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Random Walk Notation

= P transition matrix of a lazy walk on an undirected, connected graph G

% if u=v,
Puv =\ 7aseqey I Lus v} € E(G),
0 otherwise.
= 7 with 7, = dezg‘f_:‘v) is the stationary distribution

Fundamental Quantities

= mixing time: tmix(%) =min{teN:Vue V: % Yoev |pf,’,, - 7rv’ < %}

= (maximum) hitting time: tpz = maxy,vev Ey [ min{t: X¢ = v} ]

Focus of this talk

* meeting time: tmeet = Maxy,vev Eu,y [Min {t: X = Y} ]

» coalescing time: teoal = E12,... 0[]
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Motivation: Voter Model

Voter Model

= Given a graph G = (V, E) with n nodes, each with a different opinion

* At each round, each node "pulls" w.p. 1/2 the opinion of a random
neighbor, otherwise keeps his current opinion.

~——— Duality
Time to reach consensus = Time for n coalescing particles to merge.

(voting) time

(coalescence) time
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For the discrete-time variant:
= For any graph, tcal S tmeet - logn [Hassin, Peleg, DIST'01]
d-1
= For a random d-regular graph (non-lazy walks), tecal = (2+0(1)) - 55
[Cooper, Frieze, Radzik, SIAM J. Discrete Math.’09]
= For any graph, teal S 1= A (Iog n+ ||7l'||2)
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‘ |, where § is the minimum degree
[Berenbnnk, Giakkoupis, Kermarrec and Mallmann-Trenn, ICALP’16]

= For any graph t.a 5

For the continuous-time variant:
= For any graph, tea S thit [Oliveira, TAMS'12]

= (simplified) For graphs with tmix << n, t.al behaves like on a clique
[Oliveira, Ann. Prob.’12]

= For many graphs, teoal X tmeet OF even teo < n (if G is regular)

= Under the premise that tmix and tmeet are “simpler’ quantities, when
does teoal X tmeet hold?
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Relating Coalescing Time to the Mixing and Meeting Time




The Upper Bound and some Consequences

Theorem (Upper Bound)

For any graph G = (V,E),

tmeet

t .
teoal S tmeet - (1 + e |0g n)




The Upper Bound and some Consequences

Theorem (Upper Bound)

For any graph G = (V,E),

t .
teoal S tmeet * (1 + e |0g n)

tmeet

2
= Whenever et > (log n)?, we have tea X tmeet
tmix




The Upper Bound and some Consequences

Theorem (Upper Bound)

For any graph G = (V,E),

tmeet

t .
teoal S tmeet * (1 + e |0g n)

= Whenever t;“—ee‘ 2 (log n)z, we have teoal X tmeet
mix
« If fmet 2 1 our bound states teoal S tmeet - log n
mix

= bound can be viewed as a refinement of the basic tecoal S tmeet - logn




The Upper Bound and some Consequences

Theorem (Upper Bound)

For any graph G = (V,E),

tmeet

t .
teoal S tmeet * (1 + e |0g n)

= Whenever t;“—ee‘ 2 (log n)z, we have teoal X tmeet
mix
« If fmet 2 1 our bound states teoal S tmeet - log n
mix

= bound can be viewed as a refinement of the basic tecoal S tmeet - logn

Application to “Real World" Graph Models

If the max-degree satisfies A < n/ Iog3 n and tmix S logn, then teal X tmeet-




The Upper Bound and some Consequences

Theorem (Upper Bound)
For any graph G = (V,E),
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= Whenever t;“—ee‘ 2 (log n)z, we have teoal X tmeet
mix
« If fmet 2 1 our bound states teoal S tmeet - log n
mix

= bound can be viewed as a refinement of the basic tecoal S tmeet - logn

Application to “Real World" Graph Models

If the max-degree satisfies A < n/ Iog3 n and tmix S logn, then teal X tmeet-

—

Unfortunately we are not able to determine tmeet
(it is conceivable though that tmeet = 1/[7[3)
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This is of course wrong, since the events are not independent!
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A Glimpse at the Proof of the Upper Bound

Proof is a bit technical, and we will only glance over one challenging part.

= Consider two random walks (X:)e0, (Y:)es0 starting from stationarity
= By a scaling argument,

tmix
Print(X, Y, tmx) ] > = p,
PLnt(X, Y, tmi) ] 2 70— =i p

= Define for 7 := tmix,
Cr:={(x0y--, %) € Tr: Pr[int(x,Y,7)] > g}
G :={(x0y..., %) € Tr: Pr[int(x,Y,7)] >/p}.

