


Phase Input Extra Constraints Output

Create initial working set Set F of most frequently-executed
basic blocks

None Clusters C1..c

Reduce incoming edge
weight

Clusters C1..c and set B of unused
basic blocks

Reduce cluster’s total incoming edge
weight

Clusters C′

1..c

Consolidate clusters Clusters C′

1..c
None Clusters C′′

1..d

Create tagless regions Clusters C′′

1..d
Cluster execution weight per incoming
edge must exceed threshold h

Tagless regions T1..n

Fill out tagless regions Tagless regions T1..n and set B′ of
unused basic blocks

Maintain or reduce region’s total incom-
ing edge weight

Tagless regions T ′

1..n

Fig. 2. Overview of the tagless region formation algorithm.

of a traditional set-associative cache. The novelty in our

approach is the ability to use the cache with and without tag

checks through use of the linker for support. Furthermore, our

hardware and linker modifications are independent. Therefore

our innovative cache architecture can run unmodified binaries

and our optimized programs can be executed on processors

lacking support for tagless instruction caching. The absence of

dependences across the software/hardware interface enhances

the flexibility of our approach.

We evaluate our schemes on a superscalar processors with

and without multi-threading support. Our technique achieves

49% dynamic power savings in the instruction cache and

translation lookaside buffer with no performance loss.

The rest of this paper is structured as follows. Section II

explains our linker pass to place frequently-executed code

in tagless regions. Section III then describes the hardware

modifications needed to support tagless instruction caching.

Section IV describes our experimental setup and section V

presents our results. We describe related work in section VI

and finally, section VII concludes.

II. PROGRAM ANALYSIS & REWRITING

This section describes the program analysis and rewriting

needed to support tagless instruction caching. Our technique

uses profile information to identify frequently-executed basic

blocks, which are then grouped together according to the

control flow graph to form tagless program regions. We gather

the execution count of each edge between basic blocks within

the control flow graph. We then lay out the program using the

linker, as it is the only compilation tool that knows which and

where all code ends up in a program.

We use a tagless region size of one memory page that

corresponds to 1024 instructions. This simplifies our hardware

extensions (described in section III). Furthermore, as figure 1

shows, for 77% of the time on average (and 99% of the time

for the best benchmark) the next instruction can be found

within this window.

A. Tagless Region Formation

The intuition behind our tagless region formation algorithm

and our goals are as follows:

1) We want to spend as much time as possible executing

instructions from a tagless region. To enable this we

first choose basic blocks with a high execution count

over those with a lower frequency.

2) We want to minimize switching amongst tagless regions,

or to tagged code, as this reduces efficiency (see sec-

tion III-C). Hence, we try to keep connected basic blocks

in the same tagless region.

3) We want to fill the tagless regions as much as possible to

maximize the tagless accessing. We therefore finalize the

regions using leftover basic blocks that do not negatively

impact the two other goals.

A schematic overview of the algorithm is displayed in

figure 2. Note that every phase operates under the additional

constraint that no cluster can exceed the size of a single tagless

region at any time.

We start by creating a set F that contains the most

frequently-executed basic blocks. The total size of the in-

structions in F is no greater than the size of all n tagless

regions that we wish to fill. This initial restriction allows us

to concentrate on the most frequently-executed basic blocks,

to ensure that we meet goal 1 above.

From this set F , we create an initial working set of clusters

of connected basic blocks. We iteratively remove the most

frequently-executed basic block from F and place it in a new

cluster Ci. We then expand the cluster by adding blocks from

F along the most frequently-executed edges into and out of

the cluster.

During the second phase we optimize clusters C1..c by

adding free basic blocks (from set B) that reduce the incoming

edge weight, resulting in clusters C ′

1..c
. This weight is the sum

of the execution counts of all edges that transfer control into

the cluster. Minimizing this metric helps to meet goal 2 above.

Blocks added here include, for example, paths of if-then-else

statements that are infrequently taken.

The third phase consolidates the clusters. The previous

phase may have connected more clusters to each other. We

combine these clusters and obtain a new set C ′′

1..d
, working

towards goal 2.

We now have to fit our collection of clusters C ′′

1..d
into

the tagless regions T1..n during phase four. We first sort the

clusters based on their instruction execution weight (iew) ratio.

