
Smart Cache: A Self Adaptive Cache Architecture

for Energy Efficiency

Karthik T. Sundararajan

School of Informatics

University of Edinburgh

Email: tskarthik@ed.ac.uk

Timothy M. Jones

Computer Laboratory

University of Cambridge

Email: timothy.jones@cl.cam.ac.uk

Nigel Topham

School of Informatics

University of Edinburgh

Email: npt@staffmail.ed.ac.uk

Abstract—The demand for low-power embedded systems re-
quires designers to tune processor parameters to avoid excessive
energy wastage. Tuning on a per-application or per-application-
phase basis allows a greater saving in energy consumption
without a noticeable degradation in performance. On-chip caches
often consume a significant fraction of the total energy budget
and are therefore prime candidates for adaptation.

Fixed-configuration caches must be designed to deliver low
average memory access times across a wide range of potential
applications. However, this can lead to excessive energy consump-
tion for applications that do not require the full capacity or
associativity of the cache at all times. Furthermore, in systems
where the clock period is constrained by the access times of level-
1 caches, the clock frequency for all applications is effectively
limited by the cache requirements of the most demanding phase
within the most demanding application. This results in both
performance and energy efficiency that represents the lowest
common denominator across the applications.

In this paper we present a Set and way Management cache
Architecture for Run-Time reconfiguration (Smart cache), a
cache architecture that allows reconfiguration in both its size and
associativity. Results show the energy-delay of the Smart cache is
on average 14% better than state-of-the-art cache reconfiguration
architectures. We then leverage the flexibility provided by our
cache to dynamically reconfigure the hierarchy as a program
runs. We develop a decision tree based machine learning model
to control the adaptation and automatically reconfigure the cache
to the best configuration. Results show an average reduction in
energy-delay product of 17% in the data cache (just 1% away
from an oracle result) and 34% in the level-2 cache (just 5%
away from an oracle), with an overall performance degradation
of less than 2% compared with a baseline statically-configured
cache.

I. INTRODUCTION

The power dissipation of modern microprocessors is a

primary design constraint across all processing domains, from

embedded devices to high performance chips. Shrinking fea-

ture sizes and increasing numbers of transistors packed into a

single die only exacerbates this issue. Schemes are urgently

required to tackle power dissipation, yet still deliver high

performance from the system.

Cache memories contain a large number of transistors and

consume a large amount of energy. For instance, 60% of the

StrongARM’s area is devoted to caches [1]. For this reason

many processors, particularly intellectual property cores, allow

the configuration of the caches to be determined at design

time, according to the requirements of the target applications.

Customization of cache parameters may be static or dynamic;

in a static approach the designer sets the cache parameters

before synthesis, whereas in a dynamic scheme the cache

parameters can be modified within a certain range at run-time.

When cache parameters are determined statically, a single

configuration is chosen by the designer to trade-off perfor-

mance against energy consumption. Static configurations re-

quire less on-chip logic, validation and testing than performing

dynamic reconfiguration. However, they do not have the ability

to react to changes in cache requirements both across programs

and within the same application. In order to achieve optimum

energy efficiency, cache parameters should be reconfigured

at run-time in response to the changing requirements of the

running application.

Dynamic cache reconfiguration is not a new topic, having

been previously studied by a variety of researchers [2], [3],

[4], [5], [6], [7], [8], [9], [10]. These schemes monitor the

miss ratio at run-time, reconfiguring the cache whenever it

reaches a certain threshold value. However, they are limited in

the amount of flexibility they provide — either performing set-

only or way-only reconfiguration— or they consult larger sub-

banks on each access than are actually required. Furthermore,

relying solely on the miss ratio to determine the correct time

to reconfigure does not always give a good indication of the

changing requirements of the application.

This paper makes the following contributions:

• We first propose a configurable cache architecture that

allows reconfiguration of both the size and associativity of

each cache, providing maximum flexibility to the applica-

tion. We compare our approach, called the Smart cache,

against state-of-the-art cache reconfiguration techniques

and show that our scheme’s energy-delay product is on

average 14% better than these prior works.

• To demonstrate the performance of our scheme we de-

velop a decision tree model that monitors the behavior

of each cache and dynamically reconfigures in response

to changing application requirements. We demonstrate

that our approach causes negligible performance loss, yet

achieves an energy-delay product of 0.83 and 0.66 in the

data cache and level-2 cache respectively.

The rest of this paper is structured as follows. Section II

describes related work and the importance of our cache archi-

tecture. Section III describes our Smart cache and section IV

presents our decision tree model with the features of cache

behavior that it monitors. It also discusses the power and

performance overheads of our approach. Section V describes

our experimental set-up and section VI presents our results.

Finally, section VII concludes.

II. RELATED WORK

This section describes the existing state-of-the-art recon-

figurable cache architectures and explains the need for and

importance of our work.

Reconfigurable caches are not new. Several researchers have

investigated configurable cache designs that vary parameters

such as the size, line size and associativity. The state-of-the-

art reconfigurable cache architectures can be grouped into the

following categories.

A. Set-Only Reconfiguration

In a set-only cache, the cache size is increased and de-

creased by enabling or disabling one or more sets respec-

tively [11]. At smaller cache sizes, unused sets can be turned

off to reduce the static energy consumption [8]. The miss ratio

was used by Yang et al. [11] to guide cache reconfiguration,

varying the size by masking index bits through a shifting

operation. This allowed them to alter the cache size one step

at a time. Our approach, in contrast, allows us to alter both

size and associativity and reconfigure to any configuration in

just one step.

B. Way-Only Reconfiguration

Albonesi [3] proposed a cache design that can vary size

and associativity by enabling or disabling cache ways, saving

dynamic power when using less resources. This is a coarse-

grained reconfiguration approach that may increase capacity

and conflict misses [11].

