
High Performance Fault Tolerance Through
Predictive Instruction Re-Execution

Jyothish Soman and Timothy M. Jones

Computer Laboratory, University of Cambridge, {jyothish.soman,timothy.jones}@cl.cam.ac.uk

Abstract—Processor designers face the challenge of defect
formation, leading to permanent faults, during fabrication and
operation. Permanent or hard fault tolerance is an important
problem in computing systems, solutions to which can help
improve yield during fabrication and reduce the cost of transistor
mortality during the service life of the processor.

This paper presents PreFix, a method to handle hard errors to
keep a faulty core running and correctly executing instructions.
Instead of turning off faulty structures, PreFix predicts early
on whether an instruction is likely to use faulty components,
then refines this prediction later in the pipeline to actually detect
when an error has occurred. Instructions marked as possibly-
faulty in the front-end are queued for duplicate execution on a
separate core. At commit, results from the original and duplicate
instructions are compared. Upon a mismatch, the original instruc-
tion is patched up, the pipeline flushed and execution continues.
Using PreFix, faulty components can continue performing useful
work when their errors do not manifest in architecturally visible
state changes. This enhances processor lifetime with minimal
performance overhead.

I. INTRODUCTION

Fabrication and operational constraints have led to decreas-
ing reliability and reduced lifetimes for microprocessors [1].
Manufacturing defects, parametric variation and wear-out pose
significant reliability challenges [2] across the full life-cycle
of a processor, from design and fabrication through to op-
eration in the field. One manifestation of reduced reliabil-
ity is the formation of hard or permanent faults within the
hardware [2], risking the correct execution of applications
that run on the processor. Traditional reliability methods do
not use the faulty components, and rely on completing the
computation elsewhere. For example, Stagenet [3] is a method
by which multiple processor pipelines are interleaved to allow
for switching faulty parts. In contrast, Necromancer [4] uses
faulty (so-called “dead”) high-performance cores to accelerate
operations on a smaller core. Khan et al. [5] present a method
where a hypervisor keeps track of faulty cores and the profile
of the threads running in the system. It uses this information
to match a core to a thread at runtime. Similarly, a compiler-
based method is presented by Meixner and Sorin [6], where
code is recompiled so that the faulty hardware is not used.
Finally, Rescue [7] presents a method to isolate logic modules,
providing for better fault localization.

Other prior work has also shown that at least 30% [8], to
up to 65% [9], of faults do not affect the correct execution
of a component over millions of cycles. Figure 1 shows the
degradation in performance when one of two integer ALUs is

0 10 20 30 40 50 60 70 80 90 100

Percentage of Faulty Instructions

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

N
o
rm

a
liz

e
d
 I
P
C

Fig. 1: Performance degradation caused by preventing instruc-
tions that would incur errors from passing through a partially
faulty ALU.

faulty, yet allowed to continue operating (but not accepting
instructions that would fault), giving an upper bound on
performance. When the ALU is faulty for every instruction,
there is considerable difference in performance, ranging from
a negligible 2% to a much more substantial 30%. When 50%
of the instructions pass through, performance reduction is a
mere 7%. For the most affected applications, it is vital to keep
the ALU functioning, even if it only produces error-free results
for a fraction of the time.

Our solution, named PreFix, aims to provide a low-
overhead error detection and correction technique for tolerating
hard faults. PreFix is a method to allow faulty cores to continue
correct and high performance execution, despite containing
faults, by predicting and verifying the possibility of error on
each instruction passing through the core. Instead of turning
off faulty structures, it isolates faults based on the results from
instructions that use these circuits. We conservatively predict
the instructions that will have erroneous results and duplicate
their execution on a different core, and correct the results if the
errors manifest. In the event that the prediction is wrong, we
simply lose performance from stalling these instructions while
waiting for their duplicate results. PreFix brings together fault
detection techniques with redundant execution on a healthy
core to both detect and correct permanent errors. Overall, it
enables continued use of faulty components, allowing them to
perform useful computation when faults do not propagate.