This ratio represents the number of dynamic instructions in the

cluster divided by the total execution count of the incoming

edges. The higher the ratio, the more instructions are executed

each time the cluster is entered. Clusters whose iew ratio is

below a specified threshold h are discarded. Once again, this

satisfies goals 1 and 2. We have found, experimentally, that a
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Fig. 3. Example of our code layout scheme. In (a) and (b) we show the original program split into basic blocks, in the latter case ordered by decreasing
execution frequency. Steps (c) to (f) show how the tagless regions are constructed based on the program’s control flow graph.

threshold of 100 is a good cutoff point to discard unprofitable

clusters. Next, we place the remaining clusters into the tagless

regions using a “first fit” approach.

We finalize the regions in phase five by adding, as space

permits, executed basic blocks that do not cause an increase

in the cluster’s incoming edge weight, so as to satisfy goal 3

without hurting goal 2. Such basic blocks may still be found

due to our discarding of clusters during phase four.

B. Example

Figure 3 shows an example of our linker pass. Step (a)

shows the original program, with each basic block represented

using a square. The shade of the square indicates the execution

count of the basic block obtained through profiling. The white

squares represent blocks that were not executed at all during

this profiling run.

In step (b) we sort all basic blocks in order of execution

count. We then create our set of the most frequently-executed

blocks, F . The size of F is equal to the combined size of all

n tagless regions. In this example we assume that n = 1 and

that the first five basic blocks are enough to fill this space.

Step (c) displays the control flow graph (CFG) of the pro-

gram. We make the first cluster by taking the most frequently-

executed block from F and iteratively adding basic blocks

when they are connected via edges in the CFG. Once this

cluster is finished, we repeat until F is empty. This produces

the two clusters shown in step (d).

Step (e) grows both clusters using blocks that decrease the

total execution count of their incoming edges (edge weight).

The white block is not added to cluster (1) because it was

not executed while profiling. The dark block at the bottom is

not added to cluster (2) because the incoming edge from the

left-hand side would increase its edge weight.

The clusters are now sorted based on their execution ratios,

i.e., the ratio of their total dynamic instruction count to their

total dynamic incoming edge count. We assume that cluster (1)

has the highest ratio and add it to the tagless region. Clusters

(1) and (2) together do not fit in the tagless region, so cluster

(2) is discarded.

Step (f) performs a final enlargement of the code in the

tagless region. Here we select basic blocks that reduce or

maintain the incoming edge weight. Finally, we pad the tagless

region until it is full.

C. Summary

This section has presented our region formation algorithm.

The linker uses an edge profile to create clusters of frequently-

executed basic blocks. Then, it places these clusters in tagless

program regions, maximizing the execution time spent within

these regions and minimizing the switching between regions.

The next section describes our hardware modifications that

take advantage of this layout to provide tagless instruction

caching.

III. TAGLESS INSTRUCTION CACHING

This section presents our approach to tagless instruction

caching, detailing the microarchitectural changes and the op-

eration of the cache. We begin with an overview of how the

scheme works.

A. Overview

Our instruction cache has two modes of operation: tagged

and tagless. When we are fetching instructions in tagless mode,

energy is saved because we omit all tag checks and only

access one data bank from the cache. The page descriptors

in the memory management unit contain extra bits to indicate

whether the page contains a tagless region.

Figure 4 gives an overview of an instruction fetch in both

tagged and tagless modes for a 2-way set-associative cache.

When fetching an instruction in tagged mode the required

address is routed to tag and data banks for all cache ways,

i.e., light and dark boxes in figure 4. Tags and data are

read out of all arrays and, on a hit, the data from the

selected way is sent back to the processor. However, energy

is wasted reading data from the ways that don’t contain the

required instruction. Although checking the tag and data banks

sequentially could reduce this problem [12], the cache hit time

would be significantly increased.



Fig. 4. Internal modules accessed during a read operation on a 2-way
associative cache in case of tagged and tagless access modes. When in tagged
mode, all tag and data banks are accessed (in light gray), while in tagless
mode, only one data bank is accessed (in dark gray), thus reducing power.

