Parallafi: Runtime-Based CPU Fault Tolerance via
Heterogeneous Parallelism

Boyue Zhang
University of Cambridge
Cambridge, United Kingdom
bz275@cl.cam.ac.uk

Lev Mukhanov
Queen Mary University of London
London, United Kingdom
[.mukhanov@gmul.ac.uk

Abstract

The increasing vulnerability of microprocessors due to fre-
quent silicon faults greatly exacerbates the risks of silent
data corruption. Existing software-based schemes to detect
these suffer from high power and performance overhead.
State-of-the-art hardware fault-tolerance techniques exploit
processor heterogeneity to minimize power, performance,
and area overhead, but have not seen deployment in pro-
duction due to their complexity.

This paper shows for the first time that the same insights
of heterogeneous parallelism can be repurposed without any
hardware support. We present Parallaft, a parallel software-
based error detection technique taking the insights of state-
of-the-art hardware techniques and repurposing them with
tools more suited to the hardware of today, such as copy-on-
write checkpointing, dirty-page tracking and performance-
counter synchronization. This allows error checking to be
offloaded to little cores of an Apple M2 heterogeneous pro-
cessor, achieving half energy cost while maintaining perfor-
mance comparable to the homogeneous duplication mecha-
nism RAFT.

CCS Concepts: « Software and its engineering — Soft-
ware reliability; « Computer systems organization —
Heterogeneous (hybrid) systems.

Keywords: Software reliability, Heterogeneous processors,
Runtime

ACM Reference Format:

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M.
Jones. 2025. Parallaft: Runtime-Based CPU Fault Tolerance via Het-
erogeneous Parallelism. In Proceedings of the 23rd ACM/IEEE Inter-
national Symposium on Code Generation and Optimization (CGO

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1275-3/25/03
https://doi.org/10.1145/3696443.3708946

Sam Ainsworth
University of Edinburgh
Edinburgh, United Kingdom
sam.ainsworth@ed.ac.uk

Timothy M. Jones
University of Cambridge
Cambridge, United Kingdom
timothy.jones@cl.cam.ac.uk

’25), March 01-05, 2025, Las Vegas, NV, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1 145/3696443.3708946

1 Introduction

The semiconductor industry faces the risks of transient and
permanent faults in processors with silicon miniaturization,
growth in transistor numbers, and voltage reduction [14,
42, 46, 57], despite existing reliability, availability, and ser-
viceability (RAS) [18, 36] features such as error correction
code (ECC) [11] memory and parity-checked network-on-
chip communication [3]. Beyond causing detectable symp-
toms such as exceptions, these faults may even lead to silent
data corruption (SDC). Data-center operators have observed
that SDCs cause severe issues at scale [24, 26], since the
manifestation of a permanent fault may be delayed until
some time later in the processor lifetime, may only occur
at specific temperature, frequency and voltage conditions
and may only affect certain instructions [24]. These have
become common on desktop-class systems as well [16].

In safety-critical industries such as automotive and health-
care, custom hardware-based lockstep systems [28] are used
to protect from both transient (soft) and permanent (hard)
errors. In these systems, copies of a program execute on
multiple processors, enabling error detection when the out-
puts of the synchronized processors differ. However, most
commercial processors lack this capability. To address this
limitation, software-based schemes have been developed to
replicate execution on commodity processors [29, 43, 55],
eliminating the need for hardware modifications. However,
both hardware-based and software-based techniques lead to
a doubling in energy consumption, and either double silicon
area or halve performance to perform the repeat run. These
factors severely limit the adoption of such techniques in
performance-critical environments. Hence, to detect faulty
processor cores with potential hard or semi-hard errors, soft-
ware scanners are used at scale [13, 23], which periodically
run tests on processors looking for errors. However, they
either only provide limited error coverage or force servers
out-of-production for long periods.

https://orcid.org/0009-0005-6804-6851
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-0119-4359
https://orcid.org/0000-0002-4114-7661
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708946
https://doi.org/10.1145/3696443.3708946

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

With the rise of heterogeneous hardware, a new class of
fault tolerance techniques, such as ParaMedic [8-10], has
been proposed to lower power, performance and area over-
head. Their insight is that the second, error-checking run
can be parallelized to run on a sea of small, power-efficient
cores while keeping up with the main execution on a big
core. Despite these insights, none have yet seen commercial
deployment due to the required hardware complexity.

To address the deployability issues of these techniques
while reusing the same insights, this paper presents Paral-
laft, a heterogeneous parallel error-detection runtime sys-
tem. Parallaft exploits ParaMedic-style parallelism to take
advantage of heterogeneous processors to minimize power
overhead, but without the need of hardware modification or
program recompilation. Parallaft is implemented as a user-
space program that takes a binary executable, slices its ex-
ecution into segments, and duplicates execution of each seg-
ment to compare results. To do this, we translate prior work’s
induction parallelism principle [8] into a new collection of
software primitives, including copy-on-write checkpoints,
execution point record-and-replay capability, optimized pro-
gram-state checking, and energy-efficient scheduling.

This paper makes the following contributions:

e We present Parallaft, a runtime heterogeneous paral-
lel error-detection technique [8, 9] that splits execu-
tion into multiple segments, replaying each segment
on one of several little cores to check results.

e We demonstrate that Parallaft incurs half energy over-
head while only introducing comparable performance
overhead when compared with the previous state-of-
the-art runtime fault tolerance solution, RAFT [55].

e We analyze the contribution of different factors to Par-
allaft’s overhead, such as resource contention and run-
time work, and performance tradeoffs. Finally, we ver-
ify the efficacy of Parallaft via fault injection.

2 Motivation and Related Work

Table 1 presents a variety of hardware and software tech-
niques used to duplicate execution for fault tolerance. Here
we discuss how we take insights from each in order to build
an energy-efficient pure-software solution.

2.1 Traditional (Homogeneous) Error Detection

Traditionally, to protect safety-critical systems from soft- or
hard-errors, lockstep systems [28, 44, 52] are used, where
two or more identical processors are synchronized to run
the same computation. An error is flagged when the compu-
tation results mismatch. With three or more synchronized
processors, it is possible to correct errors by majority vot-
ing [28]. Another approach to redundancy avoids strict syn-
chronization: one processor runs ahead of the other, specu-
latively skipping some instructions. This method offers par-
tial redundancy while also boosting performance [47].

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

Since hardware schemes require custom processors, to
address deployability issues, software-based schemes have
been proposed. These techniques can be broadly classified
into compiler- [19-22, 33, 41, 45, 56] or runtime-based [43,
55] approaches. In compiler-based schemes, to protect pro-
grams from errors, additional instructions are inserted into
the original program by the compiler to duplicate computa-
tion and check results. However, these techniques require
recompilation of the source code, which limits applicability.
In runtime-based techniques, a runtime duplicates the pro-
gram execution dynamically (e.g. through a different pro-
cess) and checks if the behavior of two executions diverges.
For example, RAFT [55] intercepts interactions (e.g. syscalls
and signals) between the operating system and the program.
Rather than requiring exact lockstep coupling [28, 44, 52], it
allows the two computation threads to run asynchronously
on standard compute cores, with comparisons performed
only on external output such as syscalls (figure 1(a)). It ex-
tends PLR [43] to improve the performance of syscalls by
speculating on them rather than waiting for synchroniza-
tion between the two redundant copies.

However, the techniques described above need the dupli-
cate execution to run on another processor core of equiva-
lent performance to the original run to avoid slowdown [28,
44,52, 55], or interleaved with the original execution on the
same core [20-22, 33, 35, 49]. This naive duplication means
that we double the energy to provide reliability.

2.2 Heterogeneous Parallel Error Detection

To reduce energy cost, heterogeneous parallel error detec-
tion techniques, such as ParaMedic, have been proposed [8-
10]. Their insight is that the second, error-checking run is
more parallel than the original run. The parallelism enables
error-checking on a sea of smaller cores, by splitting the pro-
gram execution into segments and overlapping checking of
multiple segments. Though each individual little core has
less computational power than a big core, with the paral-
lelism, all little cores together can provide enough computa-
tion to keep up with the original execution (figure 1(b)).

These schemes work by recording, replaying and compar-
ing program execution at the architectural level. During the
main execution, all loads and stores are recorded in a hard-
ware load/store log, which are then replayed to the checkers.
In addition, register checkpoints are taken at the beginning
and the end of each segment. An error is flagged when a
checker’s behavior diverges from the load/store log (e.g. an
attempt at loading from an incorrect address) or when the
checker registers do not match with the register checkpoint
at the end of the segment.

Other works also use heterogeneity in more diverse forms.
DIVA [12] observed that instruction-level parallelism can be
used to execute a verification run on a high-ILP in-order
superscalar core. Argus [31] instead exploits heterogeneity
by task-splitting for the redundant run, handling control,

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Table 1. Comparison among processor fault-tolerance techniques.

State-of-the-art Neec?s . Needs Memory | Performance Energy
Approach . specialized | source
techniques overhead | overhead overhead
hardware | code
Lock-stepping TCLS [28], IBM [44], Cortex-R [52] Y N 0 ~0 ~100%
. . . 329 (RMT [35]),
Hardware-based Simultaneous multithreading | RMT [35], SRTR [49] Y N 0 60% (SRTR [49]) 100%
Parallel heterogeneous ParaMedic [9] Y N 0 3% (ParaMedic [9]) | 16%
] o SWIFT [41], nZDC [20], mzDC [21], 45% (SWIFT [41]),
Thread-local duplication 4ZDC [22], InCheck [19] N Y ~0 197% (InCheck [19]) ~100%
Compiler-based . . 38% (DAFT [56]),
Redundant multi-threading DAFT [56], COMET [33], EXPERT [45] | N Y ~0 400% (EXPERT [45]) ~100%
Runtime-based Asynchronous duplication PLR [43], RAFT [55] N N 95% 16.2% 87.8%
untume-base Parallel heterogeneous Parallaft (This paper) N N 232% 15.9% 44.3%
data-flow, computation and memory as separate verification Execution
tasks. We focus on ParaMedic-style [8, 9] thread-level het- _
erogeneous parallelism because it is less clear how to trans-
late the insights of these other mechanisms into commodity Main
heterogeneous cores.
The main drgwbaf:k of.th.e§e schemes is that they require Write . to stdout
hardware modification, limiting real-world deployment. . Compare
Write [l to stdout
2.3 From RAFT to Parallaft Checker
Figure 1(a) shows a simplified example of RAFT [55]. RAFT

is a compelling baseline because a) it is relatively high per-
formance compared to other software techniques (table 1),
b) requires no recompilation of binaries, and c) spreads the
main computation and the trailing redundant computation
between two cores, exploiting parallelism compared to other
software techniques [20, 41]. With Parallaft, we want to go
much further: rather than executing the redundant compu-
tation on one core (which must be as fast as the original ex-
ecution), we want to split the second, checker copy across
several more energy-efficient, slower cores, just as in Para-
Medic [8-10], but without any hardware support. We thus
split the checker process into multiple different segments (fig-
ure 1(b)), and must reproduce the computation determinis-
tically until each segment ends, comparing the results with
the start of the next checkpoint to demonstrate correctness
of the entire program via induction [8].