II. PREFIX

PreFix consists of at least two cores: cores with one or
more faults are denoted as the Faulty Cores (FC); the rest
are healthy and we call them as the Remote Cores (RC). The
RC is responsible for re-executing instructions that have been
marked as possibly erroneous on the FC. We augment each
core with an error prediction unit that gives an indication of978-1-5386-0362-8/17/1.00 c©2017 IEEE



Pre-Decoder

L1 I-Cache

L2 I-Cache

Pre-Decoder

L1 I-Cache

Faulty Core Remote Core

Fetch

Commit

Outward 
Queue

Results
Queue

Re-execution
Queue

Fetch

Commit

PreFix
Front End

PreFix
Back End

Front-End

Fig. 2: PreFix overview showing CPU pipeline integration.

whether each instruction is likely to produce an erroneous
output or not. PreFix duplicates those that are, placing some
in a holding queue and sends the rest to a central queue for
duplicate execution on the RC; their results are then placed
back in a central queue. PreFix is intended for handling faults
in the core’s data and control logic, but not for those in buffers.
An overview of PreFix is shown in fig. 2. We next describe
how instructions flow through the processor pipeline and then
give details of PreFix.
A. Instruction Flow

Instructions first interact with PreFix within the pre-
decoder that sits between the L1 instruction and L2 caches. The
pre-decoder identifies resources that each instruction requires
and stores that within the L1 instruction cache, for use in a
later stage. When instructions are fetched into the core, they
simultaneously pass through the fault prediction unit. This unit
uses the information from the pre-decoder and the instruction
itself to determine whether the instruction is likely to execute
correctly within the core. If an error is possible, then a copy
is placed into a holding queue for duplicate execution on the
RC. If the instruction cannot be handled by the FC, then it
is forwarded immediately; other instructions are held in the
queue until the PreFix back-end informs it of possible faults.

Meanwhile, all instructions enter the faulty core’s fetch
queue and pass as normal through the core’s pipeline. Fin-
gerprinting logic monitors execution and use of resources,
flagging up an error if an instruction does not produce the
correct result. At the commit stage, a corrector module uses the
outputs from the fingerprinting, and only allows instructions
with the correct result to commit and leave the pipeline. Those
with errors are replaced with the results from the duplicate
instruction on the re-execution queue; the pipeline is flushed
and fetch restarts with the next instruction.
B. Pre-Decoder

The pre-decoder is responsible for extracting early, high-
level information from each instruction that enters the instruc-
tion cache. Many modern processors contain pre-decoders at
this level [10] to reduce the amount of repeated work that the
pipeline’s decode stage must perform. Every instruction is pre-
decoded to extract information about resources required during
its traversal through the pipeline.

1) PreFix Frontend: Pre-decoded instructions enter the
PreFix front-end in parallel with being sent to the fetch stage.
The structures that make up the front-end are shown in fig. 3.

Prediction
Unit

Holding
Queue

Remote
Core

To
Front End

From
Backend

From L1
Cache

Re-Execution
Queue

Outward
Queue

Results
Queue

To Checker

Fig. 3: PreFix front-end showing predictor and the queues.

a) PreFix Predictor: The primary task of the predictor
is to classify each instruction into one of the three categories:
not faulty (NF), highly likely to fault (HLF, the default), or
low likelihood of fault (LLF). The predictor is necessarily
conservative; it generates false positives but never says an
instruction is fault-free when it isn’t, using hardware fault trees.
The predictor further contains logic which calculates when an
instruction will use a faulty pipeline lane, to deal with errors
in specific fetch or decode units. NF and LLF instructions
pass through the core’s pipeline. LLF and HLF instructions are
duplicated, with the HLF duplicates immediately sent to the
RC. LLF instructions are only re-executed if the later detectors
catch an error. The stream of HLF and LLF instructions are
written into the re-execution queue, from which they leave in
program order only when their original counterparts commit
or are squashed in the main core. The re-execution queue is
dual channeled, one sending instructions and operands to the
RC (the outward queue) and the other receiving results from
the RC, if and when that occurs (the results queue).

