
Scalar Vector Runahead
Jaime Roelandts†, Ajeya Naithani†, Sam Ainsworth≀, Timothy M. Jones‡ and Lieven Eeckhout†

†Ghent University, Belgium ≀University of Edinburgh, UK ‡University of Cambridge, UK

Abstract—Modern graph and database processing typically
takes place on high-end servers in data centers. However, with
growing concerns of data privacy, trustworthiness, and all-time
connectivity, there has been a shift toward increased analytics
processing on edge devices such as mobile phones. In an ideal
scenario, we would run these applications on the energy-efficient
in-order cores available in these systems rather than the power-
hungry out-of-order cores. However, these applications typically
feature an extremely low computation-to-communication ratio
and irregular memory accesses, meaning their performance is
memory-bound, and out-of-order cores provide significant per-
formance advantages over their in-order counterparts. Although
prior work on Vector Runahead has substantially improved the
performance of graph applications on very large out-of-order
cores, it incurs high complexity and power consumption, so is
unsuitable for energy-efficient in-order processors.

Scalar Vector Runahead (SVR) extracts high memory-level
parallelism on simple in-order cores by piggybacking on existing
instructions executed on the processor leading to future irregular
memory accesses. SVR executes multiple transient, independent,
parallel instances of memory accesses and their chains initiated
from different values of a predicted induction variable to move
mutually independent memory accesses next to each other to hide
dependent stalls. With a hardware overhead of only 2 KiB, SVR
delivers 3.2× higher performance than a baseline 3-wide in-order
core, and 1.3× higher performance than a full out-of-order core,
while halving energy consumption. Increasing the overhead to
9 KiB to account for a larger register file, SVR can extend the
speedup relative to an out-of-order core to 1.7×.

Index Terms—microarchitecture (CPU), data prefetching,
runahead, graph processing

For the purpose of open access, the author has applied a Creative Commons
Attribution (CC BY) license to any Author Accepted Manuscript version arising.

I. INTRODUCTION

The importance of workloads with chains of dependent
memory accesses, as seen in graph analytics, database and
high-performance computing (HPC), has consistently in-
creased over the past few years, which has resulted in sig-
nificant research efforts to improve their performance [1], [3],
[31], [40], [43], [53]. To execute these workloads efficiently,
the goal is to overlap as many of their cache misses as possible
to hide their memory access latency. The traditional method of
overlapping execution relies on out-of-order (OoO) superscalar
processors, which use a reorder buffer to find independent
work. However, even the largest out-of-order systems struggle
to find enough independent work to achieve good performance
on these challenging workloads [43]. At the same time, out-of-
order processors are widely known to be power-hungry [20],
[52], and as a result, today’s edge processors also deploy in-
order superscalar cores to reduce energy consumption [21].

Despite edge analytics being increasingly important due
to privacy and latency concerns [45], these in-order cores

InO
IM

P
OoO

SVR8

SVR16

SVR32

SVR64

SVR128
0

1

2

3

4

N
or

m
. I

PC

Performance

InO
IM

P
OoO

SVR8

SVR16

SVR32

SVR64

SVR128
0.00

0.25

0.50

0.75

1.00

N
or

m
. E

ne
rg

y

Energy

Fig. 1: Average speedup (harmonic mean of IPC) and whole-
system energy for various lengths of SVR (16 default) versus
an in-order baseline, an out-of-order core, and IMP [60].

struggle immensely with big-data workloads and the indirect
memory accesses seen within. In-order cores are unable to
overlap memory accesses by dynamically rescheduling them,
so have no ability to hide the associated memory latencies: we
see cycles-per-instruction (CPI) as high as 20, and so energy
efficiency can be even lower than for out-of-order cores.

Can we achieve high performance for these challenging
workloads with chains of dependent memory accesses, while
still reaping the energy-efficiency benefits of in-order pro-
cessing? To answer this question, we take inspiration from
the state-of-the-art in data prefetching on large out-of-order
superscalar microarchitectures, namely Vector Runahead [40],
[43]. The key motivation behind such techniques is that, by
using a stride-load predictor to predict some future memory
accesses, we can spawn many independent chains of dependent
instructions to find many other future memory accesses, thus
using transient execution to prefetch data for standard out-of-
order execution. However, the state-of-the-art technique, De-
coupled Vector Runahead [43], makes heavy use of resources
only available on large cores: the runahead mode has its own
fully decoupled, dedicated execution context within the core,
that can overlap with the main thread. This context is small
relative to an out-of-order core but would be infeasibly large
next to an in-order core. It also requires very wide vector units
unavailable on small cores, a very large physical register file to
store all the overlapping operations, and out-of-order execution
to efficiently run a ‘discovery pass’ for loop bounds.

Our aim is to take the principles of Vector Runahead and
apply them to small in-order superscalar cores. This requires
rearchitecting the approach, keeping the notion of overlapped
future memory accesses to exploit MLP, but avoiding the need
for a supported vector ISA or a separate runahead context.
Our technique, called Scalar Vector Runahead (SVR), syn-
chronously ‘piggybacks’ off existing instructions executed in

0 1

23

4

0 2 4 7 9 12

1 2 0 3 0 1 3 0 2 0 2 3

2.939 36.2 801.0 9.136 12.25

Offset
array

Neighbor
array

Vertex
data

Fig. 2: A sample graph and its representation in CSR format.
Both the offset and neighbor arrays store values in a contigu-
ous manner. The index of each element in the offset array
represents vertex ID while the value represents the index of
its first neighbor. Values in the neighbor array represent the
index of the elements in the vertex data array.

1 for (NodeID u=0; u < g.num_nodes(); u++) {
2 ScoreT incoming_total = 0;
3 for (NodeID v : g.in_neigh(u))
4 incoming_total += outgoing_contrib[v];
5 }

Listing 1: C++ code for the hot loop in PageRank.

the processor, by opportunistically generating multiple scalar
copies of them, each with independent sets of inputs and
dependencies. It keeps track of all the newly interleaved in-
structions with their own small pool of SRAM, while learning
from dynamic properties of execution to efficiently discover
accurate loop bounds and without relying on out-of-order
execution to calculate properties of future work. It does this
while retaining a simple, strictly in-order execution model.

Compared to a 3-wide in-order core configured after an
ARM Cortex-A510, SVR delivers 3.2 × higher performance
across a variety of memory-latency-bound graph, database
and HPC workloads with its default vector length of 16
and only 2 KiB state. This surpasses even a 3-wide out-of-
order (OoO) core by 1.3 ×, rising to 4.3 × and 1.7 × higher
than an in-order and OoO core, respectively, for SVR with
a 128 vector length and 9 KiB state. SVR requires 53%
and 49% lower energy than in-order and out-of-order cores,
respectively (Figure 1). In addition, SVR beats the Indirect
Memory Prefetcher (IMP) [60] by 1.4×. SVR establishes these
speedups without dedicated vector execution units.

II. BACKGROUND

A. Sparse Memory Accesses

Many classes of modern workloads feature difficult to
predict, non-sequential memory accesses, based on indexed
lookups, e.g., to sparse matrices (in graph and HPC) or table
data structures (such as the hash tables seen in database
workloads). While these workloads theoretically have high
memory-level parallelism (MLP) at an algorithmic level, this
is difficult to exploit. Large data volumes and low temporal
locality leave modern cache hierarchies underutilized. Because
the accesses are indirect or pointer-chasing, they cannot be
easily prefetched closer to the core in the cache hierarchy.

BC BFS CC PR SSSP HPC-DB Avg.
0

5

10

15

C
PI

other mem-dram in order out of order

Fig. 3: CPI stacks for workloads with chains of dependent
memory accesses on in-order versus OoO cores. In-order cores
spend 2.5× more cycles waiting for DRAM than OoO cores.

As an example, due to their sparse nature, graph applications
are typically stored a compressed sparse row (CSR) format for
high storage efficiency. As shown in Figure 2, this consists of
three arrays: offset, neighbor, and vertex data [35]. Accesses to
the offset array are sequential while accesses to the neighbor
and vertex data arrays are indirect. Listing 1 shows C++
code accessing the three arrays for PageRank from the GAP
benchmark suite [11]. Line 1 iterates over the nodes, which
is represented by the Offset array in Figure 2, line 3 iterates
over the neighbors of each node, which is represented by the
Neighbor array in Figure 2, and line 4 adds the contribution of
each neighbor to the current node ranking, which is an access
to the Vertex data in Figure 2.

Accesses to g.in_neigh(u) follow a regular sequence,
so they can be picked up by a stride prefetcher, whereas
accesses to outgoing_contrib[v], based on the non-
sequential values stored inside g.in_neigh(u), are irregu-
lar and highly data-dependent, meaning they persistently miss
in the cache. Although an out-of-order core can accommodate
a few loop iterations simultaneously in its reorder buffer to
extract MLP from multiple dependent chains, it quickly stalls
before it can saturate memory bandwidth. For in-order cores,
the problem is even worse. Even if we assume that the in-
order core is stall-on-use rather than stall-on-load, the use of
the cache-missing load will cause the core to pause execution
until the high-latency access to main memory completes. This
effectively inhibits any kind of MLP, causing poor perfor-
mance.

B. Memory Latency on In-Order Cores

Figure 3 reports the cycles-per-instruction (CPI) for in-order
and OoO cores. As the figure demonstrates, the severity of
the performance impact of indirect memory accesses on an
in-order core is manifold higher than its OoO counterpart.
While the OoO core is stalled for 3.6 CPI on DRAM memory
accesses, the in-order core stalls for a substantially higher 8.9
CPI. This results in a 2.5× slowdown on the in-order relative to
the out-of-order core. Therefore, addressing the performance
bottleneck for applications with indirect memory accesses is
critical on in-order cores.

TABLE I: Differences between VR, DVR and SVR.
VR DVR SVR

Based on existing vector ISAs Y Y N
Relies on existing vector registers Y Y N
Optimizes vector-register usage N N Y
Stalls the main thread Y N N
Runahead synchronous with main thread N N Y
Mitigates incorrect prefetches N Y Y
Needs a discovery pass N Y N

C. Vector Runahead

Vector Runahead (VR) [38], [40] is a microarchitectural
technique for out-of-order cores, to generate high MLP for
sparse memory accesses. VR keeps a reference prediction
table [17] to find loads with striding access patterns, which
it uses to predict induction variables for future loops. If
these stride loads generate dependent memory accesses down
their compute chain, VR creates instructions corresponding
to chains beginning from many different indices, transiently
issuing many independent future iterations simultaneously. VR
combines these multiple scalar-instruction copies into vectors
to improve back-end throughput. Though the dependent ac-
cesses will still miss in the cache, many independent misses
now occur in close proximity, resulting in very high MLP,
and a high cache hit rate once the processor returns to normal
execution.