Migrating the ParaMedic strategy [9] to software with-
out incurring excessive performance cost presents numer-
ous challenges. To enable execution record and replay, Para-
Medic logs each executed load and store operation in a seg-
ment combined with a register checkpoint [9]. However, in
software, logging each load and store is very costly [33],
especially if recompilation of the source code is not possi-
ble [39]. Our insight is to use virtual-memory-based copy-
on-write checkpoints combined with deterministic record-
and-replay [15, 37] (section 3.2). To check for errors in the
checker run, instead of comparing each load and store, Par-
allaft tracks modified pages [1] and compares the hash of
the data inside these pages after a checker finishes its seg-
ment (section 4.4). Moreover, to record the execution point

(a) Execution plan of RAFT, where the original main process and
a duplicated checker process run asynchronously on two proces-
sor cores, with their interactions with the OS, such as syscalls
(e.g. write in the diagram), intercepted and compared.

Execution

»
>

@ @ Divide & Checkpoint
|

Main

‘\D@ Compare

1
1
1
1
1
Checker1 1

1

@ Duplicate execution
Checker 2

(b) Execution plan of Parallaft, where the original main execution
is @ divided into segments. At the boundary of each segment, @ a
checkpoint is taken. Each segment is then ® executed by a checker
independently of other checkers, allowing parallelism. At the end
of each segment, @ the state between the segment-end checkpoint
and the checker is compared to flag any faults.

Figure 1. From RAFT to Parallaft.

when the segment ends, ParaMedic [8, 9] counts the num-
ber of instructions executed in the segment. Intuitively, one
might expect to be able to do the same with existing hard-
ware performance counters. However, in commodity pro-
cessors, precisely counting instructions without code instru-
mentation is nearly impossible due to nondeterminism and

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

overcounting on modern processor hardware performance
counter implementations [51]. Instead, we use branch coun-
ters! combined with breakpoints (section 4.2).

While splitting a task into different segments and execut-
ing each segment in parallel is not new in profiling tech-
niques [30, 34, 53], they neither ensure faithful replay of seg-
ments nor guarantee that consecutive segments are linked
together without gaps or overlaps, as neither is strictly nec-
essary to get useful profiling results. In contrast, they are
essential in Parallaft to avoid false-positive detection, which
brings new challenges for record and replay.

3 Parallaft: Design Overview

Parallaft acts as a layer between the application and the op-
erating system (OS), as shown in figure 2. Under the tracing
of Parallaft, the main process executes the program while
the checkers on little cores verify correctness by running
segments of the main program in parallel. A coordinator unit
residing in the Parallaft process manages checkpoints, seg-
ments, program slicing, execution points, and record-and-
replay mechanisms. System interactions like syscalls and
signals, and nondeterministic instructions are recorded and
replayed to maintain consistency. At the end of each seg-
ment, Parallaft compares hashes of data inside modified mem-
ory pages using a dirty-page tracker and a program-state
comparator. Additionally, under the control of checker sched-
uler and pacer, if little cores fall behind, checkers are moved
to a larger core. Conversely, if the checker cores collectively
have more computation power than needed to keep up, their
frequencies are lowered for better energy efficiency.

3.1 Heterogeneous Parallelism

To achieve energy efficiency, Parallaft exploits parallelism
in error checking, hence allowing checkers to run on mul-
tiple little cores in a heterogeneous processor (section 2.2).
Specifically, Parallaft slices the execution of the main pro-
gram into multiple segments. Each segment is executed twice,
once by the main and once by a checker. As the main pro-
gram generates these segments from a sequential underly-
ing process?, it must finish one before generating the next.
However, the execution of trailing segments can be over-
lapped. At a segment boundary (based on reaching a tar-
get number of instructions or cycles), Parallaft takes a copy-
on-write checkpoint of the state of the main program, as

10r in some microarchitectures, a combination of branch counters to
workaround the overcounting issue (section 4.2.1).

ZParallaft’s prototype, just like RAFT [55], does not yet support multi-
threaded applications, because recording and replaying nondeterministic
shared-memory operations in software is complex. Hardware techniques
solve this problem by employing a hardware load-store log [9] or moni-
toring cache coherence traffic [50]. However, they are difficult to translate
into software without high-overhead binary translation. Instead, we plan
to explore the use of DoublePlay-like functionality [48] to allow Parallaft
to extend to such a domain, via speculation on races and rollback.

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

T I T
Hasher Perf counters
Checkpoint Checker "
Breakpoints
processes processes |——
Hasher

-

Perf counters

Main process

Syscalls, signals
ctrl ops

¥

1
. i
okshosf, s @ P ot i
s, 01, 0, Coordinator RS (B S !
Doy, & Yer & B comparator i
g RS I

N Y i

i

Segments
R/R
log

a

Syscalls & signals

(@ Program slicer &
exec point handler

deterministic

instruction handler

(® Syscall handler
with syscall model

(®) Checker
scheduler and pacer

CPU affinity setfing & | access
frequency limiting request

‘ 0s

Figure 2. System design of Parallaft. Parallaft acts as a layer
between the application under protection and the OS. It
traces the main application process and the derived checker
and checkpoint processes (in yellow). A coordinator (in or-
ange) handles interactions, such as syscalls, signals and con-
trol operations, with the processes. The @ program slicer
first divides the main execution into multiple segments. For
each segment, a checker and checkpoint processes are cre-
ated by the coordinator. To maintain consistency between
the main and the checker, the coordinator keeps a record
and replay (R/R) log and talks with relevant event handlers,
such as the @ execution point handler, the @ nondeterminis-
tic instruction handler, and the ® syscall handler, to record
and replay the events. To enable execution point record
and replay, the @ execution point handler attaches hard-
ware performance counters and breakpoints (in red) to the
main and the checker processes. In addition, to compare the
state at the end of each segment, the ® dirty page tracker
tracks memory pages modified and passes the dirty pages
to the @ program-state comparator via the coordinator. The
@ program-state comparator compares the hash of data in
modified pages via a injected hasher code (in blue), in ad-
dition to registers. Moreover, there is the ® checker sched-
uler and pacer to migrate checkers to big cores and adjust
checker-core frequencies.

well as forking a checker from the main process, such that
the checker starts from the same state as that of the main.
Each checker executes in its own address space and regis-
ters, independently of the main process and other checkers.
When a checker finishes its execution to the end of its seg-
ment, the checker state (i.e. memory and registers) is com-
pared against the next checkpoint, with any miscomparsion
flagged as errors.

To keep up with the main execution, multiple checkers
on a number of little cores execute concurrently, such that
their combined computational power is enough to keep up.
Thanks to the principle of induction [38], which ensures cor-
rectness for the whole program by proving correctness for

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

Table 2. Error containment, detection, and recovery capa-
bilities of RAFT and Parallaft.

RAFT | Parallaft
Guaranteed error detection | No Yes

Error containment in SoR No
Error recovery possible? No

Future work
Future work

individual segments and their connections, the entire execu-
tion is correct as long as all segments are correct.

3.2 Execution Duplication

To maintain consistency between the main and the checker
executions and to ensure syscall copies appear only once to
the outside world, Parallaft intercepts and records applica-
tion/OS interactions (e.g. syscalls and signals) from the main
execution, and replays the effects of the interactions to the
checkers after ensuring they are correct. Parallaft also traps,
records and replays any nondeterminism, such as x86_64
rdtsc instructions and AArch64 mrs instructions.

In addition, Parallaft records and replays execution points,
to allow checkers to stop at an execution point where the
main finishes the segment. To achieve this, Parallaft uses
hardware branch counters with breakpoints, which is simi-
lar to techniques used in RR debugger [37] and ReVirt [25].

3.3 Process-State Comparison

To speed up state comparison between the main and the
checker at the end of each segment, Parallaft tracks and com-
pares modified memory pages during the segment. To min-
imize memory copying, Parallaft injects the target process
with code that computes a hash of the modified pages, and
compares the hashes; registers are compared as well.

3.4 Sphere of Replication

In Parallaft, the sphere of replication (SoR) [40], or compo-
nents protected from faults by our technique, is the user-
space execution of the program binary under protection, in-
cluding dynamically loaded libraries and dynamically gener-
ated code. Excluded from our SoR are the operating system
and our reliability runtime system, but most applications
spend the vast majority of their time in user-mode, and so
it is possible to protect these components using compiler-
based fault tolerance techniques such as gZDC [22] without
large overheads. Moreover, we assume the hardware mem-
ory subsystem is protected by ECC or parity.

While PLR [43] and RAFT [55] intend that data (such
as syscalls) escaping out of the sphere-of-replication is cor-
rect, our Parallaft prototype does not make this guarantee to
avoid synchronization overheads, which are more challeng-
ing in our environment when the checker runs are executed

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

on slower, more energy-efficient cores. Instead, Parallaft ea-
gerly passes main-issued syscalls to the OS before compar-
ing them against those issued by the checker, meaning that
though all errors will be detected, they are allowed to prop-
agate to other processes before this detection point. This is
the behavior in hardware equivalents [8]. We assume buffer
layers around processes and non-reversible IO in order to
undo any subsequently discovered damage. However, un-
like RAFT, where syscall misspeculation may let erroneous
data escape and not be detected later®, Parallaft does guar-
antee all errors are detected within a configurable latency
upper limit, i.e. the maximum single segment length times
maximum number of live segments. In our experiments, we
compare like-for-like, in that RAFT also pays no penalty for
syscall synchronization.

Table 2 shows a summary of the error containment, de-
tection, and recovery capabilities of RAFT and Parallaft. As
discussed, Parallaft guarantees all errors are detected by its
design, but does not guarantee error containment in the SoR
to avoid costly syscall synchronization overhead. It is future
work to prevent errors escaping without introducing exces-
sive overhead and to add rollback-based error recovery. In
comparison, due a design bug in RAFT’s syscall misspecu-
lation recovery (as discussed in footnote 3), RAFT neither
detects all errors nor guarantees error containment in the
SoR, hence making error recovery impossible.

