
Janus: Statically-Driven and Profile-Guided

Automatic Dynamic Binary Parallelisation

Ruoyu Zhou

University of Cambridge, UK

ruoyu.zhou@cl.cam.ac.uk

Timothy M. Jones

University of Cambridge, UK

timothy.jones@cl.cam.ac.uk

Abstract—We present Janus, a framework that addresses
the challenge of automatic binary parallelisation. Janus uses
same-ISA dynamic binary modification to optimise application
binaries, controlled by static analysis with judicious use of
software speculation and runtime checks that ensure the safety
of the optimisations. A static binary analyser first examines a
binary executable, to determine the loops that are amenable
to parallelisation and the transformations required. These are
encoded as a series of rewrite rules, the steps needed to convert a
serial loop into parallel form. The Janus dynamic binary modifier
reads both the original executable and rewrite rules and carries
out the transformations on a per-basic-block level just-in-time
before execution. Lifting static analysis out of the runtime enables
the global and profile-guided views of the application; ambiguities
from static binary analysis can in turn be addressed through a
combination of dynamic runtime checks and speculation guard
against data dependence violations. It allows us to parallelise
even those loops containing dynamically discovered code. We
demonstrate Janus by parallelising a range of optimised SPEC
CPU 2006 benchmarks, achieving average speedups of 2.1× and
6.0× in the best case.

I. INTRODUCTION

Program performance is heavily influenced by the ability

to create parallel applications consisting of multiple threads

working as independently as possible. The programming lan-

guage and runtime communities have provided new languages

and constructs to aid parallel programming, significantly

boosting programmer productivity [1]. Whilst important and

useful for new applications, users of single-threaded applica-

tions where the source code is lost, unavailable or cannot easily

be recompiled, are not able to benefit from the underlying

parallel architecture.

Within this context, parallelisation of application binaries

becomes a seductive proposition. Regardless of the source

languages used to create the program, or the availability of

the code, an application can be restructured within its binary

form to split off tasks into separate threads, and combine their

results back together when required. Although almost impos-

sible to perform effectively by hand, automatic tools have

the ability to extract parallelism from sequential applications

through analysis of the executable to extract multiple threads

that can execute concurrently.

Within the literature there are a number of schemes for bi-

nary parallelisation, using either static or dynamic approaches.

Static binary parallelisers [2], [3], [4], [5] typically focus

on affine loops with known iteration counts. They deal with

ambiguity from static analysis by creating multiple versions

of code and directing execution to a suitable variant based on

runtime conditions. However, these produce large executables,

limit flexibility, and are difficult to integrate into stripped

binaries and combine with exception and signal handling.

At the other end of the spectrum are purely dynamic

approaches, such as RASP [6], which is a simulated dynamic

parallelisation approach that relies on hardware transactional

memory to speculate on the independence of threads, but does

not run on existing multicore systems. However, some have

suggested that dynamic binary parallelisation alone can never

achieve significant performance [7] without using necessary

transformation to remove predictable data dependencies.

To this end, we present Janus, an open source binary modi-

fication framework1 designed for automatic parallelisation that

overcomes the limitations of prior approaches by combining

static analysis, profile information, dynamic modification, ju-

dicious use of speculation, and runtime checks. Janus uses

an intermediate architecture-independent interface between

static and dynamic components, called a rewrite schedule,

to define, control, and automate binary modification. With

the expressive power of the rewrite schedule, Janus is able

to perform analysis, profiling, and complicated parallelisation

operations. The dynamic binary modifier (DBM), based on

DynamoRIO [8], reads the rewrite schedule and carries out

parallelisation as instructed at runtime.

Janus supports both x86-64 and AArch64 binaries and

requires no user intervention to transform, profile, or op-

timise applications. Prior techniques contain only some of

these features, but not are fully automated, and are therefore

restricted practically in the parallelism that they can extract.

We evaluate Janus on a x86-64 multicore system, parallelising

applications from the SPEC CPU 2006 benchmark suite,

achieving speedups of 2.1× on average and 6.0× in the best

case when running with eight threads.

II. JANUS BINARY PARALLELISATION

Janus parallelises loops from sequential binaries, running

groups of iterations on different cores in a round-robin fashion.

We currently extract DOALL parallelism because this can

already unlock significant performance for some applications.

1Janus available at https://github.com/JanusDBM/Janus and data for this
publication at https://doi.org/10.17863/CAM.33893

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

15

https://www.acm.org/publications/policies/artifact-review-badging

Executable Coverage Profiling

Rewrite Schedule

Filter
incompatible

loops

Static Analysis

Loop coverage
profiling

DBM

Filter low-
coverage loops

Static Analysis

Dependence Profiling

Rewrite Schedule

Memory
dependence

profiling

DBM

Loop Select

Training Stage (Optional)

Executable Parallelisation

Rewrite Schedule

All analysis

Static Analysis

Parallelisation

DBM

Parallelisation Stage

(a) Automatic parallelisation flow

Dynamic Binary Modifier (DynamoRIO)

A

B C

D

Modify

C

A

D

Modify

Modify

Rewrite Rule

Interpreter

Just-In-Time Recompilation
Thread 1 Thread 2

JIT

Shared Register Bank and Shared Memory

Main

Thread Pool

Rewrite Schedule

Private

Storage

Private

Storage

Private

Storage

A

C

C

D

D

A

C

C

D

A

C

D

D

D LOOP_FINISH

D MEM_PRIVATISE

C MEM_PRIVATISE

B MEM_PRIVATISE

A LOOP_ITER

A LOOP_INIT

(b) Parallel loop execution

Fig. 1. Automatic parallelisation in Janus. Rewrite schedules allow the static analyser to control dynamic modification.

Figure 1(a) shows how rewrite schedules are used by the static

analyser to control profiling and parallelisation; figure 1(b)

shows how a loop is modified dynamically based on a rewrite

schedule, to execute it in parallel.

Janus starts by analysing an executable statically to identify

parallelisable loops, and augments this with profiling to find

the most profitable loops to parallelise and to identify any

cross-iteration memory dependencies that it may contain. It

then determines how to parallelise each one and encodes the

transformation steps into rewrite rules, contained in a rewrite

schedule. The dynamic binary modifier reads the executable

and rewrite schedule and performs the parallelisation accord-

ing to the rules. This includes inserting runtime checks or

speculation to deal with potentially unsafe behaviour.

A. Static-Dynamic Interface

The rewrite schedule is central to Janus, facilitating com-

munication from the static analyser to the dynamic binary

modifier in a way that allows complex transformation and

optimisation of the binary application. In effect, it maps the

static analyser’s global view of the binary down to a series of

changes to make at the DBM’s local view.