Decoupled Vector Runahead (DVR) [39], [43] builds on top
of VR. While VR is triggered when the ROB fills up and so
the OoO core cannot progress further, DVR is ‘decoupled’ or
independent of the size of the microarchitectural structures by
issuing a speculatively vectorized instruction stream in a sec-
ond, simple in-order simultaneous subthread on the same core.
In addition, DVR detects loop bounds at run time to improve
prefetching accuracy, including across multiple nested inner-
and outer-loops simultaneously. DVR also handles control-
flow divergence using GPU-style reconvergence stacks.

Both techniques make extensive use of resources only
available or realistic in large out-of-order superscalar cores,
meaning a direct translation to energy-efficient in-order cores
is impossible. However, both also give insights into designing
mechanisms that can obviate the even more pressing latency-
bound behavior observed on in-order cores.

III. SVR: DESIGN PHILOSOPHY

While in-order cores are widely deployed, they suffer even
more heavily than out-of-order cores when it comes to latency-
bound irregular workloads. At the same time, the state-of-
the-art solutions for such workloads, Vector Runahead [40]
and Decoupled Vector Runahead [43], are completely unviable
on small cores. A comparison of the guiding principles and
characteristics of VR, DVR, and our new technique, SVR, are
summarized in Table I and elaborated on below.
Scalar-Vectors, Not Vectors: Both VR and DVR pack data
for the independent groups of future iterations into wide
SIMD registers and utilize their corresponding SIMD vector
instructions (such as AVX512). Smaller cores are not likely to
support vector operations at all, or only to support small vector

widths (e.g., 128 bits [21]). Still, even with 512-bit datapaths,
VR and DVR must issue multiple vector instructions at once
(VR issues 64 iterations simultaneously, and DVR up to
128). If the underlying core is memory bound, we can still
achieve speedup by issuing the computation on the many
independent data items as scalar operations rather than as
vector instructions, hence the term ‘scalar vectors’. Even in
an in-order core, provided the core supports stall-on-use rather
than stall-on-miss (i.e., the core stalls when a loaded value
is used rather than immediately on a cache miss), we can
still take advantage of data-level parallelism to achieve high
MLP by packing many independent memory accesses together.
Even DVR’s subthread does not make use of out-of-order
execution, as the parallelism between lanes is ample, and
individual lanes have little instruction-level parallelism due to
indirect chains. Thus, we can see the MLP benefits of transient
vectorization without actually using out-of-order execution or
any explicit vector operations, hence the proposal of Scalar
Vector Runahead.

No Spare Registers: Both VR and DVR perform transient
execution by repurposing spare physical registers. In-order
cores do not need to perform renaming, and so they do not
have any physical registers. Indeed, VR and DVR not only
need some spare registers, but lots of them: the techniques
deliberately overlap the liveness of all registers in up to 128
loop iterations simultaneously to achieve high MLP. SVR
therefore needs explicit new storage for storing intermediate
results of the transient runahead execution, which is additional
overhead that will be particularly prominent if the core is small
to begin with. In order to reduce resource utilization, we need
to recycle registers before we can guarantee they are dead,
even at the expense of failing to generate runahead.

Lockstep Coupling: VR only triggers once the ROB is full
— a structure in-order cores do not have to begin with. DVR
does not have such a precondition due to running inside a
second independent simultaneous subthread. The overheads of
the latter on a large out-of-order core may be insignificant,
but will be costly on a small in-order core. In addition, both
mechanisms have distinct state for transient and non-transient
execution, including checkpoints of all scalar registers, again
stored in spare register file space the little core will not have.

We can avoid the complexity of both mechanisms, while
building a design suitable for coupling to an in-order core,
by running the runahead instructions in lockstep with real
execution: for example, a stride load is immediately succeeded
by multiple future scalar copies (scalar-vector instructions)
of the same stride load, which are followed by the next
scalar instruction, which are followed by copies of that same
instruction with the references changed depending on which
scalar-vector element it is associated with. This means we need
only one copy of all scalar values, rather than one for runahead
and one for true execution. For example, the base address of
an array can be shared and stored once.

Timeliness-Accuracy Trade-Offs: The original VR is inac-
curate as it always issues 64 iterations ahead even if this ends

up outside the data structure or outside the loop bounds of
the original code. DVR is accurate because it dynamically
discovers loop bounds: it then waits until loop conditions are
evaluated at the end of the first iteration after its discovery
mode begins to initiate runahead. This is suitable on an
out-of-order core, where such a condition is likely to be
evaluated shortly after entering the loop, but on an in-order
core, it is likely to be evaluated after the long-latency loads
inside the loop. This significantly hurts MLP, as it means
whole iterations effectively end up completely in-order with
no runahead. To solve this, SVR uses a novel combination of
both history predictors and scavenging, where it accesses data
that is likely to be representative of the future loop condition.
These fundamental principles: (1) using scalars not vectors
to execute our vectorized code, (2) frugally using specially
provided temporary register storage for the runahead execu-
tion, (3) coupling runahead with the main thread to avoid
stalling the processor or needing an extra context, and (4) using
information that is cheap for an in-order core to discover to
improve prefetcher accuracy, are all vital insights that we use
to build SVR in the following section.

IV. SVR MICROARCHITECTURE

SVR builds on a stall-on-use in-order core [26]. The core
monitors the data-load stream for striding memory access
patterns, generating multiple scalar copies of striding loads
each with a different future address. Transitive dependent
instructions of the striding load are tracked with the help of
a taint tracker, and multiple copies are generated for each of
the dependent instructions as well. The group of generated
scalar copies of data for a single instruction is called a
scalar vector (SV), and the instruction copies themselves one
collective scalar-vector instruction (SVI). One SV comprises
N scalars (or the vector has N elements); N = 16 in this
work unless otherwise specified. The key difference between
SVIs and vector instructions is that the scalar instructions
comprising an SVI are issued and executed independently in
the processor back-end. An SVI executes transiently on the
existing functional units alongside the main thread (meaning
they cannot affect architectural state), and SVIs’ purpose is to
prefetch future memory accesses for the main thread. Since
there are no spare physical registers in an in-order core, SVIs
read and write to a small physical vector register file called
the speculative register file (SRF).

Upon detecting a load instruction with a striding memory
access pattern, the core enters into piggyback runahead mode
(PRM) and generates an SVI for the striding load, see also
Figure 4. SVIs piggyback on the existing real instruction
stream executed by the processor, in that SVIs are also
generated for any instruction that directly or indirectly depends
on the striding load, at the point the real instruction is issued.

The chain of dependent instructions starting from the strid-
ing load is known as an indirect chain. When the core
encounters another instance of the same striding load, the
process of generating SVIs terminates and the core enters into
waiting mode. This marks the execution of one iteration of

time

//Single-indirect chain
for(i=0 to N) { A[i];
 IndA; }

A0 A1 A17
PRMA waiting …

t0 t1 t2

Fig. 4: Example indirect chain starting from a striding load
A. At the time of loading A0, PRM transiently overlaps the
issuing of A1..16 for prefetching, and does the same with its
dependents IndA. When we reach A1 in true execution we
enter waiting mode, where we reap the rewards of earlier
prefetches. Once we reach A17, we see an entry we have not
yet prefetched, entering PRM again.

the indirect chain. Waiting mode prevents the core from re-
entering piggyback runahead mode and avoids generating SVIs
for overlapping iterations. A load can re-enter piggyback runa-
head mode when a load outside the prefetched range occurs.
The following sections explain SVR’s detailed working.

A. Microarchitecture

Figure 5 illustrates the SVR microarchitecture modifications
over the baseline in-order core. To support SVR, we augment
the baseline with the following structures (green boxes): (1) a
stride detector for tracking loads with striding memory-access
patterns, (2) a taint tracker for identifying the indirect chain
from a striding load, (3) a register called head striding load
register (HSLR) (in blue) to save the instruction pointer of the
initiating (and terminating) striding load, (4) a last prefetch
register (LP) to track the last address that SVR generated per
striding load, to avoid overlapping prefetches, (5) a speculative
register file (SRF) accessed by runahead instructions within
the indirect chain, and finally, (6) the issue unit is modified to
accommodate a scalar vector unit (SVU) which duplicates the
current instruction and creates/issues up to N scalar copies
of it. A loop bound detector (LBD) (in orange) and last
compare register (LC) (in pink) are engaged when predicting
the number of upcoming iterations that SVR must prefetch.
The following sections explain the details of each structure.

1) Stride Detector: The stride detector uses a reference
prediction table similar to that in stride prefetchers [17]; it
is indexed with the PC of a load instruction. Figure 6 shows
the fields of each entry of the stride detector. In SVR, the
stride detector has multiple roles. Foremost, the stride detector
is responsible for identifying load instructions with striding
memory-access patterns. The stride is calculated as the delta
between the ‘Previous Address’ and the current address, and
is stored in the ‘Stride’ field. When the newly calculated stride
is the same as the one already stored, the ‘Saturating Counter’
is increased to denote higher confidence. Second, the ‘Last
Prefetch’ field in the stride detector prevents the core from
entering piggyback runahead mode within the range fetched
in the last round (waiting mode), to avoid duplicate address
generation for redundant prefetches consuming compute re-
sources. Third, the ‘Seen’ bit is used to detect inner loops in
the presence of multiple (nested) striding loads by indicating
if the another striding load has been seen before encountering

Fetch Decode
Issue Unit

Scalar-Vector Unit Scoreboard

Execute

Writeback

Registers
x0
x1
x2
...

Speculative
Register File

Stride Detector LP

Taint Tracker
HSLR
Mask

LBD LC
A

rchitecturalS
tate

Existing Structures

New Structures

Loop Bound Detector

Last Prefetch

Head Striding-Load Reg.

Last Compare

Fig. 5: SVR’s microarchitecture: A conventional stall-on-use in-order processor is augmented with a stride detector to find
candidates for scalar vector runahead, a taint vector to propagate vector inputs to generate new vector instructions, a slicer to
generate multiple scalar-vector copies of the program’s true instructions, and speculative registers to store intermediate results.