4 Parallaft: Implementation

We implement Parallaft’s prototype as a Linux user-space
program in Rust, supporting x86_64 and AArché4. Paral-
laft slices the application under protection into multiple seg-
ments, so that checkers running on multiple little cores can
run concurrently (section 4.1). To maintain consistency be-
tween the main and duplicated checker execution, Paral-
laft records and replays execution points at segment ends
(section 4.2), syscalls (section 4.3.1 and section 4.3.2), sig-
nals (section 4.3.3), and nondeterministic instructions (sec-
tion 4.3.4). To check for correctness, Parallaft compares reg-
isters and modified memory at the end of each segment (sec-
tion 4.4). Moreover, Parallaft employs migration and dynam-
ic frequency scaling techniques to schedule and to pace the
checkers to gain maximum energy efficiency while allowing
them to keep up with the main execution (section 4.5).

3Parallaft’s periodic checkpoint matching, rather than RAFT’s speculation
and comparison only at syscalls, fixes a correctness bug in RAFT’s intended
policy. RAFT only detects an error on a syscall mismatch, meaning errors
can exist hidden in state for long periods before manifesting. RAFT also
speculates syscall results to let the copies run far ahead from each other
asynchronously. In case of misspeculation, RAFT reverts the speculative
process to the state of the non-speculative process. However, if the non-
speculative process contains an error, it will never be detected. Parallaft
avoids this issue because errors cannot escape beyond the bounds of the
start and end of checkpoints, since all program state is compared at this
point to allow the induction checks [8] to proceed.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

4.1 Program Slicing

To exploit parallelism, Parallaft slices the program periodi-
cally into a number of segments to allow each to be checked
concurrently with the others (figure 1(b)), based on the num-
ber of CPU cycles or instructions executed. We then com-
bine branch-counting followed by a PC-based trap to reach
the same instruction count on the replay run (section 4.2).

Unless otherwise noted, we use a slicing period of 5 bil-
lion cycles, meaning the main process will never run more
than 5 billion cycles in user-space before the next check-
point is taken. In our experimental platform, an Apple M2
processor, each big core can run at a frequency of up to
3.5GHz, so a 5-billion-cycle segment translates to a user
CPU time of around 1.43 s. The choice of 5 billion cycles is
a trade-off: taking checkpoints too frequently results in an
excessive number of forks and page copying, while taking
checkpoints too infrequently results in the runtime waiting
for the last checkers to finish after the main finishes®.

4.2 Execution-Point Record-and-Replay

At each checkpoint, Parallaft records the execution point
where the main process stops, and replays it by arranging
the checker run to stop precisely at the same point. To do so,
Parallaft utilizes processor hardware performance counters
combined with breakpoints [4].

4.2.1 Record Phase. In the record phase, at each check-
point, Parallaft sets up a hardware performance counter to
count the number of branches retired in user-mode during
the execution of the main process in the current segment.
When the segment is sliced (section 4.1), Parallaft reads out
the branch count and the current program counter (PC) value
of the main process”.

Parallaft relies on a deterministic and accurate count of
branches in user-mode from hardware performance coun-
ters. Theoretically, recording and replaying the number of
instructions is also possible. However, in practice, perfor-
mance counters in most commodity processors overcount
instructions nondeterministically from various sources, such
as number of interrupt returns on Intel [51].

On Intel, the all-branch-retired counter suffers from non-
determinism where it overcounts by the number of returns
from interrupts or exceptions [51]. To compensate, we ex-
clude far branches, which include switches to a different
privilege level plus intra-privilege level segment switches.

4.2.2 ReplayPhase. Inthe replay phase, Parallaft replays
the checker execution to the correct PC and branch count

4Given the benchmarks finish in around 120 s on average, a slicing period
of 5 billion cycles gives less than 3% last-checker synchronization overhead.
If Parallaft is used in an environment with short-running workloads, this
should be reduced accordingly.

A PC alone is not sufficient to reproduce the execution because it may be
in a loop [32]. With the addition of the number of branches, we can replay
to the correct iteration in the loop.

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

5 billion cycles
7239948989 instructions
2121277777 branches

Checker

4 2121277777 branches
7234994884 instructions

Main <

P PC0ox42

Next 0x42 PC: 5 insts

Check
Skid) |
< 2121277770 branches Skid Erevention

Figure 3. Example of how Parallaft reaches the same execu-
tion point on checkers as on the main core. After 5-billion
cycles, the number of branches and PC is recorded. This is
enough information for the checker to reach the identical
program point by trapping at the number of branches (in
the blue region), then setting up a breakpoint at the recorded
PC. In the presence of performance-counter skid, we set a
smaller threshold for the branch counter, breakpointing on
the same PC many times until we reach our precise target.

(figure 3). Ideally, Parallaft simply 1) sets up the performance
counter to stop checker execution after the recorded branch
count, 2) after the desired number of branches are executed,
sets up a breakpoint at the recorded PC, 3) on hitting the
breakpoint, assert that the branch count stays the same, and
the checker will be at the desired stop point.

However, in many commodity processors such as Intel,
there is latency between receiving an overflow interrupt and
the retirement of the instruction causing overflow, known as
skid. Even with Intel precise events (PEBS [27]), we still see
occasional skid in experiments on a Golden-Cove machine.

Handling Skid. Skid causes checkers to over-run the de-
sired stop point. To overcome this, we introduce a buffer:
Parallaft sets the performance counter to overflow after most,
but not all, branches we want the checker to execute. Af-
ter an overflow, Parallaft enables the breakpoint as usual.
Upon hitting the breakpoint, it compares the branch count
with the desired value and continues execution unless the
branch count equals to our desired value®.

Handling Timeout. Errors may cause control flow viola-
tion, which in turn, may render a checker never reaching the
target program counter, causing infinite hang. To solve this
problem, in each segment, Parallaft kills the checker when it
executes more instructions than the instruction count of the
main execution multiplied by a scale, currently set to 1.1. As

®Even with the introduction of the skid buffer, it is technically still possible
that the checker overruns the end of the buffer. As we have not observed
such cases on our evaluated microarchitectures, the current prototype of
Parallaft does not handle this. However, it is possible to extend Parallaft
to handle such cases by multiplicatively increasing the buffer length, and
restarting the checker from the beginning of the segment.

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

instructions are counted using hardware performance coun-
ters, the scale is necessary to work around performance-
counter overcounting and nondeterminism issues [51].

4.3 Execution Duplication

At the beginning of each segment, Parallaft starts replicat-
ing the execution of the main program by forking it to create
a checkpoint and a checker process. The checker executes
in its own address space, a copy-on-write copy of the main
process’s. Interactions between the main process and the op-
erating system, such as memory-mapped IO (section 4.3.2),
and syscalls and signals (section 4.3.3), are recorded and re-
played to the checkers. Nondeterministic instructions, such
as reads of timestamp counters (rdtsc) on x86_64, are also
emulated, recorded and replayed to avoid divergence (sec-
tion 4.3.4). In addition, Parallaft removes other nondetermin-
ism, such as restartable sequences and vDSO, by masking
these functionalities (section 4.3.5).

4.3.1 Syscalls. Parallaft intercepts and records syscalls fr-
om the main process with ptrace [5]. Parallaft keeps a model
of each supported syscall [37], specifying which memory re-
gions might be read or written given the syscall arguments.
The model allows Parallaft to check whether the main and
the checker processes make the exact same syscall, includ-
ing any associated data (e.g. the data to write in a write
syscall), as well as to replay the effect of the syscall on the
process memory for the checker processes.

Parallaft handles different types of syscalls in different
ways, which we categorize as follows [55].

Globally-Effectful Syscalls. Syscalls with effects outside
the sphere of replication, e.g. input-output (IO) syscalls like
write. When the main process executes these syscalls, Paral-
laft records syscall inputs and outputs before and after pass-
ing the syscalls to the OS, respectively. In the future, when a
checker executes these, Parallaft looks up the corresponding
recorded syscall, checks the syscall inputs, and replays the
outputs without passing them to the OS to avoid duplicated
effect (e.g. writing the same data twice to a file).

Process-Locally-Effectful Syscalls. Syscalls that affect
the local state of the process, for example, process properties
and memory mappings: e.g. prctl, brk, mmap, and mprotect.
Parallaft passes most of them through to the OS in both main
and checker processes, with additional handling of memory-
related syscalls (section 4.3.2).

Non-Effectful Syscalls. Syscalls that do not have exter-
nal effects, but their outputs are usually nondeterministic or
inconsistent between main and checkers: e.g. gettimeofday
and getpid. Parallaft handles these syscalls the same way as
effectful syscalls via recording and replaying.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

4.3.2 Memory-Mapped IO. To handle memory-mapped
IO, Parallaft records, replays and transforms mmap syscalls if
necessary as follows.

Address Space Layout Randomization (ASLR). When
ASLR is enabled, the OS allocates a random address for each
mmap syscalls, unless an address is explicitly asked by the
caller. When the application makes an mmap syscall without
explicit asking for a fixed address, ASLR leads to divergence
in address-space layout. To fix this without requiring ASLR
to be disabled, Parallaft records the address returned by the
kernel for the main process. When the checker executes the
same syscall, Parallaft modifies the mmap call, fixing the ad-
dress to the recorded one with the MAP_FIXED flag. This is a
similar technique to that used in RAFT [55].

Private Mappings. Parallaft handles anonymous private
mmaps as ordinary process-locally-effectful syscalls after fix-
ing ASLR. For file-backed private mappings, Parallaft ends
the current segment prior to the mmap call and starts a new
segment after the call, placing the mmap call outside the pro-
tection zone to duplicate the memory map to the checker.
Otherwise, the trailing checker call of mmap would fail as the
file descriptor is invalid in checkers.

Shared Mappings. Shared mappings are not used by the
benchmarks we use for evaluation, and so we do not sup-
port them currently. Previous work [37] also avoids support-
ing them due to the complexity and overhead of tracking
modifications that can occur from outside without warning,
though it is technically possible using page permissions to
trap every read access to these mappings, and recording and
replaying the data read. We leave this to future work.

4.3.3 Signals. Parallaft traps each signal delivered to the
application using ptrace. Like RAFT [55], on reception of a
signal, Parallaft handles it differently based on its source.

