for the remainder of the callee proce-
dure. In the special cases where a library routine is called,
the IQ is allowed to go to its maximum size immediately be-
fore the procedure call.

4.5.. Compilation summary

The whole process of analysing a procedure is sum-
marised in figure 5 from breaking into groups to performing
the analysis described in section 4.

The complexity of our algorithm isO(B.PB .F ) where
B is the number of basic blocks in a procedure,PB is the
number of immediate predecessors of blockB, andF is the
number of function calls.

5.. Results

This section describes the results obtained by our tech-
nique in terms of performance and power. First of all we
evaluate IQ resizing using special NOOPs inserted into the
program (section 5.2). As additional NOOPs may affect
processor behaviour, an alternative method is next consid-
ered where resizing information is passed via redundant bits
in the ISA, which we then evaluate in order to find out to
what extent more accurate compiler analysis can improve
the performance results (section 5.3).

We evaluate how our technique affects the IQ and the
register file as a side effect and compare it to results pub-
lished by Abella and González in [2, 1]. We compare our re-
sults to theirIqRob64technique as this gave the most power
savings and we shall henceforth refer to it asabella.

5.1.. Simulator and benchmarks

Our processor configuration is shown in table 1 which
was implemented in Wattch [6], based on SimpleScalar [7].
We used the MachineSUIF compiler from Harvard [26] to
compile the benchmarks, which is based on the SUIF2 com-
piler from Stanford [28].



Find natural loops using MachineSUIF
Find DAGs where each DAG starts with the first

basic block after a procedure call and none of
its nodes can be part of a loop

Build the DDG for each DAG and loop

For each DAG
Traverse the DAG breadth-first:
For each basic block

Work out which instructions will issue from
the pseudo issue queue each iteration

Determine the maximum number of IQ entries
needed and encode in a special NOOP

End for
End for

For each loop
Work out the cyclic dependence set (CDS)
Create equations such that each instruction

relates to one in the CDS
Make each equation’s cycle offset zero
Determine the maximum number of IQ entries

needed and encode in a special NOOP
End for

Figure 5. Algorithm for analysing a procedure

We chose to use the Spec2000 integer benchmarks [27].
We did not useeonfrom this benchmark suite because it is
written in C++ which SUIF cannot directly compile. Simi-
larly, we did not use any of the floating point benchmarks.
Most of them cannot be directly compiled by SUIF because
they are written in Fortran 90 or contain language exten-
sions. We ran the benchmarks with theref for 100 million
instructions after skipping the initialisation part and warm-
ing the caches and branch predictor for 100 million instruc-
tions. Our processor configuration is the same asabella
however, they compiled the benchmarks using the Com-
paq/Alpha compiler.

5.1.1. Compilation time Our initial compiler implemen-
tation was coded in a straightforward manner with little re-
gard to efficiency. The time taken to compile the bench-
marks varied from less than a minute to over three hours
on a Pentium 4, as shown in table 2.

The longest benchmark to compile wasgcc. This was be-
cause the file produced bybison contains a large switch
statement (374 cases) and manygotos, which create a
complex control flow graph. As we examine all control-flow
paths this leads to excessive compilation time. In a realis-

Table 1. Processor configuration

Parameter Configuration

Fetch, decode and 8 instructions
commit width
Branch predictor Hybrid 2K gshare, 2K bimodal

1K selector
BTB 2048 entries, 4-way
L1 Icache 64KB, 2-way, 32B line, 1 cycle hit
L1 Dcache 64KB, 4-way, 32B line, 2 cycles hit
Unified L2 cache 512KB, 8-way, 64B line,

10 cycles hit, 50 cycles miss
ROB size 128 entries
Issue queue 80 entries
Int register file 112 entries (14 banks of 8)
FP register file 112 entries (14 banks of 8)
Int FUs 6 ALU (1 cycle), 3 Mul (3 cycles)
FP FUs 4 ALU (2 cycles), 2 MultDiv

(4 cycles mult, 12 cycles div)
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Figure 6. Normalised IPC loss for the NOOP
technique

tic implementation the number of paths examined would be
heavily pruned which would be likely to reduce the com-
pile time, in the case ofgcc, to a few minutes.

5.2.. IQ resizing using special NOOPs

In this section we evaluate our resizing analysis using
special NOOPs inserted into the code.

5.2.1. PerformanceFigure 6 shows the IPC loss for each
benchmark. The average loss is 2.2% (denoted by the bar
labelled SPECINT) yetabellasuffers a greater average per-
formance loss of 3.1% and thus our technique is faster by
0.9%.

There is a wide variation between benchmarks. The
benchmark with the highest IPC loss isvortexat 5.4% and



Table 2. Compilation times, in minutes

gzip vpr gcc mcf crafty parser perlbmk gap vortex bzip2 twolf
Baseline 1 3 64 1 15 3 29 10 13 1 8
Limited 2 4 186 1 58 5 110 23 18 1 38
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Figure 7. Normalised IQ occupancy reduction
for the NOOP technique

mcf the lowest with 0.4%. One of the reasons for the per-
formance loss invortexis due to functional unit contention
across procedure boundaries which we currently do not
analyse. In addition, the special NOOPs are not taken out
of the instruction stream until the last decode stage which
means that at times only 7 rather than 8 instructions are dis-
patched in a cycle, leading to a loss of parallelism.