1) Rewrite Schedule: The key insight provided by the

rewrite schedule is that complex transformations to a binary

can be decomposed into a series of coarse-grained dynamic

operations. We define each of these operations to be a rewrite

rule. Each rewrite rule directs the DBM to perform a specific

modification locally to each basic block, and together the

rewrite rules make the changes required to implement a

global sophisticated optimisation, such as parallelisation. The

rewrite schedule and rewrite rules specify simple dynamic

transformations that can be easily implemented and verified

individually. However considering the combined effect in a

runtime context, the power of the rewrite schedule is greater

than the sum of all its parts.

Each rewrite schedule contains a header, rewrite rules to

control transformations, and data to support them. The header

specifies the layout of the rewrite schedule, as well as global

and miscellaneous information about the executable. Each

rewrite rule is a fixed-length data structure consisting of an

address that corresponds to an application location where the

rewrite rule should be triggered, a rule ID to describe the

transformation to carry out, and a data field that contains rule-

specific information (e.g., a register number or immediate).

Using a rewrite schedule enables Janus to overcome the

limitations of pure static or dynamic binary modification. The

rewrite schedule controls binary modification and conveys

static information to the DBM, removing the need for dynamic

program analysis. Yet it also builds on the strengths of

dynamic binary modification, by allowing Janus to specialise

code for each thread, for different hardware, to correctly

handle signals and faults, and to deal with code that is not

discoverable ahead of time. For example, in the presence of

shared library calls, rewrite rules define the boundary between

the statically analysable and unknown codes. At runtime, on

crossing this boundary, the DBM takes control of deciding

which modifications should be made, as it discovers new code

to execute, and then hands control back to the rewrite schedule

on crossing the boundary again.

2) Rewrite-Schedule Interpretation: The task of the dy-

namic binary modifier in Janus is to transform and execute an

application under direction from the rewrite schedule provided

by the static analyser. Each rewrite rule ID has a corresponding

runtime handler within the DBM which is responsible for

carrying out the transformation. Each runtime handler is

specific to a single rule ID, and understands the meaning of

the information carried in the rewrite rule data field. To add

more functionality to Janus we simply add new rule IDs to

the rewrite schedule and create their corresponding handlers

in the DBM.

Figure 2(b) shows an example of the rewrite rule interpreta-

tion process. The DBM first takes control of an application at

startup and immediately loads its associated rewrite schedule.

It inserts each rewrite rule into a hash table, indexed by instruc-

tion or basic-block address from the program binary, for fast

lookup. To execute application instructions, the baseline DBM

(i.e., without considering the rewrite schedule) first translates

them, modifies them if they could cause it to lose control of

16

for loop in janus.hotLoops:

 if loop.isDOALL:

 for init in loop.inits:

 insertRule(LOOP_INIT, init)

 for exit in loop.exits:

 insertRule(LOOP_FINISH, exit)

 for bound in loop.bounds:

 insertRule(UPDATE_BOUND, bound)

 for mem in loop.mems:

 if needPrivatise(loop, mem):

 insertRule(MEM_PRIVATISE, mem)

Static Binary Analyser

(a) Example of a rewrite rule generation pass

Original Block
Modified Block

Address Data

0x400900 A: LOAD_MAIN_STACK r14

Address

0x400900

Address

0x400905

Address

0x400908

P
a
s
s A

P
a
s
s B

P
a
s
s C

P
a
s
s D

Hash Table

D
B

M
 IR

D
B

M
 IR

E
n

co
d

er

mov r14,0x7fffffffe5c8

mov rax, [r14+24]

add [r15+0x20],rax

Rewrite Rules

Code Cache

No.Threads

Rewrite Rule Handlers

cmp rsi, 10000

Rule ID

mov rax,[rsp+24]

Data

B:MEM_MAIN_STACK r14

Rule ID

jle loop

0x400900

add [rcx],rax

cmp rsi, 40000

Data

C:MEM_PRIVATISE r15 0x20

Rule ID

Data

D: LOOP_UPDATE_BOUND

Rule ID

4

Runtime Contexts

Shared Stack

0x7fffffffe5c8

jle loop

D
e
co

d
er

Hit
JIT

(b) Interpretation of rewrite rules to privatise variables within a basic block in the DBM

Fig. 2. The rewrite schedule and its interpretation at runtime in the DBM.

the running program, then stores them in a code cache. This

process occurs when the DBM encounters instructions it has

not seen before, or when it performs trace optimisation on

frequently executed code sequences. In Janus, before storing

the instructions in the code cache, it checks whether there are

any rewrite rules associated with the code and, if so, makes

the appropriate transformations.

Before the DBM copies each newly discovered basic block

to its code cache, it consults the hash table to determine

whether there are any rewrite rules associated with the block.

If there are, the DBM invokes the corresponding handler to

modify the block. In this example, four rewrite rules are found

corresponding to the incoming basic block for a thread. The

first rewrite rule directs the DBM to insert a new instruction to

encode the global shared stack pointer as an immediate value

into a register (r14). The second alters the mov instruction to

use r14 instead of rsp, essentially loading a read-only variable

from the shared stack rather than each per-thread private stack.

The third rewrite rule privatises a heap memory operand [rcx]

used by the add instruction to the pre-allocated thread-private

location [r15+0x20], where r15 contains the base of thread-

local storage (TLS). Finally, the fourth rewrite rule alters the

loop bounds so that the thread only executes a quarter of

the loop iterations. Following this, the modified basic block

is encoded to machine code again and immediately executed

from the code cache. As shown in figure 2(b), where two

or more rewrite rules refer to the same machine instruction,

transformations are carried out in the order that they occur in

the rewrite schedule, which is defined in the static analyser.

The final modified code is immediately executed from the code

cache.

B. Rewrite Rules for Automatic Parallelisation

To achieve automatic parallelisation using Janus, we de-

signed six major profiling rewrite rules and twelve rules for

parallel transformation, as shown in figure 3. Using these high-

level rules, Janus automates the whole parallelisation process.

This includes profiling for loop coverage (to select the most

profitable loops to parallelise), profiling data dependencies (to

identify loops that are likely DOALL, if static analysis cannot

prove this), and transforming each loop into parallel form.

C. Statically-Driven Profiling

Janus optionally collects profile information using dynamic

binary instrumentation, driven by static analysis through a

rewrite schedule. This automates the process of profile gath-

ering in the same DBM and also addresses the shortcom-

ings of a purely dynamic sample-based approach. Moreover,

Janus’ statically guided profiling is quicker than other binary

instrumentation tools because it only instruments the loops of

interest and only certain instructions within those loops (e.g.,

not all loads and stores).

As shown in figure 1(a), each loop is analysed to determine

whether it is in a form that is feasible for parallelisation. We

reject loops with incompatible instructions, those performing

IO operations, those with interrupts, exceptions, system calls

or non-returning subroutines, and those where we cannot

recognise the induction variables. These loops are not subject

to profiling or any further analysis. For feasible loops, we

profile with training inputs, counting the number of dynamic

instructions executed in each as a proxy for time spent inside

each one. Low coverage loops (those with a small fraction of

total program instructions) are filtered out. Finally, we perform

a further profiling run on all loops that may have cross-

iteration data dependencies to identify those that definitely

exist and those that may not.