Internal Signals. If the signal comes from the applica-
tion itself (e.g. SIGSEGV), Parallaft forwards the signal to the
application and records the signal. Later, signals caught by
checkers are checked against the record.

External Signals. If the signal comes from outside the
application (e.g. SIGINT when the user presses Ctrl+C), to
avoid divergence, Parallaft delivers the signal at the identi-
cal execution point for both the main and the checker pro-
cesses, in case the application has a custom signal handler’.
To do this, Parallaft records the execution point of the main
process at the time of signal delivery and then arranges the
checker to stop at the same execution point before deliver-
ing the same signal to the checker.

4.3.4 Nondeterministic Instructions. Parallaft interce-
pts and emulates nondeterministic instructions to prevent

"RAFT does not support custom signal handlers, as it does not have execu-
tion point record and replay capability.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

divergence. On x86_64, rdtsc (read time-stamp counter) and
cpuid (CPU identification) instructions are disabled via hard-
ware support, such that attempts to execute these instruc-
tions generate exceptions, which are then handled by Paral-
laft via emulate-record-and-replay?®.

On AArché64, Parallaft intercepts and emulates mrs (read
system register) instructions. On a heterogeneous system,
the same system register may have different values if read
from different CPU cores. For example, one such register,
MIDR_EL1, contains the core model. Parallaft traps these in-
structions by scanning the entire executable address space
and replacing found mrs instructions with breakpoints’, so
later attempts to execute these instructions are handled via
emulate-record-and-replay.

4.3.5 Other Sources of Nondeterminism. Nondetermi-
nism can also arise from restartable sequences (rseq) [2] and
vDSO [17]. Rseq refers to a special instruction sequence in
a program that executes an abort handler when interrupted.
While rseq enables certain optimizations, nondeterministic
preemption can alter the program’s control flow. Similarly,
vDSO [17] is a library, potentially combined with shared
memory, injected into the program’s address space by the
kernel to speed up specific syscalls, such as gettimeofday. In
this case, the vDSO implementation reads timestamps from
shared memory, avoiding costly context switches. However,
Parallaft currently cannot record or replay interactions with
shared memory. As a result, for both rseq and vDSO, Paral-
laft masks them, allowing the program to fall back to alter-
native code paths.

4.4 Program-State Checking

At the end of each segment, Parallaft compares the state be-
tween the checkpoints taken from the main process and the
checker. A mismatch indicates an error within the execution
of the main or the checker. In response, Parallaft terminates
the application and reports the mismatch.

The program state includes all registers and all address-
able memory. Instead of comparing all addressable memory,
Parallaft tracks and compares only modified memory pages,
since data in unmodified pages must be the same, as they
share the same frame in the physical memory.

Dirty-Page Tracking. On x86_64, Parallaft tracks modi-
fied pages using the soft-dirty mechanism [1]. On AArch64,
Parallaft tracks them by counting the number of maps for

80n x86_64, Parallaft’s prototype does not yet intercept other nondeter-
ministic instructions, such as rdrand, rdpid, and SGX instructions, due to
the lack of hardware capability to generate faults on these instructions and
the difficulty in patching instructions in a variable-length instruction set.
It is however simple to patch cpuid’s output to a version of x86_64 where
these instructions appear to be unavailable to the application if needed.
Reading system registers on and above EL1, such as MIDR_EL1, will result
in a trap to kernel, but the kernel does not have facilities to deliver a signal
to the process on these traps. Kernel support would marginally simplify
Parallaft by avoiding the need for binary patching.

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

each page using a modified kernel implementation of the
PAGEMAP_SCAN ioctl handler. If a page is mapped exactly once,
it is not shared with other processes, hence it is modified or
new and should be included for comparison. Otherwise, if a
page is mapped more than once, it shares the same underly-
ing frame among the main, the checker and the checkpoint
processes, indicating the page is not modified.

Memory Comparison. Once Parallaft gathers the modi-
fied memory ranges, it compares the contents of these mem-
ory regions between the end-segment checkpoint and the
checker. Due to the limitations of being in user-space, Par-
allaft cannot directly read or map other processes’ mem-
ory without copying. To avoid this, Parallaft injects hash-
computing code into the target processes, hashing all mod-
ified memory. Parallaft then compares the hashes only. We
use xxHash [6] (XXH3-64b variant) for performance.

4.5 Checker Execution Scheduling and Pacing

On a heterogeneous processor, big and little cores can have
significantly different performance characteristics for differ-
ent workloads. For example, when the L1d cache of little
cores is much smaller than that of big cores, a non-memory-
intensive workload may only see a 2X slowdown on a lit-
tle core, whereas a memory-intensive workload may experi-
ence a 8x slowdown. Suppose we only have four little cores.
On the one hand, checking the non-memory-intensive work-
load will, on average, result in two cores idling while the
other two cores run at full speed, which is less power effi-
cient than running all four cores at a lower DVES point. On
the other hand, checking the memory-intensive workload
will fail to keep up with the speed of the main core, hence
slowing down the overall execution.

For power efficiency, Parallaft dynamically scales the lit-
tle core’s DVFS point so that their total processing power is
just enough to cover the need by the checkers!’.

Conversely, if the checkers run out of little cores, to avoid
throttling the main execution, Parallaft automatically mi-
grates the oldest checker to one of the big cores, hence free-
ing up one little core, so that the newest checker can run on
it (figure 4).!! Since this means the program checkers can
then keep up with the application, this mitigates slowdown
from checkpoints building up and still being live at the end
of the main process’ execution. Similarly, any checkers that

10Standard governors, while able to choose DVFS points, do a poor job of
scheduling Parallaft’s checkers because they are not aware that despite be-
ing compute-bound, our checkers rarely have short-term latency require-
ments, so they end up running at maximum clock speed unnecessarily.
We considered instead scheduling the newest checker to a big core in-
stead. However, this was unnecessary for performance, as just one big core
can keep up, and only added to memory pressure by increasing the number
of live segments and reduced energy efficiency by using the big core for a
full checkpoint instead of only part of one.

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

1 2 3 4

Main

Little core 1

Little core 2

Big core

:

Figure 4. When Parallaft exhausts all little cores, the old-
est checker is migrated to a big core, running in an energy-
inefficient way briefly in order to keep up with the main
execution rather than queuing work for later.

Table 3. Experimental setup.

Hardware

Machine | Apple Mac Mini

CPU | Apple M2 (AArch64) with 4 little cores
(Blizzard-M2) & 4 big cores (Avalanche-M2)
16 GB LPDDR5 with 16 GB swap

Software

OS | Ubuntu Asahi Linux 24.04
Kernel | 6.10.5-asahi
Compiler | GCC 13.2.0 with -03 optimization

Memory

are still running at the end of the main execution (which can-
not be determined in advance) increase whole-program ex-
ecution time, so are migrated to big cores to finish quickly.

5 Evaluation

Parallaft only incurs 15.9% performance overhead and 44.3%
energy overhead, compared with 16.2% performance over-
head and 87.8% energy for RAFT under like-for-like threat
models (section 3.4) on our AArch64 machine.

5.1 Experimental Setup

To evaluate the performance, energy, and memory overhead,
we run SPEC CPU2006 with ref datasets (running all inputs
for those with multiple) on the AArché4 system in table 3.
Each benchmark is run three times unless otherwise noted,
and all run successfully. In addition, we evaluate on a second
platform, an Intel x86_64 heterogeneous processor.

To measure energy overhead, we read power consump-
tion of the SoC and the DRAM (excluding the GPU) from
the system management controller (SMC) at an interval of
one second during benchmark execution. We then integrate
each second’s energy consumption over the duration of the

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

' Paraliaft ===
RAFT

Overhead (%)

Figure 5. Performance overhead of Parallaft and RAFT.
Compared with RAFT which has a 16.2% overhead, Paral-
laft only incurs an overhead of 15.9%.

benchmark to get total energy consumed. To measure mem-
ory overhead, every half second during benchmark execu-
tion, we sample the sum of the proportional set size (PSS)?
of main, checker, and runtime processes. Each benchmark
is run only once for memory measurements to save time.
Since RAFT [55] has no public release, we modify Par-
allaft as follows to model RAFT’s overheads. (1) No peri-
odic checkpoints. We disable automatic program slicing but
instead only take a checkpoint at the very beginning and
the very end of the program, so we have a single segment
throughout the program execution (except during handling
of file-backed mmap syscalls, two checkpoints are taken, in or-
der to duplicate the file descriptor to the checker process).
(2) Homogeneous execution. We run main and checker pro-
cesses on big cores, so that the checker will not systemati-
cally run slower than the main process. (3) No state compari-
son. We disable state comparison and dirty page tracking at
the end of each segment, which are not present in RAFT.

5.2 Performance Overhead

As shown in figure 5, Parallaft incurs geometric mean per-
formance overhead of 15.9%. This compares favorably with
RAFT, which has performance overhead of 16.2%.

The performance overhead of RAFT is mainly due to re-
source contention between the main and the checker pro-
cesses, as both run on big cores with a shared L2 cache. The
performance overhead is especially profound in memory-
intensive benchmarks, such as mef and milc, where L2 cache
contention is more severe.

Parallaft suffers less resource contention overhead as the
checkers run on little cores, which share a separate L2 cache
from big cores, though it still suffers from DRAM contention
like RAFT. However, Parallaft introduces other performance
overheads, such as the cost of forking and copy-on-write

12pSS is the amount of memory shared with other processes divided by the
number of processes sharing that memory. Unlike resident set size (RSS),
summing multiple processes’ PSS provides a more accurate measure of to-
tal memory usage when significant memory is shared via copy-on-write.

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

70 —
u Runtime work ===

60 | Last-checker sync =3 - —
. Resource contention =—=2
S 50 g Fork and COW === " 1
B A0 | e e —
Q
£ 30
[}
>
o 20

10

0

Figure 6. Performance-overhead breakdown of Parallaft.
For most benchmarks, resource contention and fork-and-
copy-on-write dominate performance overhead.

(COW), dirty page tracking, and waiting for the last check-
ers to finish after the main finishes.

