Measuring Code Optimization Impact
on Voltage Noise

Svilen Kanev Timothy M. Jones*

Gu-Yeon Wei

David Brooks Vijay Janapa Reddit

Harvard University, The University of Cambridge*, The University of Texas at Austin®
{skanev, guyeon, dbrooks}@eecs.harvard.edu, timothy.jones@cl.cam.ac.uk, vj@ece.utexas.edu

Abstract—In this paper, we characterize the impact of compiler
optimizations on voltage noise. While intuition may suggest that
the better processor utilization ensured by optimizing compilers
results in a_ small amount of voltage variation, our measurements
on a Intel® Core™2 Duo processor show the opposite — the
majority of SPEC 2006 benchmarks exhibit more voltage droops
when aggressively optimized. We show that this increase in noise
could be sufficient for a net performance decrease in a typical-
case, resilient design.

I. INTRODUCTION

Voltage variation is one of the major reliability challenges
that processor designers face. Sudden changes in processor
current draw, coupled with the non-zero parasitic impedance
of the power delivery network result in fluctuations of supply
voltage from its nominal value, also known as di/dt noise.
Of such deviations, voltage droops, or downward voltage
transients, are particularly dangerous, since they can lead to
circuit timing errors and incorrect execution.

Traditionally, designers allocate generous operating mar-
gins to ensure correctness in the presence of voltage noise.
Processors are typically designed for the worst-case, such
that even under extreme current fluctuations, voltage does not
cross the operating margin and circuit timing is met. Worst-
case voltage margins can easily reach 20% of the nominal
supply voltage [1], resulting in significant overheads in either
performance or power consumption.

Researchers have proposed a variety of resilient architec-
tures, which have tighter voltage margins to avoid the effi-
ciency overheads of operating circuits far from their typical-
case voltage targets. Such typical-case designs avoid correct-
ness issues through different fallback recovery mechanisms
that handle the rare cases when the aggressive voltage margins
have been violated. The benefits from such resilient designs
compared to the conventional case range from 20 to 40% in
terms of either power consumption or performance [2], [3],
[4].

In this paper, we assume such a resilient system and evaluate
the effect of compiler optimizations on its noise behavior.
We first go on to confirm the correlation between voltage
noise and microarchitectural stall events, suggesting that stalls
are a potential cause of voltage noise. This implies that an
optimizing compiler, part of whose job is to eliminate stalls in
order to achieve better machine throughput, can also eliminate
some amount of voltage droops, decreasing the pressure on a
recovery system.

160
’
—_ o} 4
< 140 7 oy o
[/7 0
2 120 g S °
& o °s o
x o
g 100 o U/C
a o /
8' /7 0
2 ’
S god o
o
0/
o o
40
40 80 120 160

Stall ratio (%)

Fig. 1: Correlation between microarchitectural stalls and volt-
age droops for CPU2006 (normalized to suite average).

However, we show that the relationship between voltage
noise and compiler optimizations is more complicated than
such a simple causality. For the SPEC CPU2006 suite, on
average, more aggressively optimized code also shows a larger
number of voltage droops, with potentially larger magnitudes.
In the context of resilient architectures, this implies that
aggressive optimizations can even hurt performance, after one
factors in the performance penalty of recovering from the
larger number of voltage droops.

We finally investigate the microarchitectural reasons for
this impact. We show that different stall events contribute
to voltage noise to a different extent. For example, branch
mispredictions create an almost 50% larger voltage swing
than L2 cache misses. Thus, the typical optimizing compiler
behavior of eliminating stalls that bottleneck performance does
not necessary translate to eliminating noise-critical stalls. Such
considerations need to be taken into account if one is to create
a voltage-noise aware compiler for resilient architectures.

II. STALL EVENTS CAUSE VOLTAGE NOISE?

The methodology to measure voltage noise in production
processors has been thoroughly described in prior work [5].
To summarize, we use a high-frequency oscilloscope probe
and a signal analyzer to connect to the voltage sense pins on
a processor package. This allows is to measure supply voltage
unintrusively, as the processor is executing real workloads. In
the following experiments we use a Intel® Core™?2 Duo
processor, manufactured with 45nm process technology. The
particular chip used for measurements in this paper has been

~200

140
O1 m 02 03
120
- 100
o9
o9 80
E0O
S2x 60
g:
%g_ 40 :
c @ 2
og 20 | I
28 e 1l | e o | L

gcc —

bzip2 —
dealll 4
GemsFDTD —

astar —
bwaves —
cactusADM —
calculix —
gamess —
gobmk —{ ==
gromacs —
h264ref —
hmmer —

Ibm —
leslie3d —
libquantum —
mcf —

milc —
namd —|
omnetpp —
perlbench —
povray —
sjeng —|
soplex —|
sphinx3 —
tonto —

wrf —

Xalan —
zeusmp —

Fig. 2: Noise behavior for different degrees of compiler optimizations. O1 includes basic optimizations (f.e. dead code
elimination), O2 increases their aggressiveness without increasing code size (f.e. instruction scheduling), while O3 includes
the most aggressive and computationally heavy optimizations (f.e. function inlining and vectorization).

instrumented to retain only 3% of its original package de-
coupling capacitance, which brings its voltage noise levels
close to projections for today’s 22nm node. For subsequent
experiments, we classify reductions in its supply voltage below
an aggressive 2.3% margin as voltage droops’.