Zhang et al. [12] proposed way-concatenation to reduce

dynamic power by accessing fewer ways, depending on the

associativity. This was performed once, before an application

started execution. They also used way-shutdown to decrease

cache size by turning-off unused ways using the Gated-

Vdd method [8]. However, they did not address the changes

required to the control signals when adding in way-shutdown.

Later, Ross et al. [5] described an extension to enable dynamic

cache reconfiguration. However, they do not describe the

control signals required to combine way-concatenation with

way-shutdown. Furthermore, this requires flushing of dirty

data to the next level cache when increasing associativity for

a fixed cache size, something that our Smart cache avoids.

Orthogonal to this, way-prediction schemes can be used to

reduce cache power by only accessing the ways that contain

the required data [13], [14].

C. Set-and-Way Reconfiguration

Yang et al. [9] combined configurable set [8] and way [3]

architectures to offer a hybrid cache that gives flexibility in

terms of size and associativity. Increasing associativity by

adding ways but keeping the cache size fixed results in a copy-

ing back of previously stored data. This shows the need for our

cache architecture that supports dynamic reconfiguration with-

out incurring extra cycles for copying back information, while

increasing the associativity. Furthermore, our Smart cache is

complementary to heterogeneous way-sizes [2], concatenating

lines [15] and wide-tag partitioning [4].

D. Other Approaches

Focusing on leakage energy saving, Flautner et al. [16]

proposed drowsy caching that preserves state when in a low-

power mode. Kaxiras et al. [17] developed cache decay which

is a state-destroying low power scheme. However, neither of

these techniques reconfigures the cache — they simply place

lines in a low power mode. Their ability to save energy relies

on the correct selection of the interval that lines are placed in

a low power mode. Moreover, they reduce only static and not

dynamic power, whereas our scheme reduces both static and

dynamic energy significantly.

Powell et al. [8] proposed a gated-Vdd (non-state preserv-

ing) technique to reconfigure the cache and turn off unused

cache lines. Meng et al. [18] explored the upper limits of

reducing leakage power by combining both drowsy and gated-

Vdd techniques. However, this work is only a theoretical upper

bound since it assumes the existence of an ideal pre-fetcher

which is impossible to provide in practice.

Micro-architecture design space exploration (including for

caches) has been studied by several researchers using lin-

ear regression models [19], artificial neural networks [20],

[21], [22], [23], radial basis functions [24], and spline func-

tions [25], [26], [27]. However, these papers assume indefinite

hardware resource availability and also none of these papers

addresses the question of how to achieve these benefits.

Our paper presents a flexible cache architecture that can be

reconfigured on-line to enable power savings.

III. THE SMART CACHE ARCHITECTURE

This section describes the Smart architecture that we use

for each cache within the system. Figure 1 shows how each

address is mapped into our cache for a 2MB level-2 cache.

There are two complementary circuits used in parallel that

perform the mapping, allowing the address to be routed to the

correct set and way.

As the cache size and associativity varies, so does the

number of bits needed for the tags. In our architecture, we

store the maximum sized tag for each line (i.e., for the smallest

cache and largest associativity). We now describe how the

address is routed to the sets and ways, then discuss the

overheads of our architecture.

A. Set Selection

We group the sets in each bank by augmenting the cache

with size selection bits that determine the sets that are enabled.

These are then ANDed with bits from the index to determine

the sets to access. In the 2MB level-2 cache shown in figure 1

we have size selection bits S128, S256, S512, S1, and S2

representing cache sizes of 128KB (sets 0-511), 256KB (sets

0-1023), 512KB (sets 0-2047), 1MB (sets 0-4095) and 2MB

(a) Set Selection (b) Way Selection

Fig. 1. Organization of the Smart cache architecture. Varying the cache size (through the set selection circuits) is performed in parallel with altering the
associativity (through the way selection logic).

(sets 0-8191) respectively. A 64KB cache (sets 0-255) is

always enabled even when all size selection bits are 0. The size

selection bits could be set via a hardware scheme, or exposed

to the software.

B. Way Selection

In order to control the associativity of the cache, we

augment the cache with a way selection circuit. This uses the

last two tag bits and the size selection bits to route accesses to

the ways that are enabled. Since the cache size can vary, the

size selection bits are required to correctly identify the last two

tag bits. In figure 1, for a small cache they will be bits [15:14]

and for a large cache bits [20:19]. Two control bits (C0 and C1)

determine the ways that will be eventually accessed. For one-

way associativity, any one of the way selection control signals

W0, W1, W2 or W3 will be active. For two-way associativity,

any two of the way selection control signals will be active.

Finally, for four-way associativity, all way selection control

signals are active. Table I shows how the control and tag bits

map to the ways that are enabled.

C. Example Cache Access

Figure 2 shows how the control and tag bits map to the ways

that are enabled in our Smart cache. As an example of how

the set and way selection circuits work in tandem, consider

a 512KB, two-way associative cache. In this scenario, size

selection bits S128, S256 and S512 are set to 1, all others are

set to 0. For the control bits, C0 is set to 0 and C1 is set to 1.

The address is routed to cache banks after passing through

the selection circuits. For all the cache configurations, the tag

bits [31:14] are used. Depending on the cache size, the way

selection circuit selects two tag bits, in this example it uses

bits [18:17] which corresponds to a cache size of 512KB.

Fig. 2. Working of the Smart cache. Brown, yellow and white regions show
accessed, unaccessed and disabled sets respectively. Control bits determine
the associativity and the last two tag bits determine the ways.