Load

PC

Previous

Address

Saturating

 Counter
Last PrefetchStride Seen

Last Indirect Load

(LIL)
LIL Confidence

Fig. 6: Fields of a stride-detector entry: a reference-prediction table [17] to find future addresses to spawn vectors from, ‘Last
Prefetch’ for waiting mode, a ‘Seen’ bit to track innermost loops, and fields to skip instructions past the final dependent load.

Striding

Load PC
Mask

Fig. 7: Fields of the HSLR, storing the PC on which we start
and terminate, and a control-flow mask for divergent lanes.

Arch.

Register

 ID

Tainted SRF Reg. ID OffsetMapped

Fig. 8: Fields of a taint-tracker entry, stored per-architectural
register. SVIs are generated if an input register is tainted (by
another SVI writing to it, initially from a starting stride load),
and is still mapped to an SRF ID (the SRF entry has not been
replaced). Offset is used for LRU replacement.

the head striding load again. Finally, the stride detector also
keeps track of the ‘last indirect load (LIL)’ in the chain.

Each load instruction accesses the stride detector when it
reaches the head of the issue queue, and updates the detector
upon execution. Upon reaching the head, a load instruction is
issued as normal. However, if the load is detected as striding,
the HSLR is updated with the load’s PC, and the core enters
into piggyback runahead mode. The issue unit issues N copies
of the load, with addresses based on the original load and
detected stride size. The following instruction in program order
is issued only after all SVIs for a striding load have issued.

2) Detecting Indirect Loads: The indirect chain is identified
using a taint tracker, which is indexed with architectural regis-
ter identifier. Figure 8 shows the fields of an entry of the taint
tracker. The ‘Tainted’ bit is set when an instruction is part of
the indirect chain. The striding load sets the bit corresponding
to its destination register. Any future instruction that reads a
register with its tainted bit set in the taint tracker also sets the
bit corresponding to its destination register. SVIs are generated
for all the instructions that read a register with its tainted
bit set, and the taint tracker is reset when the core leaves
piggyback runahead mode. The ‘Mapped’ bit is set when the
architectural register is mapped to a speculative register in
the SRF, and the ‘SRF Reg. ID’ field stores the speculative
register identifier. The ‘Offset’ field keeps track of the number

of dynamic instructions between an instruction in the chain
and the striding load; this field is used to implement LRU
replacement on architectural-to-speculative register mappings
if we run out of speculative registers (Section IV-A3).

3) Register Mapping and Recycling: SVR maintains a
speculative register file (SRF) with 1,024-bit wide speculative
registers, and 16 scalars can simultaneously access different
64-bit locations within each register. The mapping from ar-
chitectural to speculative register is maintained in the taint
tracker (Figure 8). There will typically be fewer SRF entries
than architectural registers, as SRF entries are very wide, so
are at a premium in terms of silicon area; this means there
cannot be a one-to-one mapping between the two, and so
we can only map a finite number of architectural registers
at once. In piggyback runahead mode, architectural registers
are allocated a free SRF entry on first write1 (either via stride-
load generation or because an input register is tainted), which
taints and maps the architectural register in the taint tracker.
The following scalars depending on the striding load read from
this speculative register. When a mapped architectural register
is overwritten by an instruction that is not part of the indirect
chain, the ‘Tainted’ field is reset and the SRF register freed.

SRF entries are deliberately underprovisioned relative to
architectural registers. To attempt to keep vectorizing if they
are exhausted, we use LRU replacement; the SRF entry that
is allocated to the least recently read (but still mapped)
architectural register in the taint tracker is recycled. At this
point, we indicate the invalidity of the old mapping by setting
the architectural register’s Mapped bit to 0 in the taint tracker,
to prevent any instructions using the input register from being
scalar-vectorized. The LRU replacement state is implemented
via the Offset field; it is updated on each register read with
the number of instructions that have executed since the start
of the round of piggyback runahead mode.

4) Generating and Executing Scalar Vectors: SVIs are
generated by the Scalar Vector Unit attached to the issue unit

1Unlike in an out-of-order core, which uses renaming to avoid name
dependencies, only one copy of an individual architectural register can be
live at once, so speculative registers are reused if a mapping already exists.

of the baseline core. Upon detecting a striding load, the Scalar
Vector Unit creates an SVI: N further copies of the load with
different addresses based on the memory address and stride
size of the striding load, tainting the destination register in the
taint tracker. It also does the same for any instruction with an
input tainted in the taint tracker.

When we initiate piggyback runahead mode from a striding
load (placed in the HSLR), a register keeps track of the 16
least significant bits of the last indirect load executed before
we return to the HSLR load. When we terminate, this is copied
into the HSLR PC’s LIL entry in the stride detector2. We stop
generating SVIs past the number of instructions in the LIL, or
reaching the HSLR load, whichever comes first.

The copies are sent to the functional units alongside in-
structions from the main thread, and execute based on the
availability of the relevant unit. The instruction from the main
program has a priority over copies. We augment each entry
of the scoreboard with a ⌈log2(N + 1)⌉ bit return counter to
keep track of the N executing scalars. The return counter is set
to N when issuing an instruction from an indirect chain, and
a value of 0 in the return counter signals that all the scalars
generated for the instruction have completed their execution.
Upon return, each of the scalar instructions updates the SRF,
and decrements the counter. Instructions dependent on the
architectural or speculative destination can then proceed.

5) Termination and Restart: Piggyback runahead mode
terminates when we reach the stride-load PC in the HSLR
or a 256-instruction timeout. We then clear the taint tracker.
At this point, the core enters waiting mode to avoid repeated
work for the same striding load PC. A stride load cannot start
a new round of runahead as long as the observed address is
between the stride detector entry’s Previous Address and Last
Prefetch fields3. Once an address outside this range is observed
at a given PC (due to discontinuity or reaching the address
following Last Prefetch), we restart piggyback runahead mode.

6) Multiple Indirect Chains: In addition to the simple
indirect chain in Figure 4, SVR can simultaneously handle
multiple indirect chains. Figure 9 shows three cases with two
indirect chains each, one starting from striding load A and
another from striding load B. The three cases present further
opportunity for improving performance by either generating
prefetches for multiple chains or by retargeting to a chain with
more timely prefetches (from a more inner loop). We use the
‘Seen’ field in the stride detector to detect other loops, which
is set whenever the core detects a striding load. All the Seen
bits except for the HSLR load are cleared whenever the core
encounters the HSLR load, or retargets and resets the HSLR.

2With multiple concurrent strides (Section IV-A6), only the entry in the
HSLR’s stride detector is used and updated, but is shared between all
concurrent stride chains, storing only the final dependent load in the set.
In the presence of conditional code or aliasing, the LIL can change or be
incorrect. ‘LIL Confidence’ (a 2-bit saturating counter) ensures that the core
utilizes the field only for a constant last indirect load, by detecting through
taint when we reach an alternative LIL once vectorization has finished.

3By storing a range that we performed runahead on, rather than having a
countdown, we are able to detect when we overfetched on a previous loop,
and so should restart a new round of runahead immediately because the values
observed by the thread have not yet been prefetched.

//Nested loops
for(i=0 to N){
 A[i]; IndA;
 for(j = 0 to N){
 B[j]; IndB;}}

//Unrolled loops
for(i=0 to N){
 A[i]; IndA;
 B[i]; IndB;}}

//Independent loops
for(i=0 to N){
 A[i]; IndA;}
for(j=0 to N){
 B[j]; IndB;}

time
A
0

B
0

B
18

normal

t
0 t

1 t
4

B
1

t
2

time
A
0

A
1

A
17

normal

t
0 t

2 t
4

B
0

t
1

B
1

t
3

B
17

t
5

time
A
0

A
1

B
18

normal

t
0 t

1 t
5

B
0

t
2

B
2

t
3

B
1

t
3

B
2

t
4

PRM
A

PRM
B

PRM
A

PRM
A

PRM
B

PRM
B

…

PRM
B

W
A

W
B

W
A

W
B

…

……

Fig. 9: Examples for multiple indirect chains handled by SVR.
Accesses to arrays A and B are striding; PRMi and Wi

represent the time core is in piggyback runahead mode and
waiting mode for load i, respectively.

Nested Loops. For nested loops, the core enters piggyback
runahead mode for load A at t0. The Seen bit in the load’s
stride detector entry is set, and HSLR is set to the PC of load
A. When the core detects another striding load B at t1, it sets
Seen bit to 1 for load B, and begins piggyback runahead mode
for load B. However, if the core detects another instance of
load B before load A (at t2), by detecting the Seen bit for
load B already set, load B is part of a nested loop. Therefore,
the core aborts piggyback runahead mode for both load A and
load B at t2, sets the HSLR to load B, and begins generating
SVIs for the inner loop starting from load B.

Unrolled Loops. For unrolled loops with two indirect chains
executing in parallel, generating prefetches for only one chain
leaves performance on the table by missing the opportunity
to prefetch memory accesses for another. Therefore, when
generating prefetches for load A, if the issue unit finds another
independent striding load B whose Seen bit is not set, it
generates scalars for the indirect chain starting from B as well.
The Seen bit for B is cleared when the core detects load A
(the current load in HSLR) again at t2. Therefore, unlike nested
loops, we do not completely switch to generating scalars for B
when we encounter another instance of B at t3, simultaneously
generating prefetches for both chains.

Independent Loops. For independent loops where we have
completed piggyback runahead mode for HSLR load PC A,
we leave A in the HSLR, and reset all ‘Seen’ bits every
time we reach the HSLR regardless of whether the core is
in piggyback runahead mode for load A. If we see a different
load PC B for which the core is not in waiting mode we
set its Seen bit, and if we subsequently see B with its Seen
bit set, we retarget, update the HSLR with the PC of load B
and begin piggyback runahead mode for load B, regardless
of whether the core is in waiting mode or normal mode for
load A. This bias towards the PC in the HSLR is to prevent
retargets when first entering an inner loop from an outer loop
from delaying runahead on the inner loop, by deprioritizing
runahead on the outer loop, but still allowing retargeting to

Load

PC

Iteration

Counter
LCEWMA Increment

Tournament

Bits

Fig. 10: Fields for loop-bound prediction, including loop-
bound detector, EWMA and tournament.

any load we see twice, preventing starvation on new program
phases with different loops.