Using this experimental setup, we can establish a correlation
between voltage droops and microarchitectural stalls. Figure 1
shows the amount of voltage noise for the first 60 seconds
of execution of the SPEC CPU2006 benchmarks. The metric
shown, Droops per 1000 cycles, characterizes noise activity for
the benchmarks, similarly to the more popular cache metric
misses per 1K cycles. The different benchmarks show a large
variance in droops per 1K cycles, indicating a heterogeneous
mix of voltage noise characteristics. But, more interestingly,
droop activity is correlated with the Stall ratio. Stall ratio is
an aggregate metric of microarchitectural stalls, conveniently
provided by VTune [6]. The linear correlation coefficient
between droops and the stall ratio is 0.97.

III. CODE OPTIMIZATION INCREASES NOISE

The analysis so far strongly suggests a correlation between
voltage noise and microarchitectural stalls. This can lead
to the false assumption of direct causality — namely, that
eliminating stalls directly decreases voltage noise. In order
to show why the connection is more complex than that, we
evaluated the effects of compiler optimizations on voltage
noise. Compiler optimized code experiences a greater number
of voltage droops, and in certain cases the magnitude of the
droops is also noticeably larger. In a resilient design, this can
eventually lead to a performance loss for the more aggressively
optimized case.

A. Impact on Droop Counts
Typically, the task of an optimizing compiler is to increase
instruction throughput through the processor. A large body of

I'The particular size of this margin has been chosen to cover idle OS activity,
such that deviations below that value are caused by the respective benchmark.

well-known optimizations (such as loop unrolling, instruction
scheduling, register allocation) achieve that by eliminating
various microarchitectural stalls. Thus, if the analysis in Fig-
ure 1 was interpreted as a simple and direct causality relation
between the number of stalls and the number of voltage
droops, one would expect that higher compiler optimization
levels would decrease the amount of voltage noise, while
increasing performance.

Data that we gathered for the GCC compiler contradicts
with such a notion. Figure 2 shows the noise behavior of
the single-core CPU2006 benchmarks, when compiled with
optimization levels ranging from OO0 to O3. We can see that in-
creasing the aggressiveness of performance optimization with
respect to the OO0 baseline leads to a larger number of droops
per 1K cycles in the majority of benchmarks. Out of the 29
runs in this experiment, 19 binaries compiled with maximum
optimization result in a more than 10% increase in the number
of droops, compared to the respective non-optimized versions.
454 .calculix shows the largest increase — at O3 its droop
counts more than triple. The fluctuations for the other 10
benchmarks in the experiment are predominantly smaller. Note
that in several cases these small fluctuations are negative, that
is, better optimized code results in fewer droops.

Looking at the more moderate optimization levels O1 and
02 does not show a qualitative difference. The set of bench-
marks that show a large increase in droops remains largely
unchanged, with the difference being in the magnitude of the
increase. However, O3 does not always result in the largest
noise increase, compared to O1 and O2.

The behavior of the majority of the benchmarks is easily
explicable. When better optimized at O3, benchmarks exhibit
a higher number of instructions per cycle. At the microarchi-
tectural level, this implies that pipeline utilization is high, and
consequently switching factors are larger, therefore the core
consumes a relatively larger amount of current. On a stall, the
net change in current is larger than in the unoptimized case.
Since voltage fluctuations are proportional to such changes in

[~e— 00-m-0O1-4- 02-%- 03]

o 1.6
S e
© g4 (e ...
£ 1.4 -
g 12
g
~ 1.0
=
T 038
&
0.6 T TTTTTT T TTTTIT T TTTTTT T TTTTIT
10° 10' 10° 10° 10*
Checkpoint cost
(a) 473.astar
Fig
100 — —
;\? 08 7 7 ? y Droop magnitude
172
g 96—2 2 U 7, | m73%
a = 6.3%-7.3%
‘g 94 - 5.3% - 6.3%
S 7 4.3%-5.3%
3 92 = <43%
[T
90

oo ot "o2 ' o3
(a) 473.astar

[-e— 00-m-O1-4- 02-%- O3]

o 1.6
o
c
g 14 =
g 12
e
1.0
2
£ 08 -
&
0.6 T T TTTTT T T TTTTT T T TTTTT T T TTTTT
10° 10" ? 10° 10*

10
Checkpoint cost
(b) 435.gromacs

. 3: Influence of compiler optimizations on performance for varying recovery costs in a resilient architecture.