Assuming that they are both 1, then ways W2 and W3 are

accessed. In the set selection circuit, bits [16:6] are also passed

through with the index to select the correct lines from sets 0-

2047. All other sets are turned off for static power saving.

D. Overheads

The way selection circuit does not appear in the cache’s

critical path because it can operate in parallel with the tag and

data array address decoders [12]. The set selection circuit can

be folded into the decoders to avoid any delay in calculating

the index bits [8]. Therefore there is no increase in the cycle

time for accessing the cache using our approach. However,

after reconfiguring the cache to a smaller size, we turn off

unused sets and ways, destroying their contents. Therefore we

must flush any dirty lines back to the next level in the memory

hierarchy. In all our simulations we add the flushing cost

that includes both power and performance costs for copying

back the dirty lines. Power and performance overheads of

reconfiguration are discussed in detail in section IV-C.

TABLE I
MAPPING OF TAG AND CONTROL BITS TO THE ACTIVE WAYS.

Associativity Control Bits Last Two Active Way

C0 C1 Tag Bits Signals

One Way 0 0 00 W0
01 W1
10 W2
11 W3

Two Way 0 1 0X W0, W1
1X W2, W3

Four Way 1 1 XX W0, W1, W2, W3

We have calculated the area overheads of the cache as

0.5% over the baseline. This is due to the extra control

circuitry required to perform set selection, way selection and

reconfiguration. This value has been obtained from a version

of Cacti-5.3 [28] that has been modified to support our new

circuitry.

E. Relation to Prior Work

There are several key differences between our Smart cache

and state-of-the-art reconfiguration techniques. In our ap-

proach the associativity and size are varied in parallel by

using the way control signals and the size control registers.

The Smart cache organizes ways at set boundaries, which

avoids flushing data back to memory when increasing the

associativity but keeping the cache size fixed. This addresses

the shortcomings from previous techniques [12], allowing

dynamic reconfiguration of the cache. In addition to this, the

Smart cache offers 3x more cache configurations than the

set-only [11] and hybrid [12] schemes, which combine way-

concatenation with way-shutdown.

IV. CONTROLLING RECONFIGURATION

Having developed our cache architecture, this section now

describes our method for dynamic reconfiguration. We monitor

the cache behavior by collecting statistics about the cache

usage over a fixed interval size. These are then fed into

a decision tree that computes the required cache size and

associativity for the next interval. We first present the statistics

used to characterize cache behavior, then describe the decision

tree itself.

A. Cache Behavior Characterization

In order to determine the best cache configuration to use

for each program interval, we monitor the cache behavior

by gathering statistics about cache usage. These allow us

to accurately determine when the cache size or associativity

needs to be altered. We gather two types of statistic: stack

distance and dead set count.

1) Stack Distance: The stack distance [29] shows the

position in a set’s LRU chain that each access occurs in.

This gives an approximation of the required associativity of

the cache: if all accesses are in the MRU position, then the

associativity can be reduced; if many accesses are in the LRU

position or miss then the cache could benefit from higher

associativity. We maintain a counter for each position in the

Fig. 3. Example decision tree structure.

LRU chain for the whole cache to enable us to gather this

information.

2) Dead Set Counts: We define a dead set as one that

is not accessed during a clearing interval (10K committed

instructions). A large number of dead sets indicates that the

cache could function adequately with a smaller number of

sets (i.e., a smaller size). To monitor this we add a 2-bit

saturating counter to each set, clear them at the start of

each clearing interval and increment on each access. At the

end of the each clearing interval these counters are used to

compute the total number of sets that have been accessed

less than three times, and are averaged over phase interval

(10M committed instructions). This is a simple statistic, but it

accurately identifies dead sets.

B. Decision Tree Model

Any form of dynamic hardware reconfiguration requires a

decision-making process, driven by run-time measurements.

This could be derived intuitively, but would then be open

to the criticism that the model is trained specifically for the

selected benchmarks. We take a different approach, choosing

machine learning to train a decision tree model, which clearly

separates training and experimental data. An example is shown

in figure 3. At each node in the tree, any one of the collected

statistics is compared to a threshold value and, depending

on the outcome control passes either left or right to the

corresponding child node. We used decision trees to control

reconfiguration because they can be easily implemented in

hardware using a look-up table.

Assuming a dead set count (DS) of 0.6 and stack distance

(SD) of 0.3, we can follow the example tree in figure 3

to find the required configuration. The first comparison is

performed in the root node where DS is compared to the

threshold value of 0.3. We therefore take the edge labeled True

and proceed down the left to the next node. This compares

SD with 0.5, so we take the edge labeled False. The final

comparison considers whether DS is greater than 0.7, which

is also False. We therefore arrive at the node containing the

desired configuration, which is a 128KB cache with 2-way

associativity.

In order to determine the thresholds at each node, the

decision tree needs to be trained using examples of good

configurations from different programs. Training consists of

finding thresholds that minimize the partition variance at each

node. To do this we ran each training program on all cache

configurations and gathered the characterization statistics ev-

ery interval. We defined good configurations as those that have

an energy-delay lower than the baseline, with a maximum

slowdown of 2% from the baseline across each interval. We

then used leave-one-out cross-validation to train our decision

tree using this data. This is a standard machine learning

methodology and ensures the model is never trained on the

benchmark it is tested on.

C. Overheads of Reconfiguration

There are two types of overhead that our dynamic recon-

figuration scheme incurs. The first is power consumption and

the second is performance.

a) Power Consumption: We have calculated the power

consumption of our statistics gathering logic for each cache

in the processor and the models used to drive reconfiguration.