The key observation behind our tagless caching scheme is

that, if we can guarantee that the instruction already is in

the cache at a particular location, energy is also wasted in

checking all tags. When the cache operates in tagless mode, the

instruction translation lookaside buffer (ITLB) determines the

way that each tagless region resides in, meaning that they are

in one specific location only. The address of each instruction

is used to determine the line it is in as normal. In the example

shown in figure 4, the instruction is already in the cache, so it

is read out without performing any tag checks and accessing

just one data bank, indicated in dark gray. By doing this, only

a fraction of the full access energy is consumed.

Section III-B explains how we guarantee that instructions

are in the cache when accessing in tagless mode and sec-

tion III-C explains how the ITLB assigns a way to each tagless

region.

B. Filling The Cache

The ability to use the cache in tagless mode relies on our

scheme guaranteeing that the correct instructions reside in the

cache in a specific location given by their address. Since there

are no tag checks when operating in this mode, there are also

no cache misses. We cannot, therefore, rely on the normal

cache miss handler to bring in instructions if they are not

already there.

We solve this problem through the use of an additional

tagless valid bit (tv-bit) for each cache line. As shown in

figure 5, this bit indicates that its corresponding line contains

instructions from a tagless region. Whenever an instruction is

fetched in tagless mode, a specific cache line is accessed in

parallel with its associated tv-bit. If the tv-bit is set, then the

line is valid for use in tagless mode. If it is unset then a normal

miss operation is started to bring the required instructions into

the cache. Section III-C describes how we support multiple

tagless regions where several addresses map to the same cache

line and tv-bit.

The tv-bits are set and reset when servicing a miss in tagless

and tagged mode, respectively. Initially they are all reset to

0. The first time that an instruction from a tagless region is

fetched, the access will fail and the line will be brought in from

the next level of memory. The tv-bit is set to show that the

line contains valid tagless instructions and fetch can continue.

We do not need to write the tag for this address, saving more

energy, but must reset the standard valid bit for the line so

that a miss occurs if a tagged access occurs. We ignore this

when accessing in tagless mode.

The only change to accesses in tagged mode is that the tv-

bit for the replaced line must be reset on a miss so that the

processor knows that the line no longer contains instructions

from a tagless region. Setting and resetting the tv-bits in this

manner means that we can support tagless regions and tagged

code at the same time in the cache on a line-by-line and on-

demand basis. As a result, we load only the required lines

from tagless regions.

We assume each way of the cache is placed in its own

independent bank. In tagless mode we simply ignore the tag

bits and only access the data bank in the way provided by the

ITLB (described in section III-C). The other data banks (and

all tag arrays) can be gated to avoid consuming any dynamic

energy.

Using this scheme, the cache does not need to be aware of

the size and number of regions in the executable. The tagless

regions defined and prepared by the linker will map to the

available tagless space present in the target cache. This allows

different tagless caches to take advantage of the same tagless-

optimized executable. There is no need for recompilation to

adapt to different targets and to new generations of the same

processor (e.g., a processor core with a larger cache, or tagless

support capabilities).

C. ITLB Support

As described in the previous section, the cache’s mode of

operation depends on whether instructions are being fetched

from a tagless region or not. To keep the hardware overheads

to a minimum, we make each tagless region the size of a

memory page, motivated by figure 1.

We augment each entry of the ITLB with information

describing whether the page is currently present within the

cache and the way that it is mapped to. Figure 5 shows how

the ITLB is modified for a 32kB, 4-way cache with 4kB

pages. We add a single bit to each ITLB entry to indicate

whether the page contains a tagless region (the T bit). We

also provide a further two bits to indicate the way that the

page is mapped to, if tagless (Rway). Finally, to identify stale

way information we also include a region bit (R) and a valid

bit (V). The way information is required to avoid conflicts

between tagless pages that are mapped into the cache. To

perform way assignment he ITLB maintains an LRU chain of

cache ways for each cache region. In figure 5 this corresponds

to two chains, since the cache has eight regions split into four

ways.

When a new page containing a tagless program region is

brought into the ITLB, its T, R and V bits are set and its Rway

is set to the LRU way from the corresponding region’s chain.



Fig. 5. ITLB operation and cache tagless valid bit (tv-bit). Each page
descriptor contains a bit to identify pages from a tagless region (T), the way
that the tagless pages are positioned in the cache (Rway), the region (R) and
whether the page is valid in the cache (V). The ITLB maintains an LRU chain
for each cache region to help avoid conflicts between tagless pages.