7) Determining when SVR is Useful: To avoid SVR hurting
performance more than it benefits, we monitor the accuracy
of SVR using prefetch tags in the L1 cache, to track both the
first use of a load brought in by SVR, and eviction before
use. If, after a warmup of 100 uses or evictions, the accuracy
drops below 50%, we prevent all loads from triggering SVR.
To prevent this being permanent, we reset every one million
instructions to give SVR another chance to execute.

B. Improving Efficiency

Here we improve the efficiency of SVR in two ways. First,
we handle diverging vector lanes after a branch instruction.
Second, generating a fixed number of scalars (for example,
16) can issue wrong prefetches if the real program has fewer
upcoming iterations. Therefore, we use a predictor to decide
the number of scalars that should be generated in each SVI.

1) Control Flow: In piggyback runahead mode, a striding
load can feed a conditional branch instruction and, there-
fore, the generated scalars can follow different paths. While
DVR [43] implements full reconvergence, since SVR piggy-
backs on existing instructions, it cannot execute down paths
not covered by the real program. We instead mask diverging
paths after the branch instruction, and generate SVIs only
along the current path followed by the real instruction stream.
During a round of piggyback runahead mode all vectorized
instructions follow the same control path, regardless of which
source stride load generated them. We have a single set of
N mask bits (16 bits for 16-length SVR), associated with the
Head Stride Load stored in the HSLR.

2) Loop Bound Prediction: Inaccurate out-of-bounds
prefetches cause cache pollution and harm energy usage.
Therefore, SVR predicts the upcoming number of iterations
of a striding load with the help of a tournament predictor
(Figure 10). The predictor decides the number of future
iterations based on input from two techniques. First, a counter
that keeps track of the exponentially weighted moving average
(EWMA) of the number of iterations for each load instruction.
Second, a loop bound detector that analyzes the past iterations
of a loop and evaluates the upcoming iterations based on the
register values used by the last compare/branch instruction that
performs the bound check for the loop.

EWMA-Based Prediction. We keep track of the past
weighted moving average of the number of contiguous itera-
tions in the stride detector before a discontinuity, for each load
instruction, and use that for deciding the number of scalars
that must be generated. To catch the case where the number
of contiguous strides is very large (so no throttling is needed),
we also update the EWMA whenever we reach 512 entries

or more, at which point the counter is reset. In the stride
detector (Figure 6), every time the next seen address at a given
PC matches Previous Address + Stride, an Iteration
counter in the LBD is incremented. If a different address is
seen, the Iteration counter is reset. On reset, Iteration is
saved into the EWMA in the LBD, with the formula:
EWMAnew = 7× EWMAold/8 + Iteration/8.

We fetch min(EWMA− Iterations,N) elements each round
if EWMA − Iterations is positive, and min(EWMA,N)
otherwise, with N the SV length (16 default).

Loop Bound Detector. We also attempt to learn the loop
bounds directly, so that we can tell the exact number of
iterations the current loop will run for rather than relying
on historical data. We do this by looking at the values input
to backwards conditional-taken branches (conditional branches
which the program too and whose target is before their source
in the program, indicating a loop). Each Compare instruction
updates the last compare register (LC) with its PC, source
operand values (S.A and S.B) and source register IDs. If the
flag destination is written to otherwise, the LC is reset. If we
see a backwards conditional-taken branch to before the PC
in the HSLR, with input from the LC’s destination register,
the loop bound detector (LBD) is trained. The LBD entry for
the PC in the HSLR is looked up. If the Comp-PC in the
LBD entry does not match the LC, then we decrement its
confidence, and if it is zero we replace it with the LC entry,
copying the source-operand values and register IDs from the
LC into the LBD entry. If it does match, then we increment
confidence and compare the old source-operand values with
the new ones in the LC. If one of S.A and S.B changes but
the other does not, then we treat the changing value as the
loop increment (increase of induction variable each iteration)
and the constant value as the loop bounds, and use the ratio
between them to predict the total number of iterations4.

On the first iteration of an inner loop from entry of an outer
loop, typically both inputs will change, as the old entries will
be stale, from the final iteration of a previous entry to the
same loop. Rather than waiting to perform runahead until the
next iteration, or proactively performing runahead at maximum
length (which we show are not timely enough or accurate
enough respectively), we attempt to proactively scavenge the
loop bounds from the source registers later used by the
compare instruction. When we reach the HSLR, and a stride-
address discontinuity is observed, we read the registers that
will soon be read by the compare instruction. The difference
between the two Current Values (CV), divided by the loop

4This is similar to the loop-bound inference in DVR’s [43] Discovery Mode.
However, we can only passively observe in-order execution. On an out-of-
order core, waiting a full iteration for the compare instruction to reach execute
results in only a slight delay, whereas on an in-order core we must wait
for the high-latency loads in the way (LBD+Wait in our evaluation), hence
why we read registers themselves to boost performance. Likewise, without a
nested discovery pass that can observe many loops at once, loop-bound-based
throttling can be overly pessimistic if the next time we enter an inner loop
it continues from the same place we left it. This is surprisingly common,
happening in CC, PR and NAS-CG in our workloads, and the EWMA can
observe and correct for it, by identifying that prefetches will still be accurate.

TABLE II: Hardware overhead of SVR, with the parameter N
representing the length of the vector, and K representing the
number of SVs. We assume SVR-16 with N=16 and K=8.

SD entry 48 bit PC 48 bit LP
48 bit prev. address 1 bit seen
8 bit stride dist. 16 bit LIL
2 bit stride conf. 2 bit LIL conf.

SD (32 entries) 32× 173 = 5536 bits
TT entry 1 bit tainted ⌈log2(K)⌉ = 3 bits

SRF Reg Id.
(K=8) 1 bit mapped 8 bit offset
TT (32 Arch. Reg) 32× 13 = 416 bits
HSLR (N=16) 48 bit PC N = 16 bit mask
SV (N=16) N × 64 = 1024 bits
SRF (K=8) K × 1024 = 8192 bits
LC 48 bit PC

64 bit val A 5 bit Reg. ID A
64 bit val B 5 bit Reg. ID B

LBD entry 48 bit PC 186 bit LC
9 bit EWMA 16 bit loop increment
9 bit iteration counter 2 bit tournament

LBD (8 entries) 8× 270 = 2160 bit
Scoreboard entry ⌈log2(N +1)⌉ = 5 bit
Scoreboard (add.)
(32 entries)

32× 5 = 160 bit

L1 Prefetch Tags 1024 bit
Total 17738 bit = 2.17 KiB

increment seen previously, is used as the prediction instead;
the intuition is that the compare values are likely to have been
initialized before the start of the loop, and are unlikely to
be moved or spilled before they are used by the subsequent
compare instruction. If these or any other assumptions are
violated, we can fall back on the EWMA using a tournament.
Tournament Predictor. The tournament predictor uses 2-bit
saturating counters to choose between EWMA and LBD. We
continuously train both methods, but use whichever method
the most significant bit indicates is best to issue piggyback
runahead mode with. Right before the EWMA is updated
(stride discontinuity or 512-element timeout), we check which
predictor is closest to the true number of observed iterations,
incrementing or decrementing the 2-bit counter as appropriate.

C. Hardware Overhead

Table II reports SVR’s hardware overhead. With a default
scalar-vector length N = 16, we see only 2 KiB of overhead.
As N , the dominant impactor of MLP and thus performance,
grows to 128, the SRF grows linearly to incur 9 KiB total
overhead. We evaluate assuming N = 16 by default but give
other values in our evaluation to quantify the performance-area
trade-off.

V. EXPERIMENTAL SETUP

We evaluate SVR using the Sniper v7.3 simulator [16]. The
configurations can be found in Table III. The in-order core
is based on the Arm Cortex-A510 [57], and the out-of-order
core configuration is chosen to allow for the same number of
in-flight instructions as the in-order core for fair comparison.
There are no load and store queues in the in-order core as
the instructions are issued in program order. Store-to-load
dependencies are implicitly handled as a following (dependent)

TABLE III: In-order, SVR and out-of-order configurations.

Core In-Order SVR Out-of-Order
Frequency 2.0 GHz
Dispatch/commit width 3 Instr/cycle
Scoreboard 32 —
ROB — 32
Load/store queue — 16
Reservation station — 32
Branch Predictor hybrid local/global predictor,

10-cycle misprediction penalty
Address translation 4 page table walkers

16-entry fully assoc. D-TLB
16-entry fully assoc. I-TLB
2048-entry 8-way S-TLB

L1-I cache 64 KiB, 64 B cacheline, 4-way
L1-D cache 64 KiB, 64 B cacheline, 4-way,

16 MSHRs, stride prefetcher
L2 cache 512 KiB, 64 B cacheline, 8-way
DRAM 50 GiB/s bandwidth, 45 ns latency

load cannot bypass a prior (producer) store instruction. We also
compare against IMP [60]. As mentioned in Section IV-C, the
configuration for SVR uses 8 Speculative Registers, that are
between 8 and 128 scalars wide (16 default), and 32 stride-
detector entries. We use McPAT v1.0 [32] to evaluate power
and energy consumption assuming a 22 nm technology node.

We evaluate SVR using three sets of workloads. The first set
contains a variety of memory-latency-bound graph, database
and HPC workloads: Camel [4], seq-CSR from the Graph500
benchmark suite [5], Hash-join [15] with a bucket size of 2
and 8, Conjugate Gradient and Integer Sort from the NAS
parallel benchmarks [6], Kangaroo [4] as a derivative from
NAS-IS, and finally randacc from HPC Challenge [33]. For
each workload, we skip initialization and simulate 200 M
instructions within the region of interest. The second set of
workloads are from the GAP benchmark suite [11]: Between-
ness Centrality (BC), Breadth First Search (BFS), Connected
Components (CC), Page Rank (PR) and Single-Source Short-
est Paths (SSSP). Five graph inputs were chosen for those
benchmarks, two of which are synthetic, Kronecker (KR) and
Uniform Random (UR), and the other three are real-world
inputs from LiveJournal (LJN), Twitter (TW), and Orkut (ORK).
The third set includes SPEC CPU2017 to evaluate SVR’s
overhead when there is no opportunity to vectorize.

VI. EVALUATION

As previously reported in Figure 1, SVR achieves a 3.2 ×
harmonic mean speedup relative to the baseline in-order core
at its default 16-wide configuration, rising to 4.3 × at 128-
length. SVR comfortably beats the same system with an IMP
prefetcher [60] (1.4 ×) since it can cover many more types
of indirect memory access patterns. It also beats a full out-
of-order core (1.3 ×). Moreover, since SVR is attached to a
simple in-order core, achieves high performance (reducing
static power consumption), and is accurate (unlike IMP), it is
also by far more energy-efficient than competitor mechanisms.