D. Parallelisation Rewrite Schedule Generation

Janus’ static analyser reads stripped binary executables as

input, disassembles the code section and converts the dis-

assembled instructions into its own IR. Each IR instruction

has a one-to-one correspondence with an instruction from

the binary’s ISA. Although this is low level, it facilitates the

generation of rewrite rules in the backend of the tool since it

is close to the actual machine code. Janus abstracts all register,

stack and absolute memory locations into versioned variables

17

PROF LOOP START Start profiling a loop. PROF LOOP FINISH Finish profiling a loop.

PROF LOOP ITER Start another loop iteration. PROF EXCALL START Start profiling an external call within a profiled loop.

PROF EXCALL FINISH Finish profiling an external call within a profiled loop. PROF MEM ACCESS Check for data dependencies for a memory access.

THREAD SCHEDULE Schedule threads to jump to a code address. THREAD YIELD Send threads back to the thread pool.

LOOP INIT Initialize loop context for each thread. LOOP FINISH Combine loop contexts from all threads.

LOOP UPDATE BOUND Update a loop bound for a thread. MEM MAIN STACK Redirect a stack access to the main stack.

MEM PRIVATISE Redirect a memory access to a private address. MEM BOUNDS CHECK Perform a bounds check on two array bounds.

MEM SPILL REG Spill a set of registers to private storage. MEM RECOVER REG Recover a set of registers from private storage.

TX START Start a software transaction. TX FINISH Validate and commit a software transaction.

Fig. 3. Major rewrite rules used in automatic profiling (blue) and parallelisation (orange) in Janus.

in static single assignment (SSA) form. From here Janus per-

forms standard control-flow and data-flow analysis, including

domination, liveness, reaching, dependence and memory-alias

analyses.

Loops and function calls are recognised and analysed if the

CFG is fully recovered. Each variable and memory address

accessed in the loop can be represented as a tree of expressions

in the SSA graph. By traversing the abstract tree upwards, we

can construct a canonicalised symbolic polynomial where the

terms are leaf nodes of the function argument and memory

accesses. The loop’s iterator is identified by constructing a

cyclic expression starting from the phi node of the loop start

block in the abstract expression tree. By examining the loop

exit conditions, we can solve the range of each loop iterator,

symbolically representing it as a start, step and final value of

the iterator. The symbolic range of the loop iterator is then

propagated back to all the memory accesses within the loop.

Handling optimised binaries: One of the prime diffi-

culties faced by Janus is to parallelise binaries that have

been heavily optimised by compilers. Optimised binaries often

contain inner loops that have been unrolled, jammed, or had

iterations peeled off by the compiler to help with vectorisation.

These inner loops may also contain multiple versions of

code, with the correct version selected at runtime based on

compiler-generated runtime checks. Distinct code paths may

compute the same output values using different combinations

of operations, which results in unnecessary phi nodes and

complicates Janus’ dependence analysis. In addition, ISA-

specific complex instructions, register spilling, indirect stack

accesses, and conditional instructions obfuscate the data-flow

graph obtained by Janus.

To alleviate this problem, we evaluate the canonicalised

expressions for each phi node in the loop using symbolic

execution and range propagation. Therefore if Janus can prove

equality for the expressions for all predecessors in the phi

node, it flags the path (phi node) as duplicated. For complex

instructions, we conservatively simplify them in our analysis-

only IR (e.g., for a conditional move, we include both source

operands in our analysis).

Alias analysis: Additional alias analysis is performed

for the memory reads and writes that belong to the same

array base. We calculate the distance vector for every memory

read-write and write-write pair and solve the equation when

the distance vector is zero. As the range of each pair is

already propagated and the bases are the same, a memory

alias is detected when the ranges of two pairs overlap. Then

we identify all common parts of the polynomial that are

considered constant throughout the loop. If there is more than

one array base identified, Janus emits a MEM BOUNDS CHECK

rule at the point in the code when the array base is created

(typically at the beginning of the function). This guards the

parallel version of the loop, only enabling parallelisation when

the checks pass, meaning that all array bases are independent

of each other.

Loop characterisation and selection: Based on profiling

and static alias analysis, Janus divides the candidate loops into

four categories. The fifth category, “incompatible”, applies to

loops that were never candidates for parallelisation with our

current implementation.

Type A: Static DOALL These loops contain no cross-

iteration dependencies except through induction and reduction

variables with addition and subtraction reduction operations.

The number of iterations of the loop may be determined

statically and there may be multiple exits from the loop.

Type B: Static Dependence These loops have cross-iteration

data dependencies that have been identified statically.

Type C: Dynamic DOALL Here the loop’s induction vari-

able can be clearly identified. There are memory accesses that

cannot be analysed statically, but profiling shows that they do

not alias at runtime.

Type D: Dynamic Dependence This corresponds to the re-

mainder of the loops: those where the induction variable can

be clearly identified but there are memory accesses that cause

cross-iteration dependencies during profiling.

Loop nests are identified using an inter-procedural control-

flow analysis and only one loop in each nest selected for

parallelisation. Janus selects the outermost loop of type A and

failing that then type C. Within type A we prefer loops where

the number of iterations is statically known and there is a

single exit from the loop.

Rule generation for selected loops: An example of gen-

erating parallelisation rules is shown in figure 2(a). The static

analyser abstracts and encapsulates both profiling information

and high level objects such as loops and functions. Based

on the selected loop, Janus flags all those variables that are

“private”, “read-only”, “first-private”, “induction”, and “reduc-

tion” using rewrite rules, so that each thread can interpret them

differently and copy values from the main thread’s registers

or stack frame.

For the stack accesses that are read-only, Janus emits a

MEM MAIN STACK rule for each instruction that reads the stack

element involved. At runtime, each thread reads the main stack

18

rax [0:1:rcx_0]

[r8+4*rax_i+8]

[r9+2*rax_i+16]

[r8, 4*rcx_0+8]

MEM_BOUNDS_CHECK

Range Propagation

Memory Address Expression

Construction

[base, size]

Rewrite Rule

mov [r8+4*rax+8],rsi

mov rdx,[r9+2*rax+16]

inc rax

cmp rax, rcx

jle loop

Example Loop

[r9, 2*rcx_0+16]

vs

Fig. 4. Generation of MEM BOUNDS CHECK based on symbolic range propa-
gation.

instead of its own, for those elements only and avoids copying

across stacks. Cross-iteration WAR and WAW dependencies

can be removed by privatising the data per thread. To achieve

this, Janus emits a MEM PRIVATISE rule for each instruction

that reads or writes these heap locations. The MEM PRIVATISE

rule contains a private storage ID so that on translation the

memory access is re-encoded into a direct memory access to

a specific private storage location.