Any other page that has the same Rway and is region (R bit)

has its mapping cleared by reseting its V bit. In addition, all

tv-bits corresponding to this region and way are reset in the

cache. This ensures that instructions are never fetched from

the wrong tagless region.

Maintaining the Rway information within the ITLB ensures

that the cache’s tv-bits only need to be reset when control

passes to a page that is not currently mapped into the cache.

Transitions between pages that are already mapped incur no

overheads and cause no conflicts. Conflicts between mapped

tagless pages and tagged pages are dealt with by the tv-bits

within the cache, as described in section III-B.

The cache and ITLB are accessed in parallel, so a page’s

T bit and Rway are unknown when starting the cache access.

Hence, we speculatively use their previous values and replay

the access if needed. This avoids increasing the access latency.

Thanks to the linker pass, the majority of accesses are within

the same page as the previous access, and therefore this

speculation is rarely wrong. In fact, there two scenarios where

we have to replay the access. First, when transitioning from

tagless to tagged mode, since we haven’t performed a tag

check so won’t have found the correct instruction. Second,

when transiting between tagless pages that are mapped to

different ways, since the way prediction will be incorrect. Both

replays incur a single (cache) cycle performance penalty and

the power of performing a redundant tagless access. When

transitioning from tagged to tagless mode there is no need

to replay the access since we have already checked all cache

ways for the required data.

Parameter Configuration [SMT]

Width 4 Instructions
ROB size 128 [256] Entries
LQ/SQ size 32/32 [64/64] Entries
Issue queue 64 [128] Entries
Br predictor Gshare
BTB 4096 Entries
L1 Icache 32kB 4-Way 64B Line, 2 Cycle Hit
L1 Dcache 32kB 4-Way 64B Line, 2 Cycle Hit
Unified L2 cache 2MB 8-Way 64B Line,

20/250 Cycle Hit/Miss
Int and FP RF 128/128 [256/256] Entries
Int FUs (cycles) 3 ALU (1), 1 Mul (3)
FP FUs (cycles) 2 ALU (2), 1 MulDiv (4/12)

TABLE I
THE PROCESSOR CONFIGURATIONS USED. PARAMETERS IN SQUARE

BRACKETS DENOTE VALUES USED IN THE SMT PROCESSOR.

D. Summary

This section has described our instruction cache and the

additional hardware needed to support tagless instruction fetch.

We augment each cache line with a tagless valid bit (tv-bit)

that indicates whether it contains valid instructions from a

tagless program region. We make each tagless region the size

of a memory page and include extra bits within the ITLB to

identify tagless regions, the way they are mapped to, and to

prevent conflicts between them. Our hardware modifications

are backwards-compatible and allow us to provide tagless

instruction caching for any program binary.

The next section presents our experimental setup and then

section V evaluates our technique and the region formation

algorithm over a variety of tagless region configurations.

IV. EXPERIMENTAL SETUP

a) Benchmarks and Compilation Toolchain: For our

experiments we compiled the SPEC CINT2000 suite [27]

for a generic PowerPC architecture using GCC 4.2.0, with

optimization level O2. For our SMT results we randomly

picked 20 pairings of the benchmarks to run.

We wrote our code placement scheme in the Diablo [8] link-

time rewriter. To extract the profile information needed by our

linker pass we ran each benchmark with its train input set. For

the performance and energy evaluations we used the reference

input set. Our baseline binaries have also been relinked with

Diablo, but omitting the pass that creates the tagless regions

(i.e., with no basic block reordering). This ensures that the

effects of our technique are solely due to our region formation

algorithm and are not a facet of our compilation tools. We

have also verified that the baseline power and performance

measures are in line with those that do not use Diablo.

b) Simulator: We have evaluated our techniques on a

high-performance out-of-order superscalar processor, with and

without SMT support. The parameters are shown in table I.

We implemented this within the M5 simulator [4]. We used

McPAT [20] to model the power consumption of the whole

processor. For our techniques, we also include the energy
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Fig. 6. Results of our tagless accessing approach for each benchmark, normalized to the baseline. We also show the hardware and software elements of our
scheme alone (Hardware and Layout Only), motivating the need for a hybrid solution.

overheads of the additional hardware required to support

tagless instruction accessing.