A. Performance Breakdown

We report absolute cycles-per-instruction (CPI) — lower is
better — in Figure 11 for each workload. This is as high as

BC_KR

BC_LJN

BC_ORK

BC_TW

BC_UR

BFS_KR

BFS_LJN

BFS_ORK

BFS_TW

BFS_UR

CC_KR

CC_LJN

CC_ORK

CC_TW

CC_UR

PR_KR

PR_LJN

PR_ORK

PR_TW

PR_UR

SSSP_KR

SSSP_LJN

SSSP_ORK

SSSP_TW

SSSP_UR
Camel

G500
HJ2

HJ8
Kangr

NAS-C
G

NAS-IS

Randacc
Avg.

0

5

10

C
PI

18.38 13.89 21.85 16.81 22.11
in order IMP out of order SVR8 SVR16 SVR32 SVR64 SVR128

Fig. 11: Cycles-per-instruction (CPI) for in-order, IMP, out-of-order, and SVR with various widths (lower is better).

BC_KR

BC_LJN

BC_ORK

BC_TW

BC_UR

BFS_KR

BFS_LJN

BFS_ORK

BFS_TW

BFS_UR

CC_KR

CC_LJN

CC_ORK

CC_TW

CC_UR

PR_KR

PR_LJN

PR_ORK

PR_TW

PR_UR

SSSP_KR

SSSP_LJN

SSSP_ORK

SSSP_TW

SSSP_UR
Camel

G500
HJ2

HJ8
Kangr

NAS-C
G

NAS-IS

Randacc
Avg.

0

5

10

En
er

gy
 (n

J/
in

st
r.)

in order IMP out of order SVR8 SVR16 SVR32 SVR64 SVR128

Fig. 12: Whole-system energy consumption per committed instruction (lower is better).

22.1 cycles per instruction for the in-order core, since it has
almost no ability to overlap memory accesses. The out-of-
order core avoids these spikes due to its reorder buffer allowing
the issuing of multiple concurrent cache misses. However, even
a 16-wide SVR outperforms it for almost every workload, by
overlapping more memory accesses despite having none of
the complexity of reorder-buffer or out-of-order issue logic.
Longer SVRs are further able to saturate the memory system.

IMP fails to work for workloads without simple stride-
indirect patterns (HJ2, HJ8, Kangaroo, Randacc, SSSP), so
its performance is similar to the baseline in-order core. It can
only partially handle the accesses in BC, and is inaccurate
on BFS with the UR input, so it is slower than SVR despite
gaining some benefit. However, for the simplest workloads that
perform stride-indirect access patterns in long loops (BFS on
Kronecker, Graph500, IS, and PR), IMP is able to outperform
SVR. This is because, while SVR can overlap many memory
accesses at once (particularly in its 128-wide configuration
with higher 9 KiB area overhead), it cannot overlap memory
accesses with computation, as it is still based on a stall-on-use
in-order core, whereas IMP is a separate prefetcher that can
bring in cache lines while the core computes. Still, even here
SVR hides most of the CPI overhead of the in-order baseline.

B. Energy
Figure 12 shows a breakdown per-workload of whole-

system (system-on-chip and DRAM) energy consumption for
each technique, per committed instruction. Despite the in-
order core being significantly lower power than the out-of-
order core (0.12 W and 1.01 W on average, respectively), the

out-of-order execution is so much faster for these workloads
that it is usually more energy-efficient under system-wide
energy consumption due to the reduction in static power. Since
IMP is on an in-order core, it typically incurs lower energy
consumption than the out-of-order core despite being slightly
slower, though this is less prominent on the workloads (BC,
BFS) where it is inaccurate, particularly on the UR input
which incurs short inner loops, due to the extra DRAM traffic.
Even when IMP is accurate (PR, CC), it suffers slightly from
redundant, overlapping L1-cache accesses from high-degree
prefetches repeatedly requesting the next 16 elements each
time a stride-load is seen, unlike SVR which avoids repeating
requests, primarily to reduce compute demands, via waiting
mode. SSSP is less efficient on both IMP and the out-of-order
core than the baseline, since IMP is unable to capture its access
pattern at all and the out-of-order core is not fast enough to
recoup its power inefficiency.

By contrast, SVR is always the most energy-efficient tech-
nique by a considerable margin, since it is accurate, fast and
simple. This is despite the fact that SVR effectively doubles the
number of instructions executed while in piggyback runahead
mode, by executing code once transiently and once for real.
This is mitigated by its simple execution, where instructions
are only fetched once, as well as by the fact that the core
is memory-bound during these points, so the extra instruction
count does not increase execution time or static power, and
only accounts for 22% of the total power of the core.

BC BFS CC PR SSSP HPC-DB Avg.
0%

50%

100%

A
cc

ur
ac

y
IMP SVR16-Maxlength SVR16 SVR64-Maxlength SVR64

a: Accuracy: proportion of prefetched cache lines accessed
by the core within any cache before eviction from the LLC.
SVR-Maxlength shows SVR without loop-bound prediction
(Section IV-B2).

BC BFS CC PR SSSP HPC-DB Avg.
0%

50%

100%

C
ov

er
ag

e

Core(data)
in order

Core(inst)
IMP Technique

L1 prefetch
SVR16

SVR
SVR64

IMP

b: Coverage: proportion of loads that reach the DRAM con-
troller from different origins, normalized to the in-order core;
what exceeds 100% is caused by inaccurate prefetches.

Fig. 13: Accuracy and Coverage of SVR and IMP.

C. Prefetching Effectiveness

Accuracy. Prefetch accuracy is defined as the fraction of
prefetched cachelines that are (later) accessed by the main
program before being evicted from the LLC. Figure 13a
shows that SVR’s combination of loop bound detection and
exponentially weighted moving averages allows it to be ex-
tremely accurate. Even without loop-bound prediction, SVR-
16 still achieves 88% accuracy; the global accuracy threshold
(Section IV-A7) turns off the prefetcher in workload phases
where it struggles.

All techniques are accurate on PR, and all SVR techniques
on CC. This is because their outer loops proceed in strict se-
quence over graph vertices, meaning the out-of-bound accesses
for one inner loop are the in-bound accesses for the next inner
loop. IMP, which has no access to the in-core information SVR
uses to throttle prefetches, is otherwise consistently inaccurate,
because it always fetches over the boundaries of inner loops
by its maximum prefetch depth; by contrast, even unthrottled
SVR overfetches less, as due to SVR’s alignment properties, it
will only go as far out-of-bounds as IMP if only one iteration
of the loop is left when we start a new round of SVR.

Coverage. Figure 13b shows the coverage, or proportion of
the baseline’s memory accesses covered by SVR, along with
the residual portion not hidden by SVR’s prefetching, seen
as demand misses by the CPU. In the simplest workloads
(CC, PR), SVR’s coverage is universal, as all memory access
patterns get prefetched. In others (particularly BC and SSSP),
there are cache misses in outer loops that SVR has no chance

perlbench gcc

bwaves
mcf

cactuBSSN
namd

parest

povray
lbm

omnetpp wrf

xalancbmk
x264

blender
cam4

deepsje
ng

im
agick

leela nab

exchange2

fotonik3d
roms xz

H-m
ean

0.0

0.5

1.0

no
rm

al
iz

ed
 IP

C

Fig. 14: SVR incurs a 1% average overhead for SPECrate 2017
when failing to find appropriate loops to vectorize.

to vectorize, but SVR still captures the majority.
SVR-16 and SVR-64 have similar coverages; this is be-

cause they both cover the same loops. SVR-64’s performance
improvement comes from its improved timeliness, meaning
more prefetches are overlapped, at the expense of slightly
lower accuracy (Figure 13a) which results in a higher over-
coverage (more memory accesses than the baseline). IMP’s
accuracy issues manifest in it going far outside the bounds of
loop iterations, increasing DRAM accesses by up to 20%.

SPEC Benchmarks. While SVR is primarily targeted for
workloads with indirect memory access patterns, it must not
degrade the performance of other applications. We therefore
evaluate SPEC CPU2017 benchmarks, see Figure 14. Overall,
SVR’s performance is close to the baseline in-order core (over-
all degradation of 1%). Only wrf experiences a performance
degradation of more than 3%.

D. Comparison against Decoupled Vector Runahead

While SVR is closely inspired by DVR [43], DVR itself is
infeasible to implement on an in-order core; as discussed in
Section III, DVR requires a large physical register file and the
ability for the core to execute multiple threads simultaneously,
both of which would add considerable complexity. SVR is
thus in part a direct reworking of DVR to allow it to work on
an in-order core. However, we diverge in several key design
decisions from what is optimal for DVR on large cores, and
we consider the impacts of these decisions here.

Lockstep Coupling. SVR completely couples the runahead
execution with normal execution. This hugely simplifies the
design, by avoiding the need to support a second thread of
execution, and by avoiding the need for a second scalar register
file to store state. Compared to DVR, this loses us the ability to
handle fully divergent control flow (Section IV-B1), supporting
only masking instead. The cost of this is that HJ8 shows no
speedup for SVR, and BC also sees a minor effect. However,
it removes the need to copy the full register file before the
start of a runahead, unlike in DVR. This is very significant
in SVR for two reasons: (1) small cores have few write ports
to copy registers, and (2) since SVR’s widths are typically
much smaller than DVR’s, it happens unusually frequently.
Modeling the cost of this register copy alone reduces SVR-
16’s performance improvement from 3.21× to 3.16×.

LBD
+Wait

Maxlength LBD
+Maxlength

LBD
+CV

EWMA Tournament
0

1

2

3

N
or

m
al

iz
ed

 IP
C

BC+BFS+SSSP CC+PR HPC-DB H-mean

a: Normalized IPC for SVR-16

LBD
+Wait

Maxlength LBD
+Maxlength

LBD
+CV

EWMA Tournament
0

2

4

6

N
or

m
al

iz
ed

 IP
C

BC+BFS+SSSP CC+PR HPC-DB H-mean

b: Normalized IPC for SVR-64
Fig. 15: Evaluating SVR’s loop-bound prediction mechanisms.