5.2.1 Overhead Breakdown. Figure 6 breaks down the
performance overhead of Parallaft into the following areas.
(1) Forking and COW. The cost of forking the main process
at the beginning of each segment, and the COW operations
if the main process first writes to a page after the beginning
of a segment. These operations cannot be removed from
the critical path, and hence contribute to the performance
overhead. This is measured by the difference of the system
CPU time in the baseline run and the Parallaft run. (2) Re-
source contention. The cost of resource contention between
the main and the checker execution, due to shared last-level
cache (LLC) and shared memory bandwidth. Checker migra-
tion to big cores also contends L2 cache shared by them. Re-
source content overhead is measured by the difference of
the user CPU time in the baseline run and the Parallaft run.
(3) Last-checker sync. Cost of waiting for the last checkers
to finish after the main process finishes, measured by the
difference of the execution time of the main process and the
execution time of all checker processes. (4) Runtime work.
Work that cannot be removed from the critical path, such as
clearing dirty bits at the start of each segment for dirty-page
tracking, setting up performance counters to enable execu-
tion point recording, capturing the data from the syscalls
made by the main program for syscall comparison and re-
play, calculated by the difference of total overhead and the
sum of the above three components.

The dominating overhead is resource contention for most
benchmarks, due to limited capacity in the shared LLC and
limited shared memory bandwidth. Benchmarks with inten-
sive memory use have higher resource contention overhead,
such as mcf, milc (as previously mentioned for RAFT) and
libquantum. In addition, resource contention is even more
severe if checkers cannot keep up with the main and hence
constantly migrate to big cores, as migration to big cores re-
sult in pollution of their cache, which is the case in mcf, milc

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

140

: : : Parallaft =——m3
120 - AFT N

100
80
60
40

Overhead (%)

Figure 7. Energy overhead of Parallaft and RAFT. Parallaft
incurs half energy overhead compared with RAFT.

and 1bm. In these benchmarks, checkers do 41.7%, 38.0%, and
50.0% of work on big cores, respectively. The second highest
overhead is forking and COW, which also depends on the
memory intensity of the workload. The forking and COW
overhead will be high if the workload modifies large num-
bers of pages in each segment.

The other two categories, last-checker sync and runtime
work, are small in most benchmarks. However, last-checker-
sync overhead is more significant for benchmark runs split
into multiple short processes, such as bzip2, gcc and soplex.

5.3 Energy Overhead

Figure 7 shows the energy overhead of Parallaft and RAFT.
Parallaft has an average energy overhead of 44.3%, about
half of the energy overhead of RAFT (87.8%), thanks to the
little cores’ energy efficiency. In contrast, as RAFT check-
ers run on big cores, they need nearly the same amount of
energy required to run the main program, making RAFT’s
normalized energy consumption nearly 2x.

The energy benefit of Parallaft is less significant in bench-
marks where the checkers on little cores constantly fall be-
hind the main execution, hence requiring migration to big
cores, such as mcf, milc, and lbm. 1bm is the only benchmark
in which Parallaft has higher energy overhead than RAFT,
where checkers do half their work on big cores to keep up.

The additional work of forking and COW operations in
Parallaft also adds to the energy cost. In most benchmarks,
the gain from running checkers on little cores is still signif-
icant enough to outweigh the extra energy cost.

5.4 Memory Overhead

Figure 8 shows normalized memory consumption of Paral-
laft, geomean 3.32%. This is the memory consumption of
main, checker, and runtime processes normalized against
the baseline consumption, averaged over time. We exclude
private memory used by checkpoints as they can be swapped
out to disk without affecting the performance of the pro-
gram in most cases, because the memory in each checkpoint

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

~Parallaft —=
‘RAFT‘ [—]

Normalized memory usage

(@R RO ¥ e
Q@f@{’t@e < b‘)oQog'z:(\e(‘ * f,égz_o'\(\
& &

Figure 8. Normalized memory usage of Parallaft and RAFT.

will only be accessed once during program-state compari-
son against the checker, which is not on the critical path.
On average, Parallaft uses more memory than RAFT (3.32%
vs 1.95%). This is unsurprising, as it is mainly caused by de-
liberately maintaining more copies of the program execu-
tion than RAFT to exploit heterogeneous parallelism [8].

5.5 Parameter Sensitivity

Our slicing-period parameter can be tuned to trade off fork-
ing and copy-on-write overheads against last-checker-sync
overhead. Here we study parameter sensitivity.

We can reduce forking-and-COW overhead with a longer
slicing period, as the main process will trigger fewer fork
and COW operations in total. However, the last-checker-
sync overhead will increase, due to the increased lag be-
tween the main and the checker execution.

To evaluate the effect of slicing period on performance
overhead, we select three benchmarks: gcc, mef and sjeng.
gce has a short execution time in each part of the bench-
mark, hence the last-checker-sync overhead is more signif-
icant. mef is memory-intensive so modifies a large number
of pages each segment, resulting in high forking-and-COW
overhead. In contrast, sjeng is a benchmark with moderate
characteristics. We run them under Parallaft with slicing pe-
riods of 1 billion to 20 billion cycles, and measure the perfor-
mance overhead, including last-checker-sync and forking-
and-COW components. Results are shown in figure 9.

As shown in figure 9(a), a lower slicing period leads to
higher forking-and-COW overhead, with the effect being
more significant in memory-intensive benchmark mcf, as
more pages are duplicated due to COW.

Moreover, as shown in figure 9(b), a longer slicing period
results in higher last-checker-sync overhead, due to the in-
crease of the lag between the main and the checker execu-
tion. The proportion of last-checker-sync overhead is more
profound in benchmarks with shorter execution times, such
as gcc, where the 9 inputs run in under 87 seconds in the
baseline, which translates to less than 10 seconds for each
main execution (input). Moreover, last-checker-sync over-
head is more sensitive to slicing period in benchmarks when

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

45
40
35
30
25
20
15
10
5
0 1
1Billion 2Billion

Forking and COW overhead (%)

5Billion
Slicing period (cycles)

10Billion 20B

(a) Forking-and-COW overhead vs. slicing period. Forking and
COW overhead decreases as the slicing period increases due to
fewer memory pages being COW-ed. The decrease is more signifi-
cant in memory-intensive benchmarks such as mcf.

35 ‘
403.gcc —+—

80 1= 429.mcf —x—

25 |- 458.sjeng —H¥— ...

20 -
15
10
Y i

Last-checker sync overhead (%)

0 o
1Billion 2Billion 5Billion

Slicing period (cycles)

10Billion 20B

(b) Last-checker-sync overhead vs. slicing period. Last-checker-
sync overhead increases with slicing period from increased lag
between main and checker execution. This is prominent in bench-
marks with short execution time (gcc), or where each checker on a
little core has a large slowdown compared with the big core (mcf).
904 T T T
80 - : ; 403.gcc —+—
70) 429.mcf ——

458.sjen
60 L A~ E jeng

i
40 |
30 |-
0 F
10

Combined overhead (%)

0 |
1Billion 2Billion 5Billion

Slicing period (cycles)

10Billion 20B

(c) Combined performance overhead vs. slicing period. Due to
the counteracting effect of forking-and-COW overhead and last-
checker-sync overhead, there is a sweet spot where the combined
performance overhead is the lowest for each benchmark.

Figure 9. Slicing-period performance tradeoffs.

little cores are significantly slower than the big core, such as
mcf, where a little core has a slowdown of more than 4x. In
contrast, the last-checker-sync overhead of sjeng is very in-
sensitive to the slicing period, because it takes the longest to
run (226 s in the baseline) among the three benchmarks. In
addition, in sjeng, each little core only has a 2.0x slowdown,
hence leaving less work to do after main finishes.

Due to the combination of effect of slicing period on fork-
ing and COW and last checker sync overhead, there is a

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

Detected =3 Exception —= Timeout ====1 Benign ==

1
= 80 I i 1 1| N 1| 1l -
e
= o [{(EIRANIHREE TR AU |
H
g AL e HHHEAH f
i ' i
8 40 el ol o i i H T HE
& I M M H H
20 T i 1 L 1 [H H | —
0 rrrrrerrrrrrrrrr T T T T T T
S EX S ORE R 230 R 2 N0d O) ik 0. & .
B S e S o S N o0 ¢ e
P ST FIE ST 20 TRES N
< ® > oS &
A + S &

Figure 10. Error-injection results, split between errors that
do not affect correctness and are ignored (benign), and three
detection scenarios (detected, exception, timeout).

sweet spot for each benchmark, where the performance over-
head is minimized. For gcc, mcf, and sjeng, the sweet spot is
at 2 billion, 5 billion and 20 billion cycles respectively.

5.6 Fault Injection

To verify Parallaft’s ability to detect faults, we inject faults
into the checkers and record the response of Parallaft. We
first perform a profile run of the checker in each segment
to get an execution time ¢ of the checker, without injection
faults. After that, for each segment, the checker is run an-
other five times. Each time, a fault is injected at a random
point in the execution: by sleeping t’, which is selected uni-
formly from [0, 1.1¢), before the injection. As injections may
fail because the checker may finish earlier than expected,
we discard failed injections and try again. The fault we in-
ject is a random bit flip in a random register, selected from
the general-purpose, floating-point and vector registers.

We classify the outcome of each fault injection as follows.
(1) Detected. The fault is detected by Parallaft, excluding ex-
ceptions, which are separately accounted. (2) Exception. The
fault causes an exception in the checker, which is a special
case of Detected. (3) Timeout. The checker has executed more
instructions than possible in the main execution of the seg-
ment, another Detected class (section 4.2.2). (4) Benign. The
fault does not cause observable effects and the program can
still finish with correct output.

We perform the fault injection experiment on all bench-
marks in SPEC CPU2006, with results shown in figure 10.
On average, 43.3% errors are benign, meaning they neither
affect the program output nor diverge the state at segment-
end checks, while all other errors are detected by Parallaft.
Because it duplicates all computation, Parallaft gives 100%
fault coverage for user-space execution of applications for
single-event upsets (SEUs), bar hash collision'® or repeated
errors. While Parallaft’s runtime and the operating system
are not protected (section 3.4), the runtime only uses 0.26%

Bparallaft’s hash, XXH3-64b, has extremely low collision rates [7], a
chance of 3.13 x 1077,

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

of CPU time compared relative to the main and the checker
execution, hence the chance of missing a fault is low.

5.7 Syscall and Signal Handling Overhead

Parallaft incurs overhead when handling syscalls and sig-
nals. We evaluate in the extreme scenarios where syscalls
and signals are stress-tested.