These have been incorporated into our simulator and the

overheads included in all results. The energy overheads of

the statistics gathering logic are 0.01% of the baseline cache

energy. The overhead of the decision tree model is 1% of the

baseline cache energy consumption.

b) Performance: Traversing the decision tree to find the

best cache configuration for the next interval takes several

cycles. However, this is small in comparison to the time taken

to run each interval. By halting our characterization shortly

before the end of the interval, we can overlap the decision tree

traversal with the execution of the end of the interval, hiding

its latency. The performance overheads in actually performing

reconfiguration of each cache are described in Section III and

are included in all of our results.

Altering the cache size or associativity may require dirty

data to be written back to lower-level memory. When cache

size is reduced by turning-off sets or ways, requires dirty lines

present in the future turned-off region to be written back to

next lower level. When cache size is increased, blocks may

map to different sets. This incurs extra misses for the first

accesses to the new location and also requires dirty lines to

be flushed back to the next level before increasing the size.

These reconfigurations incur extra cycles to copy back dirty

lines to lower levels of memory, which incurs extra perfor-

mance and energy costs. However our experimental results

show that on average reconfiguration is required once in every

10 intervals, or once every 100 million instructions. Thus, costs

associated with this can be quantified by not varying cache size

and associativity very often. The performance and energy costs

of flushing these cache lines are included in all our results

and, since reconfiguration is performed so infrequently, the

overheads are small.

V. EXPERIMENTAL SETUP

This section describes the simulator and benchmarks used

to evaluate our cache reconfiguration approach.

TABLE II
PROCESSOR CONFIGURATION.

Parameter Configurations

Decode,Issue,Commit Width 4 ,4, 4
Register Update Unit Size 80
Load Store Queue Size 40
Instruction Cache Size 1 → 32 KBytes
Instruction Cache Associativity 1 → 4
Instruction Cache Line size 32 Bytes
Data Cache Size 1 → 32 KBytes
Data Cache Associativity 1 → 4
Data Cache Line size 32 Bytes
Level-2 Cache Size 64 → 2048 KBytes
Level-2 Cache Associativity 1 → 8
Level-2 Cache Line size 64 Bytes
Level-2 Cache Latency 6 Cycles
Memory access bus width 8 Bytes
Main-Memory Latency 97 Cycles
Technology 70nm

We implemented cache reconfiguration in the HotLeakage

simulator [30]. We updated the underlying power models to

use a more recent version of Cacti-5.3 [28] that has been

modified to support our new circuitry for 70nm process

technology. We also altered the simulator to include the power

and performance overheads of reconfiguring each cache, as

previously described in Sections III and IV. Table II shows

the configuration of our Alpha out-of-order superscalar, whose

cache configurations are similar to an Intel Core 2 processor.

To evaluate our technique we used the SPEC CPU 2000

benchmark suites [31] as workloads, compiled with the highest

optimization level. We used the reference inputs for running

each application. Due to simulation time constraints and

to maintain the continuity of cache behavior, we ran each

workload from its start to 60 billion instructions. This ensures

that we cover the majority of each benchmark’s behavior.

In our simulations we assumed a phase interval of 10

million instructions. We chose this after a characterization

of the benchmarks using sampling intervals of 10K, 100K,

1M and 10M instructions. This this also is a value commonly

used by other researchers [32]. To gather data to train our

decision tree model we ran each CPU 2000 benchmark on

each cache configuration, gathering cache characterization

statistics every interval. With 23 applications, 3 caches and

18 configurations for each, this totals 1,242 simulations. We

then used leave-one-out cross-validation, a standard machine

learning evaluation methodology to evaluate our scheme, as

described in Section IV.

We have used WEKA to analyze our training data-sets using

data-mining algorithms [33]. WEKA comprises data classifica-

tion, regression, clustering, association rules and visualization.

It analyzes, pre-processes and selects the key features from

the training data-set and applies classification algorithms on

the selected features.

VI. RESULTS

This section evaluates our Smart cache approach to dynamic

cache reconfiguration. We first perform a comparison with

prior cache architectures on static configurations of the level-2

0.0
0.2
0.4
0.6
0.8
1.0

A
P

P
L
U

A
P

S
I

A
R

T

B
Z

IP
2

C
R

A
F

T
Y

E
O

N

E
Q

U
A

K
E

F
A

C
E

R
E

C

G
A

L
G

E
L

G
A

P

G
C

C

G
Z

IP

L
U

C
A

S

M
E

S
A

M
G

R
ID

P
A

R
S

E
R

P
E

R
L

S
W

IM

T
W

O
L
F

V
O

R
T

E
X

V
P

R

W
U

P
W

IS
E

A
v
e
ra

g
e

E
n

e
rg

y
-D

e
la

y
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

SPEC2000 Benchmark Applications

Set-Only

Way-Concatenation + Way-Shutdown

Set-and-Way

Smart Cache

Fig. 4. Energy-delay values for different cache architectures running on the baseline level-2 cache configuration.

cache. We then show the effects of dynamic reconfiguration

using our architecture and decision tree model on each cache

individually and a combined scheme for all caches at once.

In later graphs we show the performance of our approach

and the energy-delay product achieved for the whole cache

hierarchy, taking into account reconfiguration and flushing

costs. In addition to this, we show two comparison techniques.

The first is the best static configuration of the cache, which

corresponds to the configuration that has the lowest energy-

delay and a maximum 2% performance loss across all bench-

marks, with no dynamic reconfiguration. These are the same

criteria used to select good configurations to train our decision

tree. The second approach is an ideal oracle which knows in

advance the best configuration for each interval and incurs no

overheads in dynamic reconfiguration. Although unrealistic in

practice, this represents the lower bound on achievable energy-

delay for any technique.