To accurately simulate our schemes on realistic, high-

performance workloads we used SMARTS [31] methodology.

We simulated at least 10,000 samples from each benchmark,

obtaining cycles per instruction and energy per instruction

estimates to within ±3% with 99.7% confidence. For our SMT

evaluations we fast-forwarded each workload for 1 billion

instructions, then simulated at least 1 billion more for each

benchmark. We evaluated power consumption in preference

to energy to minimize the effects of the performance gains

achieved by some benchmarks. Programs that run faster than

the baseline must save comparatively more energy in order to

achieve power savings.

V. RESULTS

This section presents the results of our tagless instruction

caching technique. We first evaluate the two components of

our approach separately and combined. Then we perform a

comparison against alternative power saving schemes. Finally

we look at the impact on a shared instruction cache within an

SMT processor.

A. Initial Results

We first show the results of our approach on performance

and power, then analyze the instruction cache access patterns

that cause the power savings achieved. Figure 6 shows our

scheme and its two component parts normalized to the results

of running an unmodified binary on the baseline architecture.

We show our hardware technique alone (i.e., unmodified

binaries accessing all code in tagless mode), our code layout

approach (i.e., our relinked binaries on the baseline architec-

ture), and our hybrid tagless scheme.

c) Performance: What is clear from the performance

results (shown in figure 6a) is that using only our hardware

mechanism alone is not viable. Seven out of our twelve

benchmarks experience severe slowdowns with an average

performance loss of 66%. This is due to conflicts between
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Fig. 7. Breakdown of cache and bank access types.

tagless regions within the cache causing a whole region’s tv-

bits to be cleared, as described in section III-C. There are over

250,000 clears of region tv-bits in vortex alone and this leads

to Hardware’s large performance losses.

In contrast there is little change in performance from the

baseline when using our code layout approach in isolation.

For some benchmarks there is a slight increase in performance

(e.g., vortex which is 9% faster). This is caused by an increased

branch predictor accuracy, meaning that the processor dis-

patches fewer instructions down mispredicted program paths.

Our linker pass groups basic blocks together and adds branch

instructions in order to keep the correct control flow through

the program. This can make the control flow more regular and

easier to predict.

The results from using our hybrid tagless scheme are similar

to the code layout only approach although, in general, the code

layout scheme is marginally faster. This is due to the hybrid

technique needing to reply cache accesses occasionally when

the T or Rway information is mispredicted. However, this is

infrequent and on average our hybrid scheme is a negligible

1% faster than the baseline, with only twolf showing a 3%
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Fig. 8. Fraction of time each cache line holds tagged or tagless instructions for two benchmarks. In bzip2 the cache mainly holds tagless instructions. The
opposite is true for crafty, where few lines contain tagless instructions for a signficant fraction of time.

slowdown due to a higher than average misprediction rate for

the T and Rway information.

d) Power: We next consider the effects of each of these

approaches on the dynamic power consumed by the instruction

cache and ITLB, shown in figure 6b. Although Hardware

provides good savings, this is offset by the performance impact

that it causes. Layout Only, on the other hand, neither causes

significant power savings nor losses and has an average of

4% power savings. This confirms that the tagless layout is

backwards compatible with standard caches and causes no

additional overheads.

This figure shows that our hybrid approach can achieve

significant power savings across the suite of applications.

In particular, bzip2, gcc, gzip, mcf , parser, perlbmk, twolf ,

vortex, and vpr all achieve savings of at least 50%. Even

the worst benchmark, crafty at 67% power, still achieves

savings of 33%. Across the board, the average is 49% power

savings for our hybrid tagless scheme. This corresponds to

66% savings in the instruction cache’s dynamic power alone.

e) Analysis: Having shown the benefits of tagless in-

struction caching we now consider the reasons for the power

savings achieved. Figures 7 and 8 shows our analysis.