For syscalls, when getpid is repeatedly called, Parallaft
introduces a slowdown of 124.5X, which is dominated by
ptrace operations. When blocks of 1 MB of data are repeat-
edly read from /dev/zero, the slowdown is 18.5X%, which
is dominated by recording the data read. RAFT incurs al-
most identical slowdown because of shared syscall-handling
logic. To reduce syscall overhead, it is future work to de-
velop an in-process syscall-interception technique [37]. For
signals, when SIGUSR1 is raised repeatedly with an empty
signal handler, Parallaft brings a slowdown of 39.8X.

5.8 Overhead on Intel x86_64

In addition to our Apple M2 processor, we also evaluate on
an Intel heterogeneous processor for completeness.

Experimental Setup. We use a Intel Core-i7 14700 ma-
chine with 128 GB of DDR5 RAM. We set the slicing period
to 5 billion instructions!*. To measure energy overhead, we
read CPU package energy from the Intel Running Average
Power Limit (RAPL) interface. The same set of benchmarks
is used as in our experiments on the Apple processor.

Results. Parallaft incurs geomean performance overhead
of 26.2%, whereas RAFT’s is 12.9%. This is because smaller
4 KB page sizes on Intel, versus 16 KB on Apple, make Par-
allaft’s checkpointing more expensive, and because we see
more cache contention from the many competing threads
than on Apple. Moreover, the little cores on Intel are less
energy-efficient than on Apple due to the lack of a separate
voltage domain from the big cores. Parallaft incurs geomean
energy overhead of 46.7% whereas RAFTs is 50.2%.

6 Conclusion

We have presented Parallaft, a runtime-based system for CPU
fault tolerance via heterogeneous parallelism. By combin-
ing copy-on-write checkpoints, execution point record-and-
replay capability, optimized program-state checking, and in-
telligent scheduling of checkers, Parallaft enables CPU er-
ror detection for binary programs at low performance and

energy overhead on commodity heterogeneous processors.
Additional data related to this paper are available in the

repository at https://doi.org/10.5281/zenodo.14084708 [54].
The source code for Parallaft is available at https://github.
com/CompArchCam/parallaft.

4Instead of 5 billion cycles, because it can break partially executed rep-
prefixed instructions, which are not supported by Parallaft’s execution
point record and replay feature yet.

https://doi.org/10.5281/zenodo.14084708
https://github.com/CompArchCam/parallaft
https://github.com/CompArchCam/parallaft

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

A Artifact Appendix
A.1 Abstract

Our artifact includes the source code of Parallaft and scripts
to reproduce key performance and energy overhead results
(Figures 5 to 7) from the paper. To save time, each bench-
mark is run once instead of three times as in the paper. For
accurate reproduction of results, we strongly recommend
an Apple M2 processor. If such hardware is not available,
our experiments can run on a 12/13/14th-gen Intel x86_64
heterogeneous processor or a Linux-capable Apple Silicon
aarch64 processor with some caveats. In addition, at least
16 GB or RAM is required. For x86_64, software requirements
include Ubuntu 24.04 with Linux kernel version 6.7 or above.
For Apple Silicon aarch64, Asahi Ubuntu 24.04 is required
along with a custom kernel. We use SPEC CPU2006 bench-
marks (not provided due to licensing) to evaluate perfor-
mance and energy overhead of Parallaft.

A.2 Artifact check-list (meta-information)

o Algorithm: Dynamically replicating execution of binary
programs to detect processor errors.
e Program: SPEC CPU2006 benchmark is required but not
provided. Download size is approximately 2.6 GB.
Compilation: A script is provided to build Parallaft in a
Docker container without manual installation of compilers.
GCC/G++/GFortran compilers that support C99, C++98 and
Fortran-95 standards are required for SPEC CPU2006.
e Binary: Parallaft binary will be built from source during the
experiments.
Run-time environment: Parallaft needs x86_64 or aarch64
Linux environment, with kernel version 6.7 or above. On
aarch64, a custom 6.10 kernel is needed to read Apple M2
power consumption numbers and to read dirty pages. On
x86_64, a stock kernel works. To build Parallaft program,
Docker is required. Additionally, to run the experiments,
Python 3, curl, and gnuplot are required. Root access on a
baremetal machine is needed to enable performance counter
access and to dynamically adjust CPU frequency. Virtual
machines are not supported.
Hardware: An Apple M2 machine is strongly recommended
to reproduce the performance and energy results. Alterna-
tively, any Linux-capable Apple Silicon processors or het-
erogeneous Intel x86_64 processors also work, but with some
caveats (Appendix A.3.1). At least 16 GB of RAM is required.
Moreover, we require access to power sensors, performance
counters, and CPU frequency control.
e Run-time state: Parallaft is sensitive to cache contention.
Execution: At least 24 GB of available RAM plus swap is
required. During the execution, main processes are pinned
to a big core while checker processes are pinned to little
cores. To isolate from noise, we recommend that you are
the sole user of the machine during experiment execution.
Metrics: Execution time (both x86_64 and aarch64) and en-
ergy consumption (aarch64 only) will be evaluated.
e Output: Data is generated for Figures 5 and 6 (x86_64 and
aarch64) and Figure 7 (aarché64 only). Each benchmark is

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

executed once, instead of three times as in the original paper,
to save time.

e Experiments: Scripts are provided to run the experiments.

o How much disk space required (approximately)?: 12 GB.

e How much time is needed to prepare workflow (ap-
proximately)?: 1-2 hours.

e How much time is needed to complete experiments
(approximately)?: 6-7 hours.

e Publicly available?: Yes.

e Code licenses (if publicly available)?: BSD license.

e Archived (provide DOI)?: 10.5281/zenodo.14084708

A.3 Description

A.3.1 How delivered. The artefact containing the source code
of Parallaft and scripts to run the experiments is accessible on
the following link: https://github.com/CompArchCam/reproduce-
parallaft-paper.

A.3.2 Hardware dependencies. An Apple M2 processor with
at least 16 GB of RAM is strongly recommended to reproduce the
performance and energy results in the paper. We require access
to the power management IC to read power consumption, branch-
counting performance counters for execution point record and re-
play, as well as the CPU frequency control to maximize energy
saving. Alternatively, any other Linux-capable Apple Silicon pro-
cessors with at least 16 GB of RAM also works, but we do not pro-
vide a mechanism to read power consumption numbers. Alterna-
tively, on x86_64, 12/13/14th-gen heterogeneous Intel processors
(e.g. Core 17-12700) may be used for performance overhead evalu-
ation. However, as it does not have separate voltage domains for
big and little cores, the energy overhead evaluation will not show
the expected benefit of Parallaft. Moreover, running Parallaft on
Intel incurs more performance overhead due to its smaller page
sizes (4 KB on Intel versus 16 KB on Apple, hence introducing more
checkpointing overhead), and due to more severe cache contention
from the many competing threads.

A.3.3 Software dependencies.

OS distribution. Ubuntu 24.04 (on x86_64) or Ubuntu Asahi
24.04 (on Apple Silicon aarch64) is required to run the experiments.
The standalone Parallaft (without experimental setup/execution/re-
sults collection/plotting scripts) can run on any Linux distribution.

Kernel. On Apple Silicon aarch64, a custom Linux 6.10 kernel is
required for Parallaft to read Apple M2 power consumption num-
bers and dirty pages. A script is provided in the artefact to down-
load, build, and install such kernel. On x86_64, a stock kernel with
version 6.7 or above is needed.

Software packages. Docker is required to build Parallaft binary.
gnuplot and Python 3 with subprocess_tee, dataclasses_json,
filelock, prctl, numpy packages are required to execute the ex-
periments and collect and plot the results.

Benchmark. SPEC CPU2006 version 1.2 is required (but not
included in the artefact package). During its installation process,
curl is required to download src.alt files and aarch64 SPEC tools.
To build the benchmarks, GCC/G++/GFortran compilers that sup-
port C99, C++98 and Fortran-95 standards are required.

https://github.com/CompArchCam/reproduce-parallaft-paper
https://github.com/CompArchCam/reproduce-parallaft-paper

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

A.4 Installation

Ensure that you are running Ubuntu 24.04 (on x86_64) or Asahi
Ubuntu 24.04 (on Apple Silicon aarché4).

Setting up the artefact package. Clone the artefact package
and install software dependencies with the following commands:

$ git clone
https://github.com/CompArchCam/reproduce-parallaft-
paper --recursive

$ cd reproduce-parallaft-paper/scripts

$./deps.sh

Log out and log back in enable Docker access without sudo.
Then build the Parallaft binary with the following commands:

$ cd reproduce-parallaft-paper/scripts
$./build_app.sh

Get a copy of SPEC CPU2006 version 1.2. Place the ISO file,
Cpu2006-1.2.1iso, at the root of the artefact package (where a
PLACE_SPEC_ISO_HERE file is co-located). Then install it with the
following commands:

$./install_spec®@6.sh

Installing the custom kernel for Apple Silicon aarch64. On
Apple Silicon aarch64 only, download, build, and install the custom
kernel and reboot the machine for the new kernel to take effect
with the following commands:

$./build_kernel.sh
$ sudo reboot

After the reboot, check if you are running the correct kernel:

$ cd reproduce-parallaft-paper/scripts
$./check_kernel.sh

You should see it reporting the kernel version and the power
sensor being OK.

A.5 Experiment workflow

In our experiments, the following runs are performed on all SPEC
CPU2006 int and fp benchmarks.

o A baseline run, to get execution time and CPU time without
Parallaft or RAFT.

o A baseline energy-consumption profiling run, to get base-
line energy consumption without Parallaft or RAFT.

e A Parallaft run.

e A RAFT run.

To run all the experiments above and plot the results, run
./run.shand ./plot.sh in the scripts directory of the artefact
package.

A.6 Evaluation and expected result

Our experiments reproduce the following results under plots di-
rectory. Since each benchmark is only run once, no errors bar will
be shown as in the original paper.
e Performance overhead of Parallaft and RAFT (Figure 5).
e Performance-overhead breakdown of Parallaft (Figure 6).
e Energy overhead of Parallaft and RAFT (Figure 7). This re-
sult will only be available on Apple Silicon aarché64 plat-
forms.

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

Since Parallaft runs redundant copies of the program on addi-
tional CPU cores, due to cache contention, the performance over-
head can vastly differ on processors with different cache organi-
zations. On our Apple M2 Mac Mini, Parallaft incurs performance
overhead of 15.9% and energy overhead of 44.3%.

A.7 Experiment customization

Running a subset of benchmarks or experiments. Tweak
BENCHMARKS and EXPERIMENTS in scripts/run.sh.

