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Abstract—Processor reliability at upcoming technology nodes
presents significant challenges to designers from increased manu-
facturing variability, parametric variation and transistor wearout
leading to permanent faults. We present a design to tolerate
this impact at the microarchitectural level—a chip with n cores
together with one or more shared instruction re-execution units
(IRUs). Instructions using a faulty component are identified and
re-executed on an IRU. This design incurs no slowdown in the
absence of errors and allows continued operation of all n cores
after multiple hard errors on one or all cores in the structures
protected by our scheme. Experiments show that a single-core
chip experiences only a 23% slowdown with 1 error, rising to
43% in the presence of 5 errors. In a 4-core scenario with 4 errors
on every core and a shared IRU, REPAIR enables performance
of 0.68x of a fully functioning system.

I. INTRODUCTION

Relentless technology scaling has led to device fabrica-
tion processes approaching the single-digit nanometre range.
However, design for reliability has been unable to catch
up [6], leading to significant challenges for processor design-
ers such as wearout, parametric variation and manufacturing
defects [2]. Each of these affect the lifetime and operability
of the processor. Hard or permanent errors can manifest
themselves across the full life-cycle of a processor, starting
from design and fabrication to operation, potentially affecting
correct program execution.

Dealing with permanent faults after leaving the fab is
a complex matter. Traditional reliability solutions involving
high-cost redundant spares are now unacceptable [10]. Prior
work has considered using natural architectural redundancy to
address this [14], but some components (e.g., often the divider
unit) are one-per-core. On the other hand, spare components
can be added for use in the event of an error [3], but this
requires adding redundancy into each processor structure, in
each core within the chip, when it is unlikely that it will all
be used. In addition, both methods require the design of per-
structure error-correction logic with associated implementation
and verification costs.

On the other hand, schemes such as architectural core
salvaging [11] use the natural redundancy across cores to
avoid structures with defects. StageNet [7] also leverages
architectural redundancy by providing a network of pipeline
stages that can be configured to work around faulty stages,
creating logical cores that are distributed about the chip.
Similarly Romanescu and Sorin [6] present a scheme to
cannibalise cores at pipeline granularity, arranging cores into
groups so that spare pipeline stages can be lent to nearby cores.
Rodrigues et al. [12] present a method to re-execute the faulty
instruction in the same core using idle cycles to correct errors
in the functional units.

Runtime methods to detect errors typically re-execute the
instruction either locally or on an external unit. DIVA [6]
incorporates a functional checker at the commit stage of a su-
perscalar pipeline. Results from computations on the main core
are sent to the DIVA checker for comparison with the values
generated there, and differences flagged up as an exception that
can be handled by flushing and restarting. BlackJack [13] runs
duplicate threads on a single SMT core. In both methods, pro-
viding a second execution of a program allows the comparison
of application state at key points and differences discovered.
Thread relocation [8] uses a hypervisor-based system to handle
errors by mapping software to appropriate cores for execution.

Finally, recent work has considered approximate compute
where errors are allowed to occur and tolerated rather than
corrected [5], [9]. Although this is suitable for a certain
class of application, the majority of programs require exact
computation and cannot survive errors in the underlying fabric.

Our method takes a different approach by keeping faulty
cores running and performing real computation, even when
there is no natural redundancy in the faulty microarchitectural
structures. We augment our system with a small component
containing only functional units and buffers that we call an
instruction re-execution unit (IRU). Fault maps on each core,
initialised by power-on self-test or periodic built-in self-test,
record faulty components within the core. We monitor each
instruction’s resource usage as it traverses through the pipeline
and re-execute it on the IRU if it touches a component marked
as faulty. This requires minimal modification to a standard
out-of-order superscalar pipeline and, additionally, imposes no
performance penalty unless and until a hard error occurs. In
this way we can tolerate a large number of errors in different
components within each faulty core, yet still use that core
to generate correct results. We call our technique REPAIR
because it provides “Recovery from Errors in Processors by
Allowing Instruction Re-execution”.