All energy-delay results are normalized to the baseline

architecture which has an energy-delay value of 1.0. This is

a processor where each cache is configured to its largest size

and highest level of associativity.

A. Comparison With Prior Work

Our first evaluation compares our cache architecture

with prior state-of-the-art designs. Figure 4 shows set-only

cache [8], which can increase/decrease cache size; Way Con-

catenation cache [12], which concatenates one or more ways

to get the desired associativity and also uses way-shutdown to

turns-off the unused ways to reduce leakage power. Set and

Way cache [9], which incorporates both [3], [8] schemes;

and our Smart Cache. We show the energy-delay product

achieved when running each benchmark on the best static

configurations for that application for each cache architecture.

The best static configuration is the one that has the lowest

energy-delay and a maximum 2% performance loss, from all

the possible configurations.

For benchmarks such as art, bzip2, facerec, galgel, gcc,

parser, twolf, vortex and vpr the best static configuration

is 2MB with eight-way associativity so there are no energy

savings achievable for any cache architecture. The set-only,

set-and-way and Smart approaches consume around 1.7%

more energy compared to way-concatenation, because the

latter does not use extra tag-bits that other architectures require

to change the cache size. For some benchmarks, like bzip2,

facerec, gcc, parser and vortex, the set-only and set-and-way

approaches do not do well compared to the way-concatenation

and Smart caches. The reason for this is that these benchmarks

require a 2MB cache with two-way associativity which is

only offered by way-concatenation and Smart cache. For these

architectures, dynamic energy is reduced by accessing fewer

ways, which is not possible in the set-only and set-and-way

caches.

For others benchmarks, such as applu, eon, gap and lucas

significant energy-delay reductions can be achieved. This is

due to our approach accessing fewer sets and ways as com-

pared to the set-only and set-and-way approaches for lower

associativity. It can also be seen that no single approach can

provide good energy-delay values for all applications.

Overall, the average level-2 cache energy-delay achieved

by our approach is 0.28, which is 14% better than set-

only and set-and-way approaches and 25% better than the

way-concatenation with way-shutdown approach. This clearly

demonstrates the benefits of using our architecture for cache

reconfiguration. The next section now harnesses this flexibility

to dynamically reconfigure level-2 cache to obtain further

power savings.

B. Dynamic Cache Reconfiguration

This section evaluates our Smart cache architecture along

with our decision tree model for dynamic reconfiguration of

each cache in the hierarchy individually. In the following

subsections, when reconfiguring the instruction cache, the

energy spent in the baseline data and level-2 caches are added

to the energy of the instruction cache. This is done to ease the

comparison between the cache hierarchies. The same has also

been employed for reconfiguring data and level-2 caches.

1) Instruction Cache: Figure 5 shows the performance and

energy-delay of three different schemes when reconfiguring

the instruction cache alone. As previously described, the first

represents the best static configuration of the instruction cache

across all benchmarks and the second is the oracle. The

bars labeled Smart cache show the results from using our

decision tree model along with our Smart architecture. The

black circles show the performance achieved by Smart scheme,

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
P

P
L

U

A
P

S
I

A
R

T

B
Z

IP
2

C
R

A
F

T
Y

E
O

N

E
Q

U
A

K
E

F
A

C
E

R
E

C

G
A

L
G

E
L

G
A

P

G
C

C

G
Z

IP

L
U

C
A

S

M
C

F

M
E

S
A

M
G

R
ID

P
A

R
S

E
R

P
E

R
L

S
W

IM

T
W

O
L

F

V
O

R
T

E
X

V
P

R

W
U

P
W

IS
E

A
v
e

ra
g

e

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E
n

e
rg

y
-D

e
la

y
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

C
y

c
le

s
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

SPEC2000 Benchmark Applications

Best-Static ED Oracle ED Smart Cache ED Smart Cache Cycles

Fig. 5. Performance and energy-delay characteristics of the instruction cache, while maintaining the data and level-2 caches at the baseline configuration.
This chart shows the percentage reduction in total energy-delay achieved by reconfiguring only the instruction cache.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
P

P
L

U

A
P

S
I

A
R

T

B
Z

IP
2

C
R

A
F

T
Y

E
O

N

E
Q

U
A

K
E

F
A

C
E

R
E

C

G
A

L
G

E
L

G
A

P

G
C

C

G
Z

IP

L
U

C
A

S

M
C

F

M
E

S
A

M
G

R
ID

P
A

R
S

E
R

P
E

R
L

S
W

IM

T
W

O
L

F

V
O

R
T

E
X

V
P

R

W
U

P
W

IS
E

A
v
e

ra
g

e

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E
n

e
rg

y
-D

e
la

y
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

C
y

c
le

s
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

SPEC2000 Benchmark Applications

Best-Static ED Oracle ED Smart Cache ED Smart Cache Cycles

Fig. 6. Performance and energy-delay characteristics of the data cache, while maintaining the instruction and level-2 caches at the baseline configuration.
This chart shows the percentage reduction in total energy-delay achieved by reconfiguring only the data cache.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
P

P
L

U

A
P

S
I

A
R

T

B
Z

IP
2

C
R

A
F

T
Y

E
O

N

E
Q

U
A

K
E

F
A

C
E

R
E

C

G
A

L
G

E
L

G
A

P

G
C

C

G
Z

IP

L
U

C
A

S

M
C

F

M
E

S
A

M
G

R
ID

P
A

R
S

E
R

P
E

R
L

S
W

IM

T
W

O
L

F

V
O

R
T

E
X

V
P

R

W
U

P
W

IS
E

A
v
e

ra
g

e

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E
n

e
rg

y
-D

e
la

y
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

C
y

c
le

s
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

SPEC2000 Benchmark Applications

Best-Static ED Oracle ED Smart Cache ED Smart Cache Cycles

Fig. 7. Performance and energy-delay characteristics of the level-2 cache, while maintaining the instruction and data caches at the baseline configuration.
This chart shows the percentage reduction in total energy-delay achieved by reconfiguring only the level-2 cache.

normalized to the baseline performance. The oracle and best

static approaches never incur more than 2% performance loss,

so their performance results have been excluded. For the

instruction cache, the best static configuration is actually the

32KB cache with 4-way associativity (i.e., the baseline).