E. Parallelised Loop Execution

All loop handling code is generated by the dynamic binary

translator just-in-time based on the rewrite schedule, the orig-

inal code, runtime and machine characteristics. Janus contains

two rewrite rules that generate dynamic code to control the

creation and deletion of parallel threads. Once threads are

created, they wait in a thread pool until required to execute a

parallel loop. Two further threading rules, THREAD SCHEDULE

and THREAD YIELD, direct threads to leave the thread pool

and start execution of a specified PC address, then return

again afterwards. Once a Janus thread leaves the thread pool,

its instructions are controlled by the dynamic binary modifier

(meaning thread code is subject to modification through the

rewrite schedule). Each thread has associated thread-local stor-

age and a private code cache, as does the main thread, which

allows independent interpretation of rewrite rules to specialise

computation for each thread. Each thread also obtains its own

private stack and copies minimum initial contexts from the

main stack just before executing its first iteration.

Janus has the ability to dynamically choose the thread-

scheduling policy. By default, if the number of loop iter-

ations can be determined statically or determined through

a runtime check just before the loop, each thread runs

an equal number of contiguous iterations corresponding to

#iterations/#threads . If the number of loop iterations can-

not be determined dynamically, Janus schedules threads to

execute a small number of contiguous iterations from the total

iteration space in a round-robin fashion.

1) Runtime Array-Base Check: We implement a dynamic

check rule to catch dependencies between loop iterations

where static analysis cannot prove their absence. These occur

before the loop runs, and verify that all arrays written to are

distinct from those reads.

Although our static analysis can often determine that ac-

cesses to two arrays do not alias if the arrays are different,

it cannot always prove the second step and guarantee that

the arrays are indeed separate objects. Our dynamic check

alleviates this issue by performing the check at runtime

before the loop starts execution. Figure 4 shows an example

of emitting a MEM BOUNDS CHECK rule. Static analysis can

identify the base of the array (usually held in a register or

on the stack) and the maximum address accessed (calculated

from the induction variable and any offset with knowledge

of the loop’s iteration count). Our runtime check therefore

verifies that arrays that are written to are entirely independent

of other arrays that are read from or written to. In the example,

this means checking there are no overlaps between the ranges

[r9, r9+2*rcx_0+16] and [r8, r8+4*rcx_0+8].

The MEM BOUNDS CHECK rule is inserted at the least-

executed path before the loop execution where the inputs are

available, such as beginning of the loop’s parent function. It

ensures that parallel execution only proceeds if the checks all

pass. If not, then the loop is executed sequentially. If the loop

is already modified, Janus would flush the modified code cache

and reload the original sequential code.

2) Just-In-Time Software Transactional Memory: We also

implement a light-weight word-based software transactional

memory (STM) with lazy value-based conflict checking, sim-

ilar to JudoSTM [9]. Instead of having static STM API

routines, Janus’ STM consists only of dynamic handlers that

rewrite the original memory accesses to inlined thread-private

and speculative accesses. A TX START rewrite rule is used

to enable Janus’ STM. On execution, handlers create code

that copies the machine context (registers) into a buffer and

then sets a runtime flag to indicate transactional execution,

meaning that all subsequent heap accesses and out-of-frame

stack accesses use Janus’ STM. This means they are modified

to record the addresses read and written, and to buffer stored

data. A subsequent TX FINISH rule generates code to reset the

runtime flag. In addition, once a thread has finished its set of

contiguous iterations and is the oldest thread running the loop,

it performs a validation of each of its buffered reads against

the versions in shared memory and, if successful, commits the

writes sequentially.

Janus’ STM could be used to support thread-level specula-

tion. However, excessive use of speculative rewrites normally

incurs a high overhead from tracking and buffering heap reads

and writes, so in Janus we use it sparingly and only to ensure

correctness when we encounter code discovered at runtime,

such as that in shared libraries. If the code has too many

speculative accesses at runtime, we abort and execute again

non-speculatively.

3) Shared-Library-Call Check: Janus has the ability to par-

allelise loops with shared-library calls, which is not possible

with static parallelisers because the code is not discovered until

runtime. Janus is able to parallelise these dynamic DOALL

loops with judicious use of speculation, relying on profiling

to filter out dynamic code that is likely to have a large number

of memory accesses. Figure 5 shows an example. A TX START

rewrite rule is generated before the shared-library call, which

takes a checkpoint of the register state. During the call, all

19

TX_START

call pow@plt

TX_FINISH

test rax, rax

for mem in BasicBlock:

 buffer all reads

 privatise all writes

Software Transactional Memory

Fig. 5. Handling dynamically discovered code using speculation.

heap accesses are modified to keep track of addresses read and

written and to buffer stored data. After the call, a TX FINISH

rule is inserted to ensure that no memory dependencies have

been violated and to write back the buffered stores to shared

memory in thread order. If the check fails, execution rolls

back to the checkpoint and the code is re-executed, which

will succeed because the thread is now the oldest and so non-

speculative. This speculation scheme incurs a high overhead

from tracking and buffering heap reads and writes, so we use

it sparingly and only to ensure correctness.

F. Strengths of Binary Parallelisation with Janus

Janus keeps the source binary unchanged, augmenting it

with an intermediate domain-specific rewrite schedule that

is generated through static analysis from one or more tools.

Under the control of this rewrite schedule, the dynamic binary

modifier optimises the application immediately before execu-

tion. This allows it to specialise the actual implementation of

the rewrite rules according to the thread that is running the

code, by taking advantage of the thread-private code caches

within the underlying dynamic binary modifier. In addition, it

can deal with static ambiguity through the use of checks for

testing runtime conditions and software transactional memory

for dynamically discovered code.

G. Implementation

Dynamic Binary Translator: We implemented our dy-

namic binary modification tool as a client within Dy-

namoRIO [8]. Although there were other candidates, such

as Pin [10], DynInst [11], QEMU [12] and Valgrind [13],

we selected DynamoRIO because of its performance and

transparency to the executing application. First, DynamoRIO

achieves high decoding and encoding efficiency [14] since

its IR is close to the machine instructions and it employs a

lazy decoding scheme that only decodes an instruction when

it needs to examine it for modification. Second, it maintains

a correspondence between registers used in the executable’s

instructions and those used when they are placed in the code

cache, which is fundamental for enabling the static analyser

to correctly transform instructions. (In fact, DynamoRIO does

not redo register allocation at all, currently even in its trace

optimisation.) Third, it has a rich API for transforming in-

structions within each basic block, and, fourth, although not

essential, it supports both x86 and ARM instruction sets. These

strengths combined meant that writing a client to interpret the

rewrite schedule cleanly integrated into the dynamic modifier

and our optimisations did not have to overcome significant

performance overheads incurred by the framework.