[clique (vertex-transitive graphs) ] [“asymmetric” graphs with core ]

- Then, Pr[(X:)io€ G112 or Pr[(X:)ioe 2] > 2.

= Suppose Pr[ (X:)i_o € C2] > §. Then a p-fraction of all walks have a “good"”
trajectory that is hit by a stationary walk with probability at least \/p ...

» (Issue: Random walks coalesce and could therefore have terminated earlier!)
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2.
S
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= G}, 1<i</nare cliques over \/n
nodes

= G, is a \/n-regular Ramanujan
graph on n/\/a nodes
(04 = tmeet/tmix)

= Node z* is connected to one
designated node in each G| and to

\/n/a distinct nodes in G,

Random Walk Quantities

" tmix XN

= “>": Cheeger’s Inequality

[Peres, Sousi, J. of. Theor. Prob.’15]
" fmeet X XN
= very unlikely to meet outside G

" teoal 2 \/an logn

= “<" use principle of “Mixing-Time equal to Hitting-Time of Large Sets”

= After tmx steps, w.p. (1/\/5)2 both walks on G, = meet w.c.p.

= 3 one walk starting from G{ that doesn’t reach Gy in \/an log n steps
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Contrasting the Example with the Upper Bound

For the example tmix X /N, tmeet X ar/n and teoa 2 /- nlogn:

~——— Theorem (Lower Bound)
For any a = fmet ¢ [1, log® n] there exists a family of almost-regular graphs
such that:

t .
teoal 2 tmeet * (1 + AL |0g n)

tmeet

——— Theorem (Upper Bound)

For any graph G = (V,E),

t .
teoal S tmeet - | 1+ . |0g n
V tmeet

= For almost-regular graphs, t.a might be as large as tmeet - log n

= However, for any vertex-transitive graph, teoal X tmeet(X thit)
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Improved Bounds on Hitting Times (and Meeting Times)

= For any regular graph, t.i; S [Broder, Karlin, FOCS'88]

_n_
1-Xo

= For any graph, tm S ;/47;722’ [Aldous, Fill]

Theorem

For any regular graph,

_n
1-X\

tmeet S thit pS

= For any given 1/(1 - )\2), there is a graph matching this bound up to
constants

= Applying Cheeger’s inequality, we obtain ty: = O(n/®).
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Application to Concrete Networks

1D Grid 2D Grid 3D Grid
o o0 06 0 0 0 0 0
2
tmix X N tmix X N tmix X n2/3
2
thit X tmeet X N thit X tmeet X n|0gn thit X tmeet X N
teoal X n2 (\/) teoal X "lOg" (\/) teoal X N v
Hypercube Expander Graph Binary Tree
R
N2y
tmix < log nloglog n tmix X logn tmix X N
thit X tmeet X N thit X tmeet X N thit X tmeet < nlogn
teoal X N v teoal X N v teoal X "|Ogn (\/)
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Summary and Open Questions

Results

1. For arbitrary graphs, teoal S tmeet - (1 4y i log n)

tmeet

2. For any t;“e_e‘ € [0, log? n], there is an almost-regular matching graph

3. For graphs with constant A/d, tmix S tmeet S teoal S thit S teov

Open Questions

= Can we prove teal S thi for all graphs?
Roberto I. Oliveira, Yuval Peres: Random walks on graphs: new
bounds on hitting, meeting, coalescing and returning. CoRR
abs/1807.06858 (2018)

« Is it true that (59 < tc(C:”t) for any graph?

coal
= Reduce the number of walks to some threshold & € [1, n].
Conjecture:

= For any (regular) graph, no. walks can be reduced to v/n in O(n) time.
= More generally, it takes O((n/x)?) time to go from n to k.
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Another Direction: Cat-and-Mouse Game

Definition

= The mouse picks a deterministic walk
(vo, va, v2,...), unaware of the transitions of the cat

= The cat performs lazy random walk (Y:)s0 from u

= The expected duration of the game is

teatmouse ==  max  E,[min{t>0:Yi=wv}].
u,(vo,v1,...
4

= very similar version in Aldous and Fill (Section 4.3)

= we may assume w.l.o.g. that the cat starts from
stationarity by simply letting the cat perform tmix steps

Comments on the Cat-and-Mouse Game:

= Easier to deal with in the sense there is only one random object (the cat!)

- C|ear|y, tmeet S tcat-mouse and thit S teat-mouse-
But do we have tcatmouse X thit?
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