R 01 N N :

Q Droop magnitude
o

3

S o6 m >73%
a = 6.3%-7.3%
T g4 é 5.3% - 6.3%
c

S 7 4.3%-5.3%
8 92 m <43%

C

90
o1 ' 02

0o 03

(b) 435.gromacs

Fig. 4: Influence of compiler optimizations on the magnitude of droops (relative to nominal voltage).

current, each stall is more likely to cause a subsequent voltage
droop. This effect leads to a larger aggregate number of droops
over the whole execution, even though the number of stalls
may be smaller.

B. Impact on Net Performance

In a resilient design, the increased number of droops
at higher optimization levels has a respective performance
penalty. As a proof-of-concept that this penalty may be suffi-
ciently large to even offset the initial performance gains from
optimizing more aggressively, we analyze the net performance
of one benchmark from each of the two groups outlined above
(those that experience little change in their noise profiles,
represented by 473 .astar, and those that have a significant
increase, represented by 435. gromacs). We account for the
recovery cost of each voltage emergency below the hypo-
thetical 2.3% margin using a simple performance model of a
resilient architecture. Namely, each crossing of the aggressive
margin triggers a fallback mechanism with a set checkpoint
recovery cost in cycles. The cycles spent in recovery are added
to the conventional running time of the benchmark for an
estimation of its runtime on a resilient architecture with the
specific recovery cost.

Figure 3 shows performance improvement achieved by the
two representative benchmarks for different costs. Both bench-
marks rightfully receive a significant performance gain from
higher levels of performance-centric compiler optimizations.
For 473 .astar, this gain is sufficient to sustain higher net
performance even at very large recovery costs. Even though
the gains diminish because of the slightly increased droop

counts (and therefore emergency recoveries), in this case net
performance is dominated by factors other than noise. For
workloads represented by 435 . gromacs, fine-grained recov-
ery presents similar results. However, after a certain recovery
cost (100 cycles in this particular case), voltage noise effects
begin to dominate over the initial performance gains and
less optimized binaries achieve better net performance, after
factoring in emergency recovery penalties. Even the modest
30% increase in relative droop counts that 435.gromacs
shows is sufficient to offset the 50% initial performance gains
from compiling with O3.

C. Impact on Droop Magnitude

The magnitude of single droops can also be influenced
by varying compiler optimizations. While droop magnitude
is a second order effect that our performance model does
not include, larger droops require more time for voltage to
stabilize, which can potentially limit the minimum cycle cost
for emergency recovery. We quantify the distribution of droop
magnitudes for our two representative benchmarks. Figure 4
shows the top 10% of droops, broken down by the magnitude
of voltage swing. The first benchmark, 473.astar, does
not show a significant change in droop magnitude across
increasing compiler optimizations. This behavior is similar to
the total number of droops seen in Figure 2. For benchmark
435.gromacs, the relative severity of droop magnitude
increases (see Figure 4b).

1.8

1.6

1.4

il H
1.0 = T T T T
L1 L2 TLB BR EXCP

Core 0 (active). Core 1 (idling).

Peak-to-peak Voltage Swings
(Relative to an Idling OS)

Fig. 5: Varying amount of noise for different stall events.

IV. MICROARCHITECTURAL EXPLANATION

In order to better understand why more aggressively opti-
mized code can lead to a larger number of voltage droops,
we look more closely at the microarchitectural foundations of
droops. By using microbenchmarks, we show that some stall
events generate significantly more voltage noise than others.
Going back to the two representative benchmarks, we show
that the increase in frequency of noise-critical events coincides
with the increase in voltage droops.

We first show that different stall events contribute differently
to the amount of voltage variation. Figure 5 illustrates this
with microbenchmarks consisting of simple sequences of stall
events — L1 cache misses (L1), L2 cache misses (L2), data
TLB misses (TLB), branch mispredictions (BR) and hard-
ware exceptions (EXCP). The bars show the peak-to-peak
magnitude of voltage swings, caused by the different stall
events, normalized to the swing magnitude of the idle loop of
the operating system. We can see that branch mispredictions
and exceptions cause a significantly larger voltage swing
than cache misses — f.e. the difference between the branch
misprediction swing and that of an L2 miss is close to 50%.