Static Analyser: The prime consideration for the static

analyser to produce effective rewrite schedules was to be

aware of the nature and constraints of the dynamic binary

modifier. For example, it must have the same definition of

data structures, basic blocks, control flow, and heuristics as

DynamoRIO. Existing static analysis tools, such as BAP [15],

BitBlaze [16], and SecondWrite [2], lift machine code to a

higher IR than we require. From the rich context of a high-

level IR, they can utilise existing analysis passes from other

compilers. However, for generating rewrite rules, decompiling

binaries to a high-level IR may lose the mapping to the original

hardware instructions. For example, an x86 instruction might

be translated to multiple IR statements that deal with loading

data from memory, performing the operation and subsequent

flag manipulation. This complicates the mapping back down to

machine instructions when we generate rewrite rules for this

IR. We therefore wrote a custom tool to perform static analysis

based on the Capstone disassembler library [17]. While all

indirect jumps are marked as having undetermined targets, this

does not limit the tool in the use cases we study as we can

insert runtime checks to maintain correctness.

Limitations: C++ binaries that use STL calls to control

loop flow prevent Janus from recognising loop iterators and

therefore from parallelising these loops, although this could be

addressed with engineering effort. In addition, Janus requires

profiling to fine tune its performance, which is not feasible for

some applications, or may take a prohibitive amount of time

to complete.

H. Summary

Automatic parallelisation in Janus uses static analysis com-

bined with profile information to extract DOALL parallelism

from loops. Each thread executes a subset of the iterations,

with runtime checks to catch data dependencies that cannot

be disproved with static analysis.

III. EVALUATION

We evaluated Janus on an Intel Sandy Bridge Xeon E5-

2667 v4 CPU on Ubuntu 16.04 that contains eight cores

(16 threads), a 25MB L3 cache and runs at a frequency

of 3.3GHz with frequency scaling (turbo boost) disabled.

Instead of choosing a benchmark suite with a high amount of

parallelism, we selected the SPEC CPU2006 benchmarks [18]

as our workloads because they represent a generic suite of

applications which are considered difficult to parallelise. All

benchmarks were compiled by gcc 5.4 using optimisation

level -O3 for single-threaded performance. We used all ap-

plications, apart from omnetpp, tonto, and wrf which either

would not run correctly natively or have target execution times,

making them unsuitable for our environment. We report the

median, maximum and minimum execution times from ten

runs using the reference inputs. Profiling results were obtained

using the training inputs.

20

 0%

20%

40%

60%

80%

100%

40
0.

pe
rlb

en
ch

40
1.

bz
ip
2

40
3.

gc
c

41
0.

bw
av

es

42
9.

m
cf

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct
us

AD
M

43
7.

le
sl
ie
3d

44
4.

na
m

d

44
5.

go
bm

k

44
7.

de
al
II

45
0.

so
pl
ex

45
3.

po
vr

ay

45
4.

ca
lc
ul
ix

45
6.

hm
m

er

45
8.

sj
en

g

45
9.

G
em

sF
D
TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

47
3.

as
ta

r

48
2.

sp
hi
nx

3

48
3.

xa
la
nc

bm
k

 0%

20%

40%

60%

80%

100%

P
e
rc

e
n
ta

g
e
 o

f
T

o
ta

l
L
o
o
p
s

P
e
rc

e
n
ta

g
e
 o

f
E

x
e
c
u
ti
o
n
 T

im
e

Static DOALL Dynamic DOALL Static Dependence Dynamic Dependence Incompatible

Fig. 6. Coverage fraction from binary instrumentation using training inputs

A. Profile-Guided Static Analysis

The focus of the static analysis phase in Janus is to identify

loops that are suitable for parallelisation. Figure 6 shows the

results of this analysis, aided by profile information, for all of

our benchmarks. It breaks down loops into the five categories

described in section II-D. Each application is shown with two

bars: the first, on the left, presents the static fraction of total

loops falling into each category; the second bar, on the right,

presents the dynamic fraction of loops within each category

(i.e., how much of the application’s execution is spent in loops

of each category), which is gathered from profiling.

From static analysis, for the majority of the benchmarks,

Janus can analyse over half the loops. The exceptions are

leslie3d, namd, and h264ref. The majority of these incompat-

ible loops are small, with no fixed pattern for their induction

variables, or contain ambiguous control flow that has typically

been generated by compiler optimisation (e.g., vectorisation).

Janus can parallelise the fraction of loops that are green and

cyan. From profiling it is clear that these loops represent a

significant fraction of application runtime for some workloads

(e.g., 98% of lbm), but correspond to only a tiny fraction for

other benchmarks (e.g., 1% for xalancbmk).

Although Janus can analyse some loops with cross-iteration

data dependencies (yellow and red bars), these loops are the

focus of future work. Those with static dependencies require

synchronisation to ensure that the application semantics are

maintained, and code scheduling to overcome the synchro-

nisation overheads. Others require speculation because there

may be cross-iteration dependencies that did not occur during

execution with training inputs.

O3 integer and C++ benchmark binaries often contain

irregular optimised loops where the loop iterators cannot

be deterministically identified by our current implementation

(black bars). However, this could be addressed with further

engineering effort. In all, only nine of the 25 benchmarks

spend at least 20% of their execution time in loops displaying

DOALL parallelism. We therefore focus solely on these.

B. Whole-Program Performance

Figure 7 shows the performance of the SPEC binaries that

are amenable to parallelisation using eight threads, normalised

to native single-threaded execution for the whole application.

 0

 1

 2

 3

 4

 5

 6

 7

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct
us

AD
M

43
7.

le
sl
ie
3d

45
9.

G
em

sF
D
TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

48
2.

sp
hi
nx

3

G
eo

m
ea

n

S
p
e
e
d
u
p

DynamoRIO
Statically-Driven

Statically-Driven + Profile
Janus (Statically-Driven + Profile + Checks)

Fig. 7. Performance with parallelisation for eight threads on eight cores with
each thread bound to its own core.

We show four bars per benchmark. The first shows the perfor-

mance of the application when executed under DynamoRIO

without performing any modification, reflecting the overhead

of the dynamic binary translator. This has a significant im-

pact on some applications, such as milc, GemsFDTD, and

h264ref, which experience slowdowns of 10%, 14%, and 32%

respectively. Other applications gain negligible performance,

thanks to the trace optimisation that DynamoRIO performs,

the highest being lbm with a speedup of 4%. On average,

performance drops by 6% simply through use of the dynamic

binary translator.

The second bar, labelled “Statically-Driven” represents par-

allelisation based on static analysis only. In this case we

parallelise all loops categorised as static DOALL, and do

not use any profile information or runtime checks. Although

this realises performance improvements for libquantum and

lbm, which achieve speedups of 2.8× and 2.7× respectively,

most applications see little change. In fact, leslie3d and

GemsFDTD lose performance with this approach—13% and

23% respectively compared to native execution, or 11% and

10% compared to DynamoRIO alone. This is due to the

selection of loops with low coverage or those with a high

invocation count where overheads of parallelisation out-weigh

the benefits of shorter runtimes.