Tuning parameters. To change checkpoint period (in number
of CPU cycles), tweak PARALLAFT_CHECKPOINT_PERIOD in
scripts/run.sh.

Running an arbitrary program under Parallaft. To run an
arbitrary program under Parallaft on an Apple M2 processor, run
the following command under the artefact package:

$./bin/parallaft --config
./app/parallaft/configs/apple_m2_fixed_interval.yml --
path/to/your/program argl arg2

When the execution finishes, Parallaft dumps some statistics.
The key ones are:

e timing.all_wall_time: Wall time elapsed to finish the pro-
gram execution, including the waiting time for outstanding
checkers to finish after the main finishes.

e timing.main_wall_time: Wall time elapsed to finish the
main program execution, not including the waiting time for
checkers.

e timing.main_{user,sys}_time: User/system time used by
the main program execution.

o hwmon.macsmc_hwmon/*: (Apple Silicon only) Energy used
for different components of the SoC during the program ex-
ecution.

e counter.checkpoint_count: Number of checkpoints taken,
including checkpoints taken to handle certain mmap syscalls
and to slice the program execution for checker parallelism.

e fixed_interval_slicer.nr_slices: Number of segments
sliced due to reaching the specified checkpoint period.

Use another config to run on a Intel processor, e.g. for Intel Core
17-12700, use intel_12700_fixed_interval.yml.

Running Parallaft on a different processor. Parallaft itself
relies on accurate branch-counting hardware performance counter
for the execution point record and replay capability. In addition, in
our experiments, the big/little core configuration of the processor
needs to be known. Moreover, a way to read processor power con-
sumption is required. Check docs/hardware_support.md file in
the artefact package for instructions to run Parallaft on a different
processor.

A.8 Methodology

Submission, reviewing and badging methodology:

o http://cTuning.org/ae/submission-20190109.html
e http://cTuning.org/ae/reviewing-20190109.html
e https://www.acm.org/publications/policies/artifact-review-

badging

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging

Parallaft: Runtime-Based CPU Fault Tolerance via Heterogeneous Parallelism

References

[1] 2013. Soft-dirty PTEs. https://www.kernel.org/doc/Documentation/
vm/soft-dirty.txt

[2] 2015. Restartable sequences. https://lwn.net/Articles/650333/

[3] 2017. AMD EPYC Brings New RAS Capability. https:
//www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-
RAS-Capability.pdf

[4] 2023. perf_event_open(2) — Linux manual page. https://man7.org/
linux/man-pages/man2/perf_event_open.2.html

[5] 2024. ptrace(2) - Linux manual page. https://man7.org/linux/man-
pages/man2/ptrace.2.html

[6] 2024. xxHash. https://xxhash.com/

[7] 2024. =xxHash: Collision ratio comparison. https://github.com/

[10]

[11

—

[12]

[13]

[14]

(15

—

[16]

(17

—

(18

—

[19]

[20

[t

[21]

Cyan4973/xxHash/wiki/Collision-ratio-comparison#collision-study
Sam Ainsworth and Timothy M. Jones. 2018. Parallel Error Detection
Using Heterogeneous Cores. In 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). https://doi.
org/10.1109/DSN.2018.00044

Sam Ainsworth and Timothy M. Jones. 2019. ParaMedic: Hetero-
geneous Parallel Error Correction. In 49th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN). https:
//doi.org/10.1109/DSN.2019.00032

Sam Ainsworth, Lionel Zoubritzky, Alan Mycroft, and Timothy M.
Jones. 2021. ParaDox: Eliminating Voltage Margins via Heteroge-
neous Fault Tolerance. In IEEE International Symposium on High-
Performance Computer Architecture (HPCA). https://doi.org/10.1109/
HPCA51647.2021.00051

Arm Ltd. 2023. Arm Cortex-X2 Core Technical Reference Manual. Cache
protection behavior. https://developer.arm.com/documentation/
101803/0200/RAS-Extension-support-/Cache-protection-behavior
T.M. Austin. 1999. DIVA: a reliable substrate for deep submicron mi-
croarchitecture design. In Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO). https://doi.
org/10.1109/MICR0O.1999.809458

David F. Bacon. 2022. Detection and Prevention of Silent Data Corrup-
tion in an Exabyte-scale Database System. In The 18th IEEE Workshop
on Silicon Errors in Logic — System Effects.

S. Borkar. 2005. Designing reliable systems from unreliable compo-
nents: the challenges of transistor variability and degradation. IEEE
Micro (2005). https://doi.org/10.1109/MM.2005.110

Yunji Chen, Shijin Zhang, Qi Guo, Ling Li, Ruiyang Wu, and Tianshi
Chen. 2015. Deterministic Replay: A Survey. ACM Computing Surveys
(CSUR) (2015). https://doi.org/10.1145/2790077

Matthew Connatser. 2024. Game dev accuses Intel of selling ‘defective’
Raptor Lake CPUs. https://www.theregister.com/2024/07/13/game_
raptor_intel/.

Jonathan Corbet. 2011. On vsyscalls and the vDSO. https://lwn.net/
Articles/446528/

Irving Baysah Daniel Henderson. 2021. Introduction to IBM Power® Re-
liability, Availability, and Serviceability for POWER9® processor-based
systems using IBM PowerVM™ with updates covering the latest Power10
processor-based systems. Technical Report. IBM Systems Group. https:
//www.ibm.com/downloads/cas/2RJYYJML

Moslem Didehban, Sai Ram Dheeraj Lokam, and Aviral Shrivastava.
2017. InCheck: An In-Application Recovery Scheme for Soft Errors. In
Proceedings of the 54th Annual Design Automation Conference (DAC).
https://doi.org/10.1145/3061639.3062265

Moslem Didehban and Aviral Shrivastava. 2016. nZDC: A com-
piler technique for near Zero Silent Data Corruption. In 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC). https://doi.
org/10.1145/2897937.2898054

Moslem Didehban and Aviral Shrivastava. 2018. A Compiler Tech-
nique for Processor-Wide Protection From Soft Errors in Multi-
threaded Environments. IEEE Transactions on Reliability (2018). https:

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

//doi.org/10.1109/TR.2018.2793098

Moslem Didehban, Hwisoo So, Prudhvi Gali, Aviral Shrivastava, and
Kyoungwoo Lee. 2024. Generic Soft Error Data and Control Flow Er-
ror Detection by Instruction Duplication. IEEE Transactions on De-
pendable and Secure Computing (TDSC) (2024). https://doi.org/10.
1109/TDSC.2023.3245842

Harish Dattatraya Dixit, Laura Boyle, Gautham Vunnam, Sneha Pend-
harkar, Matt Beadon, and Sriram Sankar. 2022. Detecting silent data
corruptions in the wild. arXiv:2203.08989 [cs.AR]

Harish Dattatraya Dixit, Sneha Pendharkar, Matt Beadon, Chris Ma-
son, Tejasvi Chakravarthy, Bharath Muthiah, and Sriram Sankar. 2021.
Silent Data Corruptions at Scale. arXiv:2102.11245 [cs.AR]

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai,
and Peter M. Chen. 2002. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. In 5th Symposium on Operating
Systems Design and Implementation (OSDI). https://doi.org/10.1145/
844128.844148

Peter H. Hochschild, Paul Turner, Jeffrey C. Mogul, Rama Govin-
daraju, Parthasarathy Ranganathan, David E. Culler, and Amin Vah-
dat. 2021. Cores That Don’t Count. In Proceedings of the Workshop
on Hot Topics in Operating Systems (HotOS). https://doi.org/10.1145/
3458336.3465297

Intel Corporation. 2023. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual. https://software.intel.com/en-us/download/intel-
64-and-ia-32-architectures-sdm-combined-volumes- 1-2a-2b-2c-2d-
3a-3b-3c-3d-and-4

Xabier Iturbe, Balaji Venu, Emre Ozer, Jean-Luc Poupat, Gregoire
Gimenez, and Hans-Ulrich Zurek. 2019. The Arm Triple Core Lock-
Step (TCLS) Processor. ~ACM Transactions on Computer Systems
(TOCS) (2019). https://doi.org/10.1145/3323917

Casey M. Jeffery and Renato J. O. Figueiredo. 2012. A Flexible
Approach to Improving System Reliability with Virtual Lockstep.
IEEE Transactions on Dependable and Secure Computing (TDSC) (2012).
https://doi.org/10.1109/TDSC.2010.53

Xu Liu and John Mellor-Crummey. 2013. Pinpointing data locality
bottlenecks with low overhead. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). https://doi.
org/10.1109/ISPASS.2013.6557169

Albert Meixner, Michael E. Bauer, and Daniel Sorin. 2007. Argus:
Low-Cost, Comprehensive Error Detection in Simple Cores. In 40th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO). https://doi.org/10.1109/MICRO.2007.18

J. M. Mellor-Crummey and T. J. LeBlanc. 1989. A Software Instruction
Counter. In Proceedings of the Third International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS). https://doi.org/10.1145/70082.68189

Konstantina Mitropoulou, Vasileios Porpodas, and Timothy M. Jones.
2016. COMET: Communication-optimised multi-threaded error-
detection technique. In 2016 International Conference on Compliers,
Architectures, and Sythesis of Embedded Systems (CASES). https:
//doi.org/10.1145/2968455.2968508

Tipp Moseley, Alex Shye, Vijay Janapa Reddi, Dirk Grunwald, and
Ramesh Peri. 2007. Shadow Profiling: Hiding Instrumentation Costs
with Parallelism. In International Symposium on Code Generation and
Optimization (CGO). https://doi.org/10.1109/CG0.2007.35

S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. 2002. Detailed design
and evaluation of redundant multi-threading alternatives. In Proceed-
ings 29th Annual International Symposium on Computer Architecture
(ISCA). https://doi.org/10.1109/ISCA.2002.1003566

Khang T Nguyen. 2017. New Reliability, Availability, and Ser-
viceability (RAS) Features in the Intel Xeon Processor Family.
https://www.intel.com/content/www/us/en/developer/articles/
technical/new-reliability-availability-and-serviceability-ras-
features-in-the-intel-xeon-processor.html.