On average the energy-delay of our scheme is close to

the theoretical maximum limit achieved by the oracle, with

the difference being 2.2%. However, we lose 6% and 5%

performance on mgrid and parser respectively, due to our

decision tree model predicting too small a cache configuration

at the phase transitions. This is because the transition phase

cache statistics for mgrid are similar to those from applu

and apsi which need caches that are 2KB large, whereas

mgrid requires a cache of 8KB. For the other applications,

our decision tree model is effective at determining the correct

cache configuration to use. Therefore, on average we incur a

performance loss of just 1.5% compared to the baseline, but

achieve an energy-delay value of 0.95. A small performance

loss such as this is expected since we chose to bound per-

formance losses to 2% of the baseline when identifying good

configurations, as described in Section IV-B.

2) Data Cache: Turning our attention to the data cache,

shown in figure 6, we see that there is greater improvement

to be gained than can be achieved from the instruction cache.

64KB 1-Way
2-Way
4-Way
8-Way

128KB 1-Way
2-Way
4-Way
8-Way

256KB 1-Way
2-Way
4-Way
8-Way

512KB 1-Way
2-Way
4-Way
8-Way

1MB 1-Way
2-Way
4-Way
8-Way

2MB 1-Way
2-Way
4-Way
8-Way

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09

C
ac

h
e

C
o

n
fi

g
u

ra
ti

o
n

s

Instructions Executed in Billions

BZIP2

64KB 1-Way
2-Way
4-Way
8-Way

128KB 1-Way
2-Way
4-Way
8-Way

256KB 1-Way
2-Way
4-Way
8-Way

512KB 1-Way
2-Way
4-Way
8-Way

1MB 1-Way
2-Way
4-Way
8-Way

2MB 1-Way
2-Way
4-Way
8-Way

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09

C
ac

h
e

C
o

n
fi

g
u

ra
ti

o
n

s

Instructions Executed in Billions

EQUAKE

Oracle Decision

. Smart Cache Prediction

64KB 1-Way
2-Way
4-Way
8-Way

128KB 1-Way
2-Way
4-Way
8-Way

256KB 1-Way
2-Way
4-Way
8-Way

512KB 1-Way
2-Way
4-Way
8-Way

1MB 1-Way
2-Way
4-Way
8-Way

2MB 1-Way
2-Way
4-Way
8-Way

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09

C
ac

h
e

C
o

n
fi

g
u

ra
ti

o
n

s

Instructions Executed in Billions

GCC

64KB 1-Way
2-Way
4-Way
8-Way

128KB 1-Way
2-Way
4-Way
8-Way

256KB 1-Way
2-Way
4-Way
8-Way

512KB 1-Way
2-Way
4-Way
8-Way

1MB 1-Way
2-Way
4-Way
8-Way

2MB 1-Way
2-Way
4-Way
8-Way

 0 1e+09 2e+09 3e+09 4e+09 5e+09 6e+09 7e+09

C
ac

h
e

C
o

n
fi

g
u

ra
ti

o
n

s

Instructions Executed in Billions

MGRID

Fig. 8. Dynamic cache configuration traces, illustrating the correspondence between the Oracle and the Smart cache reconfiguration behavior. The y-axis
shows different cache configurations and the x-axis shows the time interval of instructions executed.

1 Way

2 Way

4 Way

8 Way

64KB 128KB 256KB 512KB 1MB 2MB

C
ac

h
e

A
ss

o
ci

at
iv

it
y

Cache Size

Oracle
’-’ using 1:2:3

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n
ta

g
e

o
f

T
im

e
S

el
ec

te
d

1 Way

2 Way

4 Way

8 Way

64KB 128KB 256KB 512KB 1MB 2MB

C
ac

h
e

A
ss

o
ci

at
iv

it
y

Cache Size

Smart Cache Prediction
’-’ using 1:2:3

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n
ta

g
e

o
f

T
im

e
S

el
ec

te
d

Fig. 9. Heatmaps showing the distribution of level-2 configurations required by the oracle and Smart cache across all SPEC CPU 2000 applications.

Here we incur a similar performance loss of 1.6% on average,

rising to 6.3% for apsi. This is again due to inaccuracies in our

decision tree model that infers a smaller cache configuration

during phase transitions for this application than is actually

required.

Considering the energy-delay, figure 6 shows that we again

achieve results close to the oracle. The difference here is 1.1%.

On average we achieve an energy-delay value of 0.83. This

is consistent across applications with art, lucas, swim and

wupwise achieving values less than 0.8.

3) Level-2 Cache: We now consider the final cache in the

hierarchy, which is the unified level-2 cache. Figure 7 shows

the results of dynamically reconfiguring the level-2 cache.