5.2.2. Issue queueThe reduction in the number of entries
in the IQ is shown in Figure 7. Overall there is an aver-
age 23% reduction in the number of entries. This reduction
increases the opportunities for power reduction. Dynamic
power savings come from waking fewer operands in the IQ
and also turning off banks when they are empty. Turning off
banks saves static power and also prevents reads and writes
to them. On average 37% of all the banks are turned off us-
ing our technique compared to 34% withabella.

The nonEmptyvalue in figure 8 shows the dynamic
power saving achieved in the IQ if only non-empty instruc-
tions are woken. The average dynamic power achieved by
our technique, however, is 47% and the average static power
saving is 31%. Finally, theabellatechnique only achieves a
39% dynamic power and 30% static power reduction even
though it has a greater IPC loss (figure 6).

5.2.3. Register fileWe only consider the integer register
file as there are few floating point instructions in the bench-
marks used. Delaying the dispatch of instructions (6.8%
fewer in our case, 5.1% fewer inabella) means that fewer
registers are needed simultaneously. By banking them we

Figure 10. Normalised IPC loss for
Extension and Improved

can turn off those banks that are not in use, saving static
and dynamic power. We achieve 22% dynamic and 21%
static power savings compared to 14% and 17% achieved
by abella respectively. Our register file power savings are
shown in figure 9.

5.3.. Extensions

This section describes two extensions to the NOOP
scheme which aim to reduce the performance loss we expe-
rience.

In our first technique we consider the case where the
IQ resizing may be encoded by tagging instructions. This
is beneficial because the special NOOPs are no longer
needed, reducing side effects which could hamper perfor-
mance, as discussed in section 5.2.1. We call this technique
Extension.

Our second technique, calledImproved, is derived
from theExtension technique. We applied, by hand, im-
proved inter-procedural analysis to some of the benchmarks
which dominated IPC loss, especiallybzip2, vortexand
gcc. In particular, we considered functional unit contention
across procedure boundaries for the most heavily used pro-
cedures. This would typically be available in a mature in-
dustrial implementation but is currently absent in our proto-
type.

Figure 10 shows the IPC loss for our two new techniques.
The left-hand bars break it down by benchmark and on the
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Figure 8. Normalised dynamic and static issue queue power sa vings for the NOOP technique
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Figure 9. Normalised dynamic and static register file power s avings for the NOOP technique

right are the averages. Theabellaand NOOP schemes are
shown for comparison.

For Extension, when compared to the NOOP inser-
tion scheme, we see that the overall performance loss drops
from 2.2% to 1.7%.Vortex has a dramatic reduction in IPC
loss from 5.4% to 2.4%. This shows that, in this case, the in-
serted NOOPs affect ILP.

For theImproved technique, the IPC loss is less than
1.3% and is primarily due to the improvement inbzip2. This
benchmark previously had the highest IPC loss showing that
inter-procedural functional unit contention was significant.
Gcc shows little improvement and on inspection, its IPC
loss is largely due to the conservative assumptions made by
our analysis in the presence of its complex control paths,
rather than due to lack of inter-procedural analysis.

Figure 11 shows the dynamic and static power savings
from these experiments. The dynamic power savings falls

slightly to 45% and static also falls slightly to 30% for both
new techniques. The variation across programs is similar to
those gained using the special NOOPs (figure 8).

The register file power savings are shown in figure 12.
Again, there are few changes and the graphs are roughly
the same shape. The dynamic power savings fall to 21%
overall from 22% and static remains the same at 21% for
Extension. ForImproved, dynamic power savings re-
main at 22% and static drops to 20%

In summary, passing resize information from the pro-
gram to the processor without using special NOOPs allows
further reduction on IPC loss with little change in power
savings. Improved compiler analysis can produce further
gains in terms of reduced IPC loss.



Figure 11. Normalised dynamic and static IQ power savings fo r Extension and Improved

Figure 12. Normalised dynamic and static register file power savings for Extension and Improved

6.. Conclusions

We have presented a novel technique to dynamically re-
size the issue queue using the compiler for support. The
compiler analyses and determines the number of IQ entries
needed by each basic block in a program and encodes this
number in a special NOOP which is used to limit the num-
ber of instructions in the queue. This has the effect of re-
ducing the issue queue occupancy and thus the amount of
power dissipated.

Results from the implementation and evaluation of the
proposed technique show 47% dynamic power savings and
31% static power savings in the IQ with an IPC loss of only
2.2%. This is compared to 39% and 30% dynamic and static
power savings, and 3.1% IPC loss by Abella and González
[2]. A side effect of limiting the number of instructions in
the IQ is that fewer registers are needed and thus dynamic

power savings of 22% and static power savings of 21% are
also achieved in the integer register file.

By tagging instructions and using further improved anal-
ysis we can reduce the IPC loss to less than 1.3% with
a 45% dynamic power and 30% static power saving. This
corresponds to overall processor dynamic power savings of
11%, assuming the issue queue and integer register file con-
sume 22% and 11% of the whole processor’s power respec-
tively.

In summary, therefore, our technique has a smaller per-
formance loss, saves more power than state-of-the-art ap-
proaches and needs less complex hardware.
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