21

 0%

20%

40%

60%

80%

100%

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct
us

AD
M

43
7.

le
sl
ie
3d

45
9.

G
em

sF
D
TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

48
2.

sp
hi
nx

3

R
e
la

ti
v
e
 E

x
e
c
u
ti
o
n
 T

im
e

Sequential
Parallel

Init/Finish

Dynamic Translation
Dynamic Check

Fig. 8. Breakdown of execution time in Janus for one thread (left) and eight
threads (right).

TABLE I
NUMBER OF ARRAY BOUNDS CHECKS PER LOOP THAT REQUIRES THEM,

AVERAGED FOR EACH BENCHMARK.

410.bwaves 1 436.cactusADM 3 433.milc 12
459.GemsFDTD 19.5 464.h264ref 12

The next bar, labelled “Statically-Driven + Profile” uses

profile information to perform loop selection, removing these

loops that are statically proven to be parallel, but not profitable

to parallelise. Adding this profile significantly increases per-

formance in the two benchmarks (libquantum and lbm) where

the overwhelming majority of execution time is spent in static

DOALL loops. These applications achieve speedups of 6.0×

and 5.8× respectively. Other benchmarks, such as bwaves,

experience more modest performance increases.

Parallelisation through Janus is shown in the final bar, which

builds on the previous results by adding runtime checks to

enable safe parallelisation of dynamic DOALL loops (sec-

tion II-E1). This extends the coverage of parallel loops and

is essential to obtain a larger speedup for bwaves (2.8×)

and to gain a speedup in GemsFDTD (1.7×). For other

applications, such as milc and leslie3d this optimisation does

not result in higher performance than native execution due

to loop candidates having low iteration counts. Unfortunately,

for h264ref the overheads incurred by DynamoRIO cannot be

clawed back and this application still experiences a slowdown

of 24%. The bwaves benchmark contains a shared-library call

in its hot loop, which requires speculation to safely parallelise,

gaining a 2.9× speedup. Within this shared library call, we

observed on average 49 instructions with 11 heap reads and 0

writes. These are all translated using Janus’ STM. Since there

are no writes, the shared library call incurs no conflicts and

reasonable overhead.

C. Analysis

The overheads of parallelisation are explored further in

figure 8 where we break down the execution time for each

application using a sampling interval of 0.1s. The first (left)

histogram for each benchmark is the breakdown using Janus

with one thread, and the second (right) is the breakdown

for eight threads. The breakdown for each benchmark is

normalised to single-threaded Janus performance for that

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of threads

410.bwaves
433.milc

436.cactusADM

437.leslie3d
459.GemsFDTD
462.libquantum

464.h264ref
470.lbm

482.sphinx3

Fig. 9. Performance for different numbers of threads.

 0%

 2%

 4%

 6%

 8%

10%

12%

14%

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct
us

AD
M

43
7.

le
sl
ie
3d

45
9.

G
em

sF
D
TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

48
2.

sp
hi
nx

3

G
eo

m
ea

n
R

e
w

ri
te

 S
c
h
e
d
u
le

 S
iz

e
 O

v
e
rh

e
a
d

Fig. 10. Size overhead of the rewrite schedule as a percentage of the size of
each executable.

benchmark. As can be seen, for the applications that obtain

low speedups, there is a large fraction of time spent executing

sequential code, such as milc, leslie3d, and sphinx3. Hence

we are limited by Amdahl’s law.

The “Init/Finish” bar, representing time taken to initialise a

loop (start all threads) and finish it (wait for all threads to end)

can be significant for some applications too, such as milc, and

this added overhead limits parallel performance further. As

shown in figure 6, time taken to perform translation, which

is essentially DynamoRIO’s overhead, is high for h264ref and

GemsFDTD but negligible for all others. The dynamic checks

added to ensure static analysis is safe (see section II-E1)

also add significant overheads for half the benchmarks. Ta-

ble I shows the average number of array bounds checks for

each loop that requires these runtime checks, where missing

benchmarks do not contain array bounds checks. For some

applications, the number of checks can be high, such as

in GemsFDTD where there are 13 loops, each averaging 5

different array bases.

Figure 9 shows how the performance changes with the

number of threads. Both libquantum and lbm have almost ideal

scaling with four threads, at 3.9× and 3.7× respectively. This

tapers off with larger thread counts as the sequential parts of

the application become relatively more important.

D. Rewrite Schedule Size

The size of the rewrite schedules for each application

to encode the rewrite rules for parallelisation are shown in

22

 0

 1

 2

 3

 4

 5

 6

 7

 8

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct
us

AD
M

43
7.

le
sl
ie
3d

45
9.

G
em

sF
D
TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

48
2.

sp
hi
nx

3

G
eo

m
ea

n

S
p
e
e
d
u
p
 (

n
o
rm

a
liz

e
d
 t
o
 O

3
)

gcc -O3 -ftree-parallelize-loops=8 -floop-parallelize-all
Janus on a gcc-generated binary (O3)

icc -O3 -parallel
Janus on an icc-generated binary (O3)

Fig. 11. Janus’ speedup for sequential binaries generated by gcc and icc,
compared with compiler parallelisation.

figure 10, normalised to the size of the corresponding binary. It

is clear that the rewrite schedules are generally small, although

they can reach over 10% if there are many transformations to

apply. On average though, they are just 3.7% the size of the

original executable. They can be further reduced by creating

specialised rewrite rules that perform multiple common trans-

formations at the same time.

E. Comparison with Compiler Parallelisation

Although Janus targets stripped binaries without source

code, it is interesting to see whether a lack of information

inhibits automatic parallelisation. To assess this, we compare

the performance of Janus against binaries parallelised auto-

matically using gcc and Intel’s compiler, icc version 18.0

(figure 11). Each result is normalised against the performance

of a native executable compiled with the same compiler using

optimisation level O3. Neither gcc nor icc used feedback-

directed optimisation.

Janus can achieve speedup on binaries from both compilers,

which demonstrates that it is compiler agnostic. However,

Janus achieves less speedup (1.3×) on icc binaries compared

to gcc (2.2×), which mostly due to the baseline for icc being

faster. Icc tends to unroll more loops and use SIMD instruc-

tions, so the average number of iterations each thread executes

is actually less, which magnifies the threading overhead. In

addition, icc alters the code in a way that is less amenable to

our static analysis, meaning Janus executes additional runtime

checks, slowing down parallel performance.