b) Fault Trees: The fault tree in our method works over
the ISA. It groups instructions by resource usage (i.e., core
structures) and predicts whether instructions from each group
might use faulty components as they pass through the pro-
cessor pipeline. Pre-decoders support ISA-based component
analysis allowing the creation of fault trees where groups are
based on ISA-level characteristics. At the head of the tree,
all instructions are part of the super-group, that is the group
of instructions using the processor. Further down the tree,
the instructions are split into more specialized groups, for
example, based on the specific type of functional unit they will
use. As the tree becomes larger, the nodes start representing
internal circuitry, such as an operation’s bit width. Hardware
represents the tree in its flattened form as a bit array with the
ability of PreFix to detect the fault also stored. Information
from the pre-decoder regarding the instruction class and the
resource requirements are used to query the fault tree, which
is populated using built-in self-test [11].

c) Duplicate Execution: The RC executes duplicate
instructions alongside any workload it has to run, using an
otherwise-idle redundant thread. The redundant thread obtains
duplicate instructions from the re-execution queue and exe-
cutes them when the RC allows. In each fetch cycle, the RC
either fetches from its main thread or the redundant secondary
thread (if it has work to do). The RC favors its main thread,
giving it more fetch cycles than its redundant counterpart. In
our experiments, fetch occurs from the redundant secondary
thread only when the primary thread is inactive while waiting
for either data or instruction from memory. Instructions marked



as ready in the re-execution queue contain not just their
original instruction bits, but also their source operands. This
means that the redundant secondary thread is free to execute
each instruction in isolation, asynchronously to the original
faulty core. Redundant secondary threads are non-speculative
in the RC since they are independent of all other instructions
and do not use the branch predictor. The results from this
duplicate execution are available at commit and are written into
PreFix’s re-execution queue, for reading by the checker unit if
the original instruction actually does experience an error.

2) PreFix Back-end: The PreFix front-end is concerned
with predicting whether a fault may occur with each instruction
whereas the back-end is responsible for detecting whether an
error has actually occurred.

a) PreFix Fault Detector: The PreFix fault detector is
responsible for detecting whether an error may have occurred.
If so, it communicates with the front-end to ensure that the
duplicate of the faulty instruction actually gets executed on
the RC. Note that the detection need not be perfect, and
over-prediction is acceptable with performance penalties. The
PreFix back-end contains both a usage monitor and multiple
detectors. The usage monitor runs in parallel with instruction
issue and checks instructions that were marked as possibly
faulty by the front-end to see if they will actually use any
faulty components. If not, then it reclassifies the instruction
as NF. This component helps reduce the overheads of PreFix
by removing false positives introduced by the front-end. It
also serves as a backup to the detector. The usage monitor
is responsible for filtering instructions that require checking
and the detector is responsible for detecting faults in marked
instructions (those classified LLF). Detector designs have been
previously proposed, for example, using parity checking [12],
and PreFix can work with any of these methods. Instructions
passed by the usage monitor are placed in a detector queue,
pending the results of the detector. From here they are are
either discarded (if no fault is detected) or, in the event of a
detected error, sent to the holding queue in the PreFix front-
end to ensure they are re-executed on the RC.

In addition, Mitra and McCluskey [13] show that concur-
rent error detection methods themselves may be subject to er-
rors. Inclusion of the usage monitor, therefore, protects against
scenarios in which the detector as well as the actual circuit
have complementary errors. Where the detector is itself faulty
for certain errors, or does not provide complete coverage, the
usage monitor’s filtering alone is used to determine whether
to re-execute the instruction. In these scenarios, false positives
can occur from the PreFix back-end.

b) Corrector Unit: For each instruction that is still
marked as an LLF, the corrector is responsible for checking if
the results from both executions match. It sits at the end of the
pipeline, alongside commit and is responsible for ensuring that
instructions with erroneous results do not leave the pipeline
and so do not contribute to the architectural state. Instructions
that have been marked as faulty by the PreFix back-end
after their execution are intercepted by the corrector unit and
prevented from committing until they have been validated. To
accomplish this, the corrector unit queries the instructions at
the head of the holding queue to find the duplicate of the
erroneous instruction. If this has already been executed on
the remote core through the re-execution queue and redundant