The best static cache configuration, across all benchmarks, is

actually the baseline 2MB 8-way cache, so without dynamic

reconfiguration, no energy savings are possible. Figure 8 then

shows how the cache configurations selected by the Smart

cache compare over time with the oracle’s selection.

a) Performance And ED: These results show that our

Smart cache is able to obtain significant energy-delay im-

provements with only minimal performance overheads. The

average performance loss for our approach is 1.8%, which is

within our target value that was used to determine good cache

configurations. Applications like equake and galgel incur 6.4%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
P

P
L

U

A
P

S
I

A
R

T

B
Z

IP
2

C
R

A
F

T
Y

E
O

N

E
Q

U
A

K
E

F
A

C
E

R
E

C

G
A

L
G

E
L

G
A

P

G
C

C

G
Z

IP

L
U

C
A

S

M
C

F

M
E

S
A

M
G

R
ID

P
A

R
S

E
R

P
E

R
L

S
W

IM

T
W

O
L

F

V
O

R
T

E
X

V
P

R

W
U

P
W

IS
E

A
v
e

ra
g

e

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

E
n

e
rg

y
-D

e
la

y
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

C
y

c
le

s
 N

o
rm

a
li

z
e

d

 t
o

 B
a

s
e

li
n

e

SPEC2000 Benchmark Applications

Best-Static ED Smart Cache ED Smart Cache Cycles

Fig. 10. Combined performance and energy-delay characteristic of all three caches within the cache hierarchy, showing an overall reduction in energy-delay
of 50%

and 5.2% performance losses respectively which is primarily

due to choosing smaller caches during the transition phase.

In crafty, facerec, mgrid, vortex and vpr, our Smart cache

performance is slightly over the actual limit of 2%, whereas

the oracle and best-static schemes are within the performance

limit. The reason being that for a few small phases in the

application, our model predicts a smaller cache size than

required and hence it incurs extra performance losses, whilst

also reducing energy-delay.

In terms of the energy-delay product, eon achieves 0.49

with no performance loss. This is due to eon mainly requiring

a cache of 128KB. For lucas, our approach achieves a value of

0.83, whereas the oracle scheme is at 0.38. The cache statistics

for lucas are similar to parser and vpr, when it is actually

more similar to applu, eon, gap and swim in terms of cache

size requirements.

In terms of the average energy-delay product, we achieve

a value of 0.66 — a significant reduction compared to the

best static approach. This shows the benefits of dynamic

reconfiguration of the level-2 cache using our approach.

b) Configurations Selected: To consider how these sav-

ings are achieved, figure 8 shows how the predictions made by

our Smart cache vary as an application runs. Also shown for

comparison is the oracle approach. Due to space limitations

we have only shown the results from four representative

benchmarks.

In bzip2, there is a regular pattern of configurations required,

alternating between a 64KB, 2-way cache and a 2MB configu-

ration. It is clear from the diagram that our approach accurately

tracks the oracle and leads to the savings shown in figure 7.

The next two benchmarks (equake and gcc) have irregular

patterns. For the majority of the time, the Smart cache can

accurately determine the correct configuration to use. How-

ever, sometimes it predicts too small a cache size (in equake),

leading to performance losses or too large a configuration (in

gcc), leading to higher ED values than are optimal.

The final benchmark is mgrid which is interesting because

we obtain a lower ED value than the oracle. As can be seen in

figure 8, this is due to the Smart cache accurately reconfiguring

the cache as the oracle scheme does, but occasionally using

a smaller size which leads to negligible performance losses

but increased energy savings. Overall, figure 8 shows that the

Smart cache is able to track the configurations chosen by the

unrealistic oracle scheme.

A summary of the configurations required by both the oracle

and our Smart cache can be seen in figure 9. We present the

results as a heat map, where darker blocks correspond to more

frequently chosen configurations. These figures are averaged

across all SPEC CPU 2000 applications.

The most frequently-used configuration is the 2MB, 4-way

cache. In contrast, a direct-mapped cache is rarely chosen by

either scheme, and nor is the smallest cache size of 64KB,

apart from the 2-way configuration that is useful for certain

benchmarks, as seen in figure 8. From these heat maps it is

clear that the Smart cache’s predictions are closely correlated

to the configurations chosen by the oracle, providing further

evidence of the accuracy of our approach.

C. Cache Hierarchy Reconfiguration

Having shown the benefits of reconfiguring each cache

individually, this section evaluates the effects of reconfiguring

each cache in the hierarchy at the same time. Figure 10 shows

the results. We show the best static configuration and our

approach only. We do not have results for the oracle scheme

because this would require a complete evaluation of the design

space (i.e., 128,304 simulations) which is impractical within

our current setup.

As figure 10 shows, applications such as applu, art, eon,

gap, gzip, lucas, mesa, twolf and wupwise incur small per-

formance losses of under 4%. However, other benchmarks

experience larger losses, leading to an average performance

loss of 5.3%.

On the other hand, there are significant improvements in

the energy-delay values achieved. Our approach is always

better than the best static configuration with swim achiev-

ing a value of 0.27 and applu achieving 0.29. The reason

behind the decrease in performance when all caches change

simultaneously is due to the selection of inappropriate cache

configurations during transition phases. This can be observed

by comparing figure 10 against other three individual cache

changing schemes shown in figures 5 to 7.

For example, in apsi, individually changing instruction and

level-2 caches incurs less than 2% performance loss. However,

when changing all caches at once, our model mistakenly

selects too small a size for the data cache and this influences

predictions made by for level-2 cache, increasing overall per-

formance losses. A similar effect can be seen in bzip2, equake,

facerec, mgrid and parser. Since we start our experiments from

the beginning of each application and execute 60 billion in-

structions without using any profiled phase information, many

small transition phases are encountered in our experiments.

These transition phase boundaries could be easily identified by

a phase detector [32], [34], which would allow us to vary the

interval length and reconfigure more accurately. However, on

average, our Smart cache approach achieves an energy-delay

of 0.50, almost half that of the best static scheme.

D. Summary

This section has presented the results from our Smart cache

approach. It is clear from figures 5 and 6 that reconfiguring

the instruction and data caches does not bring many benefits.