In figure 7 the fraction of instruction cache accesses each

program makes in tagless and tagged modes are shown. It

also shows the proportion of tag and data banks that are

accessed, normalized to the number that would be accessed

usually. Figures 8a and 8b show the fraction of time each

cache line holds instructions from a tagless page or a tagged

page for bzip2 and crafty, respectively. We picked these

benchmarks in particular because they lie at opposite ends

of the spectrum. We count a cache line as containing tagless

instructions whenver its tv-bit is set, and tagless instructions

otherwise.

As can be expected, there is a clear correlation between

accesses in tagged mode and the number of tag and banks

accessed. For example, bzip2 accesses the instruction cache

in tagless mode almost all the time. Therefore, almost no tag

banks ever need to be consulted and only one data bank is

accessed on each fetch. Figure 7 shows that only 12.5% of

the instruction cache banks are accessed using this scheme.

Furthermore, figure 8a shows that for the majority of the time,

cache lines hold only tagless instructions. The linker is able to

place the vast majority of this program’s frequently-accessed

code into tagless regions, meaning that almost all accesses use

the low-power tagless cache mode, allowing bzip2 to reduce

its instruction cache power by 78%.

For crafty, 40% of the accesses are in tagged mode. This

is because the linker could not place a large fraction of

their code within tagless regions without incurring penalties

from switching between tagless regions. In these cases, it is

better to keep the code in tagged regions to avoid invalidating

tagless regions too often when this switching occurs (see

section III-C). As figure 7 shows, in these applications about

half the banks as normal are accessed. This is confirmed by

figure 8b which shows that crafty cannot often access the cache

in tagless mode. However, this benchmark still achieves good

instruction cache power savings of around 30%.

B. Comparison With Other Approaches

This section compares our technique to alternative hardware

and software schemes, shown in figure 9. The first technique is

labeled All Tagless and represents a binary with all code placed

into tagless program regions, then run on a cache using our

tagless hardware. The second approach (Way Pred) show the

baseline binaries run on a cache with way prediction support

by Powell et al. [23]. In addition, we show a combination of

our tagless scheme and way prediction (Way Pred + Tagless)

which is evaluated using the same tagless binaries as our

technique. Finally, for reference, we show our approach as the

final bar, labeled Tagless again. This has already been analyzed

in section V-A.
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Fig. 9. Comparing caching schemes. We show a binary where all code is placed in tagless regions (All Tagless), a cache with way prediction (Way Pred),
way prediction and our tagless scheme (Way Pred + Tagless), and our approach alone (Tagless).

f) Performance: As can be seen in figure 9a, laying out

the entire binary for tagless accessing causes large overall

slowdown. This is due to conflicts between the tagless regions

within the instruction cache requiring frequent invalidations

of entire regions. The performance characteristics of the other

schemes are similar to those of running on tagless hardware,

as described in section V-A. In some cases, Way Pred and Way

Pred + Tagless perform slightly worse due to the inaccuracies

in the way prediction hardware. This causes a maximum of

4% performance loss (for crafty).

g) Power: Figure 9b shows that the All Tagless technique

can be detrimental to power due to the many tagless region

conflicts within the instruction cache. Tagless caching with

way prediction (Way Pred + Tagless) achieves a 10% improve-

ment over regular way prediction, 5% better than our regular

Tagless scheme. This demonstrates that our scheme is in part

orthogonal to the savings achieved by way prediction, and that

both can be combined for improved efficiency. The marginal

power savings gained by way prediction are, however, fairly

small, and using the simpler Tagless hardware platform may

be preferable.

C. Impact On SMT

Now that we have demonstrated the impact of our approach

against other power saving schemes, this section performs an

evaluation of our technique on an SMT processor, where the

instruction cache is shared between two independent work-

loads. This situation enables us to evaluate our tagless caching

scheme in an environment where there is significant contention

within the cache as the workloads compete for cache resources.

Figure 10 shows the results for each randomly-selected pair

of benchmarks.

h) Performance: Figure 10a shows that the hardware-

only element or our approach again has a significant impact in

terms of performance on an SMT processor. On the other hand,

the software element and our hybrid scheme have a negligible

impact with only crafty.gap having significant slowdown due

to the contention in the instruction cache. On average there is

no change in performance across our benchmark pairings for

our hybrid scheme.

i) Power: As figure 10b shows, significant power savings

can still be achieved on an SMT processor using tagless

instruction caching. On average, our tagless scheme requires

only 59% of the I-cache and ITLB cache power compared

with the baseline. The best scheme (twolf.bzip2) requires less

than 50% of the baseline’s power. These results emphasize

the ability of our approach to enable significant power savings,

even within an environment with high contention for resources.