Processor 1GHz, 3-wide, out-of-order
ROB 40 entries
L/S Queues 16 / 16 entries
Issue Queue 32 entries
Registers 128 integer, 128 FP
ALUs 3 Int, 2 FP, 1 Mult/Div
Branch Pred. Tournament with 2048 entry local,

8192 entry global, 2048 entry chooser,
2048 entry BTB, and 16 entry RAS

L1 Caches 32KiB, 2-way, 64B lines, 2-cycle hit
L2 Cache 2MiB, 8-way, 64B lines, 12-cycle hit
Main Memory DDR3-1600 11-11-11-28 @ 800MHz

TABLE I: Experimental setup for cores and memory.

1 astar sjeng 2 bwaves pds50
3 bzip2 tonto 4 cactusADM tonto
5 calculix zeusmp 6 gamess soplex
7 gcc bwaves 8 gobmk cactusADM
9 gromacs calculix 10 h264ref gamess
11 hmmer gcc 12 libquantum gobmk
13 milc h264ref 14 namd hmmer
15 perlbench libquantum 16 sjeng mcf

TABLE II: Randomly-selected pairs of benchmarks studied.

secondary thread, then the values from the remote execution
are retrieved. On the other hand, if duplicate execution has not
yet finished for this instruction, the corrector unit stalls until
the remote results come back.

As section II-B2a described, the PreFix back-end can
generate false positives. To avoid a loss of performance for
these false positives, the corrector unit does not assume that
a fault has actually occurred. Instead, it compares the results
of remote execution with those from the faulty instruction to
actually determine the instruction’s fault status. If they are
the same, then the faulty instruction commits as normal. If
they differ, then the results from the remote execution are
accepted as correct and copied into the faulty instruction’s
output registers. The corrector unit stalls the processor, and
squashes all later in-flight instructions to avoid subsequent
errors from dependent instructions reading the wrong value.
At this point, as with a branch mis-prediction, the instructions
in the holding and re-execution queues are also squashed. Any
instructions currently being re-executed on the remote core
are ignored when they finish. Execution on the remote core
is independent and asynchronous to that on the faulty core,
hence there is no interaction between the two.

III. EXPERIMENTAL SETUP

We evaluated PreFix using the gem5 simulator [14] using
the ARMv7-A ISA and randomly-selected pairings of appli-
cations drawn from the SPEC CPU2006 benchmark suite as
shown in table II. The out-of-order cores have private L1
caches and a shared L2. Table I details the core and memory
configuration. We compiled each benchmark with gcc 5.2;
missing applications would not compile or run correctly in
our environment. For each experiment, we fast forwarded and
warmed the caches and branch predictor for each benchmark
pairs for 500 million instructions and then executed for at
least a further 250 million instructions. The weighted speed-
up of the IPC of the main threads is taken as the performance
indicator. To allow for a viable comparison, the base case is
taken as the error free multi-core case. 50 faulty versions of
the first core, each one containing exactly 5 errors in different
components are used. For benchmarking experiments, faults



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Workload

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

S
p
e
e
d
u
p

Fig. 4: Results with full PreFix. Frequent errors cause signifi-
cant slowdowns, but median performance shows little impact.

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Pp

0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

(a) Faulty Core Performance

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Pp

0.980.991.001.011.021.031.041.05

R
e
la

ti
v
e
 P

e
rf

o
rm

a
n
ce

(b) Dual Core Performance

Fig. 5: Effect of varying the prediction rate on a 2 core system

had a 20% chance of affecting the result of each instruction
that used the faulty component.

IV. RESULTS

a) Performance: Figure 4 shows the results of PreFix
when the complete system is functional for each workload
across all 50 erroneous systems. The x-axis gives the workload
number from table II, the y-axis shows normalized perfor-
mance and we plot the minimum, maximum, median, 25th and
75th percentiles of the distribution across erroneous systems.
For most workloads, such as 3, 4, & 5, there is little impact
from running on a faulty core with the median performance
at 1×, and few outliers as shown in fig. 4. Some workloads
present noticeable degradation in certain error classes for
certain benchmark pairs. For example, error class 13 causes
significant performance degradation in workload 6, but shows
relatively less performance degradation in other benchmark
pairs. Also, workload 6 shows substantial resilience to other
error classes. This clearly shows that performance degradation
is related to the error and benchmark pair.