This is because of their small sizes in comparison to the

level-2 cache, meaning that, relatively, they do not contribute

as much energy to the total processor budget. However, as

seen in figures 7 and 10, reconfiguring the level-2 cache

can bring significant improvements in energy-delay. Therefore,

dynamically reconfiguring the level-2 cache alone results in

an overall cache hierarchy energy-delay reduction of 34%

compared to a statically configured baseline cache.

VII. CONCLUSIONS

This paper has presented a novel configurable cache ar-

chitecture and a decision tree machine learning model that

dynamically predicts the best cache configuration for any

application. The main goal is to reduce both dynamic and static

energy without losing performance.We have demonstrated that

our approach offers reduction in energy-delay product of 17%

in the data cache and 34% in the level-2 cache with less than

2% performance degradation in comparison to the baseline

cache.

Future work will consider cache reconfiguration on a mul-

ticore architecture, where several threads of execution share

cache resources. In addition to this, we will investigate resizing

the register file, branch target buffers and other processor

parameters that are major contributors to power consumption

and use compiler knowledge to ease the process of dynamic

prediction.

REFERENCES

[1] S. Manne, A. Klauser, and D. Grunwald, “Pipeline gating: speculation
control for energy reduction,” ISCA, 1998.

[2] J. Abella and A. González, “Heterogeneous way-size cache,” in ICS,
2006.

[3] D. H. Albonesi, “Selective cache ways: on-demand cache resource
allocation,” in MICRO:, 1999.

[4] L. Chen, X. Zou, J. Lei, and Z. Liu, “Dynamically reconfigurable cache
for low-power embedded system,” in ICNC, 2007.

[5] A. Gordon-Ross, J. Lau, and B. Calder, “Phase-based cache reconfigu-
ration for a highly-configurable two-level cache hierarchy,” in GLSVLSI,
2008.

[6] A. Gordon-Ross and F. Vahid, “A self-tuning configurable cache,” in
DAC, 2007.

[7] A. Gordon-Ross, F. Vahid, and N. Dutt, “Fast configurable-cache tuning
with a unified second-level cache,” in ISLPED, 2005.

[8] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-vdd: a circuit technique to reduce leakage in deep-submicron
cache memories,” in ISLPED, 2000.

[9] S.-H. Yang, M. D. Powell, B. Falsafi, and T. N. Vijaykumar, “Exploiting
choice in resizable cache design to optimize deep-submicron processor
energy-delay,” in HPCA, 2002.

[10] C. Zhang, F. Vahid, and R. Lysecky, “A self-tuning cache architecture
for embedded systems,” DATE, 2004.

[11] S.-h. Yang, M. Powell, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Dynamically resizable instruction cache: An energy-efficient and high-
performance deep-submicron instruction cache,” Purdue University,
2000.

[12] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
architecture for embedded systems,” ISCA, 2003.

[13] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set-associative
cache for high performance and low energy consumption,” in ISLPED,
1999.

[14] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy,
“Reducing set-associative cache energy via way-prediction and selective
direct-mapping,” in MICRO:, 2001.

[15] C. Zhang, F. Vahid, and W. Najjar, “Energy benefits of a configurable
line size cache for embedded systems,” in ISVLSI, 2003.

[16] K. Flautner, N. S. Kim, S. M. Martin, D. Blaauw, and T. Mudge,
“Drowsy caches: Simple techniques for reducing leakage power,” ISCA,
2002.

[17] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting gener-
ational behavior to reduce cache leakage power,” in ISCA, 2001.

[18] Y. Meng, T. Sherwood, and R. Kastner, “On the limits of leakage power
reduction in caches,” HPCA, 2005.

[19] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “Construction and
use of linear regression models for processor performance analysis,” in
HPCA, 2006.

[20] C. Dubach, T. M. Jones, E. V. Bonilla, and M. F. P. O’Boyle, “A
predictive model for dynamic microarchitectural adaptivity control,” ser.
MICRO, 2010.

[21] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural design space
exploration using an architecture-centric approach,” in MICRO, 2007.

[22] E. Ïpek, B. R. de Supinski, M. Schulz, and S. A. McKee, “An approach
to performance prediction for parallel applications,” in Euro-Par, 2004.

[23] E. Ïpek, S. A. McKee, R. Caruana, B. R. de Supinski, and M. Schulz,
“Efficiently exploring architectural design spaces via predictive model-
ing,” ASPLOS-XII, 2008.

[24] P. J. Joseph, K. Vaswani, and M. J. Thazhuthaveetil, “A predictive
performance model for superscalar processors,” in MICRO:, 2006.

[25] B. C. Lee and D. Brooks, “Illustrative design space studies with
microarchitectural regression models,” in HPCA, 2007.

[26] ——, “Efficiency trends and limits from comprehensive microarchitec-
tural adaptivity,” in ASPLOS XIII, 2008.

[27] B. C. Lee and D. M. Brooks, “Accurate and efficient regression modeling
for microarchitectural performance and power prediction,” in ASPLOS-
XII, 2006.

[28] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and Jouppi, “Cacti 5.1.
Technical Report HPL-2008-20,” HP Laboratories Palo Alto, 2008.

[29] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, 1970.

[30] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan,
“Hotleakage: A temperature-aware model of subthreshold and gate
leakage for architects,” Technical Report,CS-2003-05, 2003.

[31] “SPEC Benchmark,” http://www.spec.org.
[32] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,”

ISCA, 2003.
[33] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.

Witten, “The weka data mining software: an update,” SIGKDD Explor.

Newsl., 2009.
[34] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and

B. Calder, “Using simpoint for accurate and efficient simulation,” in
SIGMETRICS, 2003.