However, it is also clear that loss of symbolic information is

not a barrier to automatic parallelisation. For the benchmarks

when Janus performs the best (libquantum and lbm), neither

gcc nor icc can achieve the same level of parallel performance,

although they could improve with their own feedback-directed

optimisations. Further comparisons are not helpful since Janus

is targeting a different application domain without source

code. Gcc, in general, does not manage to achieve significant

speedup from these applications from our experiments. Icc

performs better, especially for cactusADM where it carries out

heavy vectorisation in addition to parallelisation. On average,

however, Janus achieves its best speedup with gcc’s binaries

 0

 1

 2

 3

 4

 5

 6

 7

 8

41
0.

bw
av

es

43
3.

m
ilc

43
6.

ca
ct
us

AD
M

43
7.

le
sl
ie
3d

45
9.

G
em

sF
D
TD

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
0.

lb
m

48
2.

sp
hi
nx

3

G
eo

m
ea

n

S
p
e
e
d
u
p
 (

n
o
rm

a
liz

e
d
 t
o
 n

a
ti
v
e
)

Janus on gcc -O2
Janus on gcc -O3

Janus on gcc -O3 -mavx

Fig. 12. Janus speedup on respective O2, O3 and vectorised O3 sequential
binaries generated by gcc.

(2.2× compared to 1.1× for gcc) and almost the same speedup

as icc on icc’s binaries (1.7× compared with 1.8×).

F. Impact of Compiler Optimisation

As described in section III-E, different compiler optimisa-

tions can affect Janus’ ability to parallelise loops. We explore

this further in figure 12 where we show Janus’ speedup on

binaries generated by gcc with different optimisation levels.

The performance on O2 binaries, compared to O3, is negli-

gible, and mainly due to differences in where data is placed

(e.g., in registers or on the stack). Generic vectorisation is

already performed at O3, using SSE instructions. Adding

more aggressive vectorisation by using -mavx generally limits

the amount of performance Janus can obtain. One reason

is that the vectorised code is difficult to analyse (i.e., alias

analysis) due to peeling for alignment. However, this can be

resolved through further engineering effort in the alias analysis

pass. Some loop iterators are difficult to identify because

compilers tend to keep two different copies of unrolled loops

in the same outer loop, complicating analysis. For some

loops, there are not enough iterations to be profitable after

unrolling and vectorisation, making Janus reject those loops

during profiling. The exception is bwaves, which obtains a

3.7× speedup on the vectorised binary, compared with just

2.8× on the O3 binary. The reason is that false sharing

within the cache hierarchy limits speedups when compiled

with O3; vectorisation alleviates this bottleneck by bringing

more consecutive data into the cache per iteration of the loop.

G. Summary

Janus demonstrates parallel performance improvement de-

spite working in a dynamic binary modifier thanks to the

combination of static analysis, profiling, and runtime checks.

IV. RELATED WORK

Binary Parallelisation: A number of binary parallelisers

have been developed for a variety of architectures, but, to the

best of our knowledge, none are publicly available, which

makes a quantitative comparison impossible. We provide a

qualitative comparison and summarise in table II.

23

TABLE II
SUMMARY OF KEY FEATURES OF REAL-SYSTEM BINARY PARALLELISATION TOOLS (* MANUAL PROFILING REQUIRED).

Tool Platform Open source Automatic Runtime checks Shared-libraries Parallelisation Spectrum

Yardımcı and Franz [19] PowerPC ✓ Static DOALL Generic binaries
SecondWrite [3], [5] x86-64 ✓* ✓ Affine loops Affine binaries
Pradelle et al [4] x86-64 ✓* Decompile Src2Src Affine binaries
Janus x86-64, AArch64 ✓ ✓ ✓ ✓ Dynamic DOALL Generic binaries

Yardımcı and Franz [19] proposed a binary parallelisation

scheme for PowerPC binaries, which combines static analysis

and dynamic binary parallelisation by transforming executa-

bles into an intermediate form, with just-in-time compilation in

their dynamic software layer. Their approach requires profiling

at runtime to determine whether to perform parallisation,

whereas Janus performs loop selection statically based on

profile information.

Kotha et al. [3] proposed a binary paralleliser built in the

LLVM-based SecondWrite [2] static binary rewriter, which

focuses on affine DOALL loops with statically-known iteration

counts. They rely on static dependence analysis and polyhedral

analysis to disprove cross-iteration dependences. As it is a

purely static approach, they fail to parallelise loops when

the memory accesses cannot be determined. Their following

work [5] alleviates these weaknesses by including runtime

checks to verify their static analysis for loop bounds. Janus

takes advantage of a similar static alias analysis but is able to

parallelise more loops, including those with irregular control

flow and shared-library function calls, where correctness is

guaranteed through statically-controlled runtime checks and

software speculation.

Neither Yardımcı’s nor Kotha’s works are fully automatic

as they require user intervention to perform parallelisation

or fine tune performance. Janus, in contrast, can perform

parallelisation of a binary completely autonomously.

There have been a number of articles investigating the fea-

sibility of dynamic binary parallelisation through simulation

and limit studies [7], [6], [20], [21]. Edler von Koch and

Franke, for example, model dynamic binary parallelisation,

finding realistic upper bound speedups of only 1.09× be-

cause everything is performed at runtime [7] whereas some

dependencies could have been removed using static analysis.

Others model thread-level speculation, which is not supported

within existing commercial hardware and requires very large

overhead to implement in software.

Automated Program Optimisation: The most similar tool

to Janus is a combination of Calpa [22] and DyC [23] (Calpa-

DyC). DyC is a JIT compiler driven through user annotations

in C source code. The annotations specify an intermediate

structure for variables and code that is lazily compiled to the

underlying hardware at runtime. Performance can be achieved

through a variety of dynamic peephole optimisations. Calpa

automates the process of adding annotations to guide DyC

through profiling. Compared to Janus, Calpa-DyC is limited

to annotating C language programs, whereas Janus is able to

modify binaries compiled from any language without need of

the source.

Binary Optimisation: DynamoRIO [8] is a robust and

well-supported open-source runtime code manipulation sys-

tem which originates from the well-known high-performance

binary translator, Dynamo [24]. Other dynamic modifica-

tion tools, such as Pin [10], are closed source, and, like

DynInst [25], are more focused on binary instrumentation.

Some static binary translators, such as peephole superoptimis-

ers [26], DIABLO [27], and ATOM [28] use extra profiling

or debugging information to compensate for the loss of infor-

mation and ambiguities at the binary level. The Sun Studio

Binary Code Optimizer [29] and Microsoft Vulcan [30] are

well-known commercial tools for rewriting binaries for better

single-threaded performance, but both rely on instrumentation

to collect profiling information.

Automatic Parallelisation: Compiler-based automatic

parallelisation relies on a program’s source code to compile

into parallel binaries. Conventional automatic parallelising

compilers, such as Polaris [31], SUIF [32], PLUTO [33], and

LLVM Polly [34] reject ambiguous irregular loops for DOALL

or polyhedral parallelisation. HELIX [35] and DSWP [36]

handle DOACROSS and DOPIPE parallelism respectively by

employing more aggressive and expensive data dependence

analysis and code restructuring transformations. Janus does

not propose new approaches to automatic parallelisation but

instead adopts existing techniques efficiently, applying them

to binaries.