However, most workloads experience a range of slowdowns
depending on the types of faults in the simulated systems.
The worst performance is 0.3× on workload 6 which is due
to a core with faults exclusively in the integer ALU. In
contrast to the workloads that are barely affected, in this case
both benchmarks have high baseline IPC. Frequent erroneous
instructions reduce the IPC of the first workload (on the faulty
core) because it must stall at commit to wait for instruction
re-execution. Further, these additional instructions reduce the
IPC of the second workload (on the remote core) because it
does not get the full fetch capacity and cannot tolerate this
reduction in bandwidth.

b) Prediction: Figure 5 shows the impact of prediction
on the system, where higher performance is better. Initially
there is an improvement in the performance with increasing
prediction rates, as expected, but the performance starts to
degrade as over-prediction starts increasing the number of
instructions classified as HLF. Most workloads have an optimal
prediction rate of 0.1 and three benchmark pairings have
the optimal prediction rate at 0.2. In the experiments shown
previously, a prediction rate of 0.2 was used.

c) Area and Power Overhead: Using McPAT [15], we
obtained area and power estimates for the PreFix framework
which gave an overhead of 3.5% on a 2 core machine, and for
a 4 core machine, the overhead decreases to 3.1% of the total
processor area, excluding the caches. For power, the overhead
varies from 1-4% based on the application-fault profile.

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants
EP/K026399/1 and EP/J016284/1. Experiments used the Dar-
win Supercomputer of the University of Cambridge HPC
Service funded by the Higher Education Funding Council for
England and the Science and Technology Facilities Council.
Additional data related to this publication is available at
https://doi.org/10.17863/CAM.11957.

REFERENCES

[1] D. Gizopoulos, M. Psarakis, and E. al, “Architectures for online error
detection and recovery in multicore processors,” in DATE, 2011.

[2] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” IEEE Micro, 2005.

[3] S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke, “The StageNet
Fabric for Constructing Resilient Multicore Systems,” 2008.

[4] A. Ansari et al., “Necromancer: Enhancing System Throughput by
Animating Dead Cores,” in ACM Computer Architecture News, 2010.

[5] O. Khan, “Thread Relocation: A Runtime Architecture for Tolerating
Hard Errors in Chip Multiprocessors,” IEEE Trans. on Computers, 2010.

[6] A. Meixner and D. J. Sorin, “Detouring: Translating software to
circumvent hard faults in simple cores,” in DSN, 2008.

[7] E. Schuchman et al., “Rescue: A microarchitecture for testability and
defect tolerance,” in ACM Computer Architecture News, 2005.

[8] M.-L. Li et al., “Accurate microarchitecture-level fault modeling for
studying hardware faults,” in HPCA, 2009.

[9] K. Nepal, N. Alves, J. Dworak, and R. I. Bahar, “Using Implications
for Online Error Detection,” in ITC, 2008.

[10] K. C. Yeager, “The MIPS R10000 superscalar microprocessor,” vol. 16,
no. 2, pp. 28–41, 1996.

[11] V. Iyengar, K. Chakrabarty, and B. T. Murray, “Built-in self testing of
sequential circuits using precomputed test sets,” 1998.

[12] M. Nicolaidis, “Carry checking/parity prediction adders and ALUs,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2003.

[13] S. Mitra and E. J. McCluskey, “Which concurrent error detection
scheme to choose?” in ITC, 2000.

[14] N. Binkert, B. Et al, B. Beckmann, G. Black, Others, and B. Et al, “The
gem5 simulator,” SIGARCH Computer Architecture News, 2011.

[15] S. Li et al., “McPAT 1.0: An Integrated Power, Area, and Timing
Modeling Framework for Multicore Architectures,” , 2009. Micro-42.