Register Recycling. Since SVR has no spare physical reg-
isters, unlike DVR, we must store dedicated vector registers.
Since each is a vector, we must store fewer than the pool of
architectural registers to avoid high area overheads. This forces
us to recycle registers (Section IV-A3) far more aggressively
than DVR, which uses standard renaming techniques. SVR
needs just two speculative registers to reach peak performance,
whereas DVR’s register-recycling policy needs eight. With
DVR’s policy and two speculative registers, SVR-16 drops
from 3.2× to 1.9× speedup, and SVR-64 from 4.2× to 2.2×,
due to heavy coverage loss in many workloads.

Loop-Bound Prediction Handling. Figure 15 reports per-
formance (aggregated for similarly behaving workloads) for
the various mechanisms inside SVR for loop-bound prediction
(Section IV-B2, tournament default). DVR’s Discovery Mode
uses a policy similar to LBD+Wait (loop-bound detection,
waiting until filled by the branch for the second loop iteration),
to infer how wide we should vectorize. On an out-of-order core
this happens almost immediately after triggering DVR, but on
an in-order core it is delayed behind high-latency loads.

If we do no loop-bounds prediction (Maxlength) and always
fetch 16 or 64 elements (for SVR-16 vs SVR-64), harmonic
mean performance improves for SVR-16 but decreases for
SVR-64, because in the latter case especially, the 50% ac-
curacy threshold is hit, which blocks the prefetcher on many
workloads.5 Avoiding DVR’s LBD+Wait’s delay by using the
LBD when ready but Maxlength otherwise improves perfor-
mance slightly. However, because the inner loops are small
for many workloads, accuracy banning is common enough
for SVR-64 to suffer frequently, with the new scavenging

5Likewise if the accuracy threshold is switched off, the inaccurate DRAM
traffic causes untenably high overcoverage.

1 2 4 8
Scalars per vector unit

0

2

4

N
or

m
al

iz
ed

 IP
C

SVR16 SVR64

Fig. 16: Impact of increasing the compute vector width, or the
number of elements within a scalar-vectors that go through
execute simultaneously (default 1, unlike VR and DVR [40],
[43] which are 8-wide). Despite SVR issuing one scalar at the
time, instead of multiple, the performance is almost identical.

of register Current Values before the first branch (LBD+CV)
giving a large improvement.

Still, for several workloads loop-bound detection alone is
far too pessimistic, as it does not generate enough vector
elements to maximize the width of the technique and thus
overlap enough memory accesses to hide latency. DVR uses
a two-dimensional nesting mechanism to collect input scalar
registers from many outer loops at once. As well as being
highly complex, this requires multiple scalar register files even
if coupled, of which we only have one (not even enough for
decoupling in one dimension). SVR’s EWMA can detect this
for the common case where each inner-loop iteration follows
on directly from the last, and so even Maxlength is accurate;
this is true for CC, PR and NAS-CG. For BC, BFS and SSSP,
which benefited from decoupling but do not show this effect,
we would expect to see a similar speedup were it possible to
implement DVR’s nesting on a simple core.

Finally, the Tournament achieves the best of both scenarios.

SVR with Vector Units. SVR executes using scalar, rather
than vector, underlying instructions. This is so it can be used
on the smallest cores, unlike VR and DVR [40], [43] which
map execution onto 512-bit wide vector units such as AVX512
(which can pack 8 scalars into one executed instruction). Still,
even in-order superscalars such as Arm’s Cortex A55 have
small Neon vector units of 128-bits [26], which would allow
packing two instructions into one execution unit.

Figure 16 shows that being scalar instead of vector, in terms
of execution, has no bearing on performance at all. Because
the underlying core is in-order, and during piggyback runahead
mode we deliberately saturate the memory system, execution
during piggyback runahead mode is entirely memory bound.
The compute throughput during this period thus does not
change performance, so scalar execution is entirely sufficient.

Waiting Mode. Since SVR executes in lockstep, if it were
eligible to re-enter SVR mode immediately after leaving it,
like DVR is, then even for SVR-16, 15 lanes of 16 for every
SVR execution would be repeats, causing an unfathomably
high compute cost: SVR-16’s speedup drops to 1.14× and
SVR-64 drops to 0.56×, a slowdown. SVR adds waiting mode

1 2 4 8 16 24 32
MSHRs

0

2

4

N
or

m
al

iz
ed

 IP
C

SVR16 SVR64 ptw 2 ptw 4 ptw 6

Fig. 17: Impact (harmonic mean speedup over in-order base-
line) of varying the number of MSHRs and PTWs.

12.5 25.0 50.0 100.0
Bandwidth of the memory controller (GiB/s)

0

2

4

N
or

m
al

iz
ed

 IP
C

SVR 16 SVR 64

Fig. 18: Memory bandwidth sensitivity.

(Section IV-A5) to eliminate redundancy entirely, while still
being able to restart SVR early if the program unexpectedly
moves to an unfetched striding load.

E. Sensitivity Analyses

MSHRs and PTWs. Figure 17 shows how the speedup of
SVR varies with an increasing number of miss-status handling
registers (MSHRs) in the L1 cache and page-table walkers
(PTWs). Even on the most constrained systems with one
MSHR (so highly limited capability to perform hit-under-
miss), SVR still speeds up the system, but is constrained by a
lack of memory-level parallelism in the cache system. 16-wide
SVR saturates at 8 MSHRs, whereas 64-wide SVR is able to
overlap more memory accesses, saturating at 16 MSHRs. Only
with very large numbers of MSHRs does page-table walking
start to become the bottleneck, with a minor gain from 2 to
4 PTWs, due to the ability to handle increasing numbers of
TLB misses simultaneously.

Memory Bandwidth. Figure 18 evaluates memory bandwidth
sensitivity, relative to a baseline in-order core with the same
bandwidth. SVR-64 benefits more from increased bandwidth
than SVR-16 because it generates more memory requests
during piggyback runahead mode. However, the overall per-
formance improvement saturates with increasing bandwidth
for both SVR-16 and SVR-64, which suggests that SVR does
not saturate memory bandwidth. This is to be expected for a
simple core coupled to high-bandwidth memory, and suggests
that SVR across multiple cores simultaneously would give
significant benefit.

VII. RELATED WORK

A. Runahead Execution

Runahead execution [18], [36], [37] prefetches future mem-
ory accesses by pre-processing instructions transiently for
distant loads. Naithani et al. [41], [42] improve performance
by not flushing the ROB and only executing instructions used
in future memory accesses. Hashemi et al. [23], [24], [25]
perform a backward data-flow walk to extract the critical
chain. Several techniques have improved the performance by
deploying runahead with helper threads [50], using runahead to
resolve future branches [49], and supporting runahead on mul-
tithreaded processors [56]. (Decoupled) Vector Runahead [40],
[43] does not depend on linear speculation in the processor
front-end to find future work. Instead, future loop iterations
are independently vectorized to hide latency. SVR executes
scalars on a simple in-order processor, and does not require
a complex out-of-order frontend or backend to generate high
levels of MLP.

B. Hardware Prefetching

Hardware prefetching is widely deployed to hide memory
latency. Temporal prefetchers record the order of accesses to
predict future loads, while typically incurring huge storage
overhead [27], [29], [46], [58], [59]. Spatial prefetchers exploit
the pattern of accesses to a memory region [7], [14], [17], [30],
[51]. Many proposals improve the effectiveness (accuracy and
coverage) of hardware prefetching [34], [47], [48].

A large body of work over the past decade has focused
on prefetching indirect memory accesses (IMAs). IMP [60]
was the first prefetcher at the L1 D-cache level to detect and
generate prefetches for simple IMAs. DROPLET [10] coor-
dinates between the last-level cache and memory controller.
Pythia [13], Hermes [12] and SDC [28] propose skipping the
cache, going straight to memory. Berti [44] prefetches IMAs
and regular address patterns. Cache replacement policies have
also been proposed to improve cache utilization for IMAs [8],
[9], [19]. DMP [22] improves IMP’s tracking on out-of-order
processors by handling reordering, via differential matching
between the indirect and striding access patterns. Unlike SVR
which is in-core and is based on the real instruction stream,
the success of these prefetchers inside the cache hierarchy is
hampered by their limited ability to observe information.

C. Hardware-Software Coordinated Techniques

Prodigy [53] exploits the static program information from
software and dynamic runtime information from hardware
to prefetch indirect memory accesses. SWOOP [55] and
Clairvoyance [54] exploit the decoupled nature of access and
execute phases for improving energy efficiency on in-order
cores. Walkers [31] reorder and overlap memory accesses
for database workloads. Compiler-assisted prefetching tech-
niques [1], [2], [3], [4] for indirect memory accesses either add
extra instructions or extra cores to generate high MLP. SVR
is purely microarchitectural, needing no compiler support.

VIII. CONCLUSION

Scalar Vector Runahead is an energy-efficient, high-
performance CPU microarchitecture mechanism for graph,
database and HPC analytics that extends simple in-order cores
with minor alterations to allow them to achieve high memory-
level parallelism through transient execution of independent
operations. We hope that its 3.2 × speedup will make efficient
analytics at the edge practical. Further, we expect its energy
efficiency and simplicity will drive the design of new forms
of acceleration, by unshackling these workloads from the
large out-of-order superscalars previously thought necessary
to unlock their potential.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their thoughtful
comments and suggestions. This work is supported in part by
Research Foundation Flanders (FWO) grant No. G018722N,
European Research Council (ERC) Advanced Grant agree-
ment No. 741097, and the Engineering and Physical Sciences
Research Council (EPSRC) grant reference EP/W00576X/1.
Additional data related to this publication is available on
request from the lead author.