V. CONCLUSION

We have presented Janus, a framework for dynamic binary

parallelisation that incorporates static analysis, profile infor-

mation, and runtime checks. Using a custom static analyser,

Janus determines the transformations required to parallelise

an application, recording them in a rewrite schedule specific

to the binary. The dynamic binary modifier reads the rewrite

rules it contains and transforms the application at runtime as

instructed. We use Janus to parallelise a range of SPEC CPU

2006 applications gaining average speedups of 2.1×.

ACKNOWLEDGEMENTS

This work was supported by the Engineering and Physical

Sciences Research Council (EPSRC) through grant references

EP/K026399/1 and EP/P020011/1, and Arm Ltd. Additional

data related to this publication is available in the data reposi-

tory at https://doi.org/10.17863/CAM.33893.

REFERENCES

[1] J. T. Richards, J. Brezin, C. B. Swart, and C. A. Halverson, “A decade of
progress in parallel programming productivity,” Commun. ACM, vol. 57,
2014.

24

[2] K. Anand, M. Smithson, A. Kotha, K. Elwazeer, and R. Barua, “De-
compilation to compiler high IR in a binary rewriter,” University of
Maryland, Tech. Rep., 2010.

[3] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and R. Barua,
“Automatic parallelization in a binary rewriter,” in MICRO, 2010.

[4] B. Pradelle, A. Ketterlin, and P. Clauss, “Transparent parallelization of
binary code,” in First International Workshop on Polyhedral Compilation

Techniques, IMPACT 2011, in Conjunction with CGO 2011, 2011.
[5] A. Kotha, K. Anand, T. Creech, K. ElWazeer, M. Smithson, and

R. Barua, “Affine parallelization of loops with run-time dependent
bounds from binaries,” in ESOP, 2014.

[6] B. Hertzberg, “Runtime automatic speculative parallelization of sequen-
tial programs,” Ph.D. dissertation, Stanford University, 2009.

[7] T. J. K. Edler von Koch and B. Franke, “Limits of region-based dynamic
binary parallelization,” in VEE, 2013.

[8] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in CGO, 2003.

[9] M. Olszewski, J. Cutler, and J. G. Steffan, “Judostm: A dynamic
binary-rewriting approach to software transactional memory,” in Par-

allel Architecture and Compilation Techniques, 2007. PACT 2007. 16th

International Conference on, 2007.
[10] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,

S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in PLDI, 2005.

[11] C. C. Williams and J. K. Hollingsworth, “Interactive binary instrumen-
tation,” in RAMSS, 2004.

[12] F. Bellard, “Qemu, a fast and portable dynamic translator,” in USENIX

Annual Technical Conference, 2005.
[13] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight

dynamic binary instrumentation,” in PLDI, 2007.
[14] D. L. Bruening, “Efficient, transparent, and comprehensive runtime code

manipulation,” Ph.D. dissertation, Massachusetts Institute of Technology,
2004.

[15] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in CAV, 2011.

[16] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new
approach to computer security via binary analysis,” in ICISS, 2008.

[17] N. A. Quynh, “Capstone: Next-gen disassembly framework,” in Blackhat

USA, 2014.
[18] S. P. E. C. (SPEC), “SPEC CPU 2006,” https://www.spec.org/cpu2006/,

2006.
[19] E. Yardımcı and M. Franz, “Dynamic parallelization and mapping of

binary executables on hierarchical platforms,” in CF, 2006.
[20] C. Wang, Y. Wu, E. Borin, S. Hu, W. Liu, D. Sager, T.-f. Ngai, and

J. Fang, “Dynamic parallelization of single-threaded binary programs
using speculative slicing,” in Proceedings of the 23rd international

conference on Supercomputing, 2009.

[21] J. Yang, K. Skadron, M. L. Soffa, and K. Whitehouse, “Potential of
dynamic binary parallelization,” in Workshop on Unique Chips and

Systems UCAS-7, 2012.
[22] M. Mock, C. Chambers, and S. J. Eggers, “Calpa: A tool for automating

selective dynamic compilation,” in MICRO, 2000.
[23] B. Grant, M. Mock, M. Philipose, C. Chambers, and S. J. Eggers, “Dyc:

an expressive annotation-directed dynamic compiler for c,” Theoretical

Computer Science, vol. 248, 2000.
[24] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: a transparent

dynamic optimization system,” in PLDI, 2000.
[25] J. K. Hollingsworth, B. P. Miller, and J. Cargille, “Dynamic program

instrumentation for scalable performance tools,” in Scalable High-

Performance Computing Conference, 1994., Proceedings of the, 1994.
[26] S. Bansal and A. Aiken, “Binary translation using peephole superop-

timizers,” in Proceedings of the 8th USENIX conference on Operating

systems design and implementation, 2008.
[27] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Boss-

chere, “Diablo: a reliable, retargetable and extensible link-time rewriting
framework,” in Signal Processing and Information Technology, 2005.

Proceedings of the Fifth IEEE International Symposium on, 2005.
[28] A. Eustace and A. Srivastava, “Atom: A flexible interface for build-

ing high performance program analysis tools,” in Proceedings of the

USENIX 1995 Technical Conference Proceedings, ser. TCON’95, 1995.
[29] S. Lobo, “The sun studio binary code optimizer,” http://www.oracle.com/

technetwork/server-storage/solaris/binopt-136601.html, 1999.
[30] A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary transformation

in a distributed environment,” Microsoft Research, Tech. Rep. MSR-TR-
2001-50, 2001.

[31] B. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. Padua,
P. Petersen, B. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford,
“Polaris: The next generation in parallelizing compilers,” in Workshop

on Languages and Compilers for Parallel Computing, 1994.
[32] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M.

Anderson, S. W. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S.
Lam et al., “Suif: An infrastructure for research on parallelizing and
optimizing compilers,” ACM Sigplan Notices, 1994.

[33] U. Bondhugula, J. Ramanujam, and P. Sadayappan, “Pluto: A practical
and fully automatic polyhedral parallelizer and locality optimizer,” The
Ohio State University, Tech. Rep., 2007.

[34] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N.
Pouchet, “Polly-polyhedral optimization in llvm,” in IMPACT, 2011.

[35] S. Campanoni, T. Jones, G. Holloway, V. J. Reddi, G.-Y. Wei, and
D. Brooks, “Helix: automatic parallelization of irregular programs
for chip multiprocessing,” in Proceedings of the Tenth International

Symposium on Code Generation and Optimization, 2012.
[36] G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Automatic thread

extraction with decoupled software pipelining,” in Proceedings of the

38th Annual IEEE/ACM International Symposium on Microarchitecture,
2005.

25