https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://www.kernel.org/doc/Documentation/vm/soft-dirty.txt
https://lwn.net/Articles/650333/
https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf
https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf
https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://man7.org/linux/man-pages/man2/perf_event_open.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://xxhash.com/
https://github.com/Cyan4973/xxHash/wiki/Collision-ratio-comparison#collision-study
https://github.com/Cyan4973/xxHash/wiki/Collision-ratio-comparison#collision-study
https://doi.org/10.1109/DSN.2018.00044
https://doi.org/10.1109/DSN.2018.00044
https://doi.org/10.1109/DSN.2019.00032
https://doi.org/10.1109/DSN.2019.00032
https://doi.org/10.1109/HPCA51647.2021.00051
https://doi.org/10.1109/HPCA51647.2021.00051
https://developer.arm.com/documentation/101803/0200/RAS-Extension-support-/Cache-protection-behavior
https://developer.arm.com/documentation/101803/0200/RAS-Extension-support-/Cache-protection-behavior
https://doi.org/10.1109/MICRO.1999.809458
https://doi.org/10.1109/MICRO.1999.809458
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1145/2790077
https://www.theregister.com/2024/07/13/game_raptor_intel/
https://www.theregister.com/2024/07/13/game_raptor_intel/
https://lwn.net/Articles/446528/
https://lwn.net/Articles/446528/
https://www.ibm.com/downloads/cas/2RJYYJML
https://www.ibm.com/downloads/cas/2RJYYJML
https://doi.org/10.1145/3061639.3062265
https://doi.org/10.1145/2897937.2898054
https://doi.org/10.1145/2897937.2898054
https://doi.org/10.1109/TR.2018.2793098
https://doi.org/10.1109/TR.2018.2793098
https://doi.org/10.1109/TDSC.2023.3245842
https://doi.org/10.1109/TDSC.2023.3245842
https://arxiv.org/abs/2203.08989
https://arxiv.org/abs/2102.11245
https://doi.org/10.1145/844128.844148
https://doi.org/10.1145/844128.844148
https://doi.org/10.1145/3458336.3465297
https://doi.org/10.1145/3458336.3465297
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
https://doi.org/10.1145/3323917
https://doi.org/10.1109/TDSC.2010.53
https://doi.org/10.1109/ISPASS.2013.6557169
https://doi.org/10.1109/ISPASS.2013.6557169
https://doi.org/10.1109/MICRO.2007.18
https://doi.org/10.1145/70082.68189
https://doi.org/10.1145/2968455.2968508
https://doi.org/10.1145/2968455.2968508
https://doi.org/10.1109/CGO.2007.35
https://doi.org/10.1109/ISCA.2002.1003566
https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html
https://www.intel.com/content/www/us/en/developer/articles/technical/new-reliability-availability-and-serviceability-ras-features-in-the-intel-xeon-processor.html

—

—

—

[l

—

—

CGO ’25, March 01-05, 2025, Las Vegas, NV, USA

[37] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,

and Nimrod Partush. 2017. Engineering record and replay for deploy-
ability. In Proceedings of the 2017 USENIX Conference on Usenix Annual
Technical Conference (USENLX ATC).

A. Robert Pargeter. 1996. An example of strong induction. The Math-
ematical Gazette 80, 488 (1996), 406-407. https://doi.org/10.2307/
3619594

Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and
James Cownie. 2010. PinPlay: a framework for deterministic replay
and reproducible analysis of parallel programs. In International Sym-
posium on Code Generation and Optimization (CGO). https://doi.org/
10.1145/1772954.1772958

S.K. Reinhardt and S.S. Mukherjee. 2000. Transient fault detection
via simultaneous multithreading. In Proceedings of 27th International
Symposium on Computer Architecture (ISCA). https://doi.org/10.1145/
342001.339652

G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August. 2005.
SWIFT: software implemented fault tolerance. In International Sympo-
sium on Code Generation and Optimization (CGO). https://doi.org/10.
1109/CG0.2005.34

P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. 2002.
Modeling the effect of technology trends on the soft error rate of com-
binational logic. In Proceedings of the 2002 International Conference
on Dependable Systems and Networks (DSN). https://doi.org/10.1109/
DSN.2002.1028924

Alex Shye, Tipp Moseley, Vijay Janapa Reddi, Joseph Blomstedt, and
Daniel A. Connors. 2007. Using Process-Level Redundancy to Exploit
Multiple Cores for Transient Fault Tolerance. In 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
https://doi.org/10.1109/DSN.2007.98

TJ. Slegel, RM. Averill, M.A. Check, B.C. Giamei, BW. Krumm, C.A.
Krygowski, W.H. Li, J.S. Liptay,].D. MacDougall, T.J. McPherson, J.A.
Navarro, E.M. Schwarz, K. Shum, and C.F. Webb. 1999. IBM’s S/390 G5
microprocessor design. IEEE Micro 19, 2 (March 1999), 12-23. https:
//doi.org/10.1109/40.755464

Hwisoo So, Moslem Didehban, Yohan Ko, Aviral Shrivastava, and Ky-
oungwoo Lee. 2018. EXPERT: Effective and flexible error protection
by redundant multithreading. In Design, Automation & Test in Europe
Conference & Exhibition (DATE). https://doi.org/10.23919/DATE.2018.
8342065

J. Srinivasan, S. V. Adve, P. Bose, and]. A. Rivers. 2004. The impact
of technology scaling on lifetime reliability. In Proceedings of the 2004
International Conference on Dependable Systems and Networks (DSN).
https://doi.org/10.1109/DSN.2004.1311888

Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. 2000. Slip-
stream processors: improving both performance and fault tolerance.
SIGARCH Computer Architecture News 28, 5 (Nov. 2000), 257-268.
https://doi.org/10.1145/378995.379247

Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy M. Jones

[48] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2011.
DoublePlay: Parallelizing Sequential Logging and Replay. In Proceed-
ings of the Sixteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).
https://doi.org/10.1145/1950365.1950370

[49] TN. Vijaykumar, I. Pomeranz, and K. Cheng. 2002. Transient-fault
recovery using simultaneous multithreading. In Proceedings 29th An-
nual International Symposium on Computer Architecture (ISCA). https:
//doi.org/10.1109/ISCA.2002.1003565

[50] Evangelos Vlachos, Michelle L. Goodstein, Michael A. Kozuch, Shimin
Chen, Babak Falsafi, Phillip B. Gibbons, and Todd C. Mowry. 2010. Par-
aLog: enabling and accelerating online parallel monitoring of multi-
threaded applications. In Proceedings of the Fifteenth International Con-
ference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS). https://doi.org/10.1145/1736020.1736051
[51] Vincent M. Weaver, Dan Terpstra, and Shirley Moore. 2013. Non-

determinism and overcount on modern hardware performance
counter implementations. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS). https://doi.org/10.
1109/1SPASS.2013.6557172

[52] Neil Werdmuller. 2021. Addressing functional safety applications with
ARM Cortex-R5. https://community.arm.com/groups/embedded/
blog/2015/01/22/addressing-functional-safety-applications-with-
arm-cortex-r5

[53] Xiaoya Xiang, Chen Ding, Hao Luo, and Bin Bao. 2013. HOTL: a
higher order theory of locality. In Proceedings of the Eighteenth In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS). https://doi.org/10.1145/
2451116.2451153

[54] Boyue Zhang, Sam Ainsworth, Lev Mukhanov, and Timothy Jones.
2024. Artefact evaluation package for “Parallaft: Runtime-based CPU
Fault Tolerance via Heterogeneous Parallelism”. https://doi.org/10.
5281/zenodo.14172159

[55] Yun Zhang, Soumyadeep Ghosh, Jialu Huang, Jae W. Lee, Scott A.
Mabhlke, and David I. August. 2012. Runtime Asynchronous Fault
Tolerance via Speculation. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization (CGO). https:
//doi.org/10.1145/2259016.2259035

[56] Yun Zhang, Jae W. Lee, Nick P. Johnson, and David I. August. 2010.
DAFT: Decoupled acyclic fault tolerance. In 19th International Con-
ference on Parallel Architectures and Compilation Techniques (PACT).
https://doi.org/10.1145/1854273.1854289

[57] Y. Zu, C. R. Lefurgy, J. Leng, M. Halpern, M. S. Floyd, and V. J. Reddi.
2015. Adaptive guardband scheduling to improve system-level ef-
ficiency of the POWER7+. In Proceedings of the 48th International
Symposium on Microarchitecture (MICRO). https://doi.org/10.1145/
2830772.2830824

Received 2024-09-12; accepted 2024-11-04

https://doi.org/10.2307/3619594
https://doi.org/10.2307/3619594
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/1772954.1772958
https://doi.org/10.1145/342001.339652
https://doi.org/10.1145/342001.339652
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/DSN.2002.1028924
https://doi.org/10.1109/DSN.2007.98
https://doi.org/10.1109/40.755464
https://doi.org/10.1109/40.755464
https://doi.org/10.23919/DATE.2018.8342065
https://doi.org/10.23919/DATE.2018.8342065
https://doi.org/10.1109/DSN.2004.1311888
https://doi.org/10.1145/378995.379247
https://doi.org/10.1145/1950365.1950370
https://doi.org/10.1109/ISCA.2002.1003565
https://doi.org/10.1109/ISCA.2002.1003565
https://doi.org/10.1145/1736020.1736051
https://doi.org/10.1109/ISPASS.2013.6557172
https://doi.org/10.1109/ISPASS.2013.6557172
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
https://community.arm.com/groups/embedded/blog/2015/01/22/addressing-functional-safety-applications-with-arm-cortex-r5
https://doi.org/10.1145/2451116.2451153
https://doi.org/10.1145/2451116.2451153
https://doi.org/10.5281/zenodo.14172159
https://doi.org/10.5281/zenodo.14172159
https://doi.org/10.1145/2259016.2259035
https://doi.org/10.1145/2259016.2259035
https://doi.org/10.1145/1854273.1854289
https://doi.org/10.1145/2830772.2830824
https://doi.org/10.1145/2830772.2830824

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Traditional (Homogeneous) Error Detection
	2.2 Heterogeneous Parallel Error Detection
	2.3 From RAFT to Parallaft

	3 Parallaft: Design Overview
	3.1 Heterogeneous Parallelism
	3.2 Execution Duplication
	3.3 Process-State Comparison
	3.4 Sphere of Replication

	4 Parallaft: Implementation
	4.1 Program Slicing
	4.2 Execution-Point Record-and-Replay
	4.3 Execution Duplication
	4.4 Program-State Checking
	4.5 Checker Execution Scheduling and Pacing

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Overhead
	5.3 Energy Overhead
	5.4 Memory Overhead
	5.5 Parameter Sensitivity
	5.6 Fault Injection
	5.7 Syscall and Signal Handling Overhead
	5.8 Overhead on Intel x86_64

	6 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Methodology

	References