REFERENCES

[1] S. Ainsworth and T. M. Jones, “Graph prefetching using data
structure knowledge,” in Proceedings of the 2016 International
Conference on Supercomputing, ser. ICS ’16. New York, NY, USA:
Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2925426.2926254

[2] ——, “Software prefetching for indirect memory accesses,” in CGO
2017 - Proceedings of the 2017 International Symposium on Code
Generation and Optimization. Los Alamitos, CA, USA: IEEE
Computer Society, feb 2017, pp. 305–317. [Online]. Available:
https://doi.org/10.1109/CGO.2017.7863749

[3] ——, “An event-triggered programmable prefetcher for irregular
workloads,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 578–592. [Online].
Available: https://doi.org/10.1145/3173162.3173189

[4] ——, “Software prefetching for indirect memory accesses: A
microarchitectural perspective,” ACM Transactions on Computer
Systems, vol. 36, no. 3, jun 2019. [Online]. Available: https:
//doi.org/10.1145/3319393

[5] J. A. Ang, B. W. Barrett, K. B. Wheeler, and R. C. Murphy,
“Introducing the graph 500.” Cray User’s Group (CUG), vol. 19, pp.
45–74, 5 2010. [Online]. Available: https://www.osti.gov/biblio/1014641

[6] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The NAS parallel benchmarks—summary and
preliminary results,” in Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing, ser. Supercomputing ’91. New York, NY, USA:
Association for Computing Machinery, 1991, p. 158–165. [Online].
Available: https://doi.org/10.1145/125826.125925

[7] M. Bakhshalipour, M. Shakerinava, P. Lotfi-Kamran, and H. Sarbazi-
Azad, “Bingo spatial data prefetcher,” in 2019 IEEE International
Symposium on High Performance Computer Architecture, ser. HPCA
’19. Los Alamitos, CA, USA: IEEE Computer Society, Feb 2019,
pp. 399–411. [Online]. Available: https://doi.org/10.1109/HPCA.2019.
00053

[8] V. Balaji, N. Crago, A. Jaleel, and B. Lucia, “P-OPT: Practical optimal
cache replacement for graph analytics,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). Los
Alamitos, CA, USA: IEEE Computer Society, mar 2021, pp. 668–681.
[Online]. Available: https://doi.org/10.1109/HPCA51647.2021.00062

[9] V. Balaji and B. Lucia, “Improving locality of irregular updates with
hardware assisted propagation blocking,” in 2022 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). Los
Alamitos, CA, USA: IEEE Computer Society, apr 2022, pp. 543–557.
[Online]. Available: https://doi.org/10.1109/HPCA53966.2022.00047

[10] A. Basak, S. Li, X. Hu, S. Oh, X. Xie, L. Zhao, X. Jiang, and
Y. Xie, “Analysis and optimization of the memory hierarchy for
graph processing workloads,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). Los Alamitos,
CA, USA: IEEE Computer Society, feb 2019, pp. 373–386. [Online].
Available: https://doi.org/10.1109/HPCA.2019.00051

[11] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available: https:
//doi.org/10.48550/arXiv.1508.03619

[12] R. Bera, K. Kanellopoulos, S. Balachandran, D. Novo, A. Olgun,
M. Sadrosadat, and O. Mutlu, “Hermes: Accelerating long-latency
load requests via perceptron-based off-chip load prediction,” in 2022
55th IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-55. Los Alamitos, CA, USA: IEEE Computer Society,
oct 2022, pp. 1–18. [Online]. Available: https://doi.org/10.1109/
MICRO56248.2022.00015

[13] R. Bera, K. Kanellopoulos, A. Nori, T. Shahroodi, S. Subramoney, and
O. Mutlu, “Pythia: A customizable hardware prefetching framework
using online reinforcement learning,” in MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’21. New York, NY, USA: Association for Computing Machinery,
2021, p. 1121–1137. [Online]. Available: https://doi.org/10.1145/
3466752.3480114

[14] R. Bera, A. V. Nori, O. Mutlu, and S. Subramoney, “DSPatch:
Dual spatial pattern prefetcher,” in Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’52. New York, NY, USA: Association for Computing Machinery,
2019, p. 531–544. [Online]. Available: https://doi.org/10.1145/3352460.
3358325

[15] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main
memory hash join algorithms for multi-core cpus,” in Proceedings of
the 2011 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 37–48. [Online]. Available:
https://doi.org/10.1145/1989323.1989328

[16] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,” ACM Trans.
Archit. Code Optim., vol. 11, no. 3, aug 2014. [Online]. Available:
https://doi.org/10.1145/2629677

[17] T. Chen and J. Baer, “Effective hardware-based data prefetching
for high-performance processors,” IEEE Transactions on Computers,
vol. 44, no. 05, pp. 609–623, may 1995. [Online]. Available:
https://doi.org/10.1109/12.381947

[18] J. Dundas and T. Mudge, “Improving data cache performance by
pre-executing instructions under a cache miss,” in Proceedings of
the 11th International Conference on Supercomputing, ser. ICS ’97.
New York, NY, USA: Association for Computing Machinery, 1997, p.
68–75. [Online]. Available: https://doi.org/10.1145/263580.263597

[19] P. Faldu, J. Diamond, and B. Grot, “Domain-specialized cache
management for graph analytics,” in 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA). Los
Alamitos, CA, USA: IEEE Computer Society, feb 2020, pp. 234–248.
[Online]. Available: https://doi.org/10.1109/HPCA47549.2020.00028

[20] D. Folegnani and A. González, “Energy-effective issue logic,” in
Proceedings of the 28th Annual International Symposium on Computer
Architecture, ser. ISCA ’01. New York, NY, USA: Association
for Computing Machinery, 2001, p. 230–239. [Online]. Available:
https://doi.org/10.1145/379240.379266

[21] A. Frumusanu. (2021) Arm announces mobile Armv9 CPU
microarchitectures: Cortex-X2, Cortex-A710 & Cortex-A510.
https://www.anandtech.com/show/16693/arm-announces-mobile-
armv9-cpu-microarchitectures-cortexx2-cortexa710-cortexa510.

[22] G. Fu, T. Xia, Z. Luo, R. Chen, W. Zhao, and P. Ren, “Differential-
matching prefetcher for indirect memory access,” in 2024 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA). Los Alamitos, CA, USA: IEEE Computer Society, mar 2024,
pp. 439–453. [Online]. Available: https://doi.org/10.1109/HPCA57654.
2024.00040

https://doi.org/10.1145/2925426.2926254
https://doi.org/10.1109/CGO.2017.7863749
https://doi.org/10.1145/3173162.3173189
https://doi.org/10.1145/3319393
https://doi.org/10.1145/3319393
https://www.osti.gov/biblio/1014641
https://doi.org/10.1145/125826.125925
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.1109/HPCA.2019.00053
https://doi.org/10.1109/HPCA51647.2021.00062
https://doi.org/10.1109/HPCA53966.2022.00047
https://doi.org/10.1109/HPCA.2019.00051
https://doi.org/10.48550/arXiv.1508.03619
https://doi.org/10.48550/arXiv.1508.03619
https://doi.org/10.1109/MICRO56248.2022.00015
https://doi.org/10.1109/MICRO56248.2022.00015
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3352460.3358325
https://doi.org/10.1145/3352460.3358325
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/2629677
https://doi.org/10.1109/12.381947
https://doi.org/10.1145/263580.263597
https://doi.org/10.1109/HPCA47549.2020.00028
https://doi.org/10.1145/379240.379266
https://www.anandtech.com/show/16693/arm-announces-mobile-armv9-cpu-microarchitectures-cortexx2-cortexa710-cortexa510
https://www.anandtech.com/show/16693/arm-announces-mobile-armv9-cpu-microarchitectures-cortexx2-cortexa710-cortexa510
https://doi.org/10.1109/HPCA57654.2024.00040
https://doi.org/10.1109/HPCA57654.2024.00040

[23] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt,
“Accelerating dependent cache misses with an enhanced memory
controller,” in Proceedings of the 43rd International Symposium on
Computer Architecture, ser. ISCA ’16. IEEE Press, 2016, p. 444–455.
[Online]. Available: https://doi.org/10.1109/ISCA.2016.46

[24] M. Hashemi, O. Mutlu, and Y. N. Patt, “Continuous runahead:
Transparent hardware acceleration for memory intensive workloads,”
in 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/MICRO.2016.7783764

[25] M. Hashemi and Y. N. Patt, “Filtered runahead execution with a
runahead buffer,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 358–369. [Online]. Available:
https://doi.org/10.1145/2830772.2830812

[26] M. Humrick. (2017) Exploring DynamIQ and Arm’s new CPUs: Cortex-
A75, Cortex-A55. https://www.anandtech.com/show/11441/dynamiq-
and-arms-new-cpus-cortex-a75-a55/4.

[27] A. Jain and C. Lin, “Linearizing irregular memory accesses for improved
correlated prefetching,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: Association for Computing Machinery, 2013, p.
247–259. [Online]. Available: https://doi.org/10.1145/2540708.2540730

[28] A. V. Jamet, G. Vavouliotis, D. A. Jiménez, L. Alvarez, and
M. Casas, “Practically tackling memory bottlenecks of graph-
processing workloads,” in 2024 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2024, pp. 1034–1045.
[Online]. Available: https://doi.org/10.1109/IPDPS57955.2024.00096

[29] D. Joseph and D. Grunwald, “Prefetching using Markov predictors,” in
Proceedings of the 24th Annual International Symposium on Computer
Architecture, ser. ISCA ’97. New York, NY, USA: Association
for Computing Machinery, 1997, p. 252–263. [Online]. Available:
https://doi.org/10.1145/264107.264207

[30] J. Kim, S. H. Pugsley, P. V. Gratz, A. L. N. Reddy, C. Wilkerson,
and Z. Chishti, “Path confidence based lookahead prefetching,” in The
49th Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-49. Los Alamitos, CA, USA: IEEE Computer Society,
2016, pp. 1–12. [Online]. Available: https://doi.org/10.1109/MICRO.
2016.7783763

[31] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the Walkers: Accelerating index traversals for
in-memory databases,” in Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-46. New
York, NY, USA: Association for Computing Machinery, 2013, p.
468–479. [Online]. Available: https://doi.org/10.1145/2540708.2540748

[32] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA:
Association for Computing Machinery, 2009, p. 469–480. [Online].
Available: https://doi.org/10.1145/1669112.1669172

[33] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F.
Lucas, R. Rabenseifner, and D. Takahashi, “The hpc challenge (hpcc)
benchmark suite,” in Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, ser. SC ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 213–es. [Online]. Available:
https://doi.org/10.1145/1188455.1188677

[34] P. Michaud, “Best-offset hardware prefetching,” in 2016 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). Los Alamitos, CA, USA: IEEE Computer Society, mar
2016, pp. 469–480. [Online]. Available: https://doi.org/10.1109/HPCA.
2016.7446087

[35] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting locality in graph analytics through hardware-accelerated
traversal scheduling,” in Proceedings of the 51st Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-51. IEEE
Press, 2018, p. 1–14. [Online]. Available: https://doi.org/10.1109/
MICRO.2018.00010