There is an intuitive explanation for the results in Figure 5.
Voltage noise is an artefact of rapid changes in processor
activity. Before a miss event, the processor is executing in-
structions, switching factors are high and current consumption
is relatively large. A miss event throttles execution, but to a
varying degree — the more severe the miss event, the larger
portion of the chip stays idle to recover, hence the lower the
current consumption and the larger the voltage swing. Out-
of-order pipelines are designed to mask memory misses by
continuing execution, explaining the low voltage swings for
L1 and L2 misses. TLB misses require more special handling
(page-walking) that could keep a larger portion of the chip idle.
Finally, branch mispredictions and exceptions require flushing
most of the pipeline, resulting in very low activity before the
core pipeline is filled up, leading to a large voltage swing.

If we profile the two benchmarks in the running case study,
we can further confirm the noise-criticality of some stall
events. In order to demonstrate that, Figure 6 shows measured
miss ratios for 435.gromacs and 473.astar. All data
in the figure are relative to the case with no optimizations
(O0) and optimization aggressiveness grows to the right. For
both benchmarks, higher levels of optimization lead to higher
branch misprediction and TLB miss ratios (Figures 6a-6b).

I 473.astar m 435.gromacs
1.6

1.4

. H ’—’
1.0
o1 02 03

(a) Branch mispredictions

Branch misprediction ratio
(relative to O0)

I 473.astar @ 435.gromacs

4.0
el
B
?)O 3.0
Lo
[0}
B2 204
Fa
o @
87 1.0
O1 02 03
(b) Data TLB misses
[473.astar @ 435.gromacs
el _ —
‘§8 2.4
0 O
2 o
g2
02 204
L=
i
;b 1.6
0] |]
o1 02 03
(c) L1 cache misses
I 473.astar m 435.gromacs
2.8
il]
o=y R
8 24-
2 o 1
g2
o2 2.0
= 4
c®
Se 161
[aV) 4
37 LI S (S
O1 02 03

(d) L2 cache misses

Fig. 6: Performance counter data for 473.astar and
435.gromacs under different optimization levels.

Both metrics are eventually higher at O3 for 435.gromacs,
which also exhibits a large increase in voltage droops between
00 and O3. On the other hand, both L1 and L2 miss ratios
increase significantly more for 473 .astar (Figures 6¢c-6d),
without a corresponding increase in noise activity.

These results strengthen the hypothesis that performance-
critical and noise-critical stall events are not necessarily the
same. In terms of code optimization, this suggests that opti-

mizations targeting cache behavior (f.e. software prefetching)
are unlikely to also reduce voltage noise. Such differences
inspire future work in finding the optimal set of code trans-
formations for a resilient architecture.

V. CONCLUSION

We have shown that higher levels of optimization amplify
the amount of voltage noise that workloads exhibit. In the
context of resilient architectures, the larger amount of voltage
noise can lead to a net performance degradation.

For a typical-case design, these results add voltage noise
behavior as yet another variable in the already complex com-
piler problem of picking an optimal set of code optimizations.
If such a voltage-noise-aware compiler is to be created, it could
address recovery-related performance bottlenecks by either: (i)
statically eliminating the noise-critical stall events identified
earlier; (ii) dynamically adjusting degrees of optimization (as
demonstrated in prior work [7]). In either case, the consider-
able influence of compiler optimizations on noise suggests that

designing a resilient architecture requires careful collaboration
between the layers of the computing stack.

ACKNOWLEDGEMENTS

The material reported in this paper is based partly upon
work supported by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-13-C-0022.

REFERENCES

[1] N. James et al., “Comparison of split-versus connected-core supplies in
the POWERG6 microprocessor,” in ISSCC, February 2007.

[2] D. Ernst et al., “Razor: A low-power pipeline based on circuit-level timing
speculation,” in MICRO, 2003.

[3] C.Lefurgy et al., “Active management of timing guardband to save energy
in POWER?7,” in MICRO, 2011.

[4] K. Bowman et al., “A 45 nm resilient microprocessor core for dynamic
variation tolerance,” Solid-State Circuits, IEEE Journal of, 2011.

[5] V.Reddi et al., “Voltage smoothing: Characterizing and mitigating voltage
noise in production processors via software-guided thread scheduling,” in
MICRO, 2010.

[6] “Intel VTune,” http://software.intel.com/en-us/intel-vtune/.

[71 V. Reddi et al., “Software-assisted hardware reliability: abstracting
circuit-level challenges to the software stack,” in DAC, 2009.

http://software.intel.com/en-us/intel-vtune/

	Introduction
	Stall events cause voltage noise?
	Code optimization increases noise
	Impact on Droop Counts
	Impact on Net Performance
	Impact on Droop Magnitude

	Microarchitectural explanation
	Conclusion
	References