D. Summary

This section has presented the results of our tagless instruc-

tion caching scheme. Using our approach on a superscalar

processor provides dynamic power savings of 66% in the

instruction cache on average when using a 32kB cache, 49%

considering both I-cache and the ITLB with no performance

impact.

VI. RELATED WORK

There is a rich body of related work that aims at reducing

cache power consumption while maintaining high perfor-

mance. Ravindran et al. [24] employed a scratchpad memory

(SPM) alongside the instruction cache which was filled with

the most frequently-executed basic blocks, found through

profiling on the compiler’s intermediate representation. As

in Verma et al. [28], specific instructions are used to load

and unload SPM content. Chen et al. [6] used a completely

software managed SPM without an instruction cache at all.

Dally et al. [7] replaced the cache with explicitly managed

registers, leaving the management of this instruction register

file to the compiler. However, these schemes require additional

instructions to be included in the ISA and are therefore not

backwards compatible.

Egger et al. [10] presented a similar scheme, but avoided

the ISA extensions by filling the SPM using a run time

memory manager combined with MMU-based page protection.
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Fig. 10. Results of our tagless accessing approach along with the hardware and software elements on a dual-threaded SMT processor.

Furthermore, they replace the cache with a simple direct-

mapped “minicache” but this causes performance losses when

unmodified binaries are run. Zhang et al. [35] used compiler

analysis to trigger a low-power leakage mode for instruction

cache lines that were not likely to be used for a long time.

However, this scheme targets static power reduction and is

therefore orthogonal to the work we present in this paper.

Yang et al. [33] proposed a compiler-assisted technique for

inducing selective Dcache pinning, so as to avoid replacement

of heavily referenced data in an XScale processor. Zhu and

Tay [37] proposed a compiler restructuring technique that both

reduces the working-set size and inserts special cache-scaling

instructions into the code to turn off unused cache lines. In

Bellas et al. [3] an additional mini-cache for critical loop code

is presented, along with a compiler strategy for its efficient

usage. Zhuang et al. [38] took a slightly different perspective

and proposed a compiler-directed code and data restructuring

algorithm aimed at improving the power efficiency of cache

prefetching.

Within hardware, there has also been significant interest

in power-efficient caching. A technique that can guarantee

hits was proposed by Hines et al. [13], completely avoiding

tag checks for the majority of instructions, similar to way-

memoization, proposed by Ma et al. [21]. Way prediction has

also been used to reduce the number of tags and data ways ac-

cessed within a set-associative cache. Calder and Grunwald [5]

added a tagless prediction table that points directly into the

instruction cache. This allowed them to fetch instructions

following a branch from a single set and way while the target

address was being calculated. Powell et al. [23] built on this

work by providing way prediction for all instruction fetches,

rather than solely after branches. We compare against the latter

scheme and show how our approach saves more power with

less performance loss.

Other researchers have proposed heterogeneous way

sizes [1], disabling ways [2], and using near threshold tol-

erant ways [9] to fit the cache to the varying application

requirements. Furthermore, there has been significant work in

designing modified cache hierarchies with the aim of saving

power [17], [19], [32]. In the data cache, researchers have

provided compiler hints about lines to keep and evict [25],

[30].

There has also been work that targets the data cache for

thermal optimization [14], [18], to improve power consump-

tion or performance by using a scratchpad memory [22], [26],

and to take advantage of frequently-occurring values [29],

[34]. Finally, there are many hardware schemes that seek to

reduce a cache’s leakage energy by placing cache lines in state-

preserving and state-destroying low power sleep modes [11],

[15], [16], [35], [36].

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel cache architecture and

linker algorithm to provide tagless instruction caching for

power saving. We use the linker to place frequently-executed

code in specific regions within the program binary that are then

accessed from the cache without tag checks. Our approach

is extremely versatile, having been evaluated on a super-

scalar processor with and without multi-threading support.

Furthermore, it requires no ISA modifications at all, allowing

backwards compatibility with existing, unmodified binaries.
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