[36] O. Mutlu, H. Kim, Y. N. Patt, and J. Stark, “On reusing the results
of pre-executed instructions in a runahead execution processor,” IEEE
Computer Architecture Letters, vol. 4, no. 01, p. 2, jan 2005. [Online].
Available: https://doi.org/10.1109/L-CA.2005.1

[37] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt, “Runahead execution:
An alternative to very large instruction windows for out-of-order

processors,” in Proceedings of the 9th International Symposium
on High-Performance Computer Architecture, ser. HPCA ’03. Los
Alamitos, CA, USA: IEEE Computer Society, feb 2003, p. 129.
[Online]. Available: https://doi.org/10.1109/HPCA.2003.1183532

[38] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout,
“Vector runahead for indirect memory accesses,” IEEE Micro,
vol. 42, no. 04, pp. 116–123, jul 2022. [Online]. Available:
https://doi.org/10.1109/MM.2022.3163132

[39] A. Naithani, J. Roelandts, S. Ainsworth, T. M. Jones, and L. Eeckhout,
“Decoupled vector runahead for prefetching nested memory-access
chains,” IEEE Micro, vol. 44, no. 04, pp. 20–26, jul 2024. [Online].
Available: https://doi.org/10.1109/MM.2024.3406891

[40] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout, “Vector
runahead,” in Proceedings of the 48th Annual International Symposium
on Computer Architecture, ser. ISCA ’21. Los Alamitos, CA, USA:
IEEE Computer Society, 2021, p. 195–208. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00024

[41] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout, “Precise runahead
execution,” IEEE Comput. Archit. Lett., vol. 18, no. 1, p. 71–74, jan
2019. [Online]. Available: https://doi.org/10.1109/LCA.2019.2910518

[42] ——, “Precise runahead execution,” in Proceedings of the 26th
International Symposium on High-Performance Computer Architecture,
ser. HPCA ’20, 2020, pp. 397–410. [Online]. Available: https:
//doi.org/10.1109/HPCA47549.2020.00040

[43] A. Naithani, J. Roelandts, S. Ainsworth, T. M. Jones, and L. Eeckhout,
“Decoupled vector runahead,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’23. New York, NY, USA: Association for Computing Machinery, 2023,
p. 17–31. [Online]. Available: https://doi.org/10.1145/3613424.3614255

[44] A. Navarro-Torres, B. Panda, J. Alastruey-Benedé, P. Ibáñez,
V. Viñals-Yúfera, and A. Ros, “Berti: an accurate local-delta data
prefetcher,” in 2022 55th IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-55. Los Alamitos, CA, USA: IEEE
Computer Society, oct 2022, pp. 975–991. [Online]. Available:
https://doi.org/10.1109/MICRO56248.2022.00072

[45] S. Nayak, R. Patgiri, L. Waikhom, and A. Ahmed, “A review
on edge analytics: Issues, challenges, opportunities, promises, future
directions, and applications,” Digital Communications and Networks,
vol. 10, no. 3, pp. 783–804, 2024. [Online]. Available: https:
//doi.org/10.1016/j.dcan.2022.10.016

[46] K. J. Nesbit and J. E. Smith, “Data cache prefetching using a global
history buffer,” in Proceedings of the 10th International Symposium
on High Performance Computer Architecture, ser. HPCA ’04. Los
Alamitos, CA, USA: IEEE Computer Society, 2004, p. 96. [Online].
Available: https://doi.org/10.1109/HPCA.2004.10030

[47] S. Pakalapati and B. Panda, “Bouquet of instruction pointers:
Instruction pointer classifier-based spatial hardware prefetching,”
in 2020 ACM/IEEE 47th Annual International Symposium on
Computer Architecture (ISCA). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2020, pp. 118–131. [Online]. Available:
https://doi.org/10.1109/ISCA45697.2020.00021

[48] B. Panda, “CLIP: Load criticality based data prefetching for bandwidth-
constrained many-core systems,” in Proceedings of the 56th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO
’23. New York, NY, USA: Association for Computing Machinery,
2023, p. 714–727. [Online]. Available: https://doi.org/10.1145/3613424.
3614245

[49] S. Pruett and Y. Patt, “Branch runahead: An alternative to branch
prediction for impossible to predict branches,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 804–815. [Online]. Available: https://doi.org/10.
1145/3466752.3480053

[50] T. Ramirez, A. Pajuelo, O. Santana, and M. Valero, “Runahead threads
to improve SMT performance,” in 2008 IEEE 14th International
Symposium on High Performance Computer Architecture, 2008, pp. 149–
158. [Online]. Available: https://doi.org/10.1109/HPCA.2008.4658635

[51] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.
Pugsley, and Z. Chishti, “Efficiently prefetching complex address
patterns,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 141–152. [Online]. Available:
https://doi.org/10.1145/2830772.2830793

https://doi.org/10.1109/ISCA.2016.46
https://doi.org/10.1109/MICRO.2016.7783764
https://doi.org/10.1145/2830772.2830812
https://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55/4
https://www.anandtech.com/show/11441/dynamiq-and-arms-new-cpus-cortex-a75-a55/4
https://doi.org/10.1145/2540708.2540730
https://doi.org/10.1109/IPDPS57955.2024.00096
https://doi.org/10.1145/264107.264207
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1145/2540708.2540748
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1109/HPCA.2016.7446087
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/MICRO.2018.00010
https://doi.org/10.1109/L-CA.2005.1
https://doi.org/10.1109/HPCA.2003.1183532
https://doi.org/10.1109/MM.2022.3163132
https://doi.org/10.1109/MM.2024.3406891
https://doi.org/10.1109/ISCA52012.2021.00024
https://doi.org/10.1109/LCA.2019.2910518
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1145/3613424.3614255
https://doi.org/10.1109/MICRO56248.2022.00072
https://doi.org/10.1016/j.dcan.2022.10.016
https://doi.org/10.1016/j.dcan.2022.10.016
https://doi.org/10.1109/HPCA.2004.10030
https://doi.org/10.1109/ISCA45697.2020.00021
https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/3613424.3614245
https://doi.org/10.1145/3466752.3480053
https://doi.org/10.1145/3466752.3480053
https://doi.org/10.1109/HPCA.2008.4658635
https://doi.org/10.1145/2830772.2830793

[52] R. Shioya, M. Goshima, and H. Ando, “A front-end execution
architecture for high energy efficiency,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchitecture,
ser. MICRO-47. USA: IEEE Computer Society, 2014, p. 419–431.
[Online]. Available: https://doi.org/10.1109/MICRO.2014.35

[53] N. Talati, K. May, A. Behroozi, Y. Yang, K. Kaszyk, C. Vasiladiotis,
T. Verma, L. Li, B. Nguyen, J. Sun, J. M. Morton, A. Ahmadi, T. Austin,
M. O’Boyle, S. Mahlke, T. Mudge, and R. Dreslinski, “Prodigy:
Improving the memory latency of data-indirect irregular workloads
using hardware-software co-design,” in 2021 IEEE International
Symposium on High-Performance Computer Architecture, ser. HPCA
’21, vol. 2021-February. Los Alamitos, CA, USA: IEEE Computer
Society, feb 2021, pp. 654–667. [Online]. Available: https://doi.org/10.
1109/HPCA51647.2021.00061

[54] K.-A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos,
S. Kaxiras, and A. Jimborean, “Clairvoyance: look-ahead compile-time
scheduling,” in Proceedings of the 2017 International Symposium
on Code Generation and Optimization, ser. CGO ’17. IEEE Press,
2017, p. 171–184. [Online]. Available: https://doi.org/10.1109/CGO.
2017.7863738

[55] K.-A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander,
and S. Kaxiras, “SWOOP: software-hardware co-design for non-
speculative, execute-ahead, in-order cores,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 328–343. [Online]. Available:

https://doi.org/10.1145/3192366.3192393
[56] K. Van Craeynest, S. Eyerman, and L. Eeckhout, “Mlp-aware

runahead threads in a simultaneous multithreading processor,” in
High Performance Embedded Architectures and Compilers, A. Seznec,
J. Emer, M. O’Boyle, M. Martonosi, and T. Ungerer, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 110–124. [Online].
Available: https://doi.org/10.1007/978-3-540-92990-1 10

[57] WikiChip, “Cortex-A510 - Microarchitectures - ARM.” [Online].
Available: https://en.wikichip.org/wiki/arm holdings/microarchitectures/
cortex-a510

[58] H. Wu, K. Nathella, J. Pusdesris, D. Sunwoo, A. Jain, and
C. Lin, “Temporal prefetching without the off-chip metadata,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’52. New York, NY, USA:
Association for Computing Machinery, 2019, p. 996–1008. [Online].
Available: https://doi.org/10.1145/3352460.3358300

[59] H. Wu, K. Nathella, D. Sunwoo, A. Jain, and C. Lin, “Efficient metadata
management for irregular data prefetching,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
449–461. [Online]. Available: https://doi.org/10.1145/3307650.3322225

[60] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect memory
prefetcher,” in Proceedings of the 48th International Symposium on
Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 178–190. [Online]. Available:
https://doi.org/10.1145/2830772.2830807

https://doi.org/10.1109/MICRO.2014.35
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/HPCA51647.2021.00061
https://doi.org/10.1109/CGO.2017.7863738
https://doi.org/10.1109/CGO.2017.7863738
https://doi.org/10.1145/3192366.3192393
https://doi.org/10.1007/978-3-540-92990-1_10
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a510
https://en.wikichip.org/wiki/arm_holdings/microarchitectures/cortex-a510
https://doi.org/10.1145/3352460.3358300
https://doi.org/10.1145/3307650.3322225
https://doi.org/10.1145/2830772.2830807

	Introduction
	Background
	Sparse Memory Accesses
	Memory Latency on In-Order Cores
	Vector Runahead

	SVR: Design Philosophy
	SVR Microarchitecture
	Microarchitecture
	Stride Detector
	Detecting Indirect Loads
	Register Mapping and Recycling
	Generating and Executing Scalar Vectors
	Termination and Restart
	Multiple Indirect Chains
	Determining when SVR is Useful

	Improving Efficiency
	Control Flow
	Loop Bound Prediction

	Hardware Overhead

	Experimental Setup
	Evaluation
	Performance Breakdown
	Energy
	Prefetching Effectiveness
	Comparison against Decoupled Vector Runahead
	Sensitivity Analyses

	Related Work
	Runahead Execution
	Hardware Prefetching
	Hardware-Software Coordinated Techniques

	Conclusion
	References