We evaluate REPAIR as an addition to a single-core system,
and as a shared resource within a multicore chip, showing
that the expected performance for a single core is 0.81x
peak performance and for multicore with four errors in every
core is 0.68x. Compared to existing techniques, REPAIR a)
provides coverage for components with no natural redundancy;
b) removes the need to implement complex per-structure error-
recovering logic; and c¢) provides a single resource for error
correction, amortising the overheads across all components
that make use of it. REPAIR of itself only provides protection
for the ALU, register and out-of-order execution components
of a core; it could be complemented by structural redundancy
to provide full hard-error coverage.



II. REPAIR

The addition of REPAIR to a multicore is sufficient to allow
it to survive in the presence of errors, and to allow faulty
components to continue functioning by targeted re-execution
of possibly faulty instructions. The added redundancy is shared
across multiple cores, meaning low hardware overhead.

REPAIR adds a per-core detection/correction unit (DCU)
and a shared instruction re-execution unit (IRU) to the tradi-
tional core structure. The DCU interacts with the processor at
the dispatch and commit stages, and also queries the TLB for
the IRU. One DCU is required per core, but multiple cores
can share one IRU.

1) Detection / Correction Unit and Processor Interfacing:
REPAIR identifies instructions that will use or have used faulty
processor structures through the use of fault maps. These
indicate the processor structures that have hard errors within
them and are populated via power-on self-test, or through built-
in self-test (e.g., [4]). A fault map is a simple array of bits for
each structure where each bit represents the presence of a fault
in one entry of that component.

Fig. 1 gives an overview of how the DCU differentiates
between dispatch-based checking and commit-based checking
in the superscalar pipeline. For every instruction passing
through the processor pipeline, the DCU collects the destina-
tion register, ROB entry, LSQ entries, register scoreboard and
issue queue entry related to the instruction. If any of these is
found to be faulty as the instruction dispatches then it, and
all later instructions, are stalled and the pipeline is allowed
to drain of older instructions. For the faulting instruction (FI),
its entries in the reorder buffer and other queues (and those
of any younger instructions that have dispatched in the same
cycle) are annulled to avoid them being executed erroneously.
Once the pipeline is empty (all earlier instructions have been
executed and no event was caused by them which would lead
to FI being squashed), the instruction is sent to the IRU, with
all its dependent values, executed there and results are brought
back. The processor then commits FI and resumes operation
by dispatching the next instructions. If an instruction is broken
into a series of micro-ops during decode, only the faulting
micro-op needs sending to the IRU.

The DCU also checks instructions at commit, to detect
usage of faulty components in the ALU, LSU and register
file ports (usage of which could not be predicted before). If
the instruction is found to have used faulty components, then
commit blocks and the FI is re-executed on the IRU. In this
case, the values generated by the IRU and core are compared.
If the same, then commit proceeds; on a mismatch, all later
instructions are squashed and the IRU result is committed. In
contrast to catching errors at dispatch, when we detect a micro-
op that is faulting at commit, we cannot send it by itself to
the IRU without adding significant complexity to the decode
engine to allow us to restart within a macro-instruction. To
avoid this, we simply send all younger micro-ops from the
same macro-instruction to the IRU and, once complete, fetch
can start again with the next macro-instruction.

REPAIR expects valid, decoded instructions to be presented
to the rename stage, from where it can take over. Faults in
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Fig. 2: Overview of the IRU.

REPAIR can be tolerated provided they do not affect error
correction, for example, if cores have faults in their load units
and REPAIR has an error in the IRU’s ALU.

2) Instruction Re-execution Unit: The IRU is a simple
circuit capable of only executing instructions and accessing
the L2 cache. It is capable of storing a limited number of
previous results internally, allowing it to execute consecutive
instructions from the same core back-to-back. The basic IRU
is shown in Fig. 2 and consists of an interface to the main
cores, input and output buffers, execution units, an operand
manager, to deal with dependences between instructions, and
a memory manager, to perform loads and stores. The execute
unit of the IRU contains one copy of each type of functional
unit appearing in a standard core.

The IRU only executes instructions from a single core at
any point of time. The core interface (CI) is responsible for
managing order and grouping of instructions coming from the
main cores. The CI also arbitrates (round robin), when more
than one core wishes to use the IRU. The CI also requests
TLB translations from the DCU of the appropriate core when
load or store instructions require re-execution.

The CI writes instructions and data into the input buffer,
from which they are executed in order. If memory accesses
are required, the memory manager requests and completes
address translation from the CI, and then accesses the L2
cache. The IRU is viewed as a cacheless core for cache
coherence. Results are placed in the output buffer, along with
the destination architectural register ID. Storing the register
ID allows coalescing of multiple writes to the same register,
reducing the size of data to be sent back to the originating
core. Although the IRU can execute any number of instructions
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Fig. 3: Performance of REPAIR across single-core systems,
each with a single error.

from a core, we only use it with sequences of micro-ops from
a single macro-instruction at any one time.

REPAIR also maintains precise exceptions by marking any
instruction that causes an exception within the output buffer.
Once this instruction has been transferred back to the core,
exception handling deals with the issue as normal.

III. RESULTS

We evaluated REPAIR using the gem5 simulator [1] running
the ARMv7-A ISA. Our cores have out-of-order superscalar
pipelines, and resemble the Cortex-Al5. Each core has a
private 32KB L1 data cache and 32KB L1 instruction cache.
There is a IMB L2 cache for the single-core experiments or
2MB shared L2 for the multicore simulations. Our benchmarks
are taken from the SPEC CPU2006 suite and compiled with
gce 4.6.3. We used all benchmarks from this suite, apart
from dealll, Ibm, sphinx3 and wrf which did not compile
correctly for our environment. For the 4-core experiments
we created 20 workloads (G1...G20) each consisting of four
benchmarks to be run concurrently. The benchmarks were
uniformly distributed across the 20 workloads. Benchmarks
are run for a total of 250 million instructions (62.5 million
per core for multicore), after fast-forwarding for 1 billion
instructions and warming the cache and branch predictor
for 100 million instructions. We use weighted speedup as
a performance metric. In the results presented in Figs 3-6,
maximum, median and minimum performance are show for
every benchmark/grouping.

Our experiments require us to execute on cores that have
errors. The size of our design space (approximately 250,000
single-core configurations with 2 errors, 125M with 3 errors,
etc.) meant that we could not exhaustively simulate every point
within it. Therefore we first randomly created 50 single-core
systems each with a single unique fault, which represents
10% of our single-error space. We then created single-core
systems with 2 errors by randomly adding faults to the single-
fault systems, and likewise for 3, 4 and 5 errors. Our faulty
multicore systems were created in the same manner.

1) Single-Core REPAIR: REPAIR can efficiently tolerate
single-bit errors in the core with an average performance
of just 0.81x. Fig. 3 shows the results for our 50 single-
core systems, each with a randomly placed (within coverage
area) single-bit error. The results show a performance range
of 0.33x to 1.00x with an average performance of 0.81x,
corresponding to a slowdown of around 23%. The maximum
performance of 1.00x is achieved when there is an error
in a component that is unused by a particular benchmark
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Fig. 4: Performance across different architectural arrays and
within the rename map; also the fraction of instructions
committed using each architectural register as a destination.

(e.g., a floating point register). The worst performance occurs
within gcc when there is an error in the rename map entry for
architectural register 3, which is used as destination register
for 13.5% of all instructions executed in this experiment.
The application milc is of interest in that it shows the
least performance degradation in the presence of errors, across
experiments, with the worst performance being only 0.94x.
This is explained by milc experiencing significant pipeline
stalls due to L2 cache misses. In fact its baseline CPI is 2.60
and although in the worst case it suffers over 14 errors per
thousand instruction, its overall CPI increases to just 2.69.

a) Differences Between Arrays: Errors in different architec-
tural arrays yield a range of slowdowns as shown in Fig. 4a.
Within the queues, ROB and physical registers, variability in
performance comes from the differences between applications,
and not from the position of the error, since each entry
within these arrays is equally likely to be written to. However,
within the rename map the performance variability comes
from the position of the error and application behaviour, since
benchmarks do not write to each architectural register equally.
This means that the rename map has the highest variability,
although the median performance is 0.87x. The issue queue
has the worst median performance of 0.64x because it is
small (only 32 entries) and is used by every instruction.
Errors in the first eight registers impact performance more
significantly than the remainder. This is an artefact of the ARM
architecture, in particular the Thumb-2 16-bit instructions
which can only directly access these first eight registers (and
are hence compiler-favoured). Again the highest performance
loss comes from a fault in register 3, which is due to gcc’s
register allocation favouring register 3.

b) Number of Errors: Fig. 5 shows the median performance
as the number of errors within the core grows up to 5, where
average performance over all benchmarks is 0.70x, or a 43%
slowdown. Some applications, such as milc, are barely affected
by the increased work that REPAIR must perform to keep
the core functioning correctly. Others incur a more substantial
performance impact (e.g., GemsFDTD with a drop from 0.85x
to 0.67x). Unfortunately, GemsFDTD has a very low baseline
CPI and therefore experiences a drop in performance with each
new error that is introduced, whereas other applications (e.g.,
mcf which has a high number of L2 misses) have a lower
initial CPI and can better absorb the performance impact of
faults.
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Fig. 5: Single core performance with increasing errors.
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Fig. 6: Performance on a 4-core system as the number of errors
per core increases. Also shown is the performance when the
faulty core is simply switched off and the scheduler avoids it.

2) Multicore REPAIR: We now show the impact of adding
REPAIR to a cluster of four cores, sharing a single IRU.
For comparison, we implemented a time-sliced scheduler to
distribute benchmarks across healthy cores, simulating faulty
cores as switched off. Our basic scheduler uses a quantum
of I ms and does not actually move programs around but
pauses each core when it is “off”. This means the L1 and
branch predictor remain warm and there is no overhead to
scheduling, slightly favouring this comparison scheme over
an actual implementation.

Fig. 6 shows the results of using REPAIR on this system
with 2 or 4 erroneous cores, as the number of errors per core
increases. Our comparison scheduler is also shown, although
it is missing in Figure 10(b) because with 4 faulty cores
and no REPAIR, the whole system would have to be turned
off! As in the previous section, more errors leads to worse
performance, but still REPAIR is able to keep the system
functioning without significant slowdowns. With a single error
in two cores, performance is, on average, just 0.86x, dropping
to just 0.83x when these two cores have four errors. Were
REPAIR not present, the two faulty cores would have to be
turned off and our scheduling scheme used, which achieves an
average of 0.59x performance (higher than the expected value
of 0.5x). When all four cores contain a single error, average
performance is 0.84 <, dropping to 0.68x (or a slowdown of
47%) when each of the four cores contains four errors.

Intuitively, we would expect that performance degrades
monotonically as the number of errors increases. However
various groups (e.g. G2 running on two faulty cores) gives
performances of 0.74x, 0.78 x, 0.75x and 0.68x when these
cores have 1, 2, 3 and 4 errors respectively. The increase in
performance of the two-error scenario is because the second
core, in the baseline, is cache-unfriendly—it uses a large
fraction of the L2. When core 2 is faulty, the frequency of
its L2 accesses is reduced and so the other applications make

better use of the shared L2, raising overall performance.

IV. CONCLUSION

We have proposed the REPAIR architecture to extend the
useful life of a processor chip in the presence of an increasing
number of hard errors (and to give graceful performance degra-
dation during this process). It allows standard processor cores
to continue to operate in the presence of faults, simply routing
potentially incorrectly executed instructions to a instruction re-
execution unit to be re-run. Results show a four-core processor
with 4 errors in every core has a performance of 0.68x a fully
functioning system. We conclude that the REPAIR architecture
is an effective technique for extending the life of a processor
chip with no performance impact in the absence of errors